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The Bloom Filter Design for Numerical Range

Query

Student: Kun-Yang Fan Advisor: Dr. Ming-Feng Chang

Institute of Network Engineering

National Chiao Tung University

ABSTRACT

A Bloom filter is a simple space-efficient randomized data structure for concisely
representing a data set. The property of its randomization has great potential for
distributed network systems, and it supports‘the-membership query with a small false
positive rate, which is the probability that an element was not in the data set but
Bloom filter reported it is. There have-been many.studies on how to improve the
correctness of Bloom filter by reducing the false positive rate. However, little research
has been done on Bloom filter design for numerical range query. Since a Bloom filter
can only represent a limited number of elements, when a large range of numerical
attributes are inserted into a Bloom filter, the false positive rate increases dramatically.
In this thesis we present efficient Bloom filter design for numerical ranges. First,
Division scheme reduces the number of elements inserted by grouping the numerical
range into divisions, i.e., numbers in the same division are treated as the same element.
On the other hand, Overlapping scheme reduced the number of bits inserted in the
Bloom filter by overlapping the inserted bits of consecutive numbers. In addition,
Division and Overlapping scheme combines the techniques of the aforementioned two
schemes. Analytic model was used to derive the false positive rates of the schemes.

Computer simulations were used to verify the correctness of the analytic model.



Moreover, the optimal configuration of Bloom filter representing a numeric range of
single attribute can be obtained, i.e., the false positive rate is minimized. A heuristic
algorithm has been developed to obtain near optimal configurations for multiple
attributes. The Division and Overlapping scheme extends the Bloom filter design for

numerical range query, where traditional Bloom filter cannot be used.
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Chapter 1 Introduction

1.1 Overview

In recent years overlay and peer-to-peer network applications, such as file
sharing, Internet telephony and group communication systems, have been replacing
the traditional client-server model. The peer-to-peer network applications use the
distributed hash tables to locate a node or object in peer-to-peer network [1], [2]. And
each node in peer-to-peer network only preserves a part list of objects locations in a
peer-to-peer system instead of every object location in other nodes. The replication of
global index is well distributed over peer-to-peer network; therefore, keeping the
distributed hash table at each node Is important.in the moderate-sized peer-to-peer
network construction for large-scale. scalability:.

Bloom filter has been used-to profile the-description of a node in a P2P systems
or a set of data, including numerical.and.non-numerical items. The PlanetP is a
peer-to-peer system that using Bloom filter to summarize the set of data items in
peer’s local index [3]. As a result, the cost of replication can be reduced and the
distributed hash table of peer’s local cache would be minimized by compressing the
bloom filter. Reynolds and Vahdat demonstrate another application where Bloom
filter was used to find the set intersection for keyword searches [4].

Although Bloom filter is a space-efficient way to represent a set of data, it has
difficulty in representing a large range of numerical data. Because the large number of
inserted items will result in the false positive rate increasing, we need to find more
efficient way to insert data into Bloom filter. For example, a numerical rage of a data
set contains a class ¢ IP address 140.113.214.X, which includes 255 sub IP addresses.

And if we used Bloom filter to represent this data set for previous application [3], the
1



large number of inserted elements of Bloom filter would make performance
degradation of Bloom filter. In this thesis we discuss this kind of numerical range
problems and propose our schemes to improve the former methods for numerical

ranges.

1.2 Related Work

Several researches have addressed the issues how to improve using space or
comparison time of Bloom filter and still maintain a low false positive probability.
Bloom filter is a bit array to represent a set of data elements by mapping the set of
data into the randomized bit array indices. In other words, the different indices of bit
array are set to 1 or O to represent a set of data. The false positive occurs when the
Bloom filter reports the element x.is in the set although it is actually not in the set. In
addition, inserting element into-Bloom filter changes-the probability of false positive.
The background on Bloom filtertheory is-presented in chapter 2.

Fan, Cao, Almerida, and Broder [5] proposed an extending Bloom filter, using
counter array to replace the bit array of Bloom filter for inserting and deleting;
therefore, it can be more scalable to summary the web server cache. When an element
is inserted into the cache, the counter increased from O to 1; when an element is
deleted from the cache, the counter decreased from 1 to 0. This method avoids the
problem that the Bloom filter loses the correctness after inserting or removing element
elements because bit counter can dynamically increase or decrease rather than a single
bit. Mitzenmacher [6] suggested a Compressed Bloom filter to improve the
performance in term of bandwidth saving when the Bloom filters are used to the
transmission messages. The method of compressed Bloom filter is to compress the bit
array size of Bloom filter and use less number of hash function in Bloom filter. The

author emphasized the point that the number of hashing function minimized the false
2



positive probability in uncompressed Bloom filter case but maximized the probability
in the case of Compressed Bloom filter. Kirsch and Mitzenmacher [7] also proposed
distance-sensitive Bloom filter, using a set of locality-sensitive hash functions to
answer queries of the forms, “Is x close to an element of S?” It has potentially benefits
of the speed of membership query comparisons and requires less space than the
original data.

Cohen and Matias [8] proposed spectral Bloom filter and addressed the issue of
element deletion over multi-sets of Bloom filter. Spectral Bloom filter is an extension
of original Bloom filter to estimate the multiplicities of individual elements with small
error probability. Kumar, Xu, Li, and Wang [9] showed another compact structure
space-code Bloom filter, which is an approximate representation of a multi-set.
Space-code allows for the query .@bout how many occurrences of an element being
there in a multi-set. Both Bloom filters are approximate representations of a multi-set,
which allows for querying multiplicities—-of-.an, element. Spectral Bloom filter,
space-code Bloom filter and their‘variations-are  suitable for representing static sets
whose size can be estimated before design and development.

Instead of representing static sets, dynamic Bloom filter [10] and scalable Bloom
filter [11] are proposed to dynamic sets when the actual size of a data set increases.
Dynamic Bloom filter is a bit matrix with s lows and m columns. In other words,
dynamic Bloom filter consists of s standard Bloom filters with length m, and it starts
with s = 1 when no inserting element. When inserting new elements, dynamic Bloom
filter may increase the number of rows s if it could not find an active bloom filter, and
an active Bloom filter of dynamic means that the number of inserting elements does
not exceed the threshold of the standard Bloom filter with size m for maintaining false
positive rate at constant value below. Therefore, the inserting element did not be

inserted until finding an active Bloom filter in dynamic Bloom filter or adding a new
3



standard Bloom filter for an active Bloom filter. Scalable Bloom filter improves the
performance degradation of dynamic Bloom filter when the number of standard
Bloom filter increases. The main difference between dynamic Bloom filter and
scalable Bloom filter is the method of adding a new standard Bloom filter. Scalable
Bloom filter is a bit matrix as same as dynamic Bloom filter, but it inserts an active
Bloom filter with double size of previous active Bloom filter rather than dynamic
Bloom filter. Scalable Bloom filter provides the lower query time and more scalable

inserting method than dynamic Bloom filter.

1.3 Objective

Although many studies have been done on the data structure improvement of
Bloom filter, little information is:available on inserting method over Bloom filter.
Previous works have proposed=many variations of standard Bloom filter, but it still
remains the issue how to efficiently iinsert-element into Bloom filter. The purpose of
this thesis was to investigate the effect.of inserting many numerical elements, which
increases false positive probability, and we will propose our schemes Division,
Overlapping and the combination of both Division-Overlapping to improve the
method of numerical elements insertion.

In the thesis, we address the issue of numerical range insertion using Bloom filer,
and show how a numerical range, which contains many elements, can be represented
and stored in a Bloom filter with less space. The representation scheme of our work
may increasing the efficiency of Bloom filter in query time and space when numerical
elements having a large percentage of a data set. Our contribution of this thesis is to
propose an efficient scheme for the mapping from numerical rages to Bloom filer, and

we will give our suggestion for the parameters setting of our methods in this thesis.



1.4 Summary

We organized the remaining thesis in the following. Chapter 2 presents the
background of Bloom filter theory and the definition of range query. In Chapter 3, we
describe our methods in representing a numeric range and the analytic models. In
Chapter 4, we evaluate the effectiveness of our methods and discuss the simulation

results. Finally we give our conclusion in Chapter 5.



Chapter 2 Background

2.1 Standard Bloom Filter

Bloom filter is a space-efficient randomized data structure to represent a data set.
Fig. 2-1 depicts standard bloom filter [12], which is a bit array that represents a set S
of n elements {si, S2...Sn}, and it uses a set of k = 4 hash functions to project the
elements of a data set S onto the bit array with a set of 4*n random indices. In this
figure, the length of this bit array is m, and the number of hash functions k is 4. The
four hash functions of Bloom filter would be independent for randomization property;
therefore the hashed indices of element would not be the same. Because of the
randomization property of hash function, the four hashed indices of each element in S
may have different value from each other;/After hashing n elements in the data set S
and setting their random indices of'the bit array, we call this bit array the Bloom filter
for the representation or the summary. of the-data set S. The random indices of bit
array are called the insertion bits of the'Bloom filter, and setting random indices of bit

array is called insertion an element into a Bloom filter.

m

Fig. 2-1 Bloom filter data structure

Inserting an element into a Bloom filter is an operation to set k random indices

on the bit array. The computation time of inserting operation is depended on the

6



computation of hash function, since the performance of hash functions is determined
by the hashing algorithm. The hash function algorithms we use here are MD5 and
SHA-256, which are digest message algorithms that produces 128 bits and 256 bits
hashing values for arbitrary byte length of a message. In this thesis, the method of
choosing a class of k independent hash functions from the 128 bits produced by MD5
is similar to the previous work [5] where k is smaller than eight. We divided the 128
bits digest message into eight 16-bit words for the number of hash functions k, and the
each random index of an element is the modulus of different word by the size of
Bloom filter m. If k was larger than eight, the first eight hash functions are come from
MD5, and we further divide the 256 bits digest-message of SHA-256 into sixteen
16-bit words in the same way for the rest of hash functions k. We assume that the
number of hash functions k in this-thesis is smaller than 24, and the hash functions
generated by MD5 and SHA-256.'can satisfy the-randomization property of our
simulations.

To query whether an element’is in.a data set represented by a Bloom filter, we
can check whether all the k indices of the bit array corresponding to the element are
all true. Hence, we simply check the k indices produced by independent hash
functions for the querying element, and we say this element is in the data set if the k
indices of the bit array of this element were all true. When doing membership query, it
will be not only to query a single element but also to compare more elements with
Bloom filter. If there were two data sets S; and S,, the comparison of two data sets S;
and S, would be the indices checking of two bit arrays because two data sets have two
bit arrays for their data set summaries. Instead of checking k indices for querying an
element, we check m indices, where m is the size of Bloom filter in data set S;.

The false positive of Bloom filter is an error that an element was not in the data

set but Bloom filter reported it is. The probability of this error occurrence in Bloom
7



filter is called the false positive rate. In Fig. 2-2 there are two Bloom filters, one of
which is the bit array B1 and the other is the bit array B2. B1 summarized the data set
S;= {{a}, {b}}, and B2 summarized the data set S,= {{a}, {c}, {d}, {e}}. Note that
the indices of B1 which were set to true are as same as the indices of B2, and then we
can say the B1 is a subset of B2. Although the B1 is contained in B2, the S; is not a
subset of S,. The element {b} is not in S,, but the Bloom filter reported it is. The
situation is called the false positive of Bloom filter, and the correctness of Bloom
filter is depended on the false positive rate, which is the probability of false positive
occurrence. When doing set comparison, it is needed to generate two bit arrays to
represent the separate data set and to check m indices. Moreover, we can do Boolean
operation AND for two bit array for set intersection operation, and OR operation for

set union.

Bl |011001101101101| <{a}, {b}

B2 ([111101101101111 <{a}, {c}, {d}, {e}

Fig. 2-2 Two Examples of Bloom filter

The correctness of Bloom filter is correlated with the size of Bloom filter m, the
number of hash functions k and the number of the insertion elements of a data set n.
The definition of the false positive has been described, and we defined the false
positive rate is the error rate that an element is not in the data set but its random
indices were true in the Bloom filter. We assumed that the k hash functions are all
independent and perfect random, the size of Bloom filter is m and the number of
insertion elements in data set is n. Before finding the false positive rate f, we calculate

the probability p, which indicates a indices of Bloom filter was still O after inserting n



elements, is showed as Equation 2- 1.
_ l_l nk __ o-nk/m 21
p=01-—)"~e (2-1)
m

The probability p would be modified if the number of insertion bits n*k was change.
Based on Equation 2-1, the false positive rate can be thought that choosing k indices
of a Bloom filter randomly, and all of k indices are true after inserting n*k bits into
Bloom filter. The false positive equation is expressed as follows.

f =(1-p) = (1-e"™M)" (2-2)
After finding the false positive rate of Bloom filter in Equation 2-2, the relation
between m, n and k needs to be derived for optimal configuration. Based on Equation
2-1 and Equation 2-2, the false positive rate f can be rewritten asexpk In(L— p) . We
letg(k) =kIn(2— p), and find differential value of g(x) be 0 in order to find optimal

value of k. In the differential equation ofg—a: In(l-p)—ln—p p, the domain of p

(1-p)

is 0< p<1, and the p is 1/2. The optimal relation between m, n and k is expressed as

follows.
p=1/2for0< p <1, thene™™=1/2, k=(m/n)In2 (2-3)
0.0075 - ‘ ‘
"Simulation Value" _|_
= "Theoretical Value"
0.007
0.0085 |
[
T 0.006  —
2
z 0.0055 |
o
i
& 0.005
0.0045 \ /
0.004 \F\I————‘/ '
0.0035
4 5 6 7 8 9 10 11 12 13

The number of hash functions (k)

Fig. 2-3 The false positive rate using different k
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In Equation 2-3, it is clear that an optimal value p for a Bloom filter is 1/2;
moreover, by given any two of variables m, n and k, another variable can be
determined. In other words, the ideal number of insertion bits n*k in a Bloom filter
would be equal to m*In2. If the number of insertion bits is equal to m*In2, the false
positive f would be approximate to the value of (1/2)*. In Fig. 2-3, the number of
insertion elements n is 44, and the size of Bloom filter m is 512. We used the different
numbers of hash functions k

from 4 to 13, and we find that the optimal k was 8. The simulation results are
approximate to the theoretical value based on Equation 2-3 that optimal k is equals to

(m/n) * In2.

2.2 Numerical Range Query

In the distributed applications, a Bloom filter is:used for membership query, and
a range query is to query whether a numerical _element is in the query range of the
numerical attribute of a data set. For example, if there was a user who published a
numerical element “15” with numerical attribute name “Age” and another user might
want to query whether there has any number from “10” to “60” in “Age” attribute, the
published Bloom filter was compared with the query Bloom filter. The query range
which was represented by Bloom filter should contain the numerical elements from 10
to 60. The method to insert a numerical attribute into Bloom filter is to concatenate
the data bytes of the numerical attribute name and the data bytes of each numerical
element of this attribute, and then project each catenation onto the random indices of
bit array. In other words, we first transform the attribute name and numerical elements
into bytes, and then concatenate them into an inserted element of Bloom filter. For

example, if we want to insert a numerical attribute whose name “Age”, and its query

10



range of “Age” attribute is from 10 to 60; therefore, the total 61 data byte
concatenations from “Age” + 10 to “Age” + 60 will be projected onto the bit array. It
might lead to that there are too many elements inserted into query Bloom filter. In the
definition of Bloom filter, each element in a data set that was represented by Bloom
filter will be projected onto the random indices of a bit array; Therefore, the
probability p was getting small and the false positive rate f would be increasing. Since
most of the range queries of Bloom filter are to query numbers, we consider a rage
query of the Bloom filter in this thesis is a numerical range query. A numerical range
R {b1, by...bn} is a subset of Ry {d;, d>...dn} if by =diand b, =d, because both R;
and R, are numerical rage, whose numerical elements are countable and continuous.
Our assumption is that if there are two numerical elements e; and e, contained in a
range R, the range R would contain-all numerical‘elements from e; to e,. If there was
a range query for whether R; is contained in Ry, we query the numerical elements
from b; to b, about whether R; is contained-in-R,. In-Fig. 2-4, there are two numerical
ranges R1 and R2, and the range query-R1 to-R2'is matching because each number of

R2 is contained in R1.

B1: Bloom Filter of R1 = {0,1,2,...,13}

|

B1 {(11110110110110111011111111111111

B2: Bloom Filter of R2 = {3,4,5,6,7, 8

|

B2 (10010010110110111011100100010001

Fig. 2-4 Range query using Bloom filter

According to Equation 2-2, the number of insertion elements n, would increase

11



the false positive rate if there are too many continuous and numerical elements
inserted into a Bloom filter. For efficient rage query, there are two Bloom filters to
represent the query range and being query range, every numerical element of each
range would be inserted into Bloom filter; therefore, if any number was an element or
a subset in the query range, the range query is match when comparing the Bloom
filters of query range and the Bloom filter of being query range. For more detail
description as following: A query range would include many continuous numbers, and
it then have many indices of its bit array to set 1; therefore, the number of insertion
bits which were inserted its Bloom filter affects the false positive rate of the Bloom
filter. Based on Equation 2-2, the numerical query range which has many continuous
and countable elements will have many insertion bits and increase the false positive
rate of the Bloom filter. As a result, it is essential to find more efficient method to
represent the numerical query rage.in order to reduce false positive rate if this query

range which contained many numbers.
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Chapter 3 Bloom Filter Design for

Range Query

When the number of elements stored in a Bloom filter was larger than a
threshold, the false positive rate increases dramatically. The design of Bloom filter is
needed to be modified in order to store a large range of continuous numeric numbers.
As we have mentioned before, inserting all elements of a data set into Bloom filter by
using a set of hash functions. In most situations, the size of Bloom filter m and the
number of hash functions k are predefined when inserting elements into Bloom filter
or doing Bloom filter comparisons. As a result, the number of insertion elements is the
important factor of the false positive rate of Bloom filter. In order to reduce the false
positive rate of Bloom filter when.inserting.the cuery range of numerical attribute,
three schemes are proposed to remedy.the-original method when too many numbers of
query range inserted into a Bloom filter.. The focus of our schemes is to compress the
number of insertion bits when too many numerical elements were inserted into Bloom
filter. Moreover, we try to find the optimum configuration of our schemes for the
minimum false positive probability.

We assume that the range query of a numerical attributes in Bloom filter had its
native minimum and maximum numbers in the domain of this attribute. For example,
the numbers of “Age” numerical attribute would distribute over 1~120, and the
numerical elements of “Year” attribute would be distribute over 0~3000; therefore, it
IS necessary to considerate not only how many numbers is in the query range of the
numerical attribute but also the numerical property of this attribute. For different
domain of different numerical attributes, the optimal parameters of our proposed

schemes would be different.
13



3.1 Division Scheme

For numerical range query, a simple way to reduce the false positive rate is to
decrease the number of insertion bits inserted into Bloom filter. The scheme
“Division” is to group the continuous numbers into different divisions, and the
numbers in the same division are projected onto the same random indices of Bloom
filter. The Division scheme extends the original insertion scheme and inserts
continuous numbers of different division into bloom filter. In previous Bloom filter,
every number in query range are projected onto a set of random indices of bit array,
and the large number of insertion bits will decrease the probability p of Equation 2-1
when inserting too many numerical elements into Bloom filter. Instead of hashing
every number and inserting them-into Bloom filter, we simply group continuous
number into divisions and only insert the first .number of different divisions into
Bloom filter. The Division scheme.is—to-use several divisions to represent the
continuous numbers of the query range.of a-numerical attribute, and the number of
how many continuous numerical elements were grouped into a division is called
“dividing-range”. In Fig. 3-1, there was a numerical attribute whose numerical
elements were inserted into a Bloom filter by Division scheme, and the dividing-range
of Division scheme was 5. For example, if there was a numerical attribute which
contained the numbers from 2 to 13, the Division scheme only inserted the number
{0}, {5} and {10} numerical elements into a Bloom filter rather than inserted the 12
numbers from 2 to 13 into a Bloom filter. Due to the number of the insertion numbers
n was decreased by Division scheme, the number of insertion bits n*k was also

reduced, and then the false positive rate was decreased.
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{0,1,2, 3,4} 45,6,7,8 9} {10, 11, 12, 13, 14}, ...

v

01000100000110101011000100100000

Fig. 3-1 Group continuous numbers into divisions

Although the number of insertion bits was decreased, an additional penalty for
Division would increase the error rate. The penalty of this scheme is the effect of
dividing range factor, which incurs the additional false positive for two different
numbers being regarded as the same. In previous example of Fig. 3-1, the
dividing-range was 5, and if the demain range. of a number was from 0 to 1000;
therefore there were about 200 divisions:in. this number range. We assumed the
probability distribution of the 'selection.of a number was uniform distribution, and
there were two numbers selected randomly. We:- could simply say that the error
probability of two numbers seeming to the same was about 1/200. Because we
grouped the continuous numbers into divisions, the number of insertion element
would be change. The native false positive rate fq of using Division scheme would be
different to the false positive rate f of the original scheme. Because the number of
insertion bits n*k was changed in Division scheme, we first calculated the function of
the number of insertion bits g(n, d, k), where d was the value of the dividing-range of
Division scheme. Because we knew the size of the query range n of a numerical
attribute, but the start number of this query range was not certainly assured; therefore,
we used the expectation value of how many division were used for this query range,
and the g(n, d, k) was the expectation value of the number of insertion bits of this

query range. Finally, the number of insertion bits can be written as follows.
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d-1
g(n,d,k)=k>[(n+i)/d]/d (3-1)
i=0
From Equation 3-1, the probability p of Division scheme is re-written as follows.
p= (1_£)g(n,d,k) — g 9(ndk)/m (3:2)
m

After calculating the probability p that a index of the bit array was still 0 after
inserting g(n, d, k) bits into a Bloom filter, the native false positive rate fq of using

Division scheme is written as follows.
f, = (1 p)* = (1-e na0myk -

Although the false positive rate fq of Division scheme was calculated, the penalty
of Division scheme was still needed to be considered. As we have mentioned before,
Division scheme is to group the continuous numbers into different divisions in the
dividing-range d. The probability that two different numbers were regard as the same
is the value of dividing-range d-divided by the domain R of a numerical attribute. In
Division scheme, the error that a number-was not in the query range but in the
division of the query range is called “dividing error”. In other words, the total false
positives of Division scheme include not only the native false positive but also the
dividing error events. The number of dividing error events is still the expectation
value because that we did not know the start number of the query range. Because the
numbers of a query range in our assumption were all continuous and countable, the
dividing error events of a query range can be determined if the start number of the
query range and its size had been decided. Therefore, we need to consider all case that
the start number’s position in its division, and we then calculated the expectation
value of the dividing error events if the dividing-range had been decided. The

expectation value of dividing error events is written as follows.
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d-1
D i+(n+i)modd
E(Dividing Error events) = =2

_d(d-1)

=d-1 3-4
5 5 (3-4)

After calculating the native false positive rate f; of Division scheme and the

expectation value of dividing error events, the total false positive rate f of Division

scheme can be rewritten as follows.

R-n—(d-1) d-1
¢ " R-n

f(m,k,R,n,d) == :
-n

_R-n-@-D, o d-1
=) e (39)

In Equation 3-3 f, = (1-e%"*¥'™)¥ ' the native false positive rate of Division

scheme is different to the Equation 2-2 f =(1-e™™)* because the number of
insertion bits in Equation 3-1 would be small than original insertion bits when d was
larger than 1; as a consequence, the native false positive value of Equation 3-3 is less
than the value of Equation 2-2. But.we still need to considerate the error that two
numbers are in the same division but they.are not the same. For previous example, the
range {2, 3..., 13} was inserted into Bloom filter with dividing range d = 5, and the
number 14 was not in the range“but Bloom filterreported it is. Such error is called
“dividing error”, and the Equation 3-4 shows the expecting value of dividing error
events. In Equation 3-4, if the dividing range d is 1, the number of dividing error
events will be 0; every number in the query range is projected onto its independent
random indices; therefore, there is no dividing error, and the Division scheme with
dividing-range d = 1 is as same as the original scheme.

In Fig. 3-2, there was a query range of a number attribute was inserted into a
Bloom filter whose size m is 512 and the number of hash functions k is 8, and the
domain of the numerical attribute R is 1000. The number of insertion elements of the
query range n is 100. The variation in x-axis is the dividing-range d from 1 to 10. The
total false positive rate of Division scheme based on Equation 3-5 is consistent with

the simulation value depicted in Fig. 3-2, whose simulation environment which we
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used here was single numerical attribute in single Bloom filter. The numerical
attribute name in the simulation is “Range”. In Algorithm 3-1, the simulation is to
randomly choose a length n range and a number within domain R with the same
attribute name, and then based on the test of 10° random elements, we calculate the
false positive rate by the comparisons of two Bloom filters BF1 and BF2. In our
simulation the range and the number are selected in uniform distribution. Result of
Fig 3-2 showed that the optimal parameter d is 3 or 4. Because the error rate will be
linearly increasing when the number of insertion bits g(n, d, k) was so small, the
native false positive fq of checking k indices can be ignored; however, the dividing
error is increasing. As a consequence, the Division scheme can reduce the number of
insertion bits and the native false positive rate fg, but the dividing error is increasing if

the dividing-range d was getting large.

Sumualtion Algorithm

BF1:query range Bloom filter, BE2: Comparison Bloom filter
fp : false positive, tn : ture nagative

1. fp«0;tn«0

2. foriform1to1000000

if imod1000=1

4 clear(BF1)// reset all bits of BF1

5 generate a length n query range Q and inset it into BF1
6. endif
7

8

9

w

clear(BF2)
generate a random number e withen domain R and insert it into BF2
. ifBF2cBFlandegQ
10. fp<Tfp+1
11. elsif BF2¢ BFlandegQ
12. th<«tn+1
13.end loop
14. return fp/(fp + tn) // the false positive rate
Algorithm 3-1 Simulation Algorithm
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Fig. 3-2 The false positive rate of Division scheme
3.2 Overlapping Scheme

The “Overlapping” scheme like Division:scheme uses less random indices of bit
array than original scheme to represent the-continuous numbers of a query range, and
it eliminates the dividing range error caused-by" Division scheme. The Overlapping
scheme inserts every number of a query range into Bloom rather than only the first
number of a division. The Overlapping scheme uses a specialized class of projection
functions Hs to insert elements into Bloom filter, and the random indices of the
continuous numbers would be only different “shift-bit” s indices and same o indices
between neighbor numbers where o0 = k - s. In Fig. 3-3, Instead of inserting only one
dividing number {0} to represent 5 numbers {0, 1, 2, 3, 4} depicted in Fig. 3-1, the
Overlapping scheme inserted all 5 numbers into Bloom filter; therefore, there is no
dividing error in it. The second random index Hy(1) of number {0} is the same as the
first random index Hi(1) of number {1}, and the second random index H;(2) of
number {1} is the same as the first random index H;(1) of number {2}. By given the k

of a Bloom filter and shift-bit s for Overlapping scheme, the k random indices of a
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number e is written as follows.

i<[k/s j<s k%s
ZO: D H(e+i)+ > H;(e+(k/s)); for s<k,k%s>0
i-0  j4 =i
i<k/s j<s (3'6)
D H (e+i); for s <k,k%s=0
i=0 j=1
8+(5-1) indices

K=8 hash N

function RN
{0}y " | Hy(0) | Hi(1) | Hy(@) | Hy(3) | Hy(4) | Hy(B) | Hy(B) | Hy(7)
Rl — H(1) | Hy(2) | H,(3) | Hi(@) | Hy(5) | Hi(6) | Hy(7) | HL(8)
T — H@) | Hi@3) | K@) | HE) | 16 | BT | Hi(8) | Hy(©)
8 ==——> H(3) | M) | Hi(5) | Hi(6) | Hy(7) | HL(8) | Hy(@) |Hi(10)
4 = H@) | Hy(5) | H,(8) | Hy(7) | Hy(8) | Hy(@) [Hy(10) [Hy(11)

Fig. 3-3 Overlappingrscheme.with parameter s = 1

Although the Overlapping-scheme can.-decrease the number of insertion bits, it
still has the penalty of the random; indices-overlapping. If there are n continuous
numbers in a query range, and we use “Overlapping” scheme with shift-bit s = 1 to
insert n numbers into Bloom filter. Hence, instead of n*k random indices, there are
only k + (n-1) random indices on the Bloom filter. According to Equation 2-2, the
false positive rate is the probability that an element was not in Bloom filter but the k
random indices of the bit array are true. In other words, an element is not in the data
set but Bloom filter reported it is after checking k random indices of bit array. Because
of the random indices overlapping in Overlapping scheme, some numbers in the
numerical attribute have less number to checking indices. In Fig. 3-3, we assume the
number of hash function k is 8, and the numerical element {0} and {1} are different in
only one random index, and the {0} and {3} are different in only two. As a result, it is

necessary to modify the original false positive rate equation in Equation 2-2. If there
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was a query range from e; to e,, the numbers whose indices overlapped with this
query range is 2r, where r can be written as follows

r=[k/s]-1 (3-7)

To calculate the false positive rate f of Overlapping scheme, we need to

recalculate the number of insertion bits. The number of insertion bits of using
Overlapping is definite value rather than the insertion bits of using Division, and the
function g(n, s ,k) is written as follows.

q(n,s,k)=(n-Ds+k (3-8)
From Equation 3-8, the probability p of using Overlapping can be written as follows.

p= (1_%)11(”'5*) — e—q(n,s,k)/m (3_9)

From Equation 3-7 and Equation 3-9 the, false positive rate f can be rewritten as

follows.

REN=21 1 )42 Sa - pp (3-10)

f(mk,R,n,8)=——
R-n R-n43

In Equation 3-10, the false positive rate of Overlapping scheme is calculated in
two conditions, one of which is no random indices overlapping and the other is with
random indices overlapping. The penalty of Overlapping depends on the number of
how many number having indices overlapping and the probability to selecting them
from the domain of the numerical attribute. In Fig. 3-4, we inserted a numerical
attribute whose domain R is 1000 and continuous numbers n of the query range is 100
inserted into a Bloom filter with m = 512 and k = 8. The simulation algorithm is as
same as Fig. 3-2, and the false positive rate values of Equation 3-10 are approximate
to the simulation results. It is apparent to see that the relationship between the shift-bit

s and false positive is exponential.
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Fig. 3-4 The false positive rate of Overlapping Scheme
3.3 Division-Overlapping:Scheme

The “Division-Overlapping* scheme 1s the combination of two precious schemes
the Division and the Overlapping. it not-only defines dividing-range d to make
continuous numbers to different divisions, but-also uses shift-bit s to indices overlaps
between the indices of continuous numbers. For the Division scheme, the Overlapping
scheme could make compensation for the dividing error caused by the parameter
dividing-range of Division scheme; for Overlapping scheme, the Division scheme
could help Overlapping scheme make more compression of random indices. In Fig.
3-5, the continuous numbers from 0 to 24 was represented by 12 random indices, and
the two parameters dividing-range d and shift-bit s of Division-Overlapping scheme
are 5 and 1. This scheme first grouped five continuous numbers into the same division,
and it made random indices overlapping between neighbor divisions, and there was

only one different random index between neighbor divisions.
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8+(5-1) indices

K=8 hash A
function TN
{0, 1, 2, 3, 4}I:> H1(0) H1(5) H1(10) H1(15) HW(ZO) H1(25) H1(30) H1(35)
{5,6,7,8 9y——— > H,(5) | Hi(10) H,(15) H,(20) H,(25) H,(30) H,(35) H,(40)
{10, 11,12, 13, 14} —— > H,(10) H,(15) H,(20) H,(25) H,(30) H,(35) H,(40) H,(45)
{15, 16,17, 18, 19}y —— > H,(15) H,(20) H,(25) H,(30) H,(35) H,(40) H,(45)H,(50)
{20, 21,22, 23, 24y — > H,(20) H,(25) H,(30) H,(35) H,(40) H,(45)H,(50) |H,(55)

Fig. 3-5 Division Overlapping scheme withs=1andd =5

The number of insertion bits of Bloom filer is our main concern for our schemes.
The Division-Overlapping scheme can not only make the number of insertion bits less
than “Overlapping” but also have less'dividing error events than Division in the same
number of insertion bits. Moreover, the .Division-Overlapping scheme has more
flexibility in adjusting the parameter (d,'s) rather:than only one parameter d of
Division and s of Overlapping. The Division-Overlapping is as same as Division if the
parameter s = k and d > 1, and it is as same as Overlapping if the parameter d = 1 and
0<s<k.

The false positive rate of the Division-Overlapping scheme is still the
combination of two schemes Division and Overlapping, and the theoretical value can
be calculated by previous equations of Division and Overlapping. To calculate the
false positive rate f, we first calculate the number of insertion bits in Bloom filter.
Because the Division-Overlapping first grouped the continuous numbers into different
divisions in dividing-range d for the Division scheme, the number of insertion bits is
the expectation value. It then used shift-bit s to make random indices overlapping
between neighbor divisions. Finally, the equation w(n, d, s, k) to calculate the number

of insertion bits can be written as follows.
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W(n,d,s,k):(dif(ndri)/d—\/d ~1s+k (3-11)

i=0

After calculating the number of insertion bits, the probability p that a bit of the Bloom

filter was still 0 after inserting w(n, d, s, k) bits can be written as follow.
p — (1_i)w(n,d,s,k) — e—w(n,d,s,k)/m (3_12)
m

From previous Equation 3-5 and Equation 3-10 the false positive rate f can be written

as follows.

R—n—(d-1)-2rd d-1 2d ¢

f(m,k,R,n,d,s) = — (1- p)k+R_n+R_nZ(1— Ok (3-13)

In Fig. 3-6 and 3-7, we inserted a numerical attribute whose domain R is 10000
and continuous numbers n of a query range is 1000 inserted into a Bloom filter with m
= 512 and k = 8. The theoretical value of Equation 3-13 is consistent with the
simulation value. The differences- from previous simulation environment are the
domain R of numerical attribute-and the number of insertion elements n because more
insertion elements could have-better-discrimination for the comparison of theory
values and simulation results; the variation of x-axis was parameter s from 1 to 8, and

the variation of y-axis was parameter d from 1 to 500.
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Fig. 3-7 The false positive rate of Division-Overlapping Scheme

In Fig. 3-6, it is apparent to see that the relationship between shift-bit s,
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dividing-range d and false positive rate (FP) is exponential when the dividing-range d
is approximate to 1 and shift-bit s is from k to 1 because the number of insertion bit is
too large to be the main factor of the false positive rate. In Fig. 3-7, the relationship
between d and false positive is linear because that the insertion bits compression can
make the number of insertion bits very small so that the dividing error becomes the
main factor of the false positive rate. The simulation result is also consistent with

previous simulation results depicted in Fig. 3-2 and Fig. 3-4.

3.4 Optimal Parameters for Bloom Filter

In previous three sections the Division, the Overlapping and the combination of
both Division-Overlapping were proposed to make insertion bits compression for
reducing the false positive rate. The original parameter optimization for m, n and k in
Equation 2-2 would be not suitable for our insertion bits compression schemes
because of the additional parameters-dividing-range d and shift-bit s affecting the
false positive rate of a Bloom filter: We.consider two situations, one of which is that
single numerical attribute in a Bloom filter and the other is that multiple numerical
attributes in a Bloom filter, and we try to find the optimal parameters d and s. The
methods to find their optimal parameter will be proposed. In the case of single
numerical attribute in a Bloom filter, the optimal parameters for three compression
schemes will discussed; however, we will only discuss Division-Overlapping scheme
in the case of multiple numerical attributes in a Bloom filter because
Division-Overlapping can be the Division scheme if s =k and d > 1or the Overlapping

schemeifd=1and 0 <s<k.
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3.4.1 Single Numerical Attribute in a Bloom filter

A.”Division” scheme

The optimal parameter dividing-range d is decided by the insertion numbers n
and the domain range R of the numerical attribute when the other parameters
including m, k and range n have been predefined. According to the previous
simulation result depicted in Fig. 3-2, we found that when the dividing-range d
increased, the false positive rate would first get less and less; but after one point, the
false positive rate would be increasing linearly. The optimal dividing-range d for the
“Division” scheme is the x-axis value on the point, which is also the inflection point
on the false positive rate curve.

In Fig. 3-8, the line is the searching path, and if the value of false positive rate
on the point d = 4 was larger than.the value on previous point d = 3, the optimization
stops and decides that the previous pointis-the.optimal d for the Division scheme. In
this figure, the optimal dividing-range.d.is.3for'the range n = 100 in the domain R =
1000, and the false positive rate on the d = 3 is about 0.003. Our scheme to find the
optimal dividing-range d is to find the inflection point based on the false positive
rate of Equation 3-5 when the parameters m, n and k were predefined. The false
positive rate is decreasing exponentially before the inflection point because that the
number of insertion bits was effectively compressed; but after the inflection point,
the error rate is increasing linearly because of the penalty of dividing-range d which
grouped d continuous numbers into a divisions. Therefore, there is only local
extreme minimal value, which is the global minimal value on the curve, and the

optimal dividing-range d is the inflection point on the false positive curve.
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Fig. 3-8 Searching the inflection point of false positive rate

B. “Overlapping” scheme

Finding optimal parameter:shift-bit:s is as. same as Division when the size of
Bloom filter m, the number of insertion numbers n and the number of hash functions k
were predefined. The difference ‘of finding optimal parameter between Overlapping
and Division is that the variation of shift-bit s is from 1 to k, but dividing-range d is
from 1 to n. The way to find the inflection point on the false positive curve is still
applied to search optimal shift-bit s for the Overlapping scheme. In Fig. 3-9, the
number of insertion element n is 40 rather than 100, and the other parameters are as
same as Fig. 3-8. We find that the point s = 4 on the false positive rate curve was
larger than the point s = 3 on the curve, so that the point s = 3 is the optimal shift-bit.
Because the penalty of the Overlapping scheme is the random indices checking error,
and we found the curve is always concave upward for the parameters m, n, k and s are
all larger than 0. Therefore, the property of Overlapping that there is only one extreme

value on the curve is as same as Division scheme.
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C. “Division-Overlapping”

Finding the optimal parameter (d, s)-dividing-range d and shift-range s is similar
to previous two optimization search, and.the search path is 2-dimentional.In Fig. 3-10,
there was a query range whose the number of continuous numbers n is 1000 inserted
into a Bloom filter, and the domain of the numerical attribute R was 10000; the size of
the Bloom filter m was 512, and the number of hash functions k was 8. The
optimization searching first searched on the curve (d, 1) where the variation is
dividing-range d, and the shift-bit s is constant 1. The method to find the inflection
point (d;, 1) on the curve (d, 1) is as same as previous searching method in Division.
Next, we find the inflection point (d,, 2) on the curve (d, 2). If the value of inflection
point (d, 2) was larger than the inflection point on (d;, 1), the searching path stops
and decides that (di, 1) is the optimal parameters for the Division-Overlapping. In this
figure, the optimal parameter (d, s) for the Bloom filter is (6, 1). The Algorithm 3-1
“Optimization-SingleAttribute” is to find the optimal parameters dividing-range d and

shift-bit s for the numerical attribute with n continuous numbers and the domain range
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R in a Bloom filter. The time complexity of finding optimal parameter (d, s) for a
numerical attribute is O(nxk). This algorithm can also be applied to find the optimal
parameter for Division or Overlapping scheme if we made constraint on choosing

parameter dividing-range d and shift-bit s in the optimization search.

"Search Path" —+—
"DividingShift_Theory Value"

08 |

067
FP Rate 04t

Shift-bit (s)

Fig. 3-10 Searching the inflection point of two-dimensional false positive curve

3.4.2 Multiple Numerical Attribute in a Bloom filter

In the case of multiple numerical attributes in a Bloom filter, the target is to find
the optimal parameter (d;, si) of Division-Overlapping scheme for each numerical
attribute A;, so that the average false positive rate of all attributes would be minimal.
The false positive rate of each numerical attributes A; depends on the number of total
insertion bits and its parameters (d;, s;) for Division-Overlapping scheme. Because
there are more than one numerical attributes in the data set, the number of total
insertion bits is the sum of the number of insertion bits of each numerical attributes.
Therefore, we must consider all possible of each parameter (d;, si). Based on Equation
3-11and Equation 3-13, we modify the number of insertion bits equation and the false

positive rate equations in Division-Overlapping scheme for multiple numerical
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attributes parameters optimization. In Equations 3-14, the parameter “addBits” is the
number of additional insertion bits, which is the sum of total insertion bits of the other
attributes.

w'(n,d, s, k,addBits) = w(n,d, s, k) + addBits (3-14)
With the actual insertion bits in Bloom filter, the false positive rate of each numerical
attribute in that same Bloom filter can be calculated as follows.

p — (l_l)w‘(n,d,s,k,addBits) — e—w'(n,d,s,k,addBits)/m

, . R -n —(d -1)-2rd,  d-1 2d ¢ .
fmykfRi!ni!di’SiladdBltSzI ! : Ill_ + I + I 1—
( ) y— )l

(3-15)

TotalFalse PositiveRate(m, k, S, FP)

S:{A, A,... }the data set containing numerical-attributes

A, {n,,R,,d;,s}:

n, : the number of insertion elements, R, :the domain of this numerical attribute
d, : the parameter dividing - range of ' Division ~Overlapping"

s, : the parameter shift - bit of "Division - Overlapping”

FP : the array containing each false positive rate of attribute A, in S

1. totalBits = Zw(ni,di,si,k) I/ the total insertion bits in Bloom filter
AeS
2. TotalFP «-0

3. fori <« 1tosizeof(S)
4, FP[i] « f'(m,k,R;,n,,d;,s,, totalBits —w(n,, d,,s;, k))
/1 recalculate the false positive rate of each A,
TotalFP « TotalFP + FPJi]
6. end loop
7. return TotalFP // return the sum of false positive rates of all attributes A,
Function 3- 1 Calculate total false positive
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OptiSingleAttribute(m, k, A;, S) // used by multiple attribute optimization

1. fori«1tok //change shift - bit

2. fpTempl«1

3. for j«~1to A, // change dividing - range

4. sets, « i

5 setd, « j

6 fpTemp2 < TotalFalsePositiveRate(m, k, S, FP)
/I calculate the total false positive rates of S
if fpTemp2 < fpTempl then

fpTempl « fpTemp2
9. DividingTempl« j
10. else // find the inflection point on the curve
11. break
12. end if
13. endloop

14. if fpTempl< fpMin then

15. shifting «—1i

16. dividing < DividingTempl

17. else // find the inflection peint an the curve
18.  sets; « shifting

19. set d, «— dividing

20. break
21. endif
22. end loop

Function 3- 2  Finding the optimal parameter (d;, s;) of each numerical attribute

There are two functions, one of which is the function “TotalFalsePostiveRate”
depicted in Function 3-1, and the other of which is the function “OptiSingleAttribute”
depicted in Function 3-2. They are used by our parameter optimization algorithm
“Optimization-MultipleAttribute” depicted in Algorithm 3-2. In Function 3-1, the
false positive rate of each attribute A; with the same parameters (m, k) is calculate
based on each parameters (nj, R;, d;, si); after calculation of the false positive rate of
each attribute A;, the total false positive rate of the summation of all numerical

attributes would be return. Because the probability of each attribute to be queried is
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equal, the minimal average false positive rate of all attributes is the target of our
optimization algorithm. Instead of using average false positive rate, we use the total
false positive rates of all numerical attribute for simplicity. In Function 3-2, we
modified the previous Algorithm 3-1 in line 4 to the calling Function 3-1 because our
concern is the total false positive rate of the summation of all attributes rather than
individual false positive rate. After calculation of Function 3-2, the parameter (d;, i)
of the numerical attribute A; would be optimal for the total false rate.

There are two phases in our multiple numerical attributes parameter optimization
algorithm. In the first phase “Preprocess” of Algorithm 3-2, we first assumed that
there was only one numerical attribute in a Bloom filter, and then found optimal
parameter (d;, s;) and the false positive rate of each numerical attribute was calculated
by Algorithm 3-1. After the single attribute optimization, the false positive rate of
each numerical attribute and the number of insertion bits of each numerical attribute
will be calculated again where-all attribute-are. inserted the same Bloom filter. The
total false positive rate of all attributes-in.the Bloom filter and the false positive rate of
each numerical attribute are used to next phase. The purpose of first phase is to
calculate the false positive rate FP[i] of each attribute A; in the data set S.

In the second phase “lteration”, we optimize the parameter (d;, s;) of each
numerical attribute. The numerical attribute with larger false positive rate is first
because the numerical attribute with larger false positive rate may have more insertion
elements than the other attributes. Therefore, we first optimized the parameter of this
attribute and calculated the false positive rate again in line from 19 to 21 of Algorithm
3- 2. In line 23 of Algorithm 3-2, the termination condition is that the value of total
false positive rate did not change after this iteration. Instead of using brute-force
search for all possible parameters combination of all numerical attribute , the time

complexity of finding the optimal total false positive rate in our optimization
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algorithm is about O(Ixnxk) rather than O((nxk)"), where | is the number of numerical
attributes in the data set S, and n is the size of the query range which was larger than
the others. The purpose of second phase is to find individual optimal parameter (d;, s;)
of the Division-Overlapping scheme for each numerical attribute A; of data set S to

have minimal average false positive rate in multiple numerical attribute.

Optimization - SingleAttribute(m, k, R, n)

m : the size of Bloomfilter, k : the numberof hash functions,R : the domainof numericalattribute
n : how many continuousnumbers

1. fori«<1tok //changeshift- bit

fpTempl«1

3. for j«-1ton //changedividing- range

4 fpTemp2«f(m,k, R, n, j,1) // wheref is the Equation3-8
5 if fpTemp2<fpTempl then

6. fpTempl« fpTemp2
7

8

9

o

DividingTempl« j
else // find the inflectionpoint on.the curve
break
10.  endif
11. endloop
12. if fpTempl<fpMin then
13 fpMin <« fpTempl
14. shifting « i
15. dividing < DividingTemp1l
16. else// find theinflectionpointon thecurve
17. return dividingand shifting// return theoptimal parameter<d, s >
18. endif
19. endloop

Algorithm 3-2  Optimization-SingleAttribute
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Optimization - MultipleAttribute(m, k, S, FP)
// Phase 1 Preprocess
. totalBitsUsed «— 0
for i <~ 1tosizeof(A)
{d,, s;} < Optimization - SingleAttribute(m,k, R,
totalBitsUsed «— totalBitsUsed + w(n,, d

1

2.

3 ., N,) // modify the pramater d and s of A,
4

5. end loop

6

7

8

9.

.,S;, k) // from Equation 3-7

. if totalBitsUsed > m*log2 then

. totalBitsUsed «— m*log2
. endif
FpTotal_Before < 0
10.for i «— 1to sizeof(A)

11.  FP[i]« f'(m,k,R;,n,,d,,s,, totalBits —w(n,,d;,s,, k))
12. FpTotal_Before «— FpTotal_Before + FP[i]
13. end loop

14. iteration «1

// Phase 2 Iteration

15. while TRUE

16. if iteration >1 then

17. TotalFP_Before «— TotalFalsePositiveRate(m, k, S, FP) // Function 3-1
18. endif

19. Fori <« 1tosizeof(S)

20. select A, whose FP[i]is max valuein FP, has not been selected yet

21. OptiSingleAttribute(m, k, A, S) // Fimction 3 - 2

22. TotalFP_After «— TotalFalsePositiveRate(m, k, S, FP) // Function 3-1

23. endloop

24. if TotalFP_Before = TotalFP_After then // termination condition
25. break

26. endif

27. iteration « iteration +1

28. end loop

Algorithm 3-3  Optimization-MultipleAttributes
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Chapter 4 Performance Analysis

In this chapter, the simple experiments on Algorithm 3-1 and Algorithm 3-2 will
be simulated, and the evaluation of Division, Overlapping and Division-Overlapping
schemes will be presented. The simulation results will be compared with the original
method to insert a numerical element into Bloom filter. There are two simulation case
of our experiments, one of which is that there was only one numerical attribute
inserted into a Bloom filter; the other was that there are more than one numerical
attributes inserted into a Bloom filter. In the case of single numerical attribute in a
Bloom filter, Algorithm 3-1 was applied to find the optimal parameter (d, s) for single
numerical attribute. In the case of multiple numerical attributes in a Bloom filter, we
only used Division-Overlapping for our simulation because of its adjustable property
that it can transform to pure=Division scheme. when shift-bit s = k or to pure
Overlapping when dividing-range d..=-1.-Algorithm 3-2 was applied to find the

optimal parameter (d;, s;) for each numerical attribute of the data set.

4.1 Single Numerical Attribute in a Bloom Filter

In single attribute experiments, we first evaluate our schemes in the case of
single numerical attribute in a Bloom filter. Algorithm 3-1 will be used to find the
optimal parameter (d, s) for minimal false positive rate when inserting many
numerical elements into Bloom filter. In Fig. 4-1 There was a numerical attribute
inserted into a Bloom filter whose size m was 512, and the number of hash functions k
was 8. The number of insertion elements of the query rang in this numerical attribute,
whose domain R was 10000, is from 20 to 340. Simulation results of different
schemes comparison are presented in Fig. 4-1. When the number of insertion elements

was more than 20, the false positive rate of our scheme are better than original. The
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results revealed that the Division, Overlapping and Division-Overlapping schemes are
better than the original scheme. Fig. 4-1 depicted that the false positive rate of using
Overlapping scheme is better than using Division scheme when n is less than 260;
however, using Division scheme is better than Overlapping scheme when n is larger
than 260. Result of this figure showed that the Division-Overlapping, which combines

Division and Overlapping has minimal false positive rate with its optimal parameter

(d, s).
0.004 ‘
"Original”
"Division”
0.0035 [ "Overlapping”
"Division-Overlapping"
0.003
[
E 0.0025 |
[
=
z 0.002 |
o
[
@
& 0.0015 [
0.001 [
0.0005 |

50 100 150 200 250 300 350

Inserted elements (n)
Fig. 4-1 Compare different schemes with optimal configuration
The next part of experiments is to find the relationship between the number of
hash functions k and the optimal parameters of the numerical attribute. In Fig. 4-2 a
numerical attribute, whose domain R is 10000, was inserted into an empty Bloom
filter. The size of Bloom filter m was 512, and the number of hash functions k is 8 or
12.The number of insertion numbers n of the query range in the numerical attribute
was from 100 to 1000. The theoretical value based on Equation 3-13 for false positive
rate in Division-Overlapping scheme is approximate to the simulation results. Table

4.1 lists the k, (d, s, bits), where k was the number of hash functions used in the
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Bloom filter. The (bits) item in the (d, s, bits) was the number of total insertion bits
used in the Bloom filter, and the (d, s) was the optimal parameter of the Division and
Overlapping schemes. The different row of this table means that the Bloom filter used
different k, and the different column means that the number of insertion elements n of
the query range was different. The correlations between the number of hash functions

k and the optimal parameter (d, s) for false positive rate were slightly different.

0.0014 i i
"Simulation Value k = 8"

"Theoretical Value k = 8"

0.0012 "Simulation Value k = 12" % ™

"Theoretical Value k = 12"

0.001 1

0.0008 [

0.0006

False Positive Rate

0.0004 [

0.0002

100 200 300 400 500 600 700 800 900 1000

Insertion Elements (n)

Fig. 4-2 The false positive rate of theory values and simulations results
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Table 4-1  The optimal configuration of using different k

Insertion Elements (n) 100 200 300 400
k =8 (d, s, bits) (1, 1, 107) (2, 1,107.5) (2, 1, 157.5) (3,1, 141)
False Positive rate 4.85x10™ 1.99x10™ 2.75x10™ 4.17x10™
k =12 (d, s, bits) (1, 2, 210) (1, 1, 211) (1, 1, 311) (2,1, 211.5)
False Positive rate 2.78x10™ 1.06x10™ 2.51x10™ 3.19x10*
Optimal k, (d, s, bits) | 14,(1,2,212) | 13,(1,1,212) | 18,(1,1,317) | 18,(2, 1, 212.5)
False Positive rate 2.65x107° 1.05x10™* 1.77x10™ 3.19x10*
500 600 700 800 900
(3,1,174.33) (4, 1, 157.75) (4, 1, 182.75) (5, 1, 167.8) (5, 1, 187.8)
5.14x104 6.5x10™ 7.56x10™ 8.93x10™ 0.001
(2,1,261) (3,1,211.66) (834, .245) (3, 1, 278.33) (3, 1, 311.66)
4.02x10-4 5.41x10™ 6.2x10% 7.17x10™ 8.52x10™
15,(2,1,264.5) | 17,(2,1,316.5) | 19, (2, 1,368.5) | 15, (3, 1,281.33) | 16, (3, 1, 315.66)
3.91x10-4 4.72x10™ 5.63x10™ 6.97x10™ 7.85x10™
1000
(6,1,174.5)
0.0011
(4,1, 261.75)
9.43x104
18, (3,1, 351)
8.82x10-4

In Fig. 4-2 we find that the false positive rates of using k = 12 is better than using

k = 8. In Table 4-1, we also find that using k = 12 used more insertion bits than using

k = 8 at every column with different insertion numbers. Back to original Bloom filter

optimal relation Equation 2-3, the optimal probability p is 1/2, which means that the

false positive rate is optimal when the number of insertion bits in Bloom filter was
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approximate to m * In2. In original Bloom filter the optimal false positive is
approximate to 0.004= (1/2)® when m = 512, n = 44 and k = 352, but this may not be
applied to our scheme. Because the insertion elements in our case are continuous
numbers n within the domain R of the numerical attribute, and the false positive rate
function Equation 3-13 is different to Equation 2-2. As a result, the optimal

probability p may not be always 1/2 in our Division-Overlapping scheme.

0.0012

"Theoretical Value k = 8" _|_j

"Theoretical Value k = 12"
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0.001

0.0008 |
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False Positive Rate

0.0004 |

0.0002 |

100 200 300 400 500 600 700 800 900 1000

Insertion Elements (n)

Fig. 4-3 The false positive rate of using different k

Since the optimal number of hash functions k is not constant, the method to find
the optimal k is similar to find the inflection point on the false positive rate curve. By
Using different k and then finding the optimal parameters d and s of, searching
optimal k would stop if the false positive rate of using k+1 with optimal parameters d
and s is larger than using k. In Fig. 4-3 we compared the theoretical false positive rate
of using optimal k with using k = 8 and using k = 12. The figure showed that using the
different k with its optimal parameter (d, s) has optimized false positive rate rather
than using constant k = 8 or k = 12. In Table 4-1, the insertion bits of using optimal k

are more than using k = 8 and using k = 12 at different the number of insertion
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element. Fig. 4-3 depicted that the false positive rate of using optimal Kk is also better
than using k = 8 and using k = 12. The insertion bits of using optimal k in different
insertion elements are not always as same as each other because of the additional false
positive penalty of Division-Overlapping scheme in Equation 3-8. One possible
explanation is that the Division-Overlapping scheme changes the optimal relation
between the size of Bloom filter m in original Bloom filter, the insertion elements n

and the number of hash functions k.

4.2 Multiple Numerical Attribute in a Bloom Filter

Instead of inserting single numerical attributes into a Bloom filter, we inserted a
set of numerical attributes and non-numerical attributes into Bloom filter for our
simulation and find the optimal parameter setting.(d;, si) for each numerical attribute
of the data set according to our proposed optimization Algorithm 3-2. The test data set
of multiple attributes in our experiment’is-the-System Defied Attributes (SDA), which
used in MFPGC System [13]. Table 4-2 lists the necessary items which were are for
querying a user profile, and a SDA might contain one or more non-numerical and
numerical attributes. The numerical attributes of the SDA would have many numerical
insertion elements of its query range. For example, the numerical attribute “Age” of
the SDA, whose domain R is 120 (from 1 to 120) and its insertion elements n is from
1 to 10. The number of insertion bits of each numerical attribute was larger than k
when the size of its query range was more than one. Because the number of insertion
elements of a numerical attribute was large, and its values of the query range were all
continuous numbers, the Division-Overlapping was applied to insert the numerical
attributes of the SDA into a Bloom filter. Instead of inserting continuous numbers into
Bloom filter, there is only one insertion element of non-numerical attributes because

the value of non-numerical attribute contained only string-type value.
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Table 4-2  System Defined Attribute

Attribute Name

Attribute Type

Attribute Value

Name String (non-numerical) Random String in length 20
Nick Name String (non-numerical) Random String in length 20
University String (non-numerical) Random String in length 20
Hobby String (non-numerical) Random String in length 20

Professional

String (non-numerical)

Random String in length 20

Age Integer [1:120] (numerical) Query Range: 1~10

Year Integer[1900:2100] Query Range: 2~20
(numerical)

Income Integer[0:5000000] Query Range:
(numerical) 50000~5000000

Longitude Integer[-1800000: 1800000] Query Range: 10~100
(numerical)

Latitude Integer[-900000: 900000] Query Range: 10~100
(numerical)

In our multiple attribute experiments, there were five non-numerical attributes
and five numerical attributes in the SDA. The five numerical attributes were inserted
into Bloom filter by our numerical attribute representation scheme
Division-Overlapping. To decide the optimal dividing-range d and shift-bit s for each
numerical attributes, our optimization Algorithm 3-2 was used to find the optimal
parameters for each numerical attribute. In Fig. 4-4, we inserted the data set of
multiple attributes listed in Table 4-2 into a Bloom filter, whose size m is 512 and the
number of hash function k is 8 or 12. The simulation results depicted in Fig. 4-4
showed that the false positive rates of simulation results are consistent with the
theoretical values based on Equation 3-15. Clearly, the false positive rate of using k =
12 with the optimal d and s for each numerical attribute of the SDA is better than
using k = 8. We found that the number of insertion bits is a key factor to affect the

false positive rate in our Division-Overlapping scheme. Like the case of single
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numerical attribute in a Bloom filter, the false positive rate of using more insertion
bits is better. Moreover, in Fig. 4-5 we compare the theoretical false positive rates of
using optimal k=15 in multiple attributes with using k = 8 and k = 12, using optimal

k=15 is better than the others.
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Fig. 4-4 The false positive rate-of theory values and simulations results
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Fig. 4-5 The false positive rate of different k
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Table 4-3 and 4-4 summarized the optimal parameter (d;, s;) of each numerical
attribute of the SDA and their false positive rates when inserting 500235 elements into
a Bloom filter. In Table 4-3, the number of hash function k is 8, and the number of
insertion bits of each attribute is different to each other. If the attribute was
non-numerical like “Name”, “Nick Name”, “University”, “Hobby” and “Profession”,
the number of insertion bits is k because the random string in different length can be
hashed to only k random values by k hash functions; however, if the attribute was
numerical like “Age”, “Year”, “Income”, “Longitude” and “Latitude”, the number of
insertion bits is decided by the parameter (d, s) of the Division-Overlapping scheme.
In Table 4-3 and 4-4, the number of insertion bits of “Income” attribute is larger than
the other attributes, and its false positive rate is also larger than the false positive rate
of the others. This is the effect that there were 500000 insertion element of “Income”
attribute; as a result, the dividing-range d was so large to compress the continuous
numbers. The penalty of dividing range error-would be too large, so the false positive
rate of “Income” attributes became’ the.main-factor to affect the total false positive
rate of all attributes in the SDA. According to parameter optimization Algorithm 3-2,
the optimal parameter of each numerical attribute would be determined for the
optimal average false positive rates in the test data set.

Results of the optimal parameter of using the optimal k = 15 are presented in
Table 4-4. The number of total insertion bits of using k = 15 is larger than using k = 8,
and the average false positive rate of using k =15 is smaller than using k = 8. The
insertion bits percentage of each attribute in Table 4-4 is similar to Table 4-3, but the
false positive rate of each attributes which used k =15 is smaller than using k = 8 in
Table 4-3. In Table 4-3 and 4-4, we can find that the optimal parameter d and s of each
numerical attributes under different k would be different. Like the result of single

attribute in a Bloom filter, using more insertion bit in the data set of multiple
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attributes had better correctness. The number of total insertion bits is associated with

the number of hash functions k. Obviously, the optimal average false positive rate of

multiple attributes is correlated with not only the number of hash functions k but also

the optimal parameter dividing-range d and shift-bit s of Division-Overlapping

scheme for each numerical attribute when there were numerical attributes in the data

set.
Table 4-3  The optimal parameter of using k = 8
Attribute Age Year Income Longitude
Name
Insertion 10 numbers 20 numbers | 500000 numbers | 100 numbers
Elements (n)
Individual (1,3, 35) (1,.2,43) (9315, 1, 62.78) | (100, 1, 8.99)
(d, s, bits) &
Individual 6.51x10™ 0.00131 0.00399 9.63x10°
FP rate
Latitude Name | “Nirck Name :[ University Hobby
100 numbers | Random string | Random string | Random string | Random string
(81, 1,9.22) (-, -, 8) (-, -, 8) (-,-,8) (-, -, 8)
1.2x10™ 1.27x10™ 1.27x10™ 1.27x10™ 1.27x10™
Profession

Random string

Total Insertion
Element: 500235

(-, -, 8) Total Insertion
Bits: 201.94
1.27x10™ Average False

Positive: 7.35x10™
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Table 4-4 The optimal parameter of using optimal k = 15

Attribute Age Year Income Longitude
Name
Insertion 10 numbers 20 numbers 500000 numbers 100 numbers
Elements (n)
Individual (1, 6, 69) (1, 4,91) (5129, 1, 112.48) (65, 1, 16.52)
(d, s, bits)
Individual 3.88x10™ 9.08x10™ 0.00365 8.14x10°
FP rate
Latitude Name Nick Name University Hobby
100 numbers | Random string | Random string | Random string | Random string
(46, 1, 17.15) (-, -, 15) (-, -, 15) (-, -, 15) (-, -, 15)
9.73x10° 6.34x10° 6.34x10° 6.34x10° 6.34x10°
Profession

Random string

Total Insertion
Elements: 500235

(-, -, 15) Total Insertion Bits
381.15 '
6.34x10° Average False

Positive: 5.72x10™

4.3 The Discrepancy of Analytic and Simulation

The performance of our schemes depends on the hash function randomization.

The hash function class used in this thesis is MD5, and the k random indices of an

insertion element are derived from 128-bit hash value. We assume that the hash

function is perfect random and different elements whose hash values would be always

different to each other. The previous analytic value of false positive rate equation is

based on the assumption that the hash function is perfect random. However, the

simulation results would be different to the analytic value if we used a specific

numerical attribute name and numerical range R. In Fig. 4-6, we inserted a numerical
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attribute named “Age” by Division-Overlapping scheme with its optimal parameter
the query range was from 4 to 60 where the domain R of the attribute is 120. The
emulation results of this figure is the statistic false positive rate where we considered
all possible false positive occurrence cases rather than randomly chose the query
range and test numerical element. Result of Fig. 4-6 showed that the simulation values
are approximate to emulation values, but it is extremely different to the analytic
values when the query range was larger than 44. As we have mentioned before in
chapter 2, the elements of a numerical attribute were concatenated with the attribute
name and then inserted into Bloom filter. The random indices of inserted elements
with same attribute name may have overlaps when the query range getting large if the
hash value of each element is similar to its neighbor elements. Therefore, the false
positive rate is also correlated with-the randomization performance of hash function.
The discrepancy of analytic values.and simulation ‘would occur when the number of

inserted elements of a specific numerical-attribute was larger than about 1/3 domain.
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Fig. 4-6 The discrepancy of Analytic and Simulation

47



Chapter 5 Conclusions

In this thesis we present new Bloom filter design for numerical range to reduce
the false positive rate even when a large range of numerical elements is inserted.
When using the traditional Bloom filter design, the false positive rate increases
exponentially as the number of inserted elements increases. The Division and
Overlapping scheme first reduces the number of insertion bits by overlapping the
insertion bits of consecutive numbers, i.e., 1< o < k and d=1. If the number of
insertion bits is still too large for the Bloom filter, the Division and Overlapping
scheme group consecutive numbers into divisions to reduce the number of elements
inserted, i.e., 0 = k-1 and d>1 . Using the Division and Overlapping scheme, the false
positive rate only increases linearly-as the number.of inserted elements increases. We
show that the optimal configuration'of Bloom filter-representing a numeric range of
single attribute can be obtained; I.e.,ithe false-positive rate is minimized. In addition,
we developed a heuristic algorithmto-ebtain.near optimal configurations for multiple
attributes.

This thesis has taken a step in the direction of reducing the false positive and
finding the optimal relation between the number of hash functions and the parameters
of our numerical compression schemes. However, the optimal configurations of
Bloom filter representing multiple string/numerical-range attributes remains an open
problem. For the optimal configuration, the number of inserted bits for each attributes
can be different. The goal is to minimize the total false positive rate. More
investigation is needed on the optimal configurations. In addition, it is important to

consider the domain of a numerical attribute.
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