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Abstract

The amount of the multimedia streaming data could be endless. If we use TCP scheme to
transmit, it may cause long delay due to possible retransmission. Forward Error Correction
(FEC) codes are very suitable candidates. Before transmitting the encoded packets over the
error prone channel, we do not'know the packet loss rate:'So the rateless codes could apply in
this environment with its rateless feature, and the complexity of the rateless codes’ encoding /
decoding is much less than the. well-known ‘Reed-Solomon codes. For the multimedia
streaming, we propose an analytic model of the unequal overlapped rateless codes on a short
time data. From the simulation results, the weighted selection could achieve lower decoding
failure probability. With this analytic model, better encoding strategy for the multimedia
streaming could be formed to ensure low decoding failure probability across multiple sections.
The experiment results show that the weighted selection is better than the uniform selection in

the multimedia streaming.
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Chapter 1 Introduction

1.1 Preface

Most communication in Internet Protocol (IP) networks is based on Transmission
Control Protocol (TCP), which provides a reliable end-to-end data delivery service. TCP
treats data as an ordered sequence of packets to transmit to the receivers. TCP uses
retransmission on the lost packets to guarantee that the receivers will have the original file.
However the retransmission scheme has its restrictions in a number of applications. Consider
about the problem of distributing a file to several receivers, some of which may be short of

bandwidth resource.

Rateless codes are new class of forward error correction (FEC) erasure codes. Digital
Fountain codes [1] [2] [3], and Online codes [4] are examples of such codes with many
desirable features. The idea behind the rateless codes is that every receiver continues
collecting the encoded packets until: the decoding process could be finished successfully.
Unlike the traditional codes, rateless codes on erasure channels [5] do not assume any
knowledge about the channel. Low Density Parity Check (LDPC) codes [6] [7] and Tornado
codes [8] are also providing this idea, but the encoding complexity could be large for

generating endless encoded packets for channel with large packet loss rate.

1.2 Motivation

While downloading and storing a complete multimedia file may not be suitable for
Reed-Solomon codes [9] due to high encoding and decoding complexity, rateless codes could

suitably be done with low encoding and decoding complexity. Because the major problem is



the time delay, the multimedia streaming file which in the period of playback must be
decoded from the received encoded packets before the multimedia streaming file begins to

play as soon as possible.

Many solutions partition the multimedia streaming file into sections. The length of a
section is determined by the application. When using the section-based system, the current
section is being received, while an earlier section is played. Multimedia streaming application
might impose some constraints on the received encoded packets. In a communication system
that does not guarantee the correct order of packets, if the received encoded packet is far away
from the playback, it might be dropped due to limited memory size. Similarly, if the received

encoded packets contain in a section that has been played, these packets are useless.

In [10], the author proposed an innovative scheme for multimedia streaming by
connecting one more sections'to gradually provide the encoded packets. We use this scheme

as the multimedia streaming structure of our proposed analytic model.

1.3 Research Objectives

The objectives of our framework could be summarized as the following:

* Analyze the proposed unequal overlapped rateless codes for the single section to

obtain the decoding failure probability.

Based on [10] [11] [12], one section could be partitioned into two parts. The different
part could have different decoding failure probability. We could use And-Or tree [13] to model
and analyze the expected decoding failure probability for each part in the single section. This

proposed analytic model will then be applied in the scenario of the multiple sections.

*  Find optimal parameter sequence in the multiple sections.



After having the analytic model for the single section, we could use the local
minimization approach and dynamic programming approach to find the weights sequence for

the overall of the minimal decoding failure probability in the multimedia streaming.

1.4 Outline of the thesis

In Chapter 2, we discuss the background and related work of rateless codes. In Chapter 3,
we propose the unequal overlapped rateless codes, and then an analytic model based on
And-Or tree analysis is derived. Finally, we use the local minimization approach and dynamic
programming approach to find the optimal sequence of weights for the overall of minimal
decoding failure probability in the multimedia streaming with the multiple sections. Our

experiment results in Chapter 4. Chapter 5, we give the conclusion for our proposed method.



Chapter 2 Background and
Related Works

Before the proposed method, we describe how to partition the multimedia streaming into
sections with rateless codes and introduce And-Or tree lemma as our main tool to analyze the

model of the single section.

2.1 Multimedia Streaming in Section-based System

Normally, in order to avoid the unacceptable delay when playing the multimedia
streaming, the entire multimedia streaming will be partitioned into the sections as shown in

Figure 2-1.

‘ Partitioning

Sender

‘ Blocking

lhtehumdns’ encoding

Erasure channel . - IMCSSage block M)
0000000 .... QO O  check block (CB)
l, Rateless codes’ decoding

‘ De-blocking

Receiver

‘ De-partitioning

Figure 2-1: Multimedia streaming in the section-based system.



The entire multimedia streaming could be partitioned into the sections with equal length.
The sender uses rateless codes to encode each section separately, and transmits each encoded
block (also called check block) to the receiver on binary erasure channel [5]. After the
receiver obtains sufficient check blocks, the decoder of rateless codes will recover the number

of the message blocks as many as possible.

2.2 Luby Transform (LT) codes

In this section, we briefly review LT codes that are the well-known examples of rateless
codes. LT codes were developed by M. Luby in a landmark paper in 2002 [1]. LT codes have
low encoding and decoding complexity. Unlike the traditional codes, LT codes do not assume
any knowledge about the channel erasure probability. It means that the rate of the codes does
not need to be fixed before encoding. LT codes are universal that the length of the check block
could be arbitrary from one-bit to any i-bit. The check blocks could be generated on the fly.
LT codes only use exclusive or(XOR) operation to generate potentially infinite check blocks
and the decoding process also only uses XOR operation to decode. LT codes are very efficient
as the file length grows. Now, we could view the LT encoding and decoding process as the

bipartite graph and explain the encoding / decoding process.

2.2.1 LT Encoding

First, it divides the original file into the message blocks (MB) with fixed length. The
encoding process is simple. Each check block is independently generated from the message

blocks as follows:
1. Pick a degree d according to a degree distribution Q(x).

2. Choose uniformly d distinct message blocks as the neighbors of this check block.
5



3. Set the value of this check block to be the XOR (®) of the d neighbors.

The degree distribution Q(x) of LT codes is a probability distribution and Q; is the
probability of generating a check block consisting of d message blocks. The encoding process

is shown in Figure 2-2.

message blocks

Degree Distribution Table
1 0.1
2 0.5
3 0.2

Max_Degree 0.01

received check blocks

Figure 2-2: LT encoding process.

In Figure 2-2, the value of the most left encoded block is XORed of the message block 1 and

the message block 3.

2.2.2 LT Decoding

The decoding process needs the information of the degree value of each received check
block and the information of which message blocks are XORed together in each check block.
There are many ways of communicating this information to the decoder. For example, the
encoder and the decoder use the same key or seed number to a random number generator that

generates the same degree value and the neighbor list for each received block. The reader may



refer to [1] for more details. Follow [2] and [4], we could think the decoding graph as the
bipartite graph and the decoding process could be called the iterative decoding or belief

propagation decoding. The decoding process could be described as follows:

1. Find a check block c, all of whose message blocks are recovered, except for one. If it

exists, we could call this message block m.

2. Setm=c@®m;PD...®m,;, where my,..., my; are the recovered message blocks that

are adjacent to c. Then, we set the message block m is recovered.
3. Repeat step 1 and step 2 until we could not find such c.

The decoding succeeds if all message blocks are recovered, else the decoding fails. The

decoding process is shown in Figure 2-3-(a), Figure 2-3 (b).

message bloeks . _ .

Degree Distribution Table

1 0.1
0.5
3 0.2

Max_Degree 0.01

received check blocks - : recovered message block

Figure 2-3 (a): We could find the most right check block for recovering message block 3.



message blocks . . .
= 55

Degree Distribution Table

1 0.1
2 0.5
3 0.2

Max_Degree 0.01

received check blocks . : recovered message block

Figure 2-3 (b): The most left check block could recover message block 1, and continues.

Figure 2-3: LT decoding process.

After recovering the message block 3, we could recover the message block 1. And then
we could recover message block 2; finally, we could recover message block 4 to complete the
decoding process. We know that LT codes have simple encoding and decoding complexity,
because the encoding and decoding complexity depends on the edges in the entire bipartite
graph. And it turns out that the degree probability distribution is a critical part of the design.
Good asymptotical degree distributions for them were also developed in [1] [2]. For

finite-length LT codes, good degree distributions have been proposed in [14] [15].

LT codes are also used to protect the subsets of the message blocks of different

importance. We will introduce in section 2-4.

2.3 And-Or Tree Analysis

LT codes could be analyzed by And-Or tree [13] [16] [17]. This section explains the

structure of an And-Or tree and the proof of And-Or tree Lemma.

8



2.3.1 Construction of And-Or Tree

An And-Or tree T} is a randomly generated tree of depth 2L (L is a constant). The root of
this tree is at depth 0. Its children are at depth 1, and their children are at depth 2, so on and so
forth. Each leaf-node at depth 2L will be assigned the value 0 or 1 independently. Each node
at depth 0, 2, 4,---, 2L-2 will be labeled with OR-nodes (and it is evaluated by the “OR”
operation of its children), and each node at depth 1, 3, 5,---, 2L—1 will be labeled with
AND-nodes ( and it is evaluated by the “AND” operation of its children). The tree will be
generated from top to bottom, starting with the root node. Each node will independently
choose how many children to have. Let (ay, a1,*+, a4) and (B, f1,-*, fp) be the probability
distribution and Zfzo a = 1,2?:0 Bj=1. Each OR-node is chosen to have i children with
probability a;, and each AND-node-is chosen to have-j children with probability f;. The
OR-node with no children is-assumed to have a value-of 0, and the AND-node with no
children is assumed to have a value of 1. We are going to be interested in the probability that

the root node is evaluated as 0. An'example of And-Or tree is shown in Figure 2-4.

YL

¥.._ & : OR-node
@ : AND-node

i

Figure 2-4: An example of And-Or tree.

YL-2



Our goal is to compute y; — the probability that 7;’s root is evaluated as 0. Because the
OR-nodes at depth 2 in 7;, form the 7, ; And-Or trees, we could compute y; recursively as a
function of y; ;. yz1 is the probability that the root of a And-Or tree 77 is evaluated as 0. We

could use the following lemma from [13]:

The And-Or Tree Lemma: The probability y; that the root node of a 7, And-Or tree is
evaluated as 0 is y; = f{yz1), where y; is the probability that the root node of a And-Or tree

Ty is evaluated as 0. yy is the probability that it is 0.

f(x) =a(1-p1 —x)),for

A B (1)
a(x) = ) ax' and f(x) = ) Bix/.

$ ot -5

i=0 j=
2.3.2 Proof of And-Or Tree Lemma

In order to model the LT decoding process via this And-Or tree based on 77, we need to
use the probability distribution on'the number of children of OR-nodes and AND-nodes. 4, is
the probability that a uniformly chosen edge is attached to an OR-node of degree d. p, is the

probability that a uniformly chosen edge is attached to an AND-node of degree d. From [13],

we have
d-a d-
/1d = A—d and Pd = B—'Bd (2)
j=1J " % j=1b;

Further, 4, is the probability that the edge is connected to the OR-node that has d—1 children;

pa 1s the probability that the edge is connected to the AND-node that has d—1 children.

The decoding process could be analyzed by the same way as the belief propagation [18]
[19]. At each round, the edge will send a message to the nodes. The messages are sent along

the edges from AND-nodes to OR-nodes, and then from OR-nodes to AND-nodes in each

10



round. Let u; be the probability that the message sent from OR-node to AND-node at round i
of the algorithm is 0. 4; is the probability that the message sent from AND-node to OR-node at

round 7 of the algorithm is 0. For the event that the OR-node is of degree d, we have
Uipy = h{Th 3)

Indeed, a message from an OR-node v to an AND-node w is 0 if and only if v was labeled 0
and all the messages coming from the neighboring AND-node other than w are 0 in previous
round, where h?~! is obtained under the independence assumption. For the event that the

AND-node is of degree d, we have
hy=1-(1—-u)*™. 4)

Because we could know the AND-node w sends a message 1 to the OR-node v if and only if

all the neighboring OR-nodes except for v send a message 1 to w, the probability is
(1—u)?t. (5)

These recursions are not in a usable form yet since their condition is on the degree of the

OR-nodes and AND-nodes. We set
Alx) = Z Agx?4 1 and p(x) = Z pax®1, (6)
d=1 d=1
Then

Uy = A(1— p(1 - x)). (7)
Let us analyze the probability y; that the root of this And-Or tree 77 is 0. According to
And-Or tree lemma, we would like that y; is decreasing to d as L grows.
A(1-p(1=x)) <x forxe€[81],for

(8)
Ax) = ) Agx L and p(x) = ) pgx¢L.

11



If L is a constant, then the number of nodes in the tree 7} is also a constant.

2.4 Expanding Window Fountain Codes

In [20], the author proposed an idea to deal with the subsets of message blocks of
different importance. If there have & message blocks that we want to encode with different
importance. We assume that the numbers s;, s,-*, s,, such that s;+s,+...+s, = k. s; is the
subset of the message blocks and Z; = Z§-=1 sj. The window i consists of the message blocks

in Z;. The example is as shown in Figure 2-5:

5 53

Z;
Figure 2-5: The example of Expanding Window Fountain Codes.

The encoding process is using LT codes. The difference from the traditional LT codes is
choosing the message blocks non-uniformly. Before generating a check block, we need to
decide which window we select, and then using standard LT codes’ encoding process to
encode. /7 is the probability that the window i is chosen. If some of message blocks appear in
more windows, it stands for these blocks being selected probability are larger than other
message blocks. We could know that the most important message blocks are contained in
more windows, so the most important subset is s;. The author uses the windowing method to
achieve the subset of message blocks of different importance. This method could also apply in

multicast environment [21] by the same author.

12



2.5 Sliding-Window Digital Fountain Codes

In [10], the author proposed an idea by applying the sliding window scheme on the
multimedia streaming to virtually extend the number of message block, and therefore to
enhance the performance of rateless codes by reducing the decoding overhead and decreasing
unrecovered message blocks. In a traditional section-based system with rateless codes, each
section won’t have any relation; but in a sliding window scheme, each section could related to
neighboring sections. We set the length of one section equal to the window size in traditional

section-based, as shown in Figure 2-6.

l Blocking

window 1 | |
window 2 |

window 3

Figure 2-6: Traditional section-based system.

In Figure 2-6, the rateless codes will encode each window in the traditional section-based

system, and each window won’t have any relation.



. l Blocking

window 1
| window 2

| window 3
| window 4

window 5
Figure 2-7: Sliding window scheme.

In Figure 2-7, we could know about the sliding window scheme. The rateless codes will
encode each sliding window, and each sliding. window has the relation of encoding and

decoding process.

The sliding window size w should be chosen carefully. w should be as large as possible
to achieve a small overhead by the asymptotic performance; however, w should be as small as
possible to avoid the unacceptable delay. The sliding window movement s should also be
chosen carefully, which equals the number of old message blocks discarded and new message
blocks considered when the sliding window shifts to the successive sliding window. The
sliding window movement s also determines the proportion of the overlapped message blocks
between the preceding and the successive sliding windows. If s decreases, the same portion of
the message blocks will be encoded into more successive sliding windows. For example, we
could see the Figure 2-7. If the sliding window movement s is 2, and then the message blocks
m3 and m;4 will be encoded in sliding window 1 and sliding window 2. If the sliding
window movement s is 1, the message block m; ;3 and m, 4 will be encoded in sliding window
1, sliding window 2 and sliding window 3. This change will cause the decoder of the rateless

codes virtually processes on a larger portion of message blocks. For example, we could also

14



see the Figure 2-7. The decoder of the rateless codes in sliding window 1 will be in charge of
decoding m; 1, mj 2, m; 3, m; 4. In sliding window 2, the decoder will be in charge of decoding
mi.1, Mo, M3, M4, mis, me. If the buffer size of the receiver is unlimited, the following

sliding window will be in charge of decoding more and more message blocks.

The total number N of sliding window of size w in the entire multimedia streaming with

k message blocks in sliding window scheme is as follows:

k_
Ny =—2 41, ©)
S

In order to have a fair comparison of the traditional section-based system and the sliding
window scheme, the numbers of check blocks for each method should be equal. The decoder
of the rateless codes with decoding overhead y decodes from n check blocks to obtain &

message blocks. Thus,

7 (10)

=S

The sliding window scheme will encode each message block more than once. We know the
message blocks are processed in w/s successive sliding windows and the original number of

message blocks will be virtually enlarged to £

=" (11)
S

Thus, with the same overhead y, the number of check blocks per virtual message block is:
W=V (12)
s

Every sliding window has w message blocks, and each sliding window have #,, check blocks.

n S
my = hew=ySw=ys. (13)

15



The sliding window scheme receives the number of check blocks as many as possible
and no need to know which sliding window is being decoded. The decoder of the rateless
codes just receives and continues to decode the number of the message blocks as many as
possible. When the sliding window shifts to successive sliding window, it will have two
situations. One is the message blocks which are in the successive sliding window were all
recovered; another is the message blocks which are in the successive sliding window were
just few ones recovered. But the first situation is rare to happen for the reasonable overhead .
The normal situation is that still a lot of check blocks could be used for recovering the

message blocks in the preceding and the successive sliding windows.

16



Chapter 3 Proposed Method

In this chapter, we propose the unequal overlapped rateless codes for the multimedia
streaming in the section-based and the corresponding analytic model. We use the sliding
window scheme as the way to transmit multimedia streaming. When the sliding window shifts,
we could observe one situation that we want to analyze. First, we need to set the evaluation
criteria on the multimedia streaming, and then analyze those situations with the And-Or tree

lemma.

3.1 Multimedia Streaming Evaluation Criteria

By using the sliding window scheme, there are two kinds of models that we could
analyze. The single section “and the multiple sections are the evaluation criteria in the
multimedia streaming. At first, we. analyze the decoding failure probability of the single
section, and then use the result.of proposed analytic model on the model of the multiple

sections.

3.1.1 Single Section in The Multimedia Streaming

When the sliding window shifts to the successive sliding window, each sliding window
contains two parts: the overlapped part and the non-overlapped part. The overlapped part is
the part in current sliding window and may have portion of recovered message blocks. The
non-overlapped part is the part which new message blocks are included in current sliding
window. We could see the example in Figure 3-1. When sliding window 1 shifts to sliding
window 2, the m, 3 and m, 4 are in the overlapped part, m,; and m; are in the non-overlapped

part. Each sliding window forms a single section that contains the overlapped part and
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non-overlapped part.

windaw 2
: overlapped message block

i : recovered message block

. : unrecovered message block

Figure 3-1: The example of overlapped and non-overlapped part in the single section.

We could use the proposed analytic model with unequal overlapped rateless codes on the
single section to find the decoding failure probability in each part, and then applies the results
on the model of the multiple sections..Let p;1 be the decoding failure probability of the
overlapped part and p;, be the decoding failure probability of the non-overlapped part. L is
constant that we will introduce later and the decoding failure probability is the proportion of

the number of the unrecovered message blocks over the sliding window size.

3.1.2 Multiple Sections in The Multimedia Streaming

After calculating the decoding failure probability p; ; and p; » in the single section by the
proposed analytic model, we could calculate the decoding failure probability of the multiple
sections with the proposed unequal overlapped rateless codes. Following the above example
shown in Figure 3-1, we could use the decoding failure probability of the non-overlapped part

in sliding window 1 as the initial decoding failure probability of the overlapped part in sliding
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window 2. Then, we could calculate the decoding failure probability p;; and p;, > in sliding
window 2 and continue on this procedure to the end of the multimedia streaming. The

example of sliding window shifts to the successive sliding window is shown in Figure 3-2.

wintliowz |
window 3
m—
window 3

Figure 3-2: The example of sliding window shifts to the successive sliding window.

When sliding window 2 shifts to the successive sliding window, the overlapped part is m;
and my,, and the non-overlapped part is ms 3 and my4 in the successive sliding window as
shown in Figure 3-2. Now, we set the overlapped parameter a is the proportion of the number

of old message blocks discarded or new message blocks considered.

window movement s
o= _ 3 (14)

window size w’

Now, we only consider o = 1/2 in the following description, and also assume the overlapped
part has the portion of recovered message blocks. We could use the local minimization
approach (LMA) and dynamic programming approach (DPA) to find the parameter sequence

for the overall of the minimal decoding failure probability of the multiple sections.

3.2 The Analytic Model for Single Section

For finding the minimal decoding failure probability in a single section, we could modify

the And-Or tree lemma to analyze our unequal overlapped rateless codes to determine the
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decoding failure probability.

3.2.1 Rateless Codes in And-Or Tree

This section explains how to transform rateless codes to And-Or tree. The transformation
process could be found in [13]. First, we could think the decoding paradigm of rateless codes

as a bipartite graph, as shown in Figure 3-3.

left nodes right nodes

Figure 3-3: Bipartite graph G.

Let G be a bipartite graph with k nodes on the left side, » nodes on the right side, and e
edges in total between the nodes on the left nodes and the right nodes. We could set each left
node corresponding to a message block and each right node corresponding to a check block. If
the left node is evaluated as 1, it stands for recovering the corresponding message block. If the
right node is evaluated as 1, it stands for the situation that it could help to recover the

neighbor.

We assume the receiver could reconstruct this bipartite (for example: using random
number generator with the same random seed). All left nodes are unrecovered (evaluated as 0)

initially. If the left node could be recovered as the progress of LT decoding, we set this left
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node as 1. Following the paper [13], let (o, f1,**, f») and (go, g1,***, gk) be the probability
distribution that each left node is chosen to have degree d with probability f;, and each right
node is chosen to have degree d with probability g,, where all choices are made independently.

We could calculate the total edges e in this random bipartite graph.

n k
e=k-2dfd=n-2dgd. (15)
d=0 d=0

We are going to look at a random subgraph G, (where L is a constant) of G, which is

chosen as follows:
1. Choose an edge (v, w) of G randomly and uniformly, and call v the root of G;.
2. Remove (v, w) from G.

3. G will consist of the'left node v, all neighbors nodes of v within 2L hops from v, and

all edges of G that any two of these nodes.

The G is shown in Figure 3-4.

®

YL

Yo . : OR-node
. : AND-node

Y2

Figure 3-4: Example of G;.
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Here, we claim that G; is tree-shaped. Gy is created by first selecting and revealing a
random edge (v, w), and then reveal v’s neighbors, and so forth for 2L hops. The probability
that Gy is not a tree (there is a cycle in Gr) will be proportional to 1/k. Therefore, as k grows

large enough, G is a tree with high probability.

Formally, we think G as an And-Or tree in the following way. The left nodes of G, map
to the OR-nodes of the tree and the right nodes of G; map to AND-nodes. An OR-node is
assigned the value 1 if we recover the value of the corresponding message block, which could
happen when at least one of its children (AND-nodes) is evaluated as 1. It is just like the
OR-node to do the OR operation of its children. An AND-node is assigned the value 1, either
if it has no children in the tree, just like it has the degree 1 in G and could immediately to
recover its neighbor of the left node, or if all'of children of the OR-node are evaluated as 1.
Let y; be the probability that the root of Gz that i1s evaluated as 0. Each time AND-node will
pass a message to the OR-node, and then OR-node will pass a message to the AND-node. It
could be computed by the And-Or tree lemma. If v is evaluated as 1, we could know that v

also is evaluated as 1 in the bipartite graph G.

The number of the left nodes which are evaluated as 0 is close to the expected value
when And-Or tree lemma holds. If we choose another message node as the root node, the
same result will be obtained according to the standard edge-exposure martingale [22]. After
the transformation process, we could find the decoding failure probability by using And-Or
tree lemma. The decoding failure probability in LT decoding process is equal to the proportion

of the number of the left nodes which are evaluated as 0.

3.2.2 And-Or Tree with Unequal Weight

The rateless codes with weights could be initially found in [11]. Now, we modify the
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construction of the And-Or tree to the case that OR-nodes may be unlike each other and
contains portion of recovered message blocks. We could know that when the sliding window

shifts, it will produce such situation, as shown in Figure 3-5:

w T

14T
previous window
k; k,
current window

Figure 3-5: Situation of sliding window movement.

In here, we want to construct a generalized And-Or tree for each part of the message

blocks to find out the decoding failure probability in‘asingle section, as shown in Figure 3-6.

k; k,

overlapped .
contain unrecovered
message blocks

Figure 3-6: Analytic section.

The root of the generalized And-Or tree GT}; stands for an OR-node in part k;, and the depth
of this tree is 2L. w;, w, are the probabilities to select a node from k,, k,. The construction of
GTy,; is the same as G, except the root node is in part k;. We set the probability that an edge is
connected to an OR-node in part k; of degree d is R;; and each OR-node in part k; has the
decoding failure probability o initially. The probability that an edge is connected to an
AND-node of degree d is 4,. However, unlike the original And-Or tree, each child of an
AND-node is independently calculated by using the Wallenius’ Distribution, and we want to

see if the unequal selection is better than the uniform selection. Follow the definition of
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And-Or tree, the OR-nodes with no children are assumed to be evaluated as 0, whereas the
AND-nodes with no children are assumed to be evaluated as 1. We could calculate the y; ;
that is the probability that the root of GT}; is evaluated as 0. p;; is the probability that the
message passed from the OR-node in part k; to the AND-node at round i is 0. g;: the
probability that the message passed from the AND-node to the OR-node at round i is 0. To
obtain ¢;, we need to calculate the probability of each degree pair consisting of d; nodes € k;
and d, nodes € k, by using the Wallenius’ Distribution. For the event that AND-node has
degree d+1 at round i, and we know the AND-node sends a message 1 to the OR-node if and

only if all the children of AND-nodes send a message 1. See Figure 3-7:

degree = d+1

Figure 3-7: Conditional-on the AND-node of degree d+1.

We could calculate the probability that this AND-node sends message 0 to OR-node by
considering all the combination of the degree pairs. Let d\+d>=d. We could get the probability

of the AND-node of degree d+1 being sending the message is evaluated as 0:

1—(1-y3,)" (1= y12)" (16)

From (16), the ¢; is all the combination of the degree pairs:

Max_D-1
= ) Awa- ) (WoPGd-x(1-(1-y) (1-%2)"")) a7
d=1 j=0

And, we could know that the OR-node in part k; will send a message 0 to the AND-node if all
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the messages coming from the children AND-nodes are 0 at round i. The condition that the

OR-node is degree d+1 at round i+1, as shown in Figure 3-8:

degree = d+1

Figure 3-8: Conditional on the OR-node is degree d+1.

We could calculate the probability that this OR-node sends message 0 to the AND-node by the

number of its children.

5.:q% ifthis’OR-node € k, (18)
q? if this OR-node € k,
For simplicity, we define the polynomial distribution:
Max_D
R](X) = Z Rd,j . xd_l (19)
d=1
From (18) and (19), we get p;+1 is
( Max_D
Pi+11 =0 " z Rg; - q’™!
d=
) Max_D (20)
Pi+12 = Z Raz qf ™
\ =1
We obtain the following recursion using the R;(x) for expected probability:
{Pi+1,1 =6 Ry(q:) = Yis11 21
Pi+12 = R2(q1) = Vi1

We get the probability y;; for part k; and &, by using edge degree probability distribution to
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calculate in (21). Next, we make the connection between the edge’s degree probability

distribution and the block’s degree probability distribution.
3.2.3 And-Or Tree with Unequal Weight to Bipartite Graph

Let 2(x) = Y%_, 2,x% be the polynomial generator corresponding to the probability
distribution of the degrees of check blocks in rateless codes. We partition the k& message
blocks into two parts k; and k; of sizes ok and (1 — a)k. Let p; be the probability that an edge is
connected to a particular message block in k;, for i = 1, 2. And total check blocks yk are
involved in the decoding process, we call y the overhead. We set u the average degree of the

check block:

k
W= dog =0, (22)
le :

where ©Q’(x) is the derivative of Q(x) with respect to x.

Consider k& message blocks encoded by the proposed unequal overlapped rateless codes
in the single section with parameter Q(x), k, a, p1, p> and y. We could calculate the probability
of the degree of message blocks in k;, for i = 1, 2. The probability A,; that the message block

in k; has a degree d is

k _
2ai = (M) Pl = pyree. (23)

When £ is large enough and p; is small enough. Asymptotically, (23) approaches to

_ e HYRPi(uykp)® (24)
d!

Aa,i

which is a Poisson distribution with the mean uykp;.

Now, we could get
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= 2
and
d * Adi
R,. = : 26
Y pvk (20)
then
R;(x) = ePityk(x—1) (27)
We could get p; and p».
{ p = W1 . 1
YTwitw, aqk (28)
Wy 1 '
P2 cw +w, (1—a)+k

3.3 Wallenius’ Noncentral Hypergeometric Distribution

After we propose our analytic model for unequal overlapped rateless codes, we need to
know about the noncentral hypergeometric distribution for unequal selection. In probability
theory, Wallenius’ noncentral hypergeometric distribution (WD) [23] [24] is a generalization
of the hypergeometric distribution which describes the items that are sampled with bias in a
finite population without replacement. The distribution could be illustrated as an urn model
with bias. For example, an urn contains m; white balls and m, black balls. Each white ball has
the weight wy and each black ball has the weight w,. Now we take n balls, one by one without
replacement, in such way that the probability of taking a particular ball at a particular draw is
dependent on its proportion of the total weight of all balls that remains in the urn at that
moment. If we want to take x; white balls and x, black balls, the most reliable calculation

method is recursive calculation from [25] [26].
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The following recursion formula is useful to calculate the probabilities:

WDP(x;n,m,N,w)
(m—x+ 1w
m—-x+1Dw+N—-n—m+x (29)
N—-—n-m+x+1
m—x)w+N—-n—-m+x+1

=WDP(x—-1;n—1,m,N,w) -

+ WDP(x;n—1,m,N,w) -

where x = x1, N=m+my, m = m;, w = wi/wy.

3.4 The Analytic Model for Multiple Sections

By using the proposed analytic model with unequal overlapped rateless codes, we could
calculate the decoding failure probability p; i and p;, in the single section. We also could
calculate the decoding failure probability of the multiple sections by using the same analytic
model with the proposed unequal overlapped rateless codes. We provide local minimization
approach (LMA) and dynamic programming approach (DPA) to calculate the overall of

minimal decoding failure probability.in the multiple sections.

3.4.1 Local Minimization Approach (LMA)

Assume giving ayw check blocks to each sliding window. We need to find the weights
w, = (Wi’l,Wi'z) that gives the decoding failure probability in sliding window i with the
given initial decoding failure probability in &; (that is, the decoding failure probability of &, in
the previous sliding window). We could continue to calculate the weights in each sliding
window for getting the overall of minimal decoding failure probability. As shown in Figure

3-9:
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window i window i+2 window 4
i Wﬁ% ‘?#4 e
Figure 3-9: Local Minimization Approach.
According to the decoding failure probability of sliding window i, we could use the
decoding failure probability of k, in sliding window i to be the initial decoding failure

probability o0 in sliding window i+1. We could get the overall of minimal decoding failure

probability based on the sequence of the chosen weights.

3.4.2 Dynamic Programming Approach (DPA)

Local minimization approach is<based on the ‘estimated minimal decoding failure
probability of each sliding window, The dynamic programming approach is based on the
selected weights with respect to the preceding cumulated decoding failure probability and the

number of weights sequences that are more than one.

We have F;, and F;; as the decoding failure probability of &; and &, based on the given
weights at the sliding window i. Each estimation step is according to the preceding cumulated
decoding failure probability. The cumulated decoding failure probability in the sliding
window i is

i

D Fa |+ Fip (30)

=1
The example of DPA is shown in Figure 3-10. After giving different weights in sliding
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window 1, we could choose the minimal decoding failure probability. And then using the

proposed model with weights to calculate next weights for sliding window 2, and forth.

window M

min(F, , + F,p) min(F, .+F, +F;,}

Figure 3-10: Dynamic Programming Approach.

3.4.3 Time Complexity-of LMA and DPA

To get the overall of minimal decoding failure probability in LMA, we only need to
calculate each weights in each sliding window. So the time complexity is linear to sliding
window number N; in the multimedia streaming. In DPA, we need to consider the number of

weights sequences.

If there are M sliding windows in the multimedia streaming, A is the number of weights
sequences considered and B is the number of all possible weights. We could have the time

complexity:

LMA: 0(BM)

(1)
0(BAM), ifA < B

DPA: {O(BZM), ifA >B
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3.5 Buffer Mode

LMA and DPA are proposed in the multiple sections based on the analytic model of the
single section. If we impose some delay between the playback section id and the receiving
section, the decoding performance could be enhanced. It means the decoding could be
interactive between each sliding window. Because some of the message blocks are recovered
in sliding window i initially and we know that the LT decoding process is finding the check
block which all of whose message blocks are recovered except for one is unrecovered. The LT
decoding could use the recovered message blocks in window i—1 to help increasing the chance
that check blocks in window i which connect to only one message block that is unrecovered.
The interactive relation could reduce the probability of the condition that there are still having
a lot of unrecovered message blocks. In here, we could-have the buffer mode to realize this

method. As shown in Figure 3-11.

playback;,,
window i+1 window i+3
window i window i+2 window i+4
playback;,

Figure 3-11: Buffer size is one sliding window.

Figure 3-11 illustrates the buffer size is one sliding window (SW). The decoder could

receive and decode sliding window i at the same time.
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playback;,,

window i1 win H3

window § win H+2 window i+4

playback;,

Figure 3-12: Buffer size is two sliding windows.

Figure 3-12 describes the situation when the buffer size is two sliding windows. For the
playback;, the decoder could receive and decode sliding window i and sliding window i+1 at

the same time. Next, we show the experiment results to see the decoding performance.

32



Chapter 4 Experiment Results

We propose an analytic model of the unequal overlapped structure. First, we compare the
estimated decoding failure probability based on the analytic model for the single section and

simulations, and then show the simulation results in the multiple sections.

4.1 Simulation Environment

* 5 sections, 9 sections

+ Section size = 2,000 message blocks

+  Number of the sliding window =9, 19

* Overhead =1.04 ~1.20

+ Results are the average of 100 independent simulations

+ Degree distribution is from Raptor codes [2]

Table 4-1: The degree distribution table of Raptor codes.

Degree  Probability Degree  Probability
1 0.007969 8 0.056058
2 0.493570 9 0.037229
3 0.166220 19 0.055590
4 0.072646 64 0.025023
5 0.082558 66 0.003135
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Table 4-2: The decoding failure probability after giving yk check blocks, &=1000.

Overhead y Decoding Failure Probability (o)
1.04 0.608039
1.06 0.460122
1.08 0.332582
1.10 0.263896
1.12 0.175325
1.14 0.144782
1.16 0.114760
1.18 0.071047
1.20 0.055560

Table 4-3: The decoding failure probability after giving yk check blocks, £=2000.

Overhead y Decoding Failure Probability (o)
1.04 0.393454
1.06 0.195176
1.08 0.107732
1.10 0.058554
1.12 0.032648
1.14 0.020570
1.16 0.012885
1.18 0.008360
1.20 0.003477
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4.2 Single Section

Assume the overlapped part k; has J portion of unrecovered message blocks. We give
ayk check blocks to the single section, and then observe the portion of unrecovered message
blocks and the estimated decoding failure probability. The ¢ is from Table 4-2. According to
different weights, the simulation values and estimated values are shown in Figure 4-1, 4-2,

4-3 and 4-4.
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Decoding Failure Probability
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When the overhead is low,.the.analytic model could provide good estimated values at
k=2000. Next, we estimate whole sliding windows by local minimization approach and
dynamic programming approach in the successive section. Then, we could find that the

weights sequences to have better performance than the equal weights sequence.

4.3 Multiple Sections

After having the estimated decoding failure probability of the single section, we use the
local minimization approach and dynamic programming approach to find good weights
sequence for the multiple sections. “Equal” approach is the sliding window scheme with equal

weights sequence for k; and 4, in [10].
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5 sections

Estimated DPA

1.06

| —#— Estimated Equal: M. Bogino, 2007

r| —#&— Estimated LMA

Aliqeqoid ainjeq Buipodsq
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1.12 1.14 1.16
Overhead
Figure 4-5: Estimated values of Equal, LMA and DPA in 5 sections.
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Figure 4-6: Estimated values of Equal, LMA and DPA in 10 sections.
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In Figure 4-5 and 4-6, we could observe the estimated values of LMA and DPA are
closely. There are 20 weights considering in LMA and DPA. We only hold back 9 weights
sequence in DPA to find the overall of the minimal decoding failure probability in the
multiple sections. After having the weights sequence, we could observe the LMA and DPA
having similar estimated decoding failure probability. In here, we only simulate LMA for the
low complexity of computation. “Fix” approach is using LT codes to encode and decode each

section independently. The values are from Table 4-3.
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Figure 4-7: Simulation values of Equal and LMA in 5 sections with 1 SW.
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The two figures above are setting the buffer size of one sliding window. Next, we set the

buffer size of 2, 3 and whole SW.
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Figure 4-9: Simulation.values of Equal and LMA in 5 sections with 2 SW.
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1.04

41



7]
Q S
8 I
AN
= S 8
@ £ 1Y
c D
Ke) o =
ks m o
. S
o i
%) = 1
UMX
o X
w
c c c
O O o
et d
o © ©
S S 5
E EE
n» o
|
S ¥
(@) o
~ ~

Aliqeqoid ainjeq Buipodsq

.16

4

A

1.08 1.1 1.12
Overhead
Figure 4-11: Simulation values of Equaland LMA in 5 sections with whole SW.

.06

1.04

10 sections, 2 SW

— A Simulation LMA
—4— Simulation Fix: M. Luby

2002

Ayjigeqoid ainjie Buipoosq

10"

1.2

1.18

1.12

Overhead
Figure 4-12: Simulation values of Equal and LMA in 10 sections with 2 SW.

1.06 1.08 1.1

1.04

42



[} N~

© 3

2 s 8

S 2 g

3 S .

[0}

%) m .W,

2 = -
= =
mwn.x.
(o )
w - w
c C C
S 8 9
et
T &5s
> 3 3
EEE
n n o\
T T 7

S Y

o o

Al Al

Aliqeqoid ainjeq Buipodsq

4 1.16

A

1.08 1.1 1.12
Overhead
Figure 4-13: Simulation values of Equal and LMA in 10 sections with 3 SW.
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According to the figures above, we know the buffer size doesn’t need to be large to have
low decoding failure probability. The decoding failure probability in buffer size of 3 SW
could compare with buffer size of whole SW. Based on the simulation values and estimated
values; we could observe the weighted selection is better than uniform selection with our

proposed unequal overlapped rateless codes.
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Chapter 5 Conclusion

Transmitting entire multimedia streaming file could cause long time delay. Section-based
system is a good solution for shortening time delay and forward error correction codes are
good choices in this real-time situation and rateless codes have lower encoding and decoding
complexity than Reed-Solomon codes. Rateless codes are more suitable than Reed-Solomon

in the multimedia streaming.

We could observe that the sliding window scheme will cause a situation: a portion of
recovered message blocks in the overlapped part and no portion of recovered message blocks
in the non-overlapped part. If we give the two parts different weights to encode, we could get
different decoding failure probability in each part with our proposed analytic model. The
analytic model of unequal overlapped rateless codes could provide a good expected decoding
failure probability in a single-section. We could use the weighted selection to provide a lower

decoding failure probability than uniform selection.

LMA and DPA could find the weights sequence of weights to provide lower decoding
failure probability than uniform selection scheme in the multimedia streaming. Low decoding
failure probability in the multimedia streaming could provide good quality of the multimedia
streaming contents. We could also have low decoding failure probability in limited buffer size.

If the buffer size is larger, we could have lower decoding failure probability.
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