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使用於多媒體串流之重疊無限制比率前向糾錯碼  

分析模型 

 

研究生：張玉書                指導教授：蕭旭峯 

國立交通大學網路工程研究所 

摘要 

  多媒體串流的資料是有可能源源不絕的，而現有的 TCP 重新傳送機制來傳送

封包，會使得時間會有延遲。使用前向糾錯碼來取代 TCP 傳送多媒體串流資料是一個

很好的選擇。在傳送資料前，我們無法得知通道的封包遺失率，所以無限制比率前向糾

錯 碼 很 適 合 應 用 於 此 環 境 ， 再 加 上 此 前 向 糾 錯 碼 的 編 碼 與 解 碼 速 度 相 較 快 於

Reed-Solomon 碼，使用此前向糾錯碼來傳送多媒體串流的資料是有利的。對於多媒體串

流資料，我們先提出一種分析模型於一小段時間內的資料上，來分析有權重的選擇編碼

方式，可否能達到更低的解碼失敗率。在有此分析模型之後，放到整個多媒體串流來預

估怎樣的權重序列，才會使得整體的解碼失敗率降低。最後用實驗來驗證有權重方式的

多媒體串流會優於無權重方式。 
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An Analytic Model of Overlapped Rateless Codes               

for Multimedia Streaming 

Student：Yu-Shu Chang                Advisor：Hsu-Feng Hsiao 

Department of Computer Science 

National Chiao Tung University 

Abstract 

The amount of the multimedia streaming data could be endless. If we use TCP scheme to 

transmit, it may cause long delay due to possible retransmission. Forward Error Correction 

(FEC) codes are very suitable candidates. Before transmitting the encoded packets over the 

error prone channel, we do not know the packet loss rate. So the rateless codes could apply in 

this environment with its rateless feature, and the complexity of the rateless codes’ encoding / 

decoding is much less than the well-known Reed-Solomon codes. For the multimedia 

streaming, we propose an analytic model of the unequal overlapped rateless codes on a short 

time data. From the simulation results, the weighted selection could achieve lower decoding 

failure probability. With this analytic model, better encoding strategy for the multimedia 

streaming could be formed to ensure low decoding failure probability across multiple sections. 

The experiment results show that the weighted selection is better than the uniform selection in 

the multimedia streaming. 
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Chapter 1  Introduction 

1.1 Preface 

Most communication in Internet Protocol (IP) networks is based on Transmission 

Control Protocol (TCP), which provides a reliable end-to-end data delivery service. TCP 

treats data as an ordered sequence of packets to transmit to the receivers. TCP uses 

retransmission on the lost packets to guarantee that the receivers will have the original file. 

However the retransmission scheme has its restrictions in a number of applications. Consider 

about the problem of distributing a file to several receivers, some of which may be short of 

bandwidth resource. 

Rateless codes are new class of forward error correction (FEC) erasure codes. Digital 

Fountain codes [1] [2] [3], and Online codes [4] are examples of such codes with many 

desirable features. The idea behind the rateless codes is that every receiver continues 

collecting the encoded packets until the decoding process could be finished successfully. 

Unlike the traditional codes, rateless codes on erasure channels [5] do not assume any 

knowledge about the channel. Low Density Parity Check (LDPC) codes [6] [7] and Tornado 

codes [8] are also providing this idea, but the encoding complexity could be large for 

generating endless encoded packets for channel with large packet loss rate. 

1.2 Motivation 

While downloading and storing a complete multimedia file may not be suitable for 

Reed-Solomon codes [9] due to high encoding and decoding complexity, rateless codes could 

suitably be done with low encoding and decoding complexity. Because the major problem is 
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the time delay, the multimedia streaming file which in the period of playback must be 

decoded from the received encoded packets before the multimedia streaming file begins to 

play as soon as possible. 

Many solutions partition the multimedia streaming file into sections. The length of a 

section is determined by the application. When using the section-based system, the current 

section is being received, while an earlier section is played. Multimedia streaming application 

might impose some constraints on the received encoded packets. In a communication system 

that does not guarantee the correct order of packets, if the received encoded packet is far away 

from the playback, it might be dropped due to limited memory size. Similarly, if the received 

encoded packets contain in a section that has been played, these packets are useless. 

In [10], the author proposed an innovative scheme for multimedia streaming by 

connecting one more sections to gradually provide the encoded packets. We use this scheme 

as the multimedia streaming structure of our proposed analytic model. 

1.3 Research Objectives 

The objectives of our framework could be summarized as the following: 

 Analyze the proposed unequal overlapped rateless codes for the single section to 

obtain the decoding failure probability. 

Based on [10] [11] [12], one section could be partitioned into two parts. The different 

part could have different decoding failure probability. We could use And-Or tree [13] to model 

and analyze the expected decoding failure probability for each part in the single section. This 

proposed analytic model will then be applied in the scenario of the multiple sections. 

 Find optimal parameter sequence in the multiple sections. 
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After having the analytic model for the single section, we could use the local 

minimization approach and dynamic programming approach to find the weights sequence for 

the overall of the minimal decoding failure probability in the multimedia streaming. 

1.4 Outline of the thesis 

In Chapter 2, we discuss the background and related work of rateless codes. In Chapter 3, 

we propose the unequal overlapped rateless codes, and then an analytic model based on 

And-Or tree analysis is derived. Finally, we use the local minimization approach and dynamic 

programming approach to find the optimal sequence of weights for the overall of minimal 

decoding failure probability in the multimedia streaming with the multiple sections. Our 

experiment results in Chapter 4. Chapter 5, we give the conclusion for our proposed method. 
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Chapter 2  Background and 

Related Works 

Before the proposed method, we describe how to partition the multimedia streaming into 

sections with rateless codes and introduce And-Or tree lemma as our main tool to analyze the 

model of the single section. 

2.1 Multimedia Streaming in Section-based System 

Normally, in order to avoid the unacceptable delay when playing the multimedia 

streaming, the entire multimedia streaming will be partitioned into the sections as shown in 

Figure 2-1. 

 

Figure 2-1: Multimedia streaming in the section-based system. 
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The entire multimedia streaming could be partitioned into the sections with equal length. 

The sender uses rateless codes to encode each section separately, and transmits each encoded 

block (also called check block) to the receiver on binary erasure channel [5]. After the 

receiver obtains sufficient check blocks, the decoder of rateless codes will recover the number 

of the message blocks as many as possible. 

2.2 Luby Transform (LT) codes 

In this section, we briefly review LT codes that are the well-known examples of rateless 

codes. LT codes were developed by M. Luby in a landmark paper in 2002 [1]. LT codes have 

low encoding and decoding complexity. Unlike the traditional codes, LT codes do not assume 

any knowledge about the channel erasure probability. It means that the rate of the codes does 

not need to be fixed before encoding. LT codes are universal that the length of the check block 

could be arbitrary from one-bit to any i-bit. The check blocks could be generated on the fly. 

LT codes only use exclusive or (XOR) operation to generate potentially infinite check blocks 

and the decoding process also only uses XOR operation to decode. LT codes are very efficient 

as the file length grows. Now, we could view the LT encoding and decoding process as the 

bipartite graph and explain the encoding / decoding process. 

2.2.1 LT Encoding 

First, it divides the original file into the message blocks (MB) with fixed length. The 

encoding process is simple. Each check block is independently generated from the message 

blocks as follows: 

1. Pick a degree d according to a degree distribution Ω(x). 

2. Choose uniformly d distinct message blocks as the neighbors of this check block. 
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3. Set the value of this check block to be the XOR (ْ) of the d neighbors. 

The degree distribution Ω(x) of LT codes is a probability distribution and Ωd is the 

probability of generating a check block consisting of d message blocks. The encoding process 

is shown in Figure 2-2. 

 

Figure 2-2: LT encoding process. 

In Figure 2-2, the value of the most left encoded block is XORed of the message block 1 and 

the message block 3. 

2.2.2 LT Decoding 

The decoding process needs the information of the degree value of each received check 

block and the information of which message blocks are XORed together in each check block. 

There are many ways of communicating this information to the decoder. For example, the 

encoder and the decoder use the same key or seed number to a random number generator that 

generates the same degree value and the neighbor list for each received block. The reader may 
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refer to [1] for more details. Follow [2] and [4], we could think the decoding graph as the 

bipartite graph and the decoding process could be called the iterative decoding or belief 

propagation decoding. The decoding process could be described as follows: 

1. Find a check block c, all of whose message blocks are recovered, except for one. If it 

exists, we could call this message block m. 

2. Set m = cْm1ْ…ْmd-1, where m1,…, md-1 are the recovered message blocks that 

are adjacent to c. Then, we set the message block m is recovered. 

3. Repeat step 1 and step 2 until we could not find such c. 

The decoding succeeds if all message blocks are recovered, else the decoding fails. The 

decoding process is shown in Figure 2-3 (a), Figure 2-3 (b). 

 

Figure 2-3 (a): We could find the most right check block for recovering message block 3. 
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Figure 2-3 (b): The most left check block could recover message block 1, and continues. 

Figure 2-3: LT decoding process. 

After recovering the message block 3, we could recover the message block 1. And then 

we could recover message block 2; finally, we could recover message block 4 to complete the 

decoding process. We know that LT codes have simple encoding and decoding complexity, 

because the encoding and decoding complexity depends on the edges in the entire bipartite 

graph. And it turns out that the degree probability distribution is a critical part of the design. 

Good asymptotical degree distributions for them were also developed in [1] [2]. For 

finite-length LT codes, good degree distributions have been proposed in [14] [15]. 

LT codes are also used to protect the subsets of the message blocks of different 

importance. We will introduce in section 2-4. 

2.3 And-Or Tree Analysis 

LT codes could be analyzed by And-Or tree [13] [16] [17]. This section explains the 

structure of an And-Or tree and the proof of And-Or tree Lemma. 
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2.3.1 Construction of And-Or Tree 

An And-Or tree TL is a randomly generated tree of depth 2L (L is a constant). The root of 

this tree is at depth 0. Its children are at depth 1, and their children are at depth 2, so on and so 

forth. Each leaf-node at depth 2L will be assigned the value 0 or 1 independently. Each node 

at depth 0, 2, 4,…, 2L–2 will be labeled with OR-nodes (and it is evaluated by the “OR” 

operation of its children), and each node at depth 1, 3, 5,…, 2L–1 will be labeled with 

AND-nodes ( and it is evaluated by the “AND” operation of its children). The tree will be 

generated from top to bottom, starting with the root node. Each node will independently 

choose how many children to have. Let (α0, α1,…, αA) and (β0, β1,…, βB) be the probability 

distribution and ∑ ௜ߙ
஺
௜ୀ଴ ൌ 1, ∑ ௝ߚ

஻
௝ୀ଴ ൌ 1. Each OR-node is chosen to have i children with 

probability αi, and each AND-node is chosen to have j children with probability βj. The 

OR-node with no children is assumed to have a value of 0, and the AND-node with no 

children is assumed to have a value of 1. We are going to be interested in the probability that 

the root node is evaluated as 0. An example of And-Or tree is shown in Figure 2-4. 

 

Figure 2-4: An example of And-Or tree. 
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Our goal is to compute yL – the probability that TL’s root is evaluated as 0. Because the 

OR-nodes at depth 2 in TL form the TL–1 And-Or trees, we could compute yL recursively as a 

function of yL–1. yL–1 is the probability that the root of a And-Or tree TL–1 is evaluated as 0. We 

could use the following lemma from [13]: 

The And-Or Tree Lemma: The probability yL that the root node of a TL And-Or tree is 

evaluated as 0 is yL = f(yL–1), where yL–1 is the probability that the root node of a And-Or tree 

TL–1 is evaluated as 0. y0 is the probability that it is 0. 

݂ሺݔሻ ൌ ൫1ߙ െ ሺ1ߚ െ ,ሻ൯ݔ for

ሻݔሺߙ ൌ෍ߙ௜ݔ௜
஺

௜ୀ଴

ܽ݊݀ ሻݔሺߚ ൌ෍ߚ௝ݔ௝
஻

௝ୀ଴

. 

(1)

2.3.2 Proof of And-Or Tree Lemma 

In order to model the LT decoding process via this And-Or tree based on TL, we need to 

use the probability distribution on the number of children of OR-nodes and AND-nodes. λd is 

the probability that a uniformly chosen edge is attached to an OR-node of degree d. ρd is the 

probability that a uniformly chosen edge is attached to an AND-node of degree d. From [13], 

we have 

ௗߣ ൌ
݀ · ௗߙ

∑ ݆ · ௝஺ߙ
௝ୀଵ

ܽ݊݀ ௗߩ ൌ
݀ · ௗߚ
∑ ௝஻ߚ
௝ୀଵ

. (2)

Further, λd is the probability that the edge is connected to the OR-node that has d–1 children; 

ρd is the probability that the edge is connected to the AND-node that has d–1 children. 

The decoding process could be analyzed by the same way as the belief propagation [18] 

[19]. At each round, the edge will send a message to the nodes. The messages are sent along 

the edges from AND-nodes to OR-nodes, and then from OR-nodes to AND-nodes in each 
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round. Let ui be the probability that the message sent from OR-node to AND-node at round i 

of the algorithm is 0. hi is the probability that the message sent from AND-node to OR-node at 

round i of the algorithm is 0. For the event that the OR-node is of degree d, we have 

௜ାଵݑ ൌ ݄௜
ௗିଵ. (3)

Indeed, a message from an OR-node v to an AND-node w is 0 if and only if v was labeled 0 

and all the messages coming from the neighboring AND-node other than w are 0 in previous 

round, where ݄௜
ௗିଵ is obtained under the independence assumption. For the event that the 

AND-node is of degree d, we have 

݄௜ ൌ 1 െ ሺ1 െ ௜ሻௗିଵ. (4)ݑ

Because we could know the AND-node w sends a message 1 to the OR-node v if and only if 

all the neighboring OR-nodes except for v send a message 1 to w, the probability is  

ሺ1 െ ௜ሻௗିଵ. (5)ݑ

These recursions are not in a usable form yet since their condition is on the degree of the 

OR-nodes and AND-nodes. We set 

ሻݔሺߣ ൌ ෍ߣௗݔௗିଵ

ௗୀଵ

ܽ݊݀ ሻݔሺߩ ൌ ෍ߩௗݔௗିଵ

ௗୀଵ

. (6)

Then 

௜ାଵݑ ൌ ൫1ߣ െ ሺ1ߩ െ ሻ൯. (7)ݔ

Let us analyze the probability yL that the root of this And-Or tree TL is 0. According to 

And-Or tree lemma, we would like that yL is decreasing to δ as L grows. 

൫1ߣ െ ሺ1ߩ െ ሻ൯ݔ ൏ ,ݔ ݎ݋݂ ݔ א ሾߜ, 1ሿ, ݎ݋݂

ሻݔሺߣ ൌ ෍ߣௗݔௗିଵ

ௗୀଵ

ܽ݊݀ ሻݔሺߩ ൌ ෍ߩௗݔௗିଵ

ௗୀଵ

. 
(8)
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If L is a constant, then the number of nodes in the tree TL is also a constant. 

2.4 Expanding Window Fountain Codes 

In [20], the author proposed an idea to deal with the subsets of message blocks of 

different importance. If there have k message blocks that we want to encode with different 

importance. We assume that the numbers s1, s2,…, sr, such that s1+s2+…+sr = k. si is the 

subset of the message blocks and ܼ௜ ൌ ∑ ௝ݏ
௜
௝ୀଵ . The window i consists of the message blocks 

in Zi. The example is as shown in Figure 2-5: 

 

Figure 2-5: The example of Expanding Window Fountain Codes. 

 The encoding process is using LT codes. The difference from the traditional LT codes is 

choosing the message blocks non-uniformly. Before generating a check block, we need to 

decide which window we select, and then using standard LT codes’ encoding process to 

encode. Γi is the probability that the window i is chosen. If some of message blocks appear in 

more windows, it stands for these blocks being selected probability are larger than other 

message blocks. We could know that the most important message blocks are contained in 

more windows, so the most important subset is s1. The author uses the windowing method to 

achieve the subset of message blocks of different importance. This method could also apply in 

multicast environment [21] by the same author. 
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2.5 Sliding-Window Digital Fountain Codes 

In [10], the author proposed an idea by applying the sliding window scheme on the 

multimedia streaming to virtually extend the number of message block, and therefore to 

enhance the performance of rateless codes by reducing the decoding overhead and decreasing 

unrecovered message blocks. In a traditional section-based system with rateless codes, each 

section won’t have any relation; but in a sliding window scheme, each section could related to 

neighboring sections. We set the length of one section equal to the window size in traditional 

section-based, as shown in Figure 2-6. 

 

Figure 2-6: Traditional section-based system. 

In Figure 2-6, the rateless codes will encode each window in the traditional section-based 

system, and each window won’t have any relation. 
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Figure 2-7: Sliding window scheme. 

In Figure 2-7, we could know about the sliding window scheme. The rateless codes will 

encode each sliding window, and each sliding window has the relation of encoding and 

decoding process. 

The sliding window size w should be chosen carefully. w should be as large as possible 

to achieve a small overhead by the asymptotic performance; however, w should be as small as 

possible to avoid the unacceptable delay. The sliding window movement s should also be 

chosen carefully, which equals the number of old message blocks discarded and new message 

blocks considered when the sliding window shifts to the successive sliding window. The 

sliding window movement s also determines the proportion of the overlapped message blocks 

between the preceding and the successive sliding windows. If s decreases, the same portion of 

the message blocks will be encoded into more successive sliding windows. For example, we 

could see the Figure 2-7. If the sliding window movement s is 2, and then the message blocks 

m1.3 and m1.4 will be encoded in sliding window 1 and sliding window 2. If the sliding 

window movement s is 1, the message block m1.3 and m1.4 will be encoded in sliding window 

1, sliding window 2 and sliding window 3. This change will cause the decoder of the rateless 

codes virtually processes on a larger portion of message blocks. For example, we could also 
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see the Figure 2-7. The decoder of the rateless codes in sliding window 1 will be in charge of 

decoding m1.1, m1.2, m1.3, m1.4. In sliding window 2, the decoder will be in charge of decoding 

m1.1, m1.2, m1.3, m1.4, m1.5, m1.6. If the buffer size of the receiver is unlimited, the following 

sliding window will be in charge of decoding more and more message blocks. 

The total number Ns of sliding window of size w in the entire multimedia streaming with 

k message blocks in sliding window scheme is as follows: 

௦ܰ ൌ
݇ െ ݓ
ݏ

൅ 1. (9)

In order to have a fair comparison of the traditional section-based system and the sliding 

window scheme, the numbers of check blocks for each method should be equal. The decoder 

of the rateless codes with decoding overhead γ decodes from n check blocks to obtain k 

message blocks. Thus, 

݊
݇
ൌ (10) .ߛ

The sliding window scheme will encode each message block more than once. We know the 

message blocks are processed in w/s successive sliding windows and the original number of 

message blocks will be virtually enlarged to k’: 

݇ᇱ ൌ
ݓ
ݏ
· ݇. (11)

Thus, with the same overhead γ, the number of check blocks per virtual message block is: 

݊
݇Ԣ
ൌ
݇ߛ
ݓ
ݏ ݇

ൌ ߛ
ݏ
ݓ
. (12)

Every sliding window has w message blocks, and each sliding window have nw check blocks. 

݊௪ ൌ
݊
݇Ԣ
· ݓ ൌ ߛ

ݏ
ݓ
· ݓ ൌ (13) .ݏߛ
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The sliding window scheme receives the number of check blocks as many as possible 

and no need to know which sliding window is being decoded. The decoder of the rateless 

codes just receives and continues to decode the number of the message blocks as many as 

possible. When the sliding window shifts to successive sliding window, it will have two 

situations. One is the message blocks which are in the successive sliding window were all 

recovered; another is the message blocks which are in the successive sliding window were 

just few ones recovered. But the first situation is rare to happen for the reasonable overhead γ. 

The normal situation is that still a lot of check blocks could be used for recovering the 

message blocks in the preceding and the successive sliding windows. 
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Chapter 3  Proposed Method 

In this chapter, we propose the unequal overlapped rateless codes for the multimedia 

streaming in the section-based and the corresponding analytic model. We use the sliding 

window scheme as the way to transmit multimedia streaming. When the sliding window shifts, 

we could observe one situation that we want to analyze. First, we need to set the evaluation 

criteria on the multimedia streaming, and then analyze those situations with the And-Or tree 

lemma. 

3.1 Multimedia Streaming Evaluation Criteria 

By using the sliding window scheme, there are two kinds of models that we could 

analyze. The single section and the multiple sections are the evaluation criteria in the 

multimedia streaming. At first, we analyze the decoding failure probability of the single 

section, and then use the result of proposed analytic model on the model of the multiple 

sections. 

3.1.1 Single Section in The Multimedia Streaming 

When the sliding window shifts to the successive sliding window, each sliding window 

contains two parts: the overlapped part and the non-overlapped part. The overlapped part is 

the part in current sliding window and may have portion of recovered message blocks. The 

non-overlapped part is the part which new message blocks are included in current sliding 

window. We could see the example in Figure 3-1. When sliding window 1 shifts to sliding 

window 2, the m1,3 and m1,4 are in the overlapped part, m2.1 and m2.2 are in the non-overlapped 

part. Each sliding window forms a single section that contains the overlapped part and 
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non-overlapped part. 

 

Figure 3-1: The example of overlapped and non-overlapped part in the single section. 

We could use the proposed analytic model with unequal overlapped rateless codes on the 

single section to find the decoding failure probability in each part, and then applies the results 

on the model of the multiple sections. Let pL,1 be the decoding failure probability of the 

overlapped part and pL,2 be the decoding failure probability of the non-overlapped part. L is 

constant that we will introduce later and the decoding failure probability is the proportion of 

the number of the unrecovered message blocks over the sliding window size. 

3.1.2 Multiple Sections in The Multimedia Streaming 

After calculating the decoding failure probability pL,1 and pL,2 in the single section by the 

proposed analytic model, we could calculate the decoding failure probability of the multiple 

sections with the proposed unequal overlapped rateless codes. Following the above example 

shown in Figure 3-1, we could use the decoding failure probability of the non-overlapped part 

in sliding window 1 as the initial decoding failure probability of the overlapped part in sliding 
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window 2. Then, we could calculate the decoding failure probability pL,1 and pL,2 in sliding 

window 2 and continue on this procedure to the end of the multimedia streaming. The 

example of sliding window shifts to the successive sliding window is shown in Figure 3-2. 

 
Figure 3-2: The example of sliding window shifts to the successive sliding window. 

When sliding window 2 shifts to the successive sliding window, the overlapped part is m2.1 

and m2.2, and the non-overlapped part is m2.3 and m2.4 in the successive sliding window as 

shown in Figure 3-2. Now, we set the overlapped parameter α is the proportion of the number 

of old message blocks discarded or new message blocks considered. 

ߙ ൌ
ݓ݋݀݊݅ݓ ݐ݊݁݉݁ݒ݋݉

ݓ݋݀݊݅ݓ ݁ݖ݅ݏ
ൌ
ݏ
ݓ
. (14)

Now, we only consider α = 1/2 in the following description, and also assume the overlapped 

part has the portion of recovered message blocks. We could use the local minimization 

approach (LMA) and dynamic programming approach (DPA) to find the parameter sequence 

for the overall of the minimal decoding failure probability of the multiple sections. 

3.2 The Analytic Model for Single Section 

For finding the minimal decoding failure probability in a single section, we could modify 

the And-Or tree lemma to analyze our unequal overlapped rateless codes to determine the 
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decoding failure probability. 

3.2.1 Rateless Codes in And-Or Tree 

This section explains how to transform rateless codes to And-Or tree. The transformation 

process could be found in [13]. First, we could think the decoding paradigm of rateless codes 

as a bipartite graph, as shown in Figure 3-3. 

 
Figure 3-3: Bipartite graph G. 

Let G be a bipartite graph with k nodes on the left side, n nodes on the right side, and e 

edges in total between the nodes on the left nodes and the right nodes. We could set each left 

node corresponding to a message block and each right node corresponding to a check block. If 

the left node is evaluated as 1, it stands for recovering the corresponding message block. If the 

right node is evaluated as 1, it stands for the situation that it could help to recover the 

neighbor. 

We assume the receiver could reconstruct this bipartite (for example: using random 

number generator with the same random seed). All left nodes are unrecovered (evaluated as 0) 

initially. If the left node could be recovered as the progress of LT decoding, we set this left 
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node as 1. Following the paper [13], let (f0, f1,…, fn) and (g0, g1,…, gk) be the probability 

distribution that each left node is chosen to have degree d with probability fd, and each right 

node is chosen to have degree d with probability gd, where all choices are made independently. 

We could calculate the total edges e in this random bipartite graph. 

݁ ൌ ݇ ·෍݀ ௗ݂

௡

ௗୀ଴

ൌ ݊ ·෍݀݃ௗ

௞

ௗୀ଴

. (15)

We are going to look at a random subgraph GL (where L is a constant) of G, which is 

chosen as follows: 

1. Choose an edge (v, w) of G randomly and uniformly, and call v the root of GL. 

2. Remove (v, w) from G. 

3. GL will consist of the left node v, all neighbors nodes of v within 2L hops from v, and 

all edges of G that any two of these nodes. 

The GL is shown in Figure 3-4. 

 

Figure 3-4: Example of GL. 
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Here, we claim that GL is tree-shaped. GL is created by first selecting and revealing a 

random edge (v, w), and then reveal v’s neighbors, and so forth for 2L hops. The probability 

that GL is not a tree (there is a cycle in GL) will be proportional to 1/k. Therefore, as k grows 

large enough, GL is a tree with high probability. 

Formally, we think GL as an And-Or tree in the following way. The left nodes of GL map 

to the OR-nodes of the tree and the right nodes of GL map to AND-nodes. An OR-node is 

assigned the value 1 if we recover the value of the corresponding message block, which could 

happen when at least one of its children (AND-nodes) is evaluated as 1. It is just like the 

OR-node to do the OR operation of its children. An AND-node is assigned the value 1, either 

if it has no children in the tree, just like it has the degree 1 in G and could immediately to 

recover its neighbor of the left node, or if all of children of the OR-node are evaluated as 1. 

Let yL be the probability that the root of GL that is evaluated as 0. Each time AND-node will 

pass a message to the OR-node, and then OR-node will pass a message to the AND-node. It 

could be computed by the And-Or tree lemma. If v is evaluated as 1, we could know that v 

also is evaluated as 1 in the bipartite graph G. 

The number of the left nodes which are evaluated as 0 is close to the expected value 

when And-Or tree lemma holds. If we choose another message node as the root node, the 

same result will be obtained according to the standard edge-exposure martingale [22]. After 

the transformation process, we could find the decoding failure probability by using And-Or 

tree lemma. The decoding failure probability in LT decoding process is equal to the proportion 

of the number of the left nodes which are evaluated as 0. 

3.2.2 And-Or Tree with Unequal Weight 

The rateless codes with weights could be initially found in [11]. Now, we modify the 
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construction of the And-Or tree to the case that OR-nodes may be unlike each other and 

contains portion of recovered message blocks. We could know that when the sliding window 

shifts, it will produce such situation, as shown in Figure 3-5: 

 

Figure 3-5: Situation of sliding window movement. 

In here, we want to construct a generalized And-Or tree for each part of the message 

blocks to find out the decoding failure probability in a single section, as shown in Figure 3-6. 

 

Figure 3-6: Analytic section. 

The root of the generalized And-Or tree GTL,i stands for an OR-node in part ki, and the depth 

of this tree is 2L. w1, w2 are the probabilities to select a node from k1, k2. The construction of 

GTL,i is the same as GL except the root node is in part ki. We set the probability that an edge is 

connected to an OR-node in part kj of degree d is Rd,j and each OR-node in part k1 has the 

decoding failure probability δ initially. The probability that an edge is connected to an 

AND-node of degree d is Ad. However, unlike the original And-Or tree, each child of an 

AND-node is independently calculated by using the Wallenius’ Distribution, and we want to 

see if the unequal selection is better than the uniform selection. Follow the definition of 
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And-Or tree, the OR-nodes with no children are assumed to be evaluated as 0, whereas the 

AND-nodes with no children are assumed to be evaluated as 1. We could calculate the yL,i  

that is the probability that the root of GTL,i is evaluated as 0. pi,j is the probability that the 

message passed from the OR-node in part kj to the AND-node at round i is 0. qi: the 

probability that the message passed from the AND-node to the OR-node at round i is 0. To 

obtain qi, we need to calculate the probability of each degree pair consisting of d1 nodes א k1 

and d2 nodes א k2 by using the Wallenius’ Distribution. For the event that AND-node has 

degree d+1 at round i, and we know the AND-node sends a message 1 to the OR-node if and 

only if all the children of AND-nodes send a message 1. See Figure 3-7: 

 
Figure 3-7: Conditional on the AND-node of degree d+1. 

We could calculate the probability that this AND-node sends message 0 to OR-node by 

considering all the combination of the degree pairs. Let d1+d2=d. We could get the probability 

of the AND-node of degree d+1 being sending the message is evaluated as 0: 

1 െ ൫1 െ ௜,ଵ൯ݕ
ௗభ൫1 െ ௜,ଶ൯ݕ

ௗమ (16)

From (16), the qi is all the combination of the degree pairs: 

௜ݍ ൌ ෍ ௗାଵܣ ·෍൬ܹܲܦሺ݆, ݀ െ ݆ሻ כ ቀ1 െ ൫1 െ ௜,ଵ൯ݕ
௝
൫1 െ ௜,ଶ൯ݕ

ௗି௝
ቁ൰

ௗ

௝ୀ଴

ெ௔௫_஽ିଵ

ௗୀଵ

 (17)

And, we could know that the OR-node in part kj will send a message 0 to the AND-node if all 
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the messages coming from the children AND-nodes are 0 at round i. The condition that the 

OR-node is degree d+1 at round i+1, as shown in Figure 3-8: 

 

Figure 3-8: Conditional on the OR-node is degree d+1. 

We could calculate the probability that this OR-node sends message 0 to the AND-node by the 

number of its children. 

ቊ
ߜ · ௜ݍ

ௗ ݂݅ this OR‐node א ݇ଵ
௜ݍ
ௗ     ݂݅ this OR‐node א ݇ଶ

 (18)

For simplicity, we define the polynomial distribution: 

௝ܴሺݔሻ ൌ ෍ ܴௗ,௝ · ௗିଵݔ
ெ௔௫_஽

ௗୀଵ

 (19)

From (18) and (19), we get pi+1,j is 

ە
ۖ
۔

ۖ
௜ାଵ,ଵ݌ۓ ൌ ߜ · ෍ ܴௗ,ଵ · ௜ݍ

ௗିଵ

ெ௔௫_஽

ௗୀଵ

௜ାଵ,ଶ݌ ൌ ෍ ܴௗ,ଶ · ௜ݍ
ௗିଵ

ெ௔௫_஽

ௗୀଵ

 (20)

We obtain the following recursion using the Rj(x) for expected probability: 

ቊ
௜ାଵ,ଵ݌ ൌ ߜ · ܴଵሺݍ௜ሻ ൌ ௜ାଵ,ଵݕ
௜ାଵ,ଶ݌ ൌ ܴଶሺݍ௜ሻ ൌ ௜ାଵ,ଶݕ

 (21)

We get the probability yL,i for part k1 and k2 by using edge degree probability distribution to 
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calculate in (21). Next, we make the connection between the edge’s degree probability 

distribution and the block’s degree probability distribution. 

3.2.3 And-Or Tree with Unequal Weight to Bipartite Graph 

Let ߗሺݔሻ ൌ ∑ ௗݔௗߗ
௡
ௗୀଵ  be the polynomial generator corresponding to the probability 

distribution of the degrees of check blocks in rateless codes. We partition the k message 

blocks into two parts k1 and k2 of sizes αk and (1 – α)k. Let pi be the probability that an edge is 

connected to a particular message block in ki, for i = 1, 2. And total check blocks γk are 

involved in the decoding process, we call γ the overhead. We set μ the average degree of the 

check block: 

ߤ ൌ ෍݀ߗௗ

௞

ௗୀଵ

ൌ Ԣሺ1ሻ, (22)ߗ

where Ω’(x) is the derivative of Ω(x) with respect to x. 

Consider k message blocks encoded by the proposed unequal overlapped rateless codes 

in the single section with parameter Ω(x), k, α, p1, p2 and γ. We could calculate the probability 

of the degree of message blocks in ki, for i = 1, 2. The probability λd,i that the message block 

in ki has a degree d is 

ௗ,௜ߣ ൌ ቀ݇ߛߤ
݀
ቁ ௜݌

ௗሺ1 െ ௜ሻఓఊ௞ିௗ. (23)݌

When k is large enough and pi is small enough. Asymptotically, (23) approaches to 

ௗ,௜ߣ ൌ
݁ିఓఊ௞௣೔ሺ݌݇ߛߤ௜ሻௗ

݀!
 (24)

which is a Poisson distribution with the mean μγkpi. 

Now, we could get 
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ௗܣ ൌ
݀ · ௗߗ
Ԣሺ1ሻߗ

 (25)

and 

ܴௗ,௜ ൌ
݀ · ௗ,௜ߣ
݇ߛߤ௜݌

 (26)

then 

ܴ௜ሺݔሻ ൌ ݁௣೔ఓఊ௞ሺ௫ିଵሻ. (27)

We could get p1 and p2. 

ە
۔

ۓ ଵ݌ ൌ
ଵݓ

ଵݓ ൅ ଶݓ
·
1

ߙ · ݇

ଶ݌ ൌ
ଶݓ

ଵݓ ൅ ଶݓ
·

1
ሺ1 െ ሻߙ · ݇

. (28)

3.3 Wallenius’ Noncentral Hypergeometric Distribution 

After we propose our analytic model for unequal overlapped rateless codes, we need to 

know about the noncentral hypergeometric distribution for unequal selection. In probability 

theory, Wallenius’ noncentral hypergeometric distribution (WD) [23] [24] is a generalization 

of the hypergeometric distribution which describes the items that are sampled with bias in a 

finite population without replacement. The distribution could be illustrated as an urn model 

with bias. For example, an urn contains m1 white balls and m2 black balls. Each white ball has 

the weight w1 and each black ball has the weight w2. Now we take n balls, one by one without 

replacement, in such way that the probability of taking a particular ball at a particular draw is 

dependent on its proportion of the total weight of all balls that remains in the urn at that 

moment. If we want to take x1 white balls and x2 black balls, the most reliable calculation 

method is recursive calculation from [25] [26]. 
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The following recursion formula is useful to calculate the probabilities: 

;ݔሺܲܦܹ ݊,݉,  ሻݓ,ܰ

ൌ ݔሺܲܦܹ െ 1; ݊ െ ሻݓ,ܰ,݉,1 ·
ሺ݉ െ ݔ ൅ 1ሻݓ

ሺ݉ െ ݔ ൅ 1ሻݓ ൅ ܰ െ ݊ െ݉ ൅ ݔ
 

    ൅ ܹܲܦሺݔ; ݊ െ ሻݓ,ܰ,݉,1 ·
ܰ െ ݊ െ݉ ൅ ݔ ൅ 1

ሺ݉ െ ݓሻݔ ൅ ܰ െ ݊ െ݉ ൅ ݔ ൅ 1
, 

(29)

where x = x1, N = m1+m2, m = m1, w = w1/w2. 

3.4 The Analytic Model for Multiple Sections 

By using the proposed analytic model with unequal overlapped rateless codes, we could 

calculate the decoding failure probability pL,1 and pL,2 in the single section. We also could 

calculate the decoding failure probability of the multiple sections by using the same analytic 

model with the proposed unequal overlapped rateless codes. We provide local minimization 

approach (LMA) and dynamic programming approach (DPA) to calculate the overall of 

minimal decoding failure probability in the multiple sections. 

3.4.1 Local Minimization Approach (LMA) 

Assume giving αγw check blocks to each sliding window. We need to find the weights 

పതതതݓ ൌ ൫ݓ௜,ଵ,  ௜,ଶ൯ that gives the decoding failure probability in sliding window i with theݓ

given initial decoding failure probability in k1 (that is, the decoding failure probability of k2 in 

the previous sliding window). We could continue to calculate the weights in each sliding 

window for getting the overall of minimal decoding failure probability. As shown in Figure 

3-9: 
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Figure 3-9: Local Minimization Approach. 

According to the decoding failure probability of sliding window i, we could use the 

decoding failure probability of k2 in sliding window i to be the initial decoding failure 

probability δ in sliding window i+1. We could get the overall of minimal decoding failure 

probability based on the sequence of the chosen weights. 

3.4.2 Dynamic Programming Approach (DPA) 

Local minimization approach is based on the estimated minimal decoding failure 

probability of each sliding window. The dynamic programming approach is based on the 

selected weights with respect to the preceding cumulated decoding failure probability and the 

number of weights sequences that are more than one. 

We have Fi,a and Fi,b as the decoding failure probability of k1 and k2 based on the given 

weights at the sliding window i. Each estimation step is according to the preceding cumulated 

decoding failure probability. The cumulated decoding failure probability in the sliding 

window i is 

ቌ෍F୨,ୟ

୧

୨ୀଵ

ቍ ൅ F୧,ୠ (30)

The example of DPA is shown in Figure 3-10. After giving different weights in sliding 
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window 1, we could choose the minimal decoding failure probability. And then using the 

proposed model with weights to calculate next weights for sliding window 2, and forth. 

 

Figure 3-10: Dynamic Programming Approach. 

3.4.3 Time Complexity of LMA and DPA 

To get the overall of minimal decoding failure probability in LMA, we only need to 

calculate each weights in each sliding window. So the time complexity is linear to sliding 

window number Ns in the multimedia streaming. In DPA, we need to consider the number of 

weights sequences. 

If there are M sliding windows in the multimedia streaming, A is the number of weights 

sequences considered and B is the number of all possible weights. We could have the time 

complexity: 

:ܣܯܮ ܱሺܯܤሻ 

DPA: ൜
ܱሺBAMሻ, if A ൏ ܤ
ܱሺBଶMሻ, if A ൒ B

. 

(31)
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3.5 Buffer Mode 

LMA and DPA are proposed in the multiple sections based on the analytic model of the 

single section. If we impose some delay between the playback section id and the receiving 

section, the decoding performance could be enhanced. It means the decoding could be 

interactive between each sliding window. Because some of the message blocks are recovered 

in sliding window i initially and we know that the LT decoding process is finding the check 

block which all of whose message blocks are recovered except for one is unrecovered. The LT 

decoding could use the recovered message blocks in window i–1 to help increasing the chance 

that check blocks in window i which connect to only one message block that is unrecovered. 

The interactive relation could reduce the probability of the condition that there are still having 

a lot of unrecovered message blocks. In here, we could have the buffer mode to realize this 

method. As shown in Figure 3-11. 

 

Figure 3-11: Buffer size is one sliding window. 

Figure 3-11 illustrates the buffer size is one sliding window (SW). The decoder could 

receive and decode sliding window i at the same time. 
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Figure 3-12: Buffer size is two sliding windows. 

Figure 3-12 describes the situation when the buffer size is two sliding windows. For the 

playbacki, the decoder could receive and decode sliding window i and sliding window i+1 at 

the same time. Next, we show the experiment results to see the decoding performance. 
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Chapter 4  Experiment Results 

We propose an analytic model of the unequal overlapped structure. First, we compare the 

estimated decoding failure probability based on the analytic model for the single section and 

simulations, and then show the simulation results in the multiple sections. 

4.1 Simulation Environment 

‧ 5 sections, 9 sections 

‧ Section size = 2,000 message blocks 

‧ Number of the sliding window = 9, 19 

‧ Overhead = 1.04 ~ 1.20 

‧ Results are the average of 100 independent simulations 

‧ Degree distribution is from Raptor codes [2] 

Table 4-1: The degree distribution table of Raptor codes. 

Degree Probability Degree Probability 

1 0.007969 8 0.056058 

2 0.493570 9 0.037229 

3 0.166220 19 0.055590 

4 0.072646 64 0.025023 

5 0.082558 66 0.003135 
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Table 4-2: The decoding failure probability after giving γk check blocks, k=1000. 

Overhead γ Decoding Failure Probability (δ) 

1.04 0.608039 

1.06 0.460122 

1.08 0.332582 

1.10 0.263896 

1.12 0.175325 

1.14 0.144782 

1.16 0.114760 

1.18 0.071047 

1.20 0.055560 
 

 

Table 4-3: The decoding failure probability after giving γk check blocks, k=2000. 

Overhead γ Decoding Failure Probability (δ) 

1.04 0.393454 

1.06 0.195176 

1.08 0.107732 

1.10 0.058554 

1.12 0.032648 

1.14 0.020570 

1.16 0.012885 

1.18 0.008360 

1.20 0.003477 
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4.2 Single Section 

Assume the overlapped part k1 has δ portion of unrecovered message blocks. We give 

αγk check blocks to the single section, and then observe the portion of unrecovered message 

blocks and the estimated decoding failure probability. The δ is from Table 4-2. According to 

different weights, the simulation values and estimated values are shown in Figure 4-1, 4-2, 

4-3 and 4-4. 

 

Figure 4-1: γ is 1.04 
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Figure 4-2: γ is 1.08 

 

 

Figure 4-3: γ is 1.12 
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Figure 4-4: γ is 1.16 

 

When the overhead is low, the analytic model could provide good estimated values at 

k=2000. Next, we estimate whole sliding windows by local minimization approach and 

dynamic programming approach in the successive section. Then, we could find that the 

weights sequences to have better performance than the equal weights sequence. 

4.3 Multiple Sections 

After having the estimated decoding failure probability of the single section, we use the 

local minimization approach and dynamic programming approach to find good weights 

sequence for the multiple sections. “Equal” approach is the sliding window scheme with equal 

weights sequence for k1 and k2 in [10]. 
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Figure 4-5: Estimated values of Equal, LMA and DPA in 5 sections. 

 

 
Figure 4-6: Estimated values of Equal, LMA and DPA in 10 sections. 

 

1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
10

-3

10
-2

10
-1

10
0

5 sections

Overhead

D
ec

od
in

g 
F

ai
lu

re
 P

ro
ba

bi
lit

y

 

 

Estimated Equal: M. Bogino, 2007

Estimated LMA
Estimated DPA

1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
10

-3

10
-2

10
-1

10
0

10 sections

Overhead

D
ec

od
in

g 
F

ai
lu

re
 P

ro
ba

bi
lit

y

 

 

Estimated Equal: M. Bogino, 2007

Estimated LMA
Estimated DPA



 

 39

In Figure 4-5 and 4-6, we could observe the estimated values of LMA and DPA are 

closely. There are 20 weights considering in LMA and DPA. We only hold back 9 weights 

sequence in DPA to find the overall of the minimal decoding failure probability in the 

multiple sections. After having the weights sequence, we could observe the LMA and DPA 

having similar estimated decoding failure probability. In here, we only simulate LMA for the 

low complexity of computation. “Fix” approach is using LT codes to encode and decode each 

section independently. The values are from Table 4-3. 

 
Figure 4-7: Simulation values of Equal and LMA in 5 sections with 1 SW. 
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Figure 4-8: Simulation values of Equal and LMA in 10 sections with 1 SW. 
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Figure 4-9: Simulation values of Equal and LMA in 5 sections with 2 SW. 

 

Figure 4-10: Simulation values of Equal and LMA in 5 sections with 3 SW. 
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Figure 4-11: Simulation values of Equal and LMA in 5 sections with whole SW. 

 

 
Figure 4-12: Simulation values of Equal and LMA in 10 sections with 2 SW. 

 

1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
10

-4

10
-3

10
-2

10
-1

10
0

5 sections, whole SW

Overhead

D
ec

od
in

g 
F

ai
lu

re
 P

ro
ba

bi
lit

y

 

 

Simulation Equal: M. Bogino, 2007

Simulation LMA
Simulation Fix: M. Luby, 2002

1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
10

-4

10
-3

10
-2

10
-1

10
0

10 sections, 2 SW

Overhead

D
ec

od
in

g 
F

ai
lu

re
 P

ro
ba

bi
lit

y

 

 

Simulation Equal: M. Bogino, 2007

Simulation LMA
Simulation Fix: M. Luby, 2002



 

 43

 
Figure 4-13: Simulation values of Equal and LMA in 10 sections with 3 SW. 

 

 
Figure 4-14: Simulation values of Equal and LMA in 10 sections with whole SW. 
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According to the figures above, we know the buffer size doesn’t need to be large to have 

low decoding failure probability. The decoding failure probability in buffer size of 3 SW 

could compare with buffer size of whole SW. Based on the simulation values and estimated 

values; we could observe the weighted selection is better than uniform selection with our 

proposed unequal overlapped rateless codes. 
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Chapter 5  Conclusion 

Transmitting entire multimedia streaming file could cause long time delay. Section-based 

system is a good solution for shortening time delay and forward error correction codes are 

good choices in this real-time situation and rateless codes have lower encoding and decoding 

complexity than Reed-Solomon codes. Rateless codes are more suitable than Reed-Solomon 

in the multimedia streaming. 

We could observe that the sliding window scheme will cause a situation: a portion of 

recovered message blocks in the overlapped part and no portion of recovered message blocks 

in the non-overlapped part. If we give the two parts different weights to encode, we could get 

different decoding failure probability in each part with our proposed analytic model. The 

analytic model of unequal overlapped rateless codes could provide a good expected decoding 

failure probability in a single section. We could use the weighted selection to provide a lower 

decoding failure probability than uniform selection. 

LMA and DPA could find the weights sequence of weights to provide lower decoding 

failure probability than uniform selection scheme in the multimedia streaming. Low decoding 

failure probability in the multimedia streaming could provide good quality of the multimedia 

streaming contents. We could also have low decoding failure probability in limited buffer size. 

If the buffer size is larger, we could have lower decoding failure probability. 
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