SR T AP

B+t X

O BRI R F AN B/ B kA
Multi-Function Personal/Greup Communication System

with Bloom Filter

hERE Lttt £+t 8

IR o B A /BB kA

Multi-Function Personal/Group Communication System
with Bloom Filter

Bor oA 38 Student : Chung-Yu Li

R kP % Advisor : Ming-Feng Chang

A Thesis
Submitted to Institute-of Network Engineering
College of-Computer‘Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

July 2008

Hsinchu, Taiwan, Republic of China

PEARA LS £

- '\«
&

S
&

B F BB RBA N B A/ B

g4 2R T R EpE L

Bl 2 < B 4287 7 47

2

l\r/\,) ié;‘/, ho % = . 5 2 7 L, v N A&
L e M A G| Ae R B A5y TER M s T 3 R T EE —jgrsﬂfa

PAgEu Ak FRER Y o XA BV NG ER Y F D *ﬁ%ﬁiﬁiﬁ%ﬁw%ﬁ
P ERER - BREORLL TR {PRIOFER AT LG He 5 A AT

R AR AR - B RPRFARE TR A B R BET
e ® et bl > - B R ¥ ¥ el R 5 L
MFPGC % 4% Chord 2 b=t @ @ #HERE ks 5 BT H > ¢ 3 3
R A BB o VR IR e T R e R L
P RiE A BRI 0 PR E T s F e R 0 F S [- AR
FHRII AL R L R EY BA A R R AT DT R
LA o el sk St A ko WFPGC R B * F Bl R LB

SRR o

Multi-Function Personal/Group Communication System with Bloom Filter

Student: Chu-Yu Li Advisor: Dr. Ming-Feng Chang

Institute of Network Engineering

National Chiao Tung University

ABSTRACT

Communication services today, such as telephony, instant message, email, and VoIP,
use a specific user or device ID to specify the called party. Another way to indicate the
callee(s) is to specify the callee’s attributes, such as the name, the age, etc. A set of user
attributes, which is meaningful, rememberable; and representable, can be used to indicate
the callee. Multi-Function Personal/Group- Communication (MFPGC) system supports
communications using both specific IDs and ~multiple under-specified attributes.
Communications using multiple under=specified-attributes is feasible through publishing
and querying users’ attributes on DHT. The'DHT of MFPGC system is based on Chord
and Bloom filter is used to represent user attributes, which can be string, numerical, and
hybrid data. Communications are set up by matching the Bloom filters of callers and
callees. In addition, callees can specify necessary attributes that must be matched to filter
unwanted calls. On the other hand, callers can also specify necessary attributes to limit
the number of matched callees, and non-necessary attributes to increase likelihood of
matching callee’s necessary attributes. To enhance the flexibility of communications,
MFPGC system also stores and forwards messages for off-line users. Compared to
traditional communication system, MFPGC system provides more flexible scenarios for

users.

S

IS RV RGBS AR R] » IR o AR BRI i rofpatt - 25
WA P R LGSR 0 g R i [+ 2 RS R
PR YRR SRRy Y CURS R - RIS
Juf?lﬁﬁxg%ﬁggy& o

B IS RS R PO RIS RIS - SRS =
e - SRR - TSR [T B - %’”’U T
SR P E - AEEYL - B E RN I ARINR T b R Sy
a0 o g Rl RGBS B o R e PR AR L R GRS T o

EERIER 1 MR 3R R R Y S

Tables of Contents

BB B s [
ABSTRACT .ottt bbbttt bbbt b e nes i
o OSSR i
LISt OF FIQUIES ...ttt ettt saeeeenreas Vi
[A0 B = o] SR vii
Chapter 1 INTrOQUCTIONc.veiiiiie ettt 1
1.1 Current deVelOPMENT......c.oiieiiee e sna e 1
1.2 MOTIVATION ...t bbbt b ettt 3
1.3 ODJECHIVE ...ttt bbbt bbb 4
1.4 SUMIMATY .ot nn e e e n e e 5
Chapter 2 Related WOTKcooiiit i 6
2.1 Chord and DHT FOULING ..ok e e aisense e cifiae e seeeeeseeeseesseesseesiesnessseeseesseessessnens 6

2.1.1 Structure peer-to-peer-arCRiteCUKE vccoveieerree e 6

2.1.2 Chord = AT (Beccooveenn s 7
2.2 MUltiple attribDULeS.......... 5c. . S i mmmmmm o dhene et 9
2.3 RANGE QUETY ..ttt i eeakb e fe ettt e e e sn e ne e e e neesneas 12
2.4 BlOOM FHIEI ... L e 14
Chapter 3 SYStEM DESIN......ciuiiiiieeie et re et re e sreenre s 17
3.1 SYSEEIM OVEIVIEWeeeuiiieieieeiieciee e ete st ste e a et esta et e e ste et e anaesneenaesreenreenee e 17
3.2 Publish With BIOOM FIIEEr........cccoiiiiiieiieee s 19
3.3 Query With BIoom fIlter.........cooviieee e 20
3.4 NUMETICal ATIIIDULESoeeeiieice s 22
3.5 NECESSArY AITDULESccvveeeeie e 23
3.6 Call Handling for Off-1iN€ USEIScccciviieiieieceseese e 28

3.6.1 Delayed QUETYooiiiiiicieeieeee ettt et 28

3.6.2 Delayed CallYOU.......c.ooiiiiiiiiieeeesee e 29

3.6.3 Delayed CallBacKc.cccooiiiiiiiiieiie e 30
Chapter 4 System Implementation...........coceeieiiniieniesee e 32
4.1 SYSEM COMPONENESeeiuiiiiiiieiee ettt ettt ettt et e et e s e e saeesneeereesrne e 32
4.2 System defined attributes and user defined attributes...........cccccoovevieiinieninnne 34
4.3 Bloom filter IMplementation............ccooieiiiiiiieiiee e 35
4.4 MESSAQE ENCIYPLION ..ottt sttt sttt b b sbe e sne e e 35

Chapter 5 Performance EVAlUALIONcceieiiiiniiiniieeeee e

5.1 Metrics and Comparison

Chapter 6 Conclusions........

Referencecccoeeeeeeeeeeeeeennn

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:

Figure 3.6.a:
Figure 3.6.b:
Figure 3.7.a:
Figure 3.7.b:
Figure 3.7.c:

Figure 3.8:
Figure 3.9:
Figure 3.10:
Figure 4.1:
Figure 4.2:
Figure 4.3:

List of Figures

A routing and a finger table example.cccocoeviiieiicie i 8
Iterative search for multi-attribute qUery........c.ccccoovvievie e, 10
Relay search and Bloom filter used in relay search.ccccccvenine 11
A query example of different query order.cccocevveviveieiieneennnn 11
The load balance mechanism in Mercury..........cccccevvvevesveesveneseenne 13
A space filling curve eXample ... 14
Multiple attributes with Bloom filter...........ccccccevvveiviieiic e, 15
System ArchiteCture OVEIVIEW.cocveveieeiierie e seese s see e 17
The call flow of MFPGC SYStemM........cccveiviiiiieesie e 18
Mapping into a BIoom Filter.ccooevieiiiieiie e 20
The PUBLISN PrOCESS. ...cvveiecicce e 20
A Bloom filter matching EXample........ccccoovvvieveniesiiece e 21
A user attributes example.. ... 24
The publish ProCeSS......cveiieiiee e 25
Matching error example.. o e 26
Matching error eXample. «ii i . vseeieee e 27
The successfully-matchingexample.ccccccooveieiieviiieieee 27
The delay qUETY FIOW. i i 29
The delay CallYou flow. v 30
The delay CallBaCk flOW it v 30
Layers Of MFPGC SYSIEMccveiieieiieie e 32
The three types of component in MFPGC systemc.cccccvevvvevenee. 32
The encrypt ProCess iN QUETYcoueivereerieeeeseesiesieseesieeeesseesseeneens 35

Vi

Table 4.1:
Table 4.2:
Table 5.1:
Table 5.2:

List of Tables

The MFPGC MESSAQES. ...c.vveuverieeiieeieaiesieeseeeeesteesseasesseesseesesseesseessens 32
The difference between the three components............ccccevveviveieiinenns 33
The comparison between the five SyStems.........cccocevveveiieniveie e, 38
The comparison between the five SyStemcccocvevviieiiecie s 39

Vil

Chapter 1 Introduction

1.1 Current development

Traditional telephony services have been transformed by the developments of
mobile technologies and Internet technologies. More and more Internet communication
services, such as MSN and skype, have been widely used through wired and wireless
networks. The advantages of using the Internet as the communication platform are
cheaper charging rate and more powerful functionalities of the services. However, the
PLMN (Public Land Mobile Network) system still plays an important role in our daily
life, so most of those communication system developers have made efforts to integrate
their systems into mobile devices for .user convenience, or even integrate their systems

with the PSTN (Public Switching Telephone Network).

In recent years, peer-to-peer technology.has -been one of the most popular
technologies employed in Internet ‘applications: More and more applications using a
peer-to-peer overlay network for information multicasting, object searching, and load
balancing. Those functionalities can be provided efficiently in P2P architecture. P2P file
sharing systems and real-time streaming video services are the most popular applications
on the Internet and consume most of the Internet bandwidth in recent years. However,
P2P systems still have some shortcomings with it. For example, security is an important
issue. Because centralized server does not exist in P2P systems, how to trust other nodes
is an unsolved problem. Another security problem is user/device authentication. Because
of un-trusted nodes, user/device authentication without a trusted server is almost
impossible to achieve; this bottleneck limits P2P in commercial applications. More and
more researches toward robust and reliable P2P architecture, but the most popular

applications are still based on anonymity.

General speaking, a peer-to-peer system is used for storing data, and supporting
efficient publishing and searching mechanisms. Most of the current peer-to-peer
researches focus on improving the efficiency of routing and searching under various
conditions. Different assumptions of the network environments, like churn handling and
location awareness, result in different approaches to optimizing the system. Searching is
one of the most important functionalities provided by peer-to-peer systems. Contrast to
centralized servers, peer-to-peer systems store data in each peer node. The overhead of
communications on network replaces the overhead of database access on the central
server, and becomes a critical bottleneck under complex network conditions. Furthermore,
due to the existence of unstable nodes, data synchronization problem makes data in
peer-to-peer unreliable. Although storing multiple replicas of data in more nodes may
decrease this disadvantage by adding endurable overhead, searching in the peer-to-peer
network is usually considered as-a best-effort function, Another extend problem is load
balancing. Because hot keywords deminate-major -part of the searching load, the
responding nodes of those keywords in the peer-to-peer network may cause heavy
performance overhead. Most researchers have attempted to break the continuation of hot

keywords, but single hot keywords couldn’t have been completely resolved until now.

As we know, the information retrieval technology has wide influence on network,
and semantic keyword searching is the foundational part for information retrieval.
Although semantic searching is hardly implemented in peer-to-peer network because of
the property of distribution, there are some researches about how to achieve more
complex searches in peer-to-peer network, such as numerical query and and/or query.
With the popularity of peer-to-peer technology, researches of searching algorithm will be

a new trend in network.

1.2 Motivation

Communication services today, such as telephony, instant message, email, and VoIP,
use a specific user or device ID, such as telephone number, e-mail address, and SIP URI,
to specify the called party. In the beginning, the naming of user/device ID was restricted
by device capability in order to simply implementation. However, with more powerful
user devices, there are less constrains on the naming; IDs that are more meaningful and
representable can be used. The trend of user/device ID is toward meaningful,

representable, distinct and rememberable.

Although a specific ID can uniquely specify a user, it would be very useful if we can
initiate a communication with a callee(s) without knowing the callee’s specific ID. For
example, Billy has graduated from/NCTU 20.years ago, and some day he wants to hold a
reunion, but the contact methods of some classmates have been invalid. Since using
specific ID has drawbacks of record invalidity and the troubles to update the record, a

more intuitive communication method ‘can be useful.

One way to indicate the callee(s) of a communication is to specify the callee’s
attributes, such as the name, the age, and the school he or she studies, etc. A user is
associated with a set of attributes. In another point of view, a set of user attributes is a
kind of powerful user ID that is rememberable, meaningful, and representable. Although
attributes often lack for distinguishability and convenience, communication with this kind

of ID provides an alternative way to supply more semantic callee.

To set up a communication with specified callee’s attributes, we need to do
multi-attribute data matching between the call request and the users’ profiles. An

intuitional idea is caller specify some attributes as ID, then any callee(s) have those

attributes will receive the call request. The client-server architecture with database is a
direct and simple way to implement the functionality. However, peer-to-peer technology
has been widely extended in multiple attributes query by researchers. It provides an
alternative way to client-server architecture with better scalability and without single
point of failure. Therefore it is a better choice for communication systems which support

stronger searching function to adopt peer-to-peer as the backbone platform.

Even though using peer-to-peer architecture in communications is a suitable
solution for next generation communication systems, there are some bottlenecks
impeding the trend. First problem is performance, a link in overlay network may be an
unexpected long path in the physical network, and routing in overlay network may cost
more time than the systems using direet iconnection. Furthermore, in recent proposed
methods of multiple attribute matehing, the routing overhead linearly increases with the
number of attributes. Lacks of a efficient publish/query-mechanism for peer-to-peer leads
to the bottleneck of revolutionary communication’ systems developed in peer-to-peer

network.

Another ignored point is how to match the caller and callee’s intension for talking
to each other. Most systems emphasized on the demand of caller, which caused several
critical problems like junk mail or ad; and further effected users whether they would
choose this system or not. Advanced communication systems should contain filtering

mechanism for callee, so as to reduce unnecessary messages and transmission costs.

1.3 Objective

Our main goal is to build a communication system with the following features:

1. Support communications using specific ID and unspecific ID attributes.

2. Flexible attributes for callers and callees including numerical attributes.

3. Match the desires of both the caller and the callee, and filter unwanted call requests.

4. Efficient routing in peer-to-peer and endurable overhead to maintain other users’
queries and publishes.

5. Protect all users’ privacy and prevent maliciously gathering the user information.

6. Flexible off-line handling mechanism in every states of call flow.

In order to implement such a communication system, we adopted structured
peer-to-peer architecture or DHT (distributed hash table) as platform and proposed a
novel publish/query mechanism to accomplish above requirements, and we will describe

that in details in later chapters.

1.4 Summary

The remaining of this paper:is organized as follows. Chapter 2 shows current work
in peer-to-peer researches related to.our System; Chapter 3 describes our system design in
details. Chapter 4 presents the actual implementation, and Chapter 5 discusses

performance analysis. Finally, conclusions and future work are given in Chapter 6.

Chapter 2 Related Work

In this chapter we describe recent peer-to-peer researches, including Chord [1], DHT,
which we used as the under-layer routing platform, and other P2P systems that support
range query or multiple-attribute query, or both. Although those systems have distinctive
features, we will explain their limitations that do not fully satisfy the requirements of our
system. In addition, we will describe the design of Bloom filter, which is a space-efficient,
randomized data structure representing a data set. Bloom filter [2] is the core of user data
publication and query in our system. We will also describe systems that use Bloom filter

for multiple-attribute query.

2.1 Chord and DHT routing

In the early stage of peer-to-peer develepment; there were two ways to locate
resources. In one way, resource -indexing-and-searching was performed by centralized
servers and resource sharing was directly. operated-between peers. However single point
of failure may imperil this mode. The most representable system of this mode was Nasper
[3]. In another way, resource searching was done by flooding the resource requests to
peers. Each node randomly records some nodes as neighbors and maintains direct
connection with the neighbors; Gnutella is a typical example of this mode [4]. However,
flooding would cause mass redundant messages and inefficient usage of network
bandwidth. It is clear that the aforementioned two ways of peer-to-peer architecture do

not scale up well, as the number of the nodes dramatically increases.
2.1.1 Structure peer-to-peer architecture

The applications of peer-to-peer were not popular until the invention of distributed
hash table (DHT). DHT takes advantage of consistent hash to locate resources in an

6

overlay network. By using consistent hash, nodes and resources hash themselves to IDs,
which is usually longer than 128 bits. A resource registers its location with the
corresponding node of the same ID. Anyone can find the location of a resource by using
the same hash function to determine the corresponding node of the resource. Due to the
property of consistent hash, the corresponding node can be uniquely determined in the
overlay network. By requesting the corresponding node one can obtain the location of the
needed resource. The efficiency, load balancing, and complete distribution properties of
DHT were so powerful that made DHT become the major research target of recent

peer-to-peer network.

2.1.2 Chord

Although DHT is the basic ideéa of current structure peer-to-peer, there are still
problems to be solved, for example, how to route a message to a node of a particular 1D
in the overlay network, how to handle ungracefully leaving or churn, and how to join the
overlay network. After DHT had been proposed, many researchers designed various kinds
of routing algorithms, such as Chord, Pastry [5], Tapestry [6], and CAN [7]. These
algorithms provided characteristic routing with the same order of hop counts O(logn),
where n is the total number of nodes. In addition, they adopt different churn handling

mechanisms.

Chord is one of the early DHT based routing algorithm, and used as the backbone
platform of our system. Chord works as follows. First, Chord maps each node ID from 0
to 2™ —1 to the ring, where m is the scale of DHT. Similar to linked list, each node saves
his successor or neighbor in the ring. The major functionality of Chord, routing to a
particular node 1D, could be treated as simply traversing the ring. However, by adding

finger table to keep extra node information, the routing could achieve in O(logn) time.

The finger table is a structure to save additional nodes which nodes ID are successor
of (2'+ k)%2™ , where k is own node ID and i is the number from 0 to m-1. When a node
generates a query, it first looks up finger table to search an ID small than the target ID
then forward the query. This greedy algorithm will pass the query to the closest ID
smaller than target ID, by the definition of consistent hash the successor of that ID is the
responding node of the target ID. Figure 2.1 shows a route from node 001000 to node
011101, and the level 3 of the finger table of node 001000 is the approximate ID to the
destination. The node thus forwards the message to node 010001 and nodes in Chord will

repeat the process until the message reaches the most approximate node.

001000 -> 011101 level | target nodelD
0o1000 0 | 001001 | 001111
1 | 001010 | 001111
2 | 001100 | 001111
3 | 010000 | 010001
4 | 011000 | 100011
5 | 101000 | 000010
"1010001 -> 011101 | | Finger table of
— oo 001000

011100 -> 011101

Figure 2.1 Left side is a routing example, and right side is a finger table example.

Each node of Chord ring maintains O(logn) nodes information and a message can
be routed to a particular ID in O(logn) hops. Because a successful query needs every
node in routing path to forward to existing nodes, the correctness of finger table must be
kept especially the successor. Chord has stabilization mechanism to handle ungracefully
leaving and join of new node. In a period of time, each node ping the successor and ask
whether his predecessor has been changed. If so, the node sets his new successor as the

old successor’s new predecessor and finishes joining process. Nodes also maintain

several backup successors which are used when the successor disappear. The stabilization
mechanism provides reparation in churn and works well with high probability. The
nodes in finger table also need to be checked periodically by fix finger mechanism. If any
item does not reply the keep-alive message then rebuild the finger of that target ID. These
mechanisms make Chord stable during serious churn and provide more reliable publish

and query result for upper layer applications.

2.2 Multiple attributes

The most important functionality of DHT is searching. By using consistent hash
function, any participant in DHT network could locate a resource without server. Just find
the responding node by hashing resource to a constant sized ID, the resource information
is kept at that node. Because of the:nearly perfeet distribution property, DHT became the

major research domain about peer-to-peer network.

The multiple attribute search preblem is knownas “and” operation, that is, a query
carries several attributes, and items that own all of those attributes match the query. In
ordinary DHT design, every attribute will be hashed to different node, so a multiple
attributes query can’t be handled in one node, and even the overhead of DHT routing will
lead to low efficiency in multiple attributes query. Because multiple attributes is one of
the basic operation in complex query, many researches toward reliable and efficient

multiple attributes query have been proposed recently.

The most intuitive idea of multiple-attribute query is iterative search. The querying
node first queries an attribute of the set to the responding node, then saves the results in
the query and forwards query to responding node of next attribute iteratively. Besides the

first queried node, the remainder responding node only needs to intersect the list in query

and its own and filter unmatched results, and the responding node of last attribute would

reply the final result back to the querying node. This is the simplest iterative way to

achieve multiple attributes query.

Source

AttrName | StrVval H_ID
Name Peter 341
Nation tw 212

Hash | Source
544 A
609 D,F

Hash | Source

390 R,S

Figure 2.2

Matched and

intersected:

AF
Hash | Source
212 A,B,F

Matched :
A,C,F

Hash | Source
341 ACF

Iterative search for multi-attribute query.

Figure 2.2 depicts an iterative:multiple attribute query. First, the querying node 155

sends query to node 377, the responding node of the attribute “Nation:tw”. Second, it

forwards the results {A,C,F} to node 264, the responding node of the attribute

“Name:Peter”. After checking and intersection, node 264 returns the results to node 155.

However, the indexing data which match an attribute may be too large to be

transmitted during iterative query. Reynolds [8] proposed that transmitting the Bloom

filter instead of the data will simplify the query process. Bloom filter is a data

compression method, and multiple data could be compressed to an array with possibility

of false positive. The array of bloom filter could be dynamically adjusted so much

smaller the data. We will describe this algorithm in detail in next chapter. Figure 2.3

shows a query example; client is the querying node and queries the attributes An B. The

10

left picture is ordinary iterative query and the right side is transmitting by bloom filter.
The querying node first forwards the query to the responding node of A, that is, SA. SA
hash the matched item to bloom filter F(A), then forward F(A) to SB doing intersect and
iteratively repeat the process until all attributes are searched. Due to the false positive
problem, the final result of the query should be transmitted backward in reverse order and
checked twice. And the right side query causes error of false positive in 6 of {3,4,6};
however this error will be corrected during backward check. Although using bloom filter

reduces the transmission overhead, yet the additional check might cause another

overhead.
A: B: A: B:
{9,8,7,6,5} {7,6,5,4} {9,8,7,6,5} {7,6,5,4}
2.M9.8,7,6,5} 2.F(AM9.8,7,6,5
> >
Server SA Server SB Server SA 3F(A)NB{7.654}gerver SB
4. AN B{7,6,5}
1.REQUEST 3ANB{7,65 1.REQUEST
Querying node Querying node
Figure 2.3 Relay search and Bloom filter used in relay search.
music 1968 band 276 MayDay 15
query E files E fIIeS files
—> E—— E——— —
MayDay 50 band mu3|c 15
query E files E flles files
> = - - T

Figure 2.4: A query example of different query order.

Lintao [9] observed that if we query more specified attributes first, we could reduce

11

the transmission during the iterative query. The specified attributes means few users have
the attribute, so a query would match fewer items. They also proposed fusion dictionary
mechanisms to dynamically detect hot keywords and put those keywords in the last of
query order. Each node maintains fusion dictionary as a file and updates by responding
nodes of keywords flooding to every node. Furthermore, keywords fusion mechanism
merges two hot keywords as one less hot keyword to reduce query process, and merged
keyword can be added to the fusion dictionary to return hot. Figure 2.4 show the query
process with fusion dictionary, the upper side query the hot keyword first and the below
side query the specified keyword first, we could obviously observe the difference of
transmission data. However, this algorithm would pay additional overhead to maintain

and synchronize the dictionary in each node.

2.3 Range query

Similar to multiple-attribute query, range‘query.is also a searching problem in DHT.
Consistent hash functions break the locality of attributes for load balancing, that is, no
matter how similar keywords are the result after hashing will be far distributed. However,
many kinds of queries might contain near attributes such as a range of numbers. There
were some researches toward efficient range query. Most of them used location

preserving hash function and provided another way for load balancing.

MAAN [10] supports both multiple attributes and range query based on Chord. It
provides uniform location preserving hash for range query and single attribute dominated
query for multiple attributes query. Location preserving hash used by MAAN simply
linearly maps the numerical range to the namespace of Chord ID. The minimum of the
numerical attribute maps to 0 and the maximum maps to 2™ —1 in Chord. Although the

hash had load balancing problem, the author claimed that MAAN won’t suffer load

12

unbalance by using the distribution of numerical attributes to map instead of linearly
mapping. Single attribute dominated query is using one attribute to query instead of
querying all attributes iteratively. In order to achieve the goal, MAAN must publish with
all attributes and save all the attributes information in responding nodes of all attributes.
Therefore q query could compare all attributes in one of the responding node. Single

attribute dominated query will suffer privacy problem and additional storage.

Node 100 Node 100
. {140,154,16
=Adjusty Node 175 | 2,112,134}
Node 250 Node 250
Node 980 glfgéllsgélf {178,193}
¢ 1271343

Figure 2.5 The'load balance' mechanism in Mercury.

Mercury [11] adopted single attribute dominated-query and location preserving hash,
and further designed a dynamically load detecting and balancing mechanism that can
effectively solve the load balancing problem. First, Mercury node randomly chooses a
neighbor to send a “load probing” packet. The “load probing” packet randomly and
repeatedly forwards to neighbor and records their load. The “load probing” packet also
contains pre-defined TTL value which decreases when it arrive a new node. While the
TTL value returns to zero, the final node sends back to the sender for collecting load. If a
node observe that its own load heavier than the collected load over a constant threshold, it
sends a “light probing” packet to search a light load node, and then ask that node to
gracefully leave and rejoin to the heavier position. According to the property of consistent
hash, the heavy load would be shared by the two nodes. In Figure 2.5 the node 980 rejoin

to node 175 and share the load between 100 and 250. Periodically executing this process

13

makes the load of every node to be balanced.

Another approach of multiple attributes and range query is using space filling curve
(SFC). SQUID [12] and SCARP [13] transforms multiple attributes range query into
multidimensional query. Each dimension represents a numerical attributes, and strings are
treated as ASCII number. SQUID also uses SFC to map multi-dimension into one
dimension line and location preserving hash to map the line into Chord. Therefore the
query could be handled in one node to reduce the complexity. Figure 2.6 shows the 2D
example using SFC to map a 2D plane to a 1D line, and the right side is mapping the

range X:0~1Y:1~3 in the line.

Y
31 oMo | 10G+——totp
2 | 0100 | ort——t060 | 101
#
1 0 11 ﬂﬂlo 1104 1100
o | 0000 opot | 11lo_| 1111
0 1 2 3

Figure 2.6 A space filling curve example

However, range search in SFC will generate fragmentation because a contiguous
range in high dimension does no surely map to a continuous segment in the line,
especially in higher dimension. As a result, range query using SFC only suits to fixed and

lower dimension such as longitude and latitude information.

2.4 Bloom filter

Bloom filter is a space-efficient data structure for representing a data set. It support
insert attributes and check whether a certain attribute is in the set. A bloom filter contains

14

an m bit array and k independent hash functions where m is size of bloom filter and k is
number of hash functions used in bloom filter. The insertion process is as follow: First,
set each bit of the m bits array to zero, then use k hash function to hash 1 attribute into k
integers h;,h,...h, which range between 0 and m, and then set the bits in position
h,h,...h, to 1, that is, k bits is set to 1 and the other is set to 0. Repeat above step for
each attribute until all attributes are inserted into the m bits array, and the bloom filter
could check whether an attribute is in the set by using this array. The checking process is
simply hash the testee into h,h,...h, and check if all the k positions are set to 1, if so,
then the testee is in the attributes set. Bloom filter has very efficient insertion and
checking method and using constant bit array for multiple attributes also provides good

space utilization.

{B,C.D}

A
Figure 2.7 Multiple attributes with Bloom filter

However, the most serious hazard of bloom filter is false positive, that is, although
all positions of attribute A’s hash value are set to 1, it is still possible that A does not
belong to the attributes set. The position might be set to 1 by another attribute hashing to
exactly the same value. The attribute A in Figure 2.7 is an example of false positive, the
hash values of A respectively collide the hash values of attribute B, C, D. General
speaking, the more bits set to 1 in the bloom filter, the more possibility of false positive.

Furthermore, the number of attributes n which insert to the bloom filter, the array size m,

15

and the number of hash function k is factors of the false positive probability. So
applications using bloom filter must adjust those parameters to achieve endurable false
positive probability, usually below than 1%, and also provide additional examination

method to handle false positive.

In spite of false positive, bloom filter has very good performance in terms of space
and computation, and thus has been widely used in network. Our communication system

also adopted bloom filter to store data, and we will describe in next chapter.

16

Chapter 3 System Design

In this chapter we describe MFPGC system design in details, including the system
operations , such as, publish or query, the algorithm to store and compare the user data,
and how to find suitable objects in the peer-to-peer network. We also provide a flexible

mechanism to handle churn during a calling procedure.

3.1 System overview

Our system adopts Chord as the application layer routing method and SIP as the
communication protocol. The Fig 3.1 depicts that our system operates on top of Chord
ring, and mobile users connect other through P2P users. Users communicate to each other

by SIP UA.

Figure 3.1 System Architecture Overview.

The routing on DHT follows the design of original Chord and thus we will not

present the details in this paper. All we have used in our system is publish and query

17

mechanism provided by Chord and our system does not make changes in routing.
Although we used Chord as under-layer routing protocol, actually we could implement
our system on any DHT-based routing protocol, if they support single-attribute publish

and query.

Caller 2. Query

5. Answer 4. Callback

Responding node

3..CallYou
1. Publish

Figure 3.2 The call flow of MFPGC system

Callee

Because a communication using specific ID is a conventional SIP call, we only
present the unspecific ID communication model in MFPGC system which is achieved
using attributes. The communication flow is as follow:

0. AMFPGC user joins the communication system though a well-known node in the
MFPGC system.

1. The user publishes his or her attributes to the DHT network, so that the responding
nodes of each of those attributes maintain a copy of the user information

2. A caller initiates a query to call the users who he wants to find, and the query will be

forwarded to the responding node of one of the attributes in the query.

18

3. The node compares the attributes of its data and the query, and then sends call requests
to all the matched users.

4. One of the callee receives the call request and decides to reply the call. The callback
message returns to the caller.

5. The caller answers the call and starts the communication with the callee.

The five steps is the basic call model of our system. However, the attributes contain
numerical, string, and hybrid type and we have different handling method described in

next section.

3.2 Publish with Bloom filter

The most notable feature in oursystem is‘the usage of Bloom filter. As we have
presented in Chapter 2, Bloom filter is-a space-efficient data structure for representing a
data set and widely used in netwark applications, so we'use Bloom filter to store multiple

attributes and to match queries withuser profiles.

When a user registers the user’s attributes in MFPGC system, first the user would
fill their attributes into a profile stored in the local database of the user’s device. The
attributes can have different properties such as numerical, string, or hybrid type and
system defined, or user defined. And then system will calculate the responding nodes of
each attributes he has filled in the profile by SHAL hash function. After the user presses
publish button, system sends publish messages to those responding nodes. MFPGC
system should publish to every attribute so that users could just query one of those

attributes to compare all.

Instead of publishing the attributes themselves in clear test, our system publishes the

Bloom filter of those attributes. Each published message includes the user contact

19

information such as IP address, port, etc, and a Bloom filter containing all attributes.

Figure 3.3 and 3.4 depicts the whole publish process of Peter’s attributes

Peter's attributes

Hash to bloom filter

Bloom filter of the
three attributes

» [oo[1oo[1]o[o] == [1]o[z[o[o[1[o[1]

AttrName | StrVal Hash

School | NCTU | 328 | Lololtlofofofof1]
Depart. | CSIE | 1981

Name | Peter | 4096 [1]o]ofofo[1]0]0]

Figure 3.3 An example that maps three attributes of a profile into a Bloom filter.

AttrName | StrVal Hash
School | NCTU | 328
Depart. CSIE | 1981

Name Peter | 4096

Bloom filter (Bf)

}

[[o]1]ofo[1]0]

7872

NodelD = 328

Source

8721 | 6023 | 851

Data | Bfsr21 | Bfeozs | Bfest
NodelD = 1981
Source | 488 | 8721 | 1098
Data | Bfiss | Bfs7z1 | Bfioss
NodelD = 4096
Source | 8721 | 623 | 4851
Data | Bfsr21 | Bfe2s | Bfass:

Figure 3.4 The publish process of the profile in Figure 3.3.

3.3 Query with Bloom filter

Query is processing when a user would like to communicate with another user who

has certain attributes. Similar to publish, the query process first maps the attributes which

the user fills in into a Bloom filter, and then sends the query including the Bloom filter to

one of the responding node of those attributes. The most significant difference between

publish and query is that publish needs to be sent to all of the attributes but query only

needs to be sent to one. Because the user information has been published to all

20

responding nodes, the query could easily match the Bloom filters in one of those nodes.
Furthermore, if we could choose a more specific attribute to query, we may balance the
query load in DHT network; however, MFPGC system currently still lacks for the

mechanism dynamically detecting specific attributes.

Attribute "A” Target attributes (T)

0|1/ 1/0lololo]0 0/1/1/0{0/0|0|1

+ Query 1
Attribute "B” 0| 1| 0| 1| 0| 0| 0| 1] (N0 match)
0/ 0|1/ 0/0|0|0| 1 Query 2
= o[1/0|o|o|0| 0| 1| (Q belongsto T)

Attribute "A and B”
o/ 1|/ 1]/ 0|0/ 0|0l 1

Query .3
O| it} 0l'0/ 0

=

(T belongs to Q)

Figure 3.5 A Blogm filter matching example.

After query message was sent to the responding node, system compares the Bloom
filter in the query with the Bloom filters in the local database which maintains publishes
of other nodes. We represents an example of Bloom filter matching in Figure 3.5, and the
left side is generation of Bloom filter “A+B”, and right side is matching between target
(T) and query (Q). In a general case a query should belong to target, but we will show

another idea next section.

If the destination IDs are the same and the Bloom filter of query belongs to the
Bloom filter of the publish, that is, the query match this published item, then the
responding node sends a “callyou” message to the publishing node. There are maybe
several published items matched the query, and all of their publishing nodes will receive

the “callyou” messages. Next those users who receive the “callyou” messages could

21

decide whether they want to call back. If so, they will process a SIP call using SIP UA.

One of them will be answered by caller and others will get a busy message.

Another problem is using Bloom filter may result in false positive. Our solution is
processing double check in the callee while receiving the “callyou” message. It just costs

a little computation in callee to completely break the possibility of error.

3.4 Numerical Attributes

We have mentioned that MFPGC system provides not only string type attributes but
also numerical and hybrid attributes. Many kinds of user information such as age, income,
location, etc..., contain numerical part and the query may be a range of number such as
“Age from 5 to 20”. It is not efficient If we query age 5, age 6, to age 20 using simple
publish/query mechanism, so a qualified method.for:numerical attributes is needed in
current communication systemy This| problem is known as range query that we
represented in Chapter 2, and we will propose an-innovative algorithm for range query

later.

The method we used in MFPGC system is dividing. A pre-defined numerical
attribute will be divided into several levels. Each level is treat as an individual attribute,
for example, the “AGE” attribute could be partition by five years. Therefore 0-5 is the
first level, 5-10 is the second, etc..., and “AGE 0-5” is a special attribute implies the

user’s age is in this range.

However dividing will cause false positive just like using Bloom filter. For example,
we query a range “AGE 3-13”, but there are not defined this range, so we could only
transform the query into three ranges “AGE 0-5”, “AGE 6-10”, and “AGE 11-15".

Obviously some numbers in the three ranges do not match our query, such as “AGE 15”

22

or “AGE 2”. We adopted the same mechanism as handling the false positive in Bloom
filter to solve this problem. In other words we check whether the range in a query covers

the number of callee when the “callyou” messages are sent to callee.

We store range attributes in a Bloom filter by using the same method of string
attributes. However, a user usually tends to query a larger range of a numerical attribute.
The large range is transformed to many levels and then inserts mass bits to Bloom filter.
The false positive will become serious because almost every bit in Bloom filter is set to 1.
We adopted another algorithm in [] that could avoid setting mass bits by hashing the

range to fewer bits, and therefore perfectly fit in our system for range query.

An important factor of dividing is the size of partition. The smaller the partition is
the more levels are contained in a query. That means the more bits will be inserted into
the Bloom filter. Oppositely, the bigger the partition is, the fewer levels are contained in a
query, but the false positive possibility.in-a‘range will increase. Thus the size of partition
is a trade off between the number of bits inserted in Bloom filter and the false positive
rate generated by range errors. We used the optimized solution proposed in [] to define
the partition size of our system attributes, and it could approximate the lowest error in

MFPGC system.

3.5 Necessary attributes

In Chapter 1 we motioned that current communication systems lack a mechanism to
filter unwanted call. Necessary attributes is the functionality we designed for matching
the caller and callee’s intensions. MFPGC system provides two kinds of necessary

attributes in sender side and receiver side respectively.

3.5.1 Receiver necessary set attributes

23

To screen out unwanted call requests, a user can specify certain attributes that must
be matched by call requests. These attributes will be referred to as receiver set necessary
attributes and carried in publish to the responding nodes. We modify the publish message
to include two Bloom filters, one is the original Bloom filter which all receiver-specified
attributes set(RAS) are inserted into, and the other is an additional Bloom filter contains
only receiver-specified necessary attributes set(RNAS). The responding nodes of each

attribute will maintain these two Bloom filter after publishing.

When a node receiving a query, besides checking whether the attributes in each user
record contain all attributes in the query, the node also checks whether the attributes in
the query contain the RNAS of the user record. If both of the two conditions match, the
record is treat as matching the query; if only:the. former condition matches, it means the
called wants to call the callee but:the callee would net like this request. The mechanism
costs extra overheads to maintain and compare the two; Bloom filter on each responding
node, but it could perfectly filter unwanted call-before the call requests are sent to callee.
In Figure 3.6 we represent an example that‘publishes Peter’s attributes including RNAS

and RAS to the three responding nodes.

Peter’s attributes

Bloom filter of RNAS
olol1]o0]|0|1|0f12

AttrName Strval Hash
School NCTU 328

Depart. | CSIE | 1981 Bloom filter of RAS
Name Peter | 4096 1{0|1|0|{0|1|0]|1

Figure 3.6.a Peter’s user attributes. The first and second item is RNAS

24

AttrName | Nec | Strval H_val
School | Y | NCTU | 328
Depart. | Y CSIE | 1981

Name N Peter | 4096

Bf(RNAS)
0({0|1({0|0f0|0]1

Bf(RAS)
110(1]0]0(1]0]1

Figure 3.6.b The publishing process of Figure 3.6.a.

3.5.2 Sender necessary set attributes

In sender sides, query is based on sender-specified necessary attributes set (SNAS),
the common part of queries in all system. But there is an important reason why we must
have non-necessary attributes. Because Of:receiver necessary set attributes, the sender
must query all attributes in RNAS in order to call that user. Setting RNAS protects users
from unwanted query but make the query more difficult. If the number of attributes
decreases, the query will not meet the RNAS of most users. Oppositely, if the number of
attributes increases, the matched users become fewer. Both increasing and decreasing will

resist the query process.

Using non-necessary attributes could solve this problem. We use necessary attributes
as the basis of a query and add some related non-necessary attributes in the query.
Although the RNAS of a user record does not belong to the RNAS of query, as long as it
belongs to the sender-specified attributes set (SAS) in a query, thus this user matches the

query. We conduct the final comparison equation of MFPGC system.

(RANS — SAS) & (SANS c RAS)

The SAS and RAS are total set attributes of sender and receiver respectively, and the SNAS

25

and RNAS are necessary set attributes of sender and receiver respectively.

The responding node will check the comparison equation for each record that has
the same destination ID with the query. We shows a query process after publish process in
Figure 3.6 and each matching case in Figure 3.7. In Figure 3.7.a the attributes
“Depart:CSIE* and “Name:Peter are SNAS. MFPGC system will choose one responding
node of SNAS as destination to query, and we choose node 4096 in this example.
Although the SNAS match Peter’s RAS, but the RNAS does not match because
“School:NCTU” is not included in query A. Moreover, Figure 3.7b shows a 4-attributes
query. Although the attributes in Peter’s RNAS all belong to SAS; however the SNAS
attribute “Name:John” does not contained in Peter’s attributes, so the query still won’t
forward to Peter. Even through the attributer “Name:John” does not match “Name:Peter”
in Figure 3.7.c, the two attribute are neither RNAS nor SNAS, so the query still match
Peter’s attributes.

Query A
AttrName | Nec | Strval | H_val
Depart. | Y CSIE | 1981

Name N Peter | 4096
Club N | Bridge | 3100

RNAS — SAS false
SNAS < RAS true

Figure 3.7.a SNAS are satisfied but RNAS are not

26

Query B

AttrName | Nec | Strval H_val
School | Y | NCTU | 328
Name N John 882
Depart. | Y CSIE | 1981

Club N | Bridge | 3100

RNAS — SAS true
SNAS — RAS false

Figure 3.7.b RNAS are satisfied but SNAS are not.

Query C
AttrName | Nec | Strval H_val
Depart. | Y CSIE | 1981
Name N John 882
School | Y | NCTU | 828
Club N | Bridge [23100

RNAS — SAS “true
SNAS — RAS true

Figure 3.7.c The successfully matching example.

However, the caller could not specify range attributes as SNAS. The SNAS of caller
must belong to the RAS of callee, but a range of query usually covers the number of
single user. If a range attribute is set as a SNAS, no RAS could contain the SNAS and no
user could match this query. To solve this problem, we divide the range into several levels
and insert one level into the Bloom filter at once. Then we query several times and each
of them including one level, and the joint set of those result is the result of setting range
attributes as RNAS. But there is a big overhead if multiple range attributes are contained

in a query, so we leave the improvement method in future works.

27

3.6 Call Handling for Off-line Users

Recall the call flow described in Section 3.1, a call contains 5 states to process,
which are publish, query, callyou, callback, and answer respectively. MFPGC system still
provides off-line user handling mechanism to handle caller or callee off-line in each
calling state, that is, if a caller or callee disappears during one state, the call will preserve

until next time the caller or callee joins.

There are many identifier used in MFPGC system become Chord, SIP, and IP are all
the under layer protocols of MFPGC system and the five steps are implemented in
different layer. Publish and query is the functionality provided by Chord, so the
destinations are the responding nodes of the attributes and use Chord ID as identifier. The
callback and answer is simply a SIP-call, se-the destinations are SIP URI. The responding
nodes in Chord always exist by eonsistent hashing, so-we won’t discuss the situation of
responding nodes off-line. And further MEPGC system is on the top of SIP layer, so
whether the SIP URI is valid is also not eur main point. We focus on two situations in
MFPGC system, one is the users publish their information after the caller has queried,
and the other is the callee becomes off-line after the responding node has matched and
sent callyou message. MFPGC system provides off-line handling mechanism to make the

call process smoothly.
3.6.1 Delayed query

The delay query mechanism simply means publish after query. The delay query flow
is displayed in Figure 3.9. In order to achieve delay query we must save to query in the
first forwarded node, and do the comparison process while receiving each publish

message.

28

Caller 1. Query

Caller

Responding node Responding node

3. CallYou
‘ 2. Publish

Callee

Figure 3.8 The delayed query flow

In order to identify a user, we add a profile 1D to each publish message. A profile ID
is an integer number generated by hashing all-attributes.of that user. We assume each user
would fill enough specific attributes and-could-be identified by those attributes, so a

profile ID could roughly identify a userin MFPGC system.

After a node has received a query message and compared its own record, it saves the
query and a matching list contains the profile ID that has matched this query for a while.
If a publish message comes during this time, the node compares the target ID and Bloom
filters for the new user. If those conditions are all matched, the node further checks
whether the profile ID has ever matched this query. A user may re-publish his information
due to restarting MFPGC program or using MFPGC in another computer. By saving and
comparing the profile ID we could recognize those situations and the user won’t receive

the duplicate callyou messages.

3.6.2 Delayed CallYou

29

The delay callyou is the callee becomes off-line before the “CallYou” message has
been sent to it. As the callee returns on-line, the call will be resumed immediately. We
mark the profile on-line or off-line in the responding node and add a “CallYouReply”
message to acknowledge the “CallYou” message. If a node does not receive the reply
after sending a callyou message, the responding node would mark the profile off-line.
When the profile is off-line, every matched query is recorded in the responding node.
Next time the user of this profile registers the profile will become on-line and the callyou

messages will be forward to the user according to the matched queries.

& & &

Caller Caller 2. Query Caller
—
—_—
Responding node Responding node Responding node
\/ 3rCallY ou 5. CallYou
‘ 1. Publish @ ‘ 4. Register
Callee Callee Off-line Callee On-line

Figure 3.9 The delayed CallYou flow

3.6.3 Delayed CallBack

As we mentioned in Section 3.1, the callback and answer are implemented by SIP.
The callback and answer process can not be handled by MFPGC, but we add a machine
ID to the query message and keep each query for a TTL in local machine. When a caller
is off-line, a callee that matches the query of the caller could not send the callback request
to the caller. In this case, the callee can inform the responding node that the callyou
messages received by the callee are cancelled. Next time when the caller becomes on-line,

the valid queries are sent to the responding nodes with machine ID and the cancelled

30

callyou messages will be forwarded to the callee again. The delayed callback process

could repeat until the caller and caller are on-line at the same time.

O

Caller off-line Caller

Caller off-line 2. Query 6. Register
N f=3

4. Callback 9. Answer | | 8. Callback
—_ . —_
Responding node Responding node Responding node
y 5. Inv\fﬂW W
‘ 1. Publish ‘ ‘
Callee Callee Callee

Figure 3.10 The delayed CallBack flow

31

Chapter 4 System Implementation

In this chapter we present our system implementation in detail. Our system is
written in C++ and based on CCLSIP UA, a sip communication system. Figure 4.1 shows

that MFPGC takes advantage of SIP, Chord DHT and IP to operate.

MFPGC Join Reply | ChangePre | FindPre

RePre Publish Query Store

SIP || Chord

CallYou | CYReply KAL Re_KAL

[P

Leave

Figure 4.1 Layers of MFPGC system Table 4.1 The MFPGC messages

4.1 System components

Our system has three types of node with different functionality. Figure 4.2 depicts

the communication between those components and table 4.2 shows those difference and

we will describe all in next section.

PDA node

Non-F2P node

Figure 4.2 The three types of components in MFPGC system

32

: Store others Publish & Location
DHT Routing
components information Query information
P2P node Y Y Y N
Non-P2P node N N Y N
PDA node N N Y Y

Table 4.2 The difference between the three components

4.1.1 P2P node

P2P nodes are the most important part of our system and implemented all of the
peer-to-peer functionality such as routing, client, server and communication functionality

like publishing, querying, communicating.

Due to the properties of Chord, a P2P node. should maintain a finger table and a
backup successor list for routing-purpose..P2P nodes use a thread to periodically send a
keep-alive message to each node in the finger table.-1f any node ungracefully left, other

nodes which have saved it as finger will rebuild their finger tables.

Another thread listens the network socket and handles MFPGC messages we listed
in Figure 4.1. And we deploy a database to maintain user attributes and the publish
information of other users in two tables respectively. When users publish their profile or
attributes, MFPGC will read the attributes from database and publish them. When a
P2P-node receives the published attributes of other users, it will store them in the

database too.

4.1.2 Non-P2P node

Non-P2P nodes are peer-to-peer node without peer-to-peer functionality, and

provide a lightweight scheme for weaker computing, storage, or network users. A

33

non-P2P node would use a P2P node as the gateway to send MFPGC messages. The
gateway P2P node could be a famous node or gotten from famous nodes. Because
non-P2P nodes have no node 1D, P2P nodes will not add non-P2P nodes to their finger
table, and thus no DHT message will be forwarded to non-P2P nodes. The only messages
sent by non-P2P nodes are the publish and query which contain the IP address and port.
By using IP information other nodes could directly connect to non-P2P nodes without
node ID. The only and most important functionality of non-P2P nodes is query and
publish. Communication is another foundation functionality provided by under-layered

SIP UA through IP network.
4.1.3 PDA node

PDA nodes are non-peer-to-peer nodes but-_executed in PDA side with GPS
functionality. The MFPGC system in PDA'side.is based on mini UA, which is a mobile
version of CCLUA implemented:in Windows Mobile:platform and provides SIP-based
communication functionality through wireless network. The location attribute could be
directly obtained using GPS in PDA node. The work flow and other usage of PDA nodes

are the same as non-P2P nodes.

4.2 System defined attributes and user defined attributes

For convenience in implementation, we define some attributes in advance for users,
and reserve extensions by user defined attributes. The system defined attributes in
MFPGC system includes name, nick name, age, income, location, university, professional
specialty, and hobby. The name, nick name, professional specialty, and hobby are string
type attributes and the age and income are numerical type attributes. The location

attribute includes two numerical attributes longitude and latitude respectively. The

34

university attribute is a hybrid attribute contains university name and the duration in that

school.

4.3 Bloom filter implementation

As we mentioned in Chapter 3, MFPGC system uses Bloom filter to store multiple
attributes. A Bloom filters is represented by a 512 bits array, and MD5 hash function is
used to hash an attribute to an index. In order to generate k indices, we used the same
hash function but different input text to hash the concatenation of the original text and
“0” to generate a new index. Repeat the concatenating until we get k indices. For example,
consider a system defined attribute “Club:Bridge” and k is 4. We hash “Club:Bridge”,
“Club:Bridge0”, “Club:Bridge00” ,“Club;Bridge000” to four indices and set those

position of the bit array to 1.

4.4 Message encryption

Query message: | Plain text

Name:Peter

——Hash] Y Encrypt
School:NCTU ash=9 54712 y cryp

Cipher text

Name

Attribute Name:
School

Figure 4.3 The encrypt process in query

In MFPGC system a caller will put a brief message in a query in order to invite the

callee to callback. The Callee could read this message and decide whether he would call

35

back. The query message will be first sent to the responding node in DHT, and then
forwarded to the callees. So if some private information is included in the message, the
responding node could collect that information. Thus we use Advanced Encryption
Standard (AES) algorithm to encrypt it. The key used in AES is the hash value of the
joint of each necessary attribute name and value, and we also record the attribute names
in the query. Therefore a callee receiving the query could use the attribute names to find
the key of AES because each necessary attribute in query must belong to the attributes of
the callee by the matching definition. Furthermore, the responding node is unable to

know the attribute value so the privacy is perfectly kept in the query process.

36

Chapter 5 Performance Evaluation

In this chapter we list several DHT-based systems with multiple attributes query or

range query functionality and compare their performance with MFPGC system.

5.1 Metrics and Comparison

At first we introduce some metrics to evaluate our system.

Hops: The most general metric to evaluate the routing overhead in overlay network,
it implies the distance from source to destination. The fewer hops in a route result in
lower overhead and less response time. If there are multiple destinations, the maximum
hop is adopted in the process. Because .amessage transmitted between two nodes means
the increasing of hops, the transmitted /messages number is direct proportion of hops.
Number of nodes for a query: Number of destinations which do matching in a query. In
multiple attribute query system, a“query+is usually. forwarded to several destinations for
searching because multiple attributes are‘stored in different nodes.

Number of nodes for a publish: Number of destinations which record the publish
information. Different algorithm to handle multiple attributes query will result in
difference of number of nodes for publish and query.

Storage in a node for a publish: A user publishes his attributes and one of the responding
nodes should cost the storage to maintain the published information. The storage
overhead counts on the information in a publish message.

Hops with respect to selectivity: The selectivity is a variable in range query and implies
the percent of the numerical scope that a range occupies. Bigger selectivity means bigger
range. The hops might increase with increasing the selectivity in general range query

systems.

37

We compare the four systems we mentioned in Chapter 2 with MFPGC system in
table 5.1 and 5.2. Table 5.1 show the comparison in multiple attributes aspect, and the

variable n is the number of nodes in the system, n_. is the number of attributes in a

attr
query or publish, M is the bit map size of Bloom filter. The misc. implies constant
information such as IP address, node ID, and port. The pand p in MKey means the
position of most right and left 1 in Bloom filter, and P, means the probability that a bit

setto 0. 1-P,(n,,) Means the probability of a bit set to 1 after inserting N_,, attributes.

attr

Table 5.1 The comparison between the five systems

class Multiple attributes string query
Metrics | Moniereinots |, | Numterof s | sraein e
MFPGC 1 log(n) N M + misc.
MKey P-P (P =R)log(n) [’—“W] misc.
SCARP 1 log(n) 1 N, + Misc.
MURK 1 log*(n) 1 N, -+ Misc.
MAAN 1 log(n) N N, +Misc.

Table 5.1 display the performance of range query. We only compare MFPGC and
MAAN because MKey does not support range query. The performance of SCARP and
MARK varies with different range, and hardly evaluate in direct way. The variable s
means the selectivity of a range attribute, and the S, means the minimum selectivity
range of the ranges in a query. The variables R _and R mean the lower bound and
upper bound of a numerical attributes, and level means the range to divide in MFPGC
system. The last column shows the computation when the responding node compare a
query with its maintained data, the N, means the number of records which have the

38

same target ID as the query.

Table 5.2 The comparison between the five systems

Single attribute : . :
class Multiple attribute range query | computation
range query
Metri Hops with respect to | Hops with respect to | Number of nodes | Match a query
etrics selectivity selectivity for search in one node
SX (Rmax - Rmin) % SX (Rmax — Rmin) x SX (Rmax - Rmin)
MEPGC | g meoxlogn | == Stclog | = Znns nxM
MKey N,
SCARP e X Ny
MURK e X Ny
MAAN NnxSs log(n) +.n xS, NXS. . N, XN,

39

Chapter 6 Conclusions

Traditional communications, such as telephony, email and VolIP, use specific ID to
specify the callee. In this thesis we design an innovative communication system using a
set of user attributes to specify the callee(s). Communication is possible even if the
callee’s ID is unknown. Chord and Bloom filter have been used to publish and query user
attributes. By using Bloom filter to represent user attributes and encrypting the messages,
user privacy has been protected; only a matched callee can receive and decrypt the
caller’s message. To support necessary attributes specified by the caller and the callee,
two Bloom filters, one for necessary attributes and the other for all attributes, were used
in publishing a user profile, and in querying matched callees. MFPGC system also
provides complete off-line user handling mechanism to focus on off-line users during
each query, callyou, and callback: The call-is kept.even if the caller or callee is off-line
and processes when they become-on-line..The functionality will improve the flexibility of

search and communication.

For the responding nodes of hot keywords, the loading in networking, storage, and
computation all dramatically increase as the users increase. An efficient load balancing
mechanism for our system is critical to promoting MFPGC system. The mechanism
should consider hot keyword attributes and improve the level dividing method for range
query. Another problem is a sender-specified necessary range attribute was not supported
by our system and it could result in complex query process. An efficient solution is

needed for this problem.

40

Reference

[1] lon Stoica, Robert Morris , David Karger , M. Frans Kaashoek , Hari Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications”, Proceedings of
the 2001 conference on Applications, technologies, architectures, and protocols for
computer communications, p.149-160, August 2001, San Diego, California, United States
[2] Burton H. Bloom, Space/time trade-offs in hash coding with allowable errors,
Communications of the ACM, v.13 n.7, p.422-426, July 1970

[3] “Napster.” http://www.napster.com/

[4] “Gnutella.” http://gnutella.wego.com.

[5] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object Location,
and Routing for Large-Scale Peer-to-Peer Systems,” Lecture Notes in Computer
Science, Vol. 2218, 2001.

[6] B. Zhao, J. Kubiatowicz and A. Joseph, “Tapestry: An Infrastructure for
Fault-Tolerant Wide-Area Location and Routing,” Technical Report UCB/CSD-01-1141,
2001.

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. “A scalable
content-addressable network.” In Rroceedings of the 2001 ACM SIGCOMM, pages

161 - 172.

[8] P. Reynolds, A. Vahdat, Efficient peer<to-peer keyword searching, in:
ACM/IFP/USENIX Int’| Middleware Conference, Middleware 2003, June 16-20, 2003.
[9] Lintao Liu, Kyung Dong Ryu, and Kang-Won Lee.Keyword fusion to support ecient
keyword-based search in peer-to-peer le sharing. In 4th Int Work-shop on Global and P2P
Computing (GP2PC in con-junction with IEEE/ACM CCGRID), Chicago IL,April 2004.
[10] Min Cai, Martin Frank , Jinbo Chen , Pedro Szekely, “MAAN: A Multi-Attribute
Addressable Network for Grid Information Services”, Proceedings of the Fourth
International Workshop on Grid Computing, p.184, November 17-17, 2003

[11] A. Bharambe, M. Agrawal, and S. Seshan. “Mercury: Supporting scalable
multi-attribute range queries.” In Proc. SIGCOMM, 2004.

[12] Cristina Schmidt, and Manish Parashar, "EnablingFlexible Queries with
Guarantees in P2P Systems,"IEEE Internet Computing, Vol. 8, No. 3, pp.
19-26,May/June 2004.

[13] Prasanna Ganesan, Beverly Yang, Hector GarciaMolina,"One Torus to Rule them
All: Multidimensional Queries in P2P Systems,"” Proc. WebDB’04, June 1718,
2004,Paris, France,2004.

41

http://portal.acm.org/citation.cfm?id=383071&dl=GUIDE&coll=GUIDE&CFID=20766112&CFTOKEN=72762218
http://portal.acm.org/citation.cfm?id=383071&dl=GUIDE&coll=GUIDE&CFID=20766112&CFTOKEN=72762218
http://portal.acm.org/citation.cfm?id=383071&dl=GUIDE&coll=GUIDE&CFID=20766112&CFTOKEN=72762218
http://portal.acm.org/citation.cfm?id=383071&dl=GUIDE&coll=GUIDE&CFID=20766112&CFTOKEN=72762218
http://portal.acm.org/citation.cfm?id=952051&dl=GUIDE&coll=GUIDE&CFID=20766112&CFTOKEN=72762218
http://portal.acm.org/citation.cfm?id=952051&dl=GUIDE&coll=GUIDE&CFID=20766112&CFTOKEN=72762218
http://portal.acm.org/citation.cfm?id=952051&dl=GUIDE&coll=GUIDE&CFID=20766112&CFTOKEN=72762218

