
國 立 交 通 大 學

網路工程研究所

碩 士 論 文

使用布隆過濾器之多功能個人/團體通訊系統

Multi-Function Personal/Group Communication System

 with Bloom Filter

研 究 生：李忠育

指導教授：張明峰 教授

中 華 民 國 九 十 七 年 七 月

使用布隆過濾器之多功能個人/團體通訊系統

Multi-Function Personal/Group Communication System
 with Bloom Filter

研 究 生：李忠育 Student：Chung-Yu Li

指導教授：張明峰 Advisor：Ming-Feng Chang

國 立 交 通 大 學

網 路 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Network Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

July 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年七月

使用布隆過濾器之功能個人/團體通訊系統

學生：李忠育 指導教授：張明峰 博士

國立交通大學網路工程研究所

摘要

現今的通訊系統例如電信系統、即時通訊、電子郵件、和網路電話等，都利用

特定識別元來辨識使用者。然而還可以透過使用者的各項屬性來便是指用者例如姓

名、年紀等等。一個屬性的集合也可以視為更明確的辨識元並具有好記、有意義和

具代表性的優點。我們提出一個系統同時支援特定辨識元和多屬性來通訊。透過發

佈和搜尋的機制，一個使用者可以很快的和想要找的人通訊。

MFPGC 架構在 Chord 之上並且使用布隆過濾器來儲存多屬性的資料，包含字

串，數值和混合型態的屬性。另外讓發佈者和接收者可以設定必須要符合的屬性以

用來過濾不想要接收的訊息，同時不會因為額外的條件增加搜尋的方便性。離線使

用者處理機制處理當使用者在各個狀態中離線，而通話還是會被保留到下次使用者

上線後繼續進行。和傳統的通訊系統比起來，MFPGC 提供使用者間的通話情境更高

的彈性。

 i

Multi-Function Personal/Group Communication System with Bloom Filter

Student: Chu-Yu Li Advisor: Dr. Ming-Feng Chang

Institute of Network Engineering

National Chiao Tung University

ABSTRACT

Communication services today, such as telephony, instant message, email, and VoIP,

use a specific user or device ID to specify the called party. Another way to indicate the

callee(s) is to specify the callee’s attributes, such as the name, the age, etc. A set of user

attributes, which is meaningful, rememberable, and representable, can be used to indicate

the callee. Multi-Function Personal/Group Communication (MFPGC) system supports

communications using both specific IDs and multiple under-specified attributes.

Communications using multiple under-specified attributes is feasible through publishing

and querying users’ attributes on DHT. The DHT of MFPGC system is based on Chord

and Bloom filter is used to represent user attributes, which can be string, numerical, and

hybrid data. Communications are set up by matching the Bloom filters of callers and

callees. In addition, callees can specify necessary attributes that must be matched to filter

unwanted calls. On the other hand, callers can also specify necessary attributes to limit

the number of matched callees, and non-necessary attributes to increase likelihood of

matching callee’s necessary attributes. To enhance the flexibility of communications,

MFPGC system also stores and forwards messages for off-line users. Compared to

traditional communication system, MFPGC system provides more flexible scenarios for

users.

 ii

誌謝

一開始我要感謝我的指導老師，張明峰教授。教授仔細而耐心的指導，讓我在

實作和閱讀中學會獨立思考與研究的方法；在構思本論文時，也多次指正我思考的

盲點，才能順利完成這篇論文。我很感謝在求學過程中，能得到張教授的指導，研

究所這兩年獲益匪淺。

接下來我要感謝實驗室的同仁，冠璋同學、坤揚同學、君飛同學，和我一起修

課奮鬥，一起熬夜寫程式，一起打桌球，同甘共苦，讓我兩年過得一點也不孤單。

也感謝玄亞、威凱、柏瑞等學弟，讓我這段時間的生活增添不少色彩，很高興能認

識你們。最後要感謝我親愛的家人，由於你們精神和經濟上的支持，讓我可以在求

學的過程中一路順坦，沒有後顧之憂的完成學業。

 iii

Tables of Contents
摘要 ... i

ABSTRACT ... ii

誌謝... iii

List of Figures ... vi

List of Tables .. vii

Chapter 1 Introduction ... 1

1.1 Current development ... 1
1.2 Motivation ... 3
1.3 Objective ... 4
1.4 Summary ... 5

Chapter 2 Related Work ... 6

2.1 Chord and DHT routing .. 6
2.1.1 Structure peer-to-peer architecture .. 6
2.1.2 Chord .. 7

2.2 Multiple attributes ... 9
2.3 Range query .. 12
2.4 Bloom filter ... 14

Chapter 3 System Design ... 17

3.1 System overview ... 17
3.2 Publish with Bloom filter .. 19
3.3 Query with Bloom filter .. 20
3.4 Numerical Attributes ... 22
3.5 Necessary attributes .. 23
3.6 Call Handling for Off-line Users .. 28

3.6.1 Delayed query ... 28
3.6.2 Delayed CallYou ... 29
3.6.3 Delayed CallBack ... 30

Chapter 4 System Implementation ... 32

4.1 System components .. 32
4.2 System defined attributes and user defined attributes ... 34
4.3 Bloom filter implementation ... 35
4.4 Message encryption .. 35

 iv

Chapter 5 Performance Evaluation .. 37

5.1 Metrics and Comparison ... 37

Chapter 6 Conclusions ... 40

Reference ... 41

 v

List of Figures
Figure 2.1: A routing and a finger table example. .. 8
Figure 2.2: Iterative search for multi-attribute query. ... 10
Figure 2.3: Relay search and Bloom filter used in relay search. 11
Figure 2.4: A query example of different query order. ... 11
Figure 2.5: The load balance mechanism in Mercury. .. 13
Figure 2.6: A space filling curve example .. 14
Figure 2.7: Multiple attributes with Bloom filter.. 15
Figure 3.1: System Architecture Overview. .. 17
Figure 3.2: The call flow of MFPGC system .. 18
Figure 3.3: Mapping into a Bloom filter. .. 20
Figure 3.4: The publish process. ... 20
Figure 3.5: A Bloom filter matching Example.. 21
Figure 3.6.a: A user attributes example.. .. 24
Figure 3.6.b: The publish process ... 25
Figure 3.7.a: Matching error example ... 26
Figure 3.7.b: Matching error example. ... 27
Figure 3.7.c: The successfully matching example. ... 27
Figure 3.8: The delay query flow .. 29
Figure 3.9: The delay CallYou flow .. 30
Figure 3.10: The delay CallBack flow .. 30
Figure 4.1: Layers of MFPGC system .. 32
Figure 4.2: The three types of component in MFPGC system 32
Figure 4.3: The encrypt process in query .. 35

 vi

 vii

List of Tables
Table 4.1: The MFPGC messages ... 32
Table 4.2: The difference between the three components 33
Table 5.1: The comparison between the five systems ... 38
Table 5.2: The comparison between the five system .. 39

Chapter 1 Introduction

1.1 Current development

Traditional telephony services have been transformed by the developments of

mobile technologies and Internet technologies. More and more Internet communication

services, such as MSN and skype, have been widely used through wired and wireless

networks. The advantages of using the Internet as the communication platform are

cheaper charging rate and more powerful functionalities of the services. However, the

PLMN (Public Land Mobile Network) system still plays an important role in our daily

life, so most of those communication system developers have made efforts to integrate

their systems into mobile devices for user convenience, or even integrate their systems

with the PSTN (Public Switching Telephone Network).

In recent years, peer-to-peer technology has been one of the most popular

technologies employed in Internet applications. More and more applications using a

peer-to-peer overlay network for information multicasting, object searching, and load

balancing. Those functionalities can be provided efficiently in P2P architecture. P2P file

sharing systems and real-time streaming video services are the most popular applications

on the Internet and consume most of the Internet bandwidth in recent years. However,

P2P systems still have some shortcomings with it. For example, security is an important

issue. Because centralized server does not exist in P2P systems, how to trust other nodes

is an unsolved problem. Another security problem is user/device authentication. Because

of un-trusted nodes, user/device authentication without a trusted server is almost

impossible to achieve; this bottleneck limits P2P in commercial applications. More and

more researches toward robust and reliable P2P architecture, but the most popular

applications are still based on anonymity.

 1

General speaking, a peer-to-peer system is used for storing data, and supporting

efficient publishing and searching mechanisms. Most of the current peer-to-peer

researches focus on improving the efficiency of routing and searching under various

conditions. Different assumptions of the network environments, like churn handling and

location awareness, result in different approaches to optimizing the system. Searching is

one of the most important functionalities provided by peer-to-peer systems. Contrast to

centralized servers, peer-to-peer systems store data in each peer node. The overhead of

communications on network replaces the overhead of database access on the central

server, and becomes a critical bottleneck under complex network conditions. Furthermore,

due to the existence of unstable nodes, data synchronization problem makes data in

peer-to-peer unreliable. Although storing multiple replicas of data in more nodes may

decrease this disadvantage by adding endurable overhead, searching in the peer-to-peer

network is usually considered as a best-effort function. Another extend problem is load

balancing. Because hot keywords dominate major part of the searching load, the

responding nodes of those keywords in the peer-to-peer network may cause heavy

performance overhead. Most researchers have attempted to break the continuation of hot

keywords, but single hot keywords couldn’t have been completely resolved until now.

As we know, the information retrieval technology has wide influence on network,

and semantic keyword searching is the foundational part for information retrieval.

Although semantic searching is hardly implemented in peer-to-peer network because of

the property of distribution, there are some researches about how to achieve more

complex searches in peer-to-peer network, such as numerical query and and/or query.

With the popularity of peer-to-peer technology, researches of searching algorithm will be

a new trend in network.

 2

1.2 Motivation

Communication services today, such as telephony, instant message, email, and VoIP,

use a specific user or device ID, such as telephone number, e-mail address, and SIP URI,

to specify the called party. In the beginning, the naming of user/device ID was restricted

by device capability in order to simply implementation. However, with more powerful

user devices, there are less constrains on the naming; IDs that are more meaningful and

representable can be used. The trend of user/device ID is toward meaningful,

representable, distinct and rememberable.

Although a specific ID can uniquely specify a user, it would be very useful if we can

initiate a communication with a callee(s) without knowing the callee’s specific ID. For

example, Billy has graduated from NCTU 20 years ago, and some day he wants to hold a

reunion, but the contact methods of some classmates have been invalid. Since using

specific ID has drawbacks of record invalidity and the troubles to update the record, a

more intuitive communication method can be useful.

One way to indicate the callee(s) of a communication is to specify the callee’s

attributes, such as the name, the age, and the school he or she studies, etc. A user is

associated with a set of attributes. In another point of view, a set of user attributes is a

kind of powerful user ID that is rememberable, meaningful, and representable. Although

attributes often lack for distinguishability and convenience, communication with this kind

of ID provides an alternative way to supply more semantic callee.

To set up a communication with specified callee’s attributes, we need to do

multi-attribute data matching between the call request and the users’ profiles. An

intuitional idea is caller specify some attributes as ID, then any callee(s) have those

 3

attributes will receive the call request. The client-server architecture with database is a

direct and simple way to implement the functionality. However, peer-to-peer technology

has been widely extended in multiple attributes query by researchers. It provides an

alternative way to client-server architecture with better scalability and without single

point of failure. Therefore it is a better choice for communication systems which support

stronger searching function to adopt peer-to-peer as the backbone platform.

Even though using peer-to-peer architecture in communications is a suitable

solution for next generation communication systems, there are some bottlenecks

impeding the trend. First problem is performance, a link in overlay network may be an

unexpected long path in the physical network, and routing in overlay network may cost

more time than the systems using direct connection. Furthermore, in recent proposed

methods of multiple attribute matching, the routing overhead linearly increases with the

number of attributes. Lacks of a efficient publish/query mechanism for peer-to-peer leads

to the bottleneck of revolutionary communication systems developed in peer-to-peer

network.

Another ignored point is how to match the caller and callee’s intension for talking

to each other. Most systems emphasized on the demand of caller, which caused several

critical problems like junk mail or ad; and further effected users whether they would

choose this system or not. Advanced communication systems should contain filtering

mechanism for callee, so as to reduce unnecessary messages and transmission costs.

1.3 Objective

Our main goal is to build a communication system with the following features:

1. Support communications using specific ID and unspecific ID attributes.

 4

2. Flexible attributes for callers and callees including numerical attributes.

3. Match the desires of both the caller and the callee, and filter unwanted call requests.

4. Efficient routing in peer-to-peer and endurable overhead to maintain other users’

queries and publishes.

5. Protect all users’ privacy and prevent maliciously gathering the user information.

6. Flexible off-line handling mechanism in every states of call flow.

In order to implement such a communication system, we adopted structured

peer-to-peer architecture or DHT (distributed hash table) as platform and proposed a

novel publish/query mechanism to accomplish above requirements, and we will describe

that in details in later chapters.

1.4 Summary

The remaining of this paper is organized as follows. Chapter 2 shows current work

in peer-to-peer researches related to our system; Chapter 3 describes our system design in

details. Chapter 4 presents the actual implementation, and Chapter 5 discusses

performance analysis. Finally, conclusions and future work are given in Chapter 6.

 5

Chapter 2 Related Work
In this chapter we describe recent peer-to-peer researches, including Chord [1], DHT,

which we used as the under-layer routing platform, and other P2P systems that support

range query or multiple-attribute query, or both. Although those systems have distinctive

features, we will explain their limitations that do not fully satisfy the requirements of our

system. In addition, we will describe the design of Bloom filter, which is a space-efficient,

randomized data structure representing a data set. Bloom filter [2] is the core of user data

publication and query in our system. We will also describe systems that use Bloom filter

for multiple-attribute query.

2.1 Chord and DHT routing

In the early stage of peer-to-peer development, there were two ways to locate

resources. In one way, resource indexing and searching was performed by centralized

servers and resource sharing was directly operated between peers. However single point

of failure may imperil this mode. The most representable system of this mode was Nasper

[3]. In another way, resource searching was done by flooding the resource requests to

peers. Each node randomly records some nodes as neighbors and maintains direct

connection with the neighbors; Gnutella is a typical example of this mode [4]. However,

flooding would cause mass redundant messages and inefficient usage of network

bandwidth. It is clear that the aforementioned two ways of peer-to-peer architecture do

not scale up well, as the number of the nodes dramatically increases.

2.1.1 Structure peer-to-peer architecture

The applications of peer-to-peer were not popular until the invention of distributed

hash table (DHT). DHT takes advantage of consistent hash to locate resources in an

 6

overlay network. By using consistent hash, nodes and resources hash themselves to IDs,

which is usually longer than 128 bits. A resource registers its location with the

corresponding node of the same ID. Anyone can find the location of a resource by using

the same hash function to determine the corresponding node of the resource. Due to the

property of consistent hash, the corresponding node can be uniquely determined in the

overlay network. By requesting the corresponding node one can obtain the location of the

needed resource. The efficiency, load balancing, and complete distribution properties of

DHT were so powerful that made DHT become the major research target of recent

peer-to-peer network.

2.1.2 Chord

Although DHT is the basic idea of current structure peer-to-peer, there are still

problems to be solved, for example, how to route a message to a node of a particular ID

in the overlay network, how to handle ungracefully leaving or churn, and how to join the

overlay network. After DHT had been proposed, many researchers designed various kinds

of routing algorithms, such as Chord, Pastry [5], Tapestry [6], and CAN [7]. These

algorithms provided characteristic routing with the same order of hop counts ,

where n is the total number of nodes. In addition, they adopt different churn handling

mechanisms.

)(log nO

Chord is one of the early DHT based routing algorithm, and used as the backbone

platform of our system. Chord works as follows. First, Chord maps each node ID from 0

to to the ring, where m is the scale of DHT. Similar to linked list, each node saves

his successor or neighbor in the ring. The major functionality of Chord, routing to a

particular node ID, could be treated as simply traversing the ring. However, by adding

finger table to keep extra node information, the routing could achieve in time.

12 −m

)(log nO

 7

The finger table is a structure to save additional nodes which nodes ID are successor

of , where k is own node ID and i is the number from 0 to m-1. When a node

generates a query, it first looks up finger table to search an ID small than the target ID

then forward the query. This greedy algorithm will pass the query to the closest ID

smaller than target ID, by the definition of consistent hash the successor of that ID is the

responding node of the target ID. Figure 2.1 shows a route from node 001000 to node

011101, and the level 3 of the finger table of node 001000 is the approximate ID to the

destination. The node thus forwards the message to node 010001 and nodes in Chord will

repeat the process until the message reaches the most approximate node.

mi k 2)%2(+

12 −m

001000 -> 011101

010001 -> 011101

011 00 -> 0111011

010001

001000

011100
011101

0000101010005
100011
010001
001111
001111
001111
nodeID

0110004
0100003
0011002
0010101
0010010
targetlevel

0000101010005
100011
010001
001111
001111
001111
nodeID

0110004
0100003
0011002
0010101
0010010
targetlevel

Finger table of
001000

Figure 2.1 Left side is a routing example, and right side is a finger table example.

Each node of Chord ring maintains nodes information and a message can

be routed to a particular ID in hops. Because a successful query needs every

node in routing path to forward to existing nodes, the correctness of finger table must be

kept especially the successor. Chord has stabilization mechanism to handle ungracefully

leaving and join of new node. In a period of time, each node ping the successor and ask

whether his predecessor has been changed. If so, the node sets his new successor as the

old successor’s new predecessor and finishes joining process. Nodes also maintain

)(log nO

)(log nO

 8

several backup successors which are used when the successor disappear. The stabilization

mechanism provides reparation in churn and works well with high probability. The

nodes in finger table also need to be checked periodically by fix finger mechanism. If any

item does not reply the keep-alive message then rebuild the finger of that target ID. These

mechanisms make Chord stable during serious churn and provide more reliable publish

and query result for upper layer applications.

2.2 Multiple attributes

The most important functionality of DHT is searching. By using consistent hash

function, any participant in DHT network could locate a resource without server. Just find

the responding node by hashing resource to a constant sized ID, the resource information

is kept at that node. Because of the nearly perfect distribution property, DHT became the

major research domain about peer-to-peer network.

The multiple attribute search problem is known as “and” operation, that is, a query

carries several attributes, and items that own all of those attributes match the query. In

ordinary DHT design, every attribute will be hashed to different node, so a multiple

attributes query can’t be handled in one node, and even the overhead of DHT routing will

lead to low efficiency in multiple attributes query. Because multiple attributes is one of

the basic operation in complex query, many researches toward reliable and efficient

multiple attributes query have been proposed recently.

The most intuitive idea of multiple-attribute query is iterative search. The querying

node first queries an attribute of the set to the responding node, then saves the results in

the query and forwards query to responding node of next attribute iteratively. Besides the

first queried node, the remainder responding node only needs to intersect the list in query

 9

and its own and filter unmatched results, and the responding node of last attribute would

reply the final result back to the querying node. This is the simplest iterative way to

achieve multiple attributes query.

155

264

377419

642 Matched :
A,C,F

A,F

Matched and
intersected:

SourceHash

114

65

N,R

D

SourceHash
212 A,B,F

SourceHash
341 A,C,F

SourceHash
390 R,S

SourceHash

609

544

D,F

A

H_IDStrValAttrName

Nation

Name

tw

Peter

212

341

step1
step2

step3
155

264

377419

642 Matched :

Matched and
intersected:

A,C,F

A,F

SourceHash

114

65

N,R

D

SourceHash
212 A,B,F

SourceHash
341 A,C,F

SourceHash
390 R,S

SourceHash

609

544

D,F

A

StrVal H_IDAttrName

Nation

Name

tw

Peter

212

341

step1
step2

step3

Figure 2.2 Iterative search for multi-attribute query.

Figure 2.2 depicts an iterative multiple attribute query. First, the querying node 155

sends query to node 377, the responding node of the attribute “Nation:tw”. Second, it

forwards the results {A,C,F} to node 264, the responding node of the attribute

“Name:Peter”. After checking and intersection, node 264 returns the results to node 155.

However, the indexing data which match an attribute may be too large to be

transmitted during iterative query. Reynolds [8] proposed that transmitting the Bloom

filter instead of the data will simplify the query process. Bloom filter is a data

compression method, and multiple data could be compressed to an array with possibility

of false positive. The array of bloom filter could be dynamically adjusted so much

smaller the data. We will describe this algorithm in detail in next chapter. Figure 2.3

shows a query example; client is the querying node and queries the attributes BA∩ . The

 10

left picture is ordinary iterative query and the right side is transmitting by bloom filter.

The querying node first forwards the query to the responding node of A, that is, SA. SA

hash the matched item to bloom filter F(A), then forward F(A) to SB doing intersect and

iteratively repeat the process until all attributes are searched. Due to the false positive

problem, the final result of the query should be transmitted backward in reverse order and

checked twice. And the right side query causes error of false positive in 6 of {3,4,6};

however this error will be corrected during backward check. Although using bloom filter

reduces the transmission overhead, yet the additional check might cause another

overhead.

}5,6,7{.3 BA ∩REQUEST.1

}5,6,7,8,9{.2 A

}5,6,7{.4 BA∩
REQUEST.1

}5,6,7,8,9){(.2 AF

}4,5,6,7{)(.3 BAF ∩

Figure 2.3 Relay search and Bloom filter used in relay search.

query
1968
files

276
files

15
files

music band MayDay

query
50

files
37

files
15

files
musicbandMayDay

 Figure 2.4: A query example of different query order.

Lintao [9] observed that if we query more specified attributes first, we could reduce

 11

the transmission during the iterative query. The specified attributes means few users have

the attribute, so a query would match fewer items. They also proposed fusion dictionary

mechanisms to dynamically detect hot keywords and put those keywords in the last of

query order. Each node maintains fusion dictionary as a file and updates by responding

nodes of keywords flooding to every node. Furthermore, keywords fusion mechanism

merges two hot keywords as one less hot keyword to reduce query process, and merged

keyword can be added to the fusion dictionary to return hot. Figure 2.4 show the query

process with fusion dictionary, the upper side query the hot keyword first and the below

side query the specified keyword first, we could obviously observe the difference of

transmission data. However, this algorithm would pay additional overhead to maintain

and synchronize the dictionary in each node.

2.3 Range query

Similar to multiple-attribute query, range query is also a searching problem in DHT.

Consistent hash functions break the locality of attributes for load balancing, that is, no

matter how similar keywords are the result after hashing will be far distributed. However,

many kinds of queries might contain near attributes such as a range of numbers. There

were some researches toward efficient range query. Most of them used location

preserving hash function and provided another way for load balancing.

MAAN [10] supports both multiple attributes and range query based on Chord. It

provides uniform location preserving hash for range query and single attribute dominated

query for multiple attributes query. Location preserving hash used by MAAN simply

linearly maps the numerical range to the namespace of Chord ID. The minimum of the

numerical attribute maps to 0 and the maximum maps to 12 −m in Chord. Although the

hash had load balancing problem, the author claimed that MAAN won’t suffer load

 12

unbalance by using the distribution of numerical attributes to map instead of linearly

mapping. Single attribute dominated query is using one attribute to query instead of

querying all attributes iteratively. In order to achieve the goal, MAAN must publish with

all attributes and save all the attributes information in responding nodes of all attributes.

Therefore q query could compare all attributes in one of the responding node. Single

attribute dominated query will suffer privacy problem and additional storage.

Node 100

Node 250
{140,154,16
2,178,193,1

12,134}

Node 980

Node 100

Node 250

{178,193}

Node 175
{140,154,16
2,112,134}Adjust

{}

 Figure 2.5 The load balance mechanism in Mercury.

Mercury [11] adopted single attribute dominated query and location preserving hash,

and further designed a dynamically load detecting and balancing mechanism that can

effectively solve the load balancing problem. First, Mercury node randomly chooses a

neighbor to send a “load probing” packet. The “load probing” packet randomly and

repeatedly forwards to neighbor and records their load. The “load probing” packet also

contains pre-defined TTL value which decreases when it arrive a new node. While the

TTL value returns to zero, the final node sends back to the sender for collecting load. If a

node observe that its own load heavier than the collected load over a constant threshold, it

sends a “light probing” packet to search a light load node, and then ask that node to

gracefully leave and rejoin to the heavier position. According to the property of consistent

hash, the heavy load would be shared by the two nodes. In Figure 2.5 the node 980 rejoin

to node 175 and share the load between 100 and 250. Periodically executing this process

 13

makes the load of every node to be balanced.

Another approach of multiple attributes and range query is using space filling curve

(SFC). SQUID [12] and SCARP [13] transforms multiple attributes range query into

multidimensional query. Each dimension represents a numerical attributes, and strings are

treated as ASCII number. SQUID also uses SFC to map multi-dimension into one

dimension line and location preserving hash to map the line into Chord. Therefore the

query could be handled in one node to reduce the complexity. Figure 2.6 shows the 2D

example using SFC to map a 2D plane to a 1D line, and the right side is mapping the

range X:0~1 Y:1~3 in the line.

 Figure 2.6 A space filling curve example

However, range search in SFC will generate fragmentation because a contiguous

range in high dimension does no surely map to a continuous segment in the line,

especially in higher dimension. As a result, range query using SFC only suits to fixed and

lower dimension such as longitude and latitude information.

2.4 Bloom filter

Bloom filter is a space-efficient data structure for representing a data set. It support

insert attributes and check whether a certain attribute is in the set. A bloom filter contains

 14

an m bit array and k independent hash functions where m is size of bloom filter and k is

number of hash functions used in bloom filter. The insertion process is as follow: First,

set each bit of the m bits array to zero, then use k hash function to hash 1 attribute into k

integers which range between 0 and m, and then set the bits in position

 to 1, that is, k bits is set to 1 and the other is set to 0. Repeat above step for

each attribute until all attributes are inserted into the m bits array, and the bloom filter

could check whether an attribute is in the set by using this array. The checking process is

simply hash the testee into and check if all the k positions are set to 1, if so,

then the testee is in the attributes set. Bloom filter has very efficient insertion and

checking method and using constant bit array for multiple attributes also provides good

space utilization.

khhh …21,

khhh …21,

khhh …21,

Figure 2.7 Multiple attributes with Bloom filter

However, the most serious hazard of bloom filter is false positive, that is, although

all positions of attribute A’s hash value are set to 1, it is still possible that A does not

belong to the attributes set. The position might be set to 1 by another attribute hashing to

exactly the same value. The attribute A in Figure 2.7 is an example of false positive, the

hash values of A respectively collide the hash values of attribute B, C, D. General

speaking, the more bits set to 1 in the bloom filter, the more possibility of false positive.

Furthermore, the number of attributes n which insert to the bloom filter, the array size m,

 15

and the number of hash function k is factors of the false positive probability. So

applications using bloom filter must adjust those parameters to achieve endurable false

positive probability, usually below than 1%, and also provide additional examination

method to handle false positive.

In spite of false positive, bloom filter has very good performance in terms of space

and computation, and thus has been widely used in network. Our communication system

also adopted bloom filter to store data, and we will describe in next chapter.

 16

Chapter 3 System Design
In this chapter we describe MFPGC system design in details, including the system

operations , such as, publish or query, the algorithm to store and compare the user data,

and how to find suitable objects in the peer-to-peer network. We also provide a flexible

mechanism to handle churn during a calling procedure.

3.1 System overview

Our system adopts Chord as the application layer routing method and SIP as the

communication protocol. The Fig 3.1 depicts that our system operates on top of Chord

ring, and mobile users connect other through P2P users. Users communicate to each other

by SIP UA.

Figure 3.1 System Architecture Overview.

The routing on DHT follows the design of original Chord and thus we will not

present the details in this paper. All we have used in our system is publish and query

 17

mechanism provided by Chord and our system does not make changes in routing.

Although we used Chord as under-layer routing protocol, actually we could implement

our system on any DHT-based routing protocol, if they support single-attribute publish

and query.

Caller

Callee

Responding node

1. Publish

2. Query

3. CallYou

4. Callback5. Answer

Figure 3.2 The call flow of MFPGC system

Because a communication using specific ID is a conventional SIP call, we only

present the unspecific ID communication model in MFPGC system which is achieved

using attributes. The communication flow is as follow:

0. A MFPGC user joins the communication system though a well-known node in the

MFPGC system.

1. The user publishes his or her attributes to the DHT network, so that the responding

nodes of each of those attributes maintain a copy of the user information

2. A caller initiates a query to call the users who he wants to find, and the query will be

forwarded to the responding node of one of the attributes in the query.

 18

3. The node compares the attributes of its data and the query, and then sends call requests

to all the matched users.

4. One of the callee receives the call request and decides to reply the call. The callback

message returns to the caller.

5. The caller answers the call and starts the communication with the callee.

The five steps is the basic call model of our system. However, the attributes contain

numerical, string, and hybrid type and we have different handling method described in

next section.

3.2 Publish with Bloom filter

The most notable feature in our system is the usage of Bloom filter. As we have

presented in Chapter 2, Bloom filter is a space-efficient data structure for representing a

data set and widely used in network applications, so we use Bloom filter to store multiple

attributes and to match queries with user profiles.

When a user registers the user’s attributes in MFPGC system, first the user would

fill their attributes into a profile stored in the local database of the user’s device. The

attributes can have different properties such as numerical, string, or hybrid type and

system defined, or user defined. And then system will calculate the responding nodes of

each attributes he has filled in the profile by SHA1 hash function. After the user presses

publish button, system sends publish messages to those responding nodes. MFPGC

system should publish to every attribute so that users could just query one of those

attributes to compare all.

Instead of publishing the attributes themselves in clear test, our system publishes the

Bloom filter of those attributes. Each published message includes the user contact

 19

information such as IP address, port, etc, and a Bloom filter containing all attributes.

Figure 3.3 and 3.4 depicts the whole publish process of Peter’s attributes

4096PeterName

HashStrValAttrName

Depart.
School

CSIE
NCTU

1981
328

4096PeterName

HashStrValAttrName

Depart.
School

CSIE
NCTU

1981
328 10000100 10000100

Hash to bloom filter

00100100 00100100

00100001 00100001

10100101 10100101

Bloom filter of the
three attributes

Peter’s attributes

Figure 3.3 An example that maps three attributes of a profile into a Bloom filter.

328

1981

4096

8721

4096PeterName

HashStrValAttrName

Depart.
School

CSIE
NCTU

1981
328

4096PeterName

HashStrValAttrName

Depart.
School

CSIE
NCTU

1981
328

10100101 10100101

Bloom filter (Bf)

Bf851

851

Bf6023

6023

Bf8721Data

8721Source

NodeID = 328

Bf851

851

Bf6023

6023

Bf8721Data

8721Source

NodeID = 328

Bf1098

1098

Bf8721

8721

Bf488Data

488Source

NodeID = 1981

Bf1098

1098

Bf8721

8721

Bf488Data

488Source

NodeID = 1981

Bf4851

4851

Bf623

623

Bf8721Data

8721Source

NodeID = 4096

Bf4851

4851

Bf623

623

Bf8721Data

8721Source

NodeID = 4096

Figure 3.4 The publish process of the profile in Figure 3.3.

3.3 Query with Bloom filter

Query is processing when a user would like to communicate with another user who

has certain attributes. Similar to publish, the query process first maps the attributes which

the user fills in into a Bloom filter, and then sends the query including the Bloom filter to

one of the responding node of those attributes. The most significant difference between

publish and query is that publish needs to be sent to all of the attributes but query only

needs to be sent to one. Because the user information has been published to all

 20

responding nodes, the query could easily match the Bloom filters in one of those nodes.

Furthermore, if we could choose a more specific attribute to query, we may balance the

query load in DHT network; however, MFPGC system currently still lacks for the

mechanism dynamically detecting specific attributes.

10000100 10000100

Attribute ”A”

Attribute ”B”

00000110 00000110

10000110 10000110

Attribute ”A and B”

+

=

10000110 10000110

Target attributes (T)

1000110 0 1000110 0

Query 1
(no match)

1000010 0 1000010 0

Query 2
(Q belongs to T)

10001110 10001110

Query 3
(T belongs to Q)

Figure 3.5 A Bloom filter matching example.

After query message was sent to the responding node, system compares the Bloom

filter in the query with the Bloom filters in the local database which maintains publishes

of other nodes. We represents an example of Bloom filter matching in Figure 3.5, and the

left side is generation of Bloom filter “A+B”, and right side is matching between target

(T) and query (Q). In a general case a query should belong to target, but we will show

another idea next section.

If the destination IDs are the same and the Bloom filter of query belongs to the

Bloom filter of the publish, that is, the query match this published item, then the

responding node sends a “callyou” message to the publishing node. There are maybe

several published items matched the query, and all of their publishing nodes will receive

the “callyou” messages. Next those users who receive the “callyou” messages could

 21

decide whether they want to call back. If so, they will process a SIP call using SIP UA.

One of them will be answered by caller and others will get a busy message.

Another problem is using Bloom filter may result in false positive. Our solution is

processing double check in the callee while receiving the “callyou” message. It just costs

a little computation in callee to completely break the possibility of error.

3.4 Numerical Attributes

We have mentioned that MFPGC system provides not only string type attributes but

also numerical and hybrid attributes. Many kinds of user information such as age, income,

location, etc…, contain numerical part and the query may be a range of number such as

“Age from 5 to 20”. It is not efficient if we query age 5, age 6, to age 20 using simple

publish/query mechanism, so a qualified method for numerical attributes is needed in

current communication system. This problem is known as range query that we

represented in Chapter 2, and we will propose an innovative algorithm for range query

later.

The method we used in MFPGC system is dividing. A pre-defined numerical

attribute will be divided into several levels. Each level is treat as an individual attribute,

for example, the “AGE” attribute could be partition by five years. Therefore 0-5 is the

first level, 5-10 is the second, etc…, and “AGE 0-5” is a special attribute implies the

user’s age is in this range.

However dividing will cause false positive just like using Bloom filter. For example,

we query a range “AGE 3-13”, but there are not defined this range, so we could only

transform the query into three ranges “AGE 0-5”, “AGE 6-10”, and “AGE 11-15”.

Obviously some numbers in the three ranges do not match our query, such as “AGE 15”

 22

or “AGE 2”. We adopted the same mechanism as handling the false positive in Bloom

filter to solve this problem. In other words we check whether the range in a query covers

the number of callee when the “callyou” messages are sent to callee.

We store range attributes in a Bloom filter by using the same method of string

attributes. However, a user usually tends to query a larger range of a numerical attribute.

The large range is transformed to many levels and then inserts mass bits to Bloom filter.

The false positive will become serious because almost every bit in Bloom filter is set to 1.

We adopted another algorithm in [] that could avoid setting mass bits by hashing the

range to fewer bits, and therefore perfectly fit in our system for range query.

An important factor of dividing is the size of partition. The smaller the partition is

the more levels are contained in a query. That means the more bits will be inserted into

the Bloom filter. Oppositely, the bigger the partition is, the fewer levels are contained in a

query, but the false positive possibility in a range will increase. Thus the size of partition

is a trade off between the number of bits inserted in Bloom filter and the false positive

rate generated by range errors. We used the optimized solution proposed in [] to define

the partition size of our system attributes, and it could approximate the lowest error in

MFPGC system.

3.5 Necessary attributes

In Chapter 1 we motioned that current communication systems lack a mechanism to

filter unwanted call. Necessary attributes is the functionality we designed for matching

the caller and callee’s intensions. MFPGC system provides two kinds of necessary

attributes in sender side and receiver side respectively.

3.5.1 Receiver necessary set attributes

 23

To screen out unwanted call requests, a user can specify certain attributes that must

be matched by call requests. These attributes will be referred to as receiver set necessary

attributes and carried in publish to the responding nodes. We modify the publish message

to include two Bloom filters, one is the original Bloom filter which all receiver-specified

attributes set(RAS) are inserted into, and the other is an additional Bloom filter contains

only receiver-specified necessary attributes set(RNAS). The responding nodes of each

attribute will maintain these two Bloom filter after publishing.

When a node receiving a query, besides checking whether the attributes in each user

record contain all attributes in the query, the node also checks whether the attributes in

the query contain the RNAS of the user record. If both of the two conditions match, the

record is treat as matching the query; if only the former condition matches, it means the

called wants to call the callee but the callee would not like this request. The mechanism

costs extra overheads to maintain and compare the two Bloom filter on each responding

node, but it could perfectly filter unwanted call before the call requests are sent to callee.

In Figure 3.6 we represent an example that publishes Peter’s attributes including RNAS

and RAS to the three responding nodes.

4096PeterName

HashStrValAttrName

Depart.
School

CSIE
NCTU

1981
328

4096PeterName

HashStrValAttrName

Depart.
School

CSIE
NCTU

1981
328 10100100 10100100

Bloom filter of RNAS
Peter’s attributes

10100101 10100101

Bloom filter of RAS

Figure 3.6.a Peter’s user attributes. The first and second item is RNAS

 24

328

1981

4096

8721

N
Y
Y

Nec

4096PeterName

H_valStrValAttrName

Depart.
School

CSIE
NCTU

1981
328

N
Y
Y

Nec

4096PeterName

H_valStrValAttrName

Depart.
School

CSIE
NCTU

1981
328

10000100 10000100

Bf(RNAS)

10100101 10100101

Bf(RAS)

Figure 3.6.b The publishing process of Figure 3.6.a.

3.5.2 Sender necessary set attributes

In sender sides, query is based on sender-specified necessary attributes set (SNAS),

the common part of queries in all system. But there is an important reason why we must

have non-necessary attributes. Because of receiver necessary set attributes, the sender

must query all attributes in RNAS in order to call that user. Setting RNAS protects users

from unwanted query but make the query more difficult. If the number of attributes

decreases, the query will not meet the RNAS of most users. Oppositely, if the number of

attributes increases, the matched users become fewer. Both increasing and decreasing will

resist the query process.

Using non-necessary attributes could solve this problem. We use necessary attributes

as the basis of a query and add some related non-necessary attributes in the query.

Although the RNAS of a user record does not belong to the RNAS of query, as long as it

belongs to the sender-specified attributes set (SAS) in a query, thus this user matches the

query. We conduct the final comparison equation of MFPGC system.

)(&)(RASSANSSASRANS ⊆⊆

The SAS and RAS are total set attributes of sender and receiver respectively, and the SNAS

 25

and RNAS are necessary set attributes of sender and receiver respectively.

The responding node will check the comparison equation for each record that has

the same destination ID with the query. We shows a query process after publish process in

Figure 3.6 and each matching case in Figure 3.7. In Figure 3.7.a the attributes

“Depart:CSIE“ and “Name:Peter are SNAS. MFPGC system will choose one responding

node of SNAS as destination to query, and we choose node 4096 in this example.

Although the SNAS match Peter’s RAS, but the RNAS does not match because

“School:NCTU” is not included in query A. Moreover, Figure 3.7b shows a 4-attributes

query. Although the attributes in Peter’s RNAS all belong to SAS; however the SNAS

attribute “Name:John” does not contained in Peter’s attributes, so the query still won’t

forward to Peter. Even through the attribute “Name:John” does not match “Name:Peter”

in Figure 3.7.c, the two attribute are neither RNAS nor SNAS, so the query still match

Peter’s attributes.

N
N
Y

Nec

3100BridgeClub

H_valStrValAttrName

Name
Depart.

Peter
CSIE

4096
1981

N
N
Y

Nec

3100BridgeClub

H_valStrValAttrName

Name
Depart.

Peter
CSIE

4096
1981

Query A

328

1981

4096

8721

 true
false

RASSNAS
SASRNAS

⊆
⊆

Figure 3.7.a SNAS are satisfied but RNAS are not

 26

1981CSIEYDepart.
N

N
Y

Nec

3100BridgeClub

H_valStrValAttrName

Name
School

John
NCTU

882
328

1981CSIEYDepart.
N

N
Y

Nec

3100BridgeClub

H_valStrValAttrName

Name
School

John
NCTU

882
328

Query B

328

1981

4096

8721

false
 true

RASSNAS
SASRNAS

⊆
⊆

Figure 3.7.b RNAS are satisfied but SNAS are not.

328NCTUYSchool
N

N
Y

Nec

3100BridgeClub

H_valStrValAttrName

Name
Depart.

John
CSIE

882
1981

328NCTUYSchool
N

N
Y

Nec

3100BridgeClub

H_valStrValAttrName

Name
Depart.

John
CSIE

882
1981

Query C

328

1981

4096

8721

 true
 true

RASSNAS
SASRNAS

⊆
⊆

Figure 3.7.c The successfully matching example.

However, the caller could not specify range attributes as SNAS. The SNAS of caller

must belong to the RAS of callee, but a range of query usually covers the number of

single user. If a range attribute is set as a SNAS, no RAS could contain the SNAS and no

user could match this query. To solve this problem, we divide the range into several levels

and insert one level into the Bloom filter at once. Then we query several times and each

of them including one level, and the joint set of those result is the result of setting range

attributes as RNAS. But there is a big overhead if multiple range attributes are contained

in a query, so we leave the improvement method in future works.

 27

3.6 Call Handling for Off-line Users

Recall the call flow described in Section 3.1, a call contains 5 states to process,

which are publish, query, callyou, callback, and answer respectively. MFPGC system still

provides off-line user handling mechanism to handle caller or callee off-line in each

calling state, that is, if a caller or callee disappears during one state, the call will preserve

until next time the caller or callee joins.

There are many identifier used in MFPGC system become Chord, SIP, and IP are all

the under layer protocols of MFPGC system and the five steps are implemented in

different layer. Publish and query is the functionality provided by Chord, so the

destinations are the responding nodes of the attributes and use Chord ID as identifier. The

callback and answer is simply a SIP call, so the destinations are SIP URI. The responding

nodes in Chord always exist by consistent hashing, so we won’t discuss the situation of

responding nodes off-line. And further MFPGC system is on the top of SIP layer, so

whether the SIP URI is valid is also not our main point. We focus on two situations in

MFPGC system, one is the users publish their information after the caller has queried,

and the other is the callee becomes off-line after the responding node has matched and

sent callyou message. MFPGC system provides off-line handling mechanism to make the

call process smoothly.

3.6.1 Delayed query

The delay query mechanism simply means publish after query. The delay query flow

is displayed in Figure 3.9. In order to achieve delay query we must save to query in the

first forwarded node, and do the comparison process while receiving each publish

message.

 28

Figure 3.8 The delayed query flow

In order to identify a user, we add a profile ID to each publish message. A profile ID

is an integer number generated by hashing all attributes of that user. We assume each user

would fill enough specific attributes and could be identified by those attributes, so a

profile ID could roughly identify a user in MFPGC system.

After a node has received a query message and compared its own record, it saves the

query and a matching list contains the profile ID that has matched this query for a while.

If a publish message comes during this time, the node compares the target ID and Bloom

filters for the new user. If those conditions are all matched, the node further checks

whether the profile ID has ever matched this query. A user may re-publish his information

due to restarting MFPGC program or using MFPGC in another computer. By saving and

comparing the profile ID we could recognize those situations and the user won’t receive

the duplicate callyou messages.

3.6.2 Delayed CallYou

 29

The delay callyou is the callee becomes off-line before the “CallYou” message has

been sent to it. As the callee returns on-line, the call will be resumed immediately. We

mark the profile on-line or off-line in the responding node and add a “CallYouReply”

message to acknowledge the “CallYou” message. If a node does not receive the reply

after sending a callyou message, the responding node would mark the profile off-line.

When the profile is off-line, every matched query is recorded in the responding node.

Next time the user of this profile registers the profile will become on-line and the callyou

messages will be forward to the user according to the matched queries.

Figure 3.9 The delayed CallYou flow

3.6.3 Delayed CallBack

As we mentioned in Section 3.1, the callback and answer are implemented by SIP.

The callback and answer process can not be handled by MFPGC, but we add a machine

ID to the query message and keep each query for a TTL in local machine. When a caller

is off-line, a callee that matches the query of the caller could not send the callback request

to the caller. In this case, the callee can inform the responding node that the callyou

messages received by the callee are cancelled. Next time when the caller becomes on-line,

the valid queries are sent to the responding nodes with machine ID and the cancelled

 30

callyou messages will be forwarded to the callee again. The delayed callback process

could repeat until the caller and caller are on-line at the same time.

Figure 3.10 The delayed CallBack flow

 31

Chapter 4 System Implementation
In this chapter we present our system implementation in detail. Our system is

written in C++ and based on CCLSIP UA, a sip communication system. Figure 4.1 shows

that MFPGC takes advantage of SIP, Chord DHT and IP to operate.

Join Reply ChangePre FindPre

RePre Publish Query Store

CallYou CYReply KAL Re_KAL

Leave

Figure 4.1 Layers of MFPGC system Table 4.1 The MFPGC messages

4.1 System components

Our system has three types of node with different functionality. Figure 4.2 depicts

the communication between those components and table 4.2 shows those difference and

we will describe all in next section.

.

Figure 4.2 The three types of components in MFPGC system

 32

components
DHT Routing

Store others
information

Publish &
Query

Location
information

P2P node Y Y Y N

Non-P2P node N N Y N

PDA node N N Y Y

Table 4.2 The difference between the three components

4.1.1 P2P node

P2P nodes are the most important part of our system and implemented all of the

peer-to-peer functionality such as routing, client, server and communication functionality

like publishing, querying, communicating.

Due to the properties of Chord, a P2P node should maintain a finger table and a

backup successor list for routing purpose. P2P nodes use a thread to periodically send a

keep-alive message to each node in the finger table. If any node ungracefully left, other

nodes which have saved it as finger will rebuild their finger tables.

Another thread listens the network socket and handles MFPGC messages we listed

in Figure 4.1. And we deploy a database to maintain user attributes and the publish

information of other users in two tables respectively. When users publish their profile or

attributes, MFPGC will read the attributes from database and publish them. When a

P2P-node receives the published attributes of other users, it will store them in the

database too.

4.1.2 Non-P2P node

Non-P2P nodes are peer-to-peer node without peer-to-peer functionality, and

provide a lightweight scheme for weaker computing, storage, or network users. A

 33

non-P2P node would use a P2P node as the gateway to send MFPGC messages. The

gateway P2P node could be a famous node or gotten from famous nodes. Because

non-P2P nodes have no node ID, P2P nodes will not add non-P2P nodes to their finger

table, and thus no DHT message will be forwarded to non-P2P nodes. The only messages

sent by non-P2P nodes are the publish and query which contain the IP address and port.

By using IP information other nodes could directly connect to non-P2P nodes without

node ID. The only and most important functionality of non-P2P nodes is query and

publish. Communication is another foundation functionality provided by under-layered

SIP UA through IP network.

4.1.3 PDA node

PDA nodes are non-peer-to-peer nodes but executed in PDA side with GPS

functionality. The MFPGC system in PDA side is based on mini UA, which is a mobile

version of CCLUA implemented in Windows Mobile platform and provides SIP-based

communication functionality through wireless network. The location attribute could be

directly obtained using GPS in PDA node. The work flow and other usage of PDA nodes

are the same as non-P2P nodes.

4.2 System defined attributes and user defined attributes

For convenience in implementation, we define some attributes in advance for users,

and reserve extensions by user defined attributes. The system defined attributes in

MFPGC system includes name, nick name, age, income, location, university, professional

specialty, and hobby. The name, nick name, professional specialty, and hobby are string

type attributes and the age and income are numerical type attributes. The location

attribute includes two numerical attributes longitude and latitude respectively. The

 34

university attribute is a hybrid attribute contains university name and the duration in that

school.

4.3 Bloom filter implementation

As we mentioned in Chapter 3, MFPGC system uses Bloom filter to store multiple

attributes. A Bloom filters is represented by a 512 bits array, and MD5 hash function is

used to hash an attribute to an index. In order to generate k indices, we used the same

hash function but different input text to hash the concatenation of the original text and

“0” to generate a new index. Repeat the concatenating until we get k indices. For example,

consider a system defined attribute “Club:Bridge” and k is 4. We hash “Club:Bridge”,

“Club:Bridge0”, “Club:Bridge00” ,“Club:Bridge000” to four indices and set those

position of the bit array to 1.

4.4 Message encryption

Figure 4.3 The encrypt process in query

In MFPGC system a caller will put a brief message in a query in order to invite the

callee to callback. The Callee could read this message and decide whether he would call

 35

back. The query message will be first sent to the responding node in DHT, and then

forwarded to the callees. So if some private information is included in the message, the

responding node could collect that information. Thus we use Advanced Encryption

Standard (AES) algorithm to encrypt it. The key used in AES is the hash value of the

joint of each necessary attribute name and value, and we also record the attribute names

in the query. Therefore a callee receiving the query could use the attribute names to find

the key of AES because each necessary attribute in query must belong to the attributes of

the callee by the matching definition. Furthermore, the responding node is unable to

know the attribute value so the privacy is perfectly kept in the query process.

 36

Chapter 5 Performance Evaluation
In this chapter we list several DHT-based systems with multiple attributes query or

range query functionality and compare their performance with MFPGC system.

5.1 Metrics and Comparison

At first we introduce some metrics to evaluate our system.

Hops: The most general metric to evaluate the routing overhead in overlay network,

it implies the distance from source to destination. The fewer hops in a route result in

lower overhead and less response time. If there are multiple destinations, the maximum

hop is adopted in the process. Because a message transmitted between two nodes means

the increasing of hops, the transmitted messages number is direct proportion of hops.

Number of nodes for a query: Number of destinations which do matching in a query. In

multiple attribute query system, a query is usually forwarded to several destinations for

searching because multiple attributes are stored in different nodes.

Number of nodes for a publish: Number of destinations which record the publish

information. Different algorithm to handle multiple attributes query will result in

difference of number of nodes for publish and query.

Storage in a node for a publish: A user publishes his attributes and one of the responding

nodes should cost the storage to maintain the published information. The storage

overhead counts on the information in a publish message.

Hops with respect to selectivity: The selectivity is a variable in range query and implies

the percent of the numerical scope that a range occupies. Bigger selectivity means bigger

range. The hops might increase with increasing the selectivity in general range query

systems.

 37

We compare the four systems we mentioned in Chapter 2 with MFPGC system in

table 5.1 and 5.2. Table 5.1 show the comparison in multiple attributes aspect, and the

variable n is the number of nodes in the system, is the number of attributes in a

query or publish, M is the bit map size of Bloom filter. The misc. implies constant

information such as IP address, node ID, and port. The and in MKey means the

position of most right and left 1 in Bloom filter, and means the probability that a bit

set to 0. means the probability of a bit set to 1 after inserting attributes.

attrn

0P

rP lP

)(1 0 attrnP− attrN

Table 5.1 The comparison between the five systems

class Multiple attributes string query

Metrics Number of nodes
for a query Hops Number of nodes

for a publish
Storage in a node

for a publish

MFPGC 1)log(n attrn .miscM +

MKey lr PP −)log()(nPP lr ×− ⎥⎥
⎤

⎢⎢
⎡ −

2
))(1(0 attrnPm .misc

SCARP 1)log(n 1 .miscnattr +

MURK 1)(log2 n 1 .miscnattr +

MAAN 1)log(n attrn .miscnattr +

Table 5.1 display the performance of range query. We only compare MFPGC and

MAAN because MKey does not support range query. The performance of SCARP and

MARK varies with different range, and hardly evaluate in direct way. The variable s

means the selectivity of a range attribute, and the means the minimum selectivity

range of the ranges in a query. The variables and mean the lower bound and

upper bound of a numerical attributes, and level means the range to divide in MFPGC

system. The last column shows the computation when the responding node compare a

query with its maintained data, the means the number of records which have the

mins

maxR minR

tn

 38

same target ID as the query.

Table 5.2 The comparison between the five systems

class
Single attribute

range query
Multiple attribute range query computation

Metrics Hops with respect to
selectivity

Hops with respect to
selectivity

Number of nodes
for search

Match a query
in one node

MFPGC)log()(minmax n
level

RRs
×

−×
)log()(minmax n

level
RRs

×
−×

level
RRs)(minmax −× Mnt ×

MKey tn

SCARP attrt nn ×

MURK attrt nn ×

MAAN sn× min)log(snn ×+ minsn× attrt nn ×

 39

Chapter 6 Conclusions
Traditional communications, such as telephony, email and VoIP, use specific ID to

specify the callee. In this thesis we design an innovative communication system using a

set of user attributes to specify the callee(s). Communication is possible even if the

callee’s ID is unknown. Chord and Bloom filter have been used to publish and query user

attributes. By using Bloom filter to represent user attributes and encrypting the messages,

user privacy has been protected; only a matched callee can receive and decrypt the

caller’s message. To support necessary attributes specified by the caller and the callee,

two Bloom filters, one for necessary attributes and the other for all attributes, were used

in publishing a user profile, and in querying matched callees. MFPGC system also

provides complete off-line user handling mechanism to focus on off-line users during

each query, callyou, and callback. The call is kept even if the caller or callee is off-line

and processes when they become on-line. The functionality will improve the flexibility of

search and communication.

For the responding nodes of hot keywords, the loading in networking, storage, and

computation all dramatically increase as the users increase. An efficient load balancing

mechanism for our system is critical to promoting MFPGC system. The mechanism

should consider hot keyword attributes and improve the level dividing method for range

query. Another problem is a sender-specified necessary range attribute was not supported

by our system and it could result in complex query process. An efficient solution is

needed for this problem.

 40

 41

Reference
[1] Ion Stoica , Robert Morris , David Karger , M. Frans Kaashoek , Hari Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications”, Proceedings of
the 2001 conference on Applications, technologies, architectures, and protocols for
computer communications, p.149-160, August 2001, San Diego, California, United States
[2] Burton H. Bloom, Space/time trade-offs in hash coding with allowable errors,
Communications of the ACM, v.13 n.7, p.422-426, July 1970
[3] “Napster.” http://www.napster.com/
[4] “Gnutella.” http://gnutella.wego.com.
[5] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object Location,
and Routing for Large-Scale Peer-to-Peer Systems,＂ Lecture Notes in Computer
Science, Vol. 2218, 2001.
[6] B. Zhao, J. Kubiatowicz and A. Joseph, “Tapestry: An Infrastructure for
Fault-Tolerant Wide-Area Location and Routing,＂Technical Report UCB/CSD-01-1141,
2001.
[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. “A scalable
content-addressable network.” In Proceedings of the 2001 ACM SIGCOMM, pages
161–172.
[8] P. Reynolds, A. Vahdat, Efficient peer-to-peer keyword searching, in:
ACM/IFP/USENIX Int’l Middleware Conference, Middleware 2003, June 16–20, 2003.
[9] Lintao Liu, Kyung Dong Ryu, and Kang-Won Lee.Keyword fusion to support ecient
keyword-based search in peer-to-peer le sharing. In 4th Int Work-shop on Global and P2P
Computing (GP2PC in con-junction with IEEE/ACM CCGRID), Chicago IL,April 2004.
[10] Min Cai , Martin Frank , Jinbo Chen , Pedro Szekely, “MAAN: A Multi-Attribute
Addressable Network for Grid Information Services”, Proceedings of the Fourth
International Workshop on Grid Computing, p.184, November 17-17, 2003
[11] A. Bharambe, M. Agrawal, and S. Seshan. “Mercury: Supporting scalable
multi-attribute range queries.” In Proc. SIGCOMM, 2004.

[12] Cristina Schmidt, and Manish Parashar, "EnablingFlexible Queries with
Guarantees in P2P Systems,"IEEE Internet Computing, Vol. 8, No. 3, pp.
19-26,May/June 2004.

[13] Prasanna Ganesan, Beverly Yang, Hector GarciaMolina,"One Torus to Rule them
All: Multidimensional Queries in P2P Systems," Proc. WebDB’04, June 1718,
2004,Paris, France,2004.

http://portal.acm.org/citation.cfm?id=383071&dl=GUIDE&coll=GUIDE&CFID=20766112&CFTOKEN=72762218
http://portal.acm.org/citation.cfm?id=383071&dl=GUIDE&coll=GUIDE&CFID=20766112&CFTOKEN=72762218
http://portal.acm.org/citation.cfm?id=383071&dl=GUIDE&coll=GUIDE&CFID=20766112&CFTOKEN=72762218
http://portal.acm.org/citation.cfm?id=383071&dl=GUIDE&coll=GUIDE&CFID=20766112&CFTOKEN=72762218
http://portal.acm.org/citation.cfm?id=952051&dl=GUIDE&coll=GUIDE&CFID=20766112&CFTOKEN=72762218
http://portal.acm.org/citation.cfm?id=952051&dl=GUIDE&coll=GUIDE&CFID=20766112&CFTOKEN=72762218
http://portal.acm.org/citation.cfm?id=952051&dl=GUIDE&coll=GUIDE&CFID=20766112&CFTOKEN=72762218

