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異質雙核心嵌入式即時系統之 

有效低能源消耗排程演算法 

 

學生：林柏君     指導教授：王國禎 博士 

 
國立交通大學 資訊學院 網路工程研究所 

 

摘 要 

近年來，異質雙核心嵌入式即時系統，如個人數位助理及手機越來

越受到歡迎。為了達到即時以及低能源的耗損，低能源消耗排程成為一個

值得重視的研究課題。大多數現有低能源消耗排程的動態電壓調整演算

法，其目標多在單一 CPU 或是在同質性的多核心系統上。本論文中，在

異質性的雙核心嵌入式即時系統上，我們提出一個較長共同執行時間

(LCET)演算法，以適用在具動態電壓調整能力的異質雙核心。本演算法包

含兩個階段：第一，運用所提出的排班演算法來縮短在異質雙核心嵌入式

即時系統上的工作總執行時間；第二，我們更進一步探討利用縮短過後的

總執行時間來調整電壓及頻率以達到低能量的耗損。模擬結果顯示，相較

於 Kim et al. 方法，在使用(不使用)動態電壓調整之下，我們所提出的方
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法分別在可插隊的 LCET (P-LCET)及不可插隊的 LCET (NP-LCET)，各節

省了 8%及 16% ~ 25% (13%及 33% ~ 38%)的總能量耗損。 

 

關鍵詞：動態電壓調整，嵌入式即時系統，異質雙核心，低能源消耗排程，

總執行時間。 
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An Efficient Low Power Scheduling for 
Heterogeneous Dual-Core Embedded 

Real-Time Systems 
 

Student: Pochun Lin   Advisor: Dr. Kuochen Wang 

Department of Computer Science 

National Chiao Tung University 

Abstract 
In recent years, heterogeneous dual-core embedded real-time systems, such as personal 

digital assistants (PDAs) and cellular phones, have become more and more popular. In order 

to achieve real time performance and low energy consumption, low power scheduling 

becomes a critical issue. Most researches on low power scheduling with dynamic voltage 

scaling (DVS) were targeted at only one CPU or homogeneous multi-core systems. In this 

thesis, we propose a low power scheduling algorithm called Longer Common Execution 

Time (LCET) for DVS enabled heterogeneous dual-core embedded real-time systems, 

which includes two steps. First, we reduce total execution time of tasks by using LCET in 

heterogeneous dual-core embedded real-time systems. Second, we further exploit the 

reduced total execution time to adjust voltage and frequency levels in order to reduce the 

total energy consumption. Simulation results show that the proposed P-LCET (a preemptive 

version) and NP-LCET (a non-preemptive version) can effectively reduce the total energy 

consumption by 8% and 16% ~ 25% (13% and 33% ~ 38%) compared with the work by 

Kim et al. with (without) dynamic voltage scaling. 

 

Keywords: Dynamic voltage scaling, embedded real-time system, heterogeneous dual-core, 
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low power scheduling, total execution time. 
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Chapter 1  

Introduction 

With more and more multimedia applications, low energy consumption is extremely 

important for heterogeneous dual-core embedded real-time systems, like the PDA and 

smart-phone. Most mobile handhelds are dual-core systems [6] . A dual-core system is 

mainly composed of an ARM processor and a DSP. Fig. 1 shows a heterogeneous dual-core 

architecture. Like the OMAP processor, which is manufactured by TI (Texas Instruments) 

for mobile applications, includes two cores, ARM926 (ARM9 core) and TMS320C55X 

(DSP coprocessor) [12] . The Freescale i.300-30 processor also includes two cores: ARM11 

and StarCore SC140 (DSP processor) [13]. 

In order to conserve energy for battery-powered real-time systems, several low 

power techniques were proposed. Dynamic voltage scaling (DVS) and dynamic power 

management (DPM) have been employed as available techniques to reduce the energy 

consumption of CMOS microprocessor systems [1]. The DVS is a design technique to 

adjust the CPU’s supply voltage and frequency. The primary design goal is to exploit the 

slack time. Since in battery-powered systems, the battery lifetime impacts the utility and 

duration of the system directly, reducing the energy consumption and extending the battery 

lifetime should be a primary design metric [16]. 
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Fig. 1 Heterogeneous dual-core architecture [6]. 

 

We know that the energy consumption E of a CMOS circuit is dominated by its 

supply voltage and is proportional to the square of its supply voltage, which is expressed as 

CVCE ddeff ⋅⋅= 2  [2], where effC is the effective switched capacitance, ddV  is the supply 

voltage, and C is the number of execution cycles. Reducing the supply voltage also drops 

the maximum operating frequency proportionally ( fVdd ∝ ). Thus, E could be approximated 

as being proportional to the operating frequency squared ( 2fE ∝ ). Therefore, lowering 

operating frequency and according supply voltage is an effective technique for reducing 

energy consumption [14] . 

In real-time systems with periodic tasks, no deadline miss is an important requirement 

of the systems. For example, embedded real-time systems must complete the tasks before 

their deadlines to maintain the system stability. Energy-efficient scheduling for hard 

real-time tasks on DVS processors is to minimize the energy consumption, while all the 

real-time tasks are done in time.  

In this paper, we focus on low power scheduling for heterogeneous dual-core 

embedded real-time systems. In contrast to most of existing low power scheduling 

approaches that were targeted at only one CPU or homogeneous multi-core systems, we 

consider low power scheduling for heterogeneous dual-core embedded real-time systems.  

 ARM  DSP 

 Memory  I/O 

Dual-core Processor 
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The rest of the thesis is organized as follows. Chapter 2 includes DVS and scheduling 

preliminaries. Chapter 3 reviews related work. The system model and the proposed design 

approach are described in Chapter 4. Simulation results are discussed in Chapter 5 and 

conclusions and future work are given in Chapter 6. 
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Chapter 2  
Preliminaries 

DVS exploits the slack time to adjust the CPU frequency and voltage levels in order 

to reduce the energy consumption and guarantee all tasks completed before the deadlines. 

Therefore, a good slack time estimation method is very important to reduce energy 

consumption.  

2.1 Categories of inter-task DVS strategies 

There are two categories of DVS algorithms [3]: inter-task DVS and intra-task DVS. 

The inter-task DVS algorithm adjusts the CPU frequency task-by-task, which allocates the 

slack time between the current task and the following tasks. And the intra-task DVS 

algorithm adjusts the CPU frequency within a task, which uses the slack time when a task is 

predicted to complete before its worst-case execution time (WCET). 

In this thesis, we consider inter-task DVS algorithms for periodic tasks, which 

usually exploit one or more of the following four strategies to estimate the slack time. 

 

(1) Minimum constant speed [3] [7] 

This strategy is defined as the lowest possible clock speed that guarantees the 

feasible scheduling of the task set. 

 

(2) Stretching to NAT [3] [7] 

This strategy is based on that the scheduling already knows the next task arrival time 

(NAT) of periodic tasks. 
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(3) Priority-based slack stealing [3] [7] 

Not all the execution times of tasks are in the worst cases. If high priority tasks 

complete earlier than their WCETs, the next lower priority task can use the remaining slack 

time to adjust the frequency.  

 

(4) Utilization updating [3] [7] 

The utilization updating technique estimates the required processor performance at 

the current scheduling point by recalculation the expected worst case processor utilization 

using the actual execution times of completed task instances.  

2.2 Priority scheduling 

Existing real-time scheduling policies can be classified into rate-monotonic (RM) 

scheduler and earliest-deadline-first (EDF) scheduler. Both of them are dynamic scheduling. 

 

(1) Rate-Monotonic scheduling (RM) 

The RM scheduling is the fixed-priority scheduling. It always gives the highest 

priority to the task which has the shortest period in the ready queue. 

 

(2) Earliest-Deadline-First scheduling (EDF) 

The EDF scheduling is the dynamic-priority scheduling. It always gives the highest 

priority to the task which has the latest deadline in the ready queue. 
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Chapter 3  
Related Work 

Recently, to achieve high computation performance and lower energy consumption, 

the researches on multi-core embedded systems have become more and more popular [4] [5] 

[6] [10] [11] [15]. There are two categories of multi-core architecture. The cores in a given 

chip package are symmetric, called a homogeneous multi-core; otherwise, it is called a 

heterogeneous multi-core for asymmetric processors in a chip package. 

In homogeneous multi-core systems, Alon et al. [4] shows that the total energy 

consumption of applications with single-thread (ST) is different from that of multi-thread 

(MT). It shows that the energy consumption by using an MT code is twice less than that by 

an ST code in corresponding performance-states and reduces the half of total execution time 

in Intel Core Duo systems. In the real-time loop task scheduling problem, Chen et al. [15] 

proposed the retiming and rotation algorithms. By reducing the task schedule length and 

using slack time, it can reduce more energy consumption and solve this problem. 

In the periodic hard real-time tasks scheduling problem on heterogeneous dual-core 

systems composed by ARM core and DSP, Gai et al. [5] proposed a mechanism that divides 

the tasks into two groups: regular and DSP, where regular is the tasks without DSP workload 

and the one with DSP workload is called DSP, and each group has its corresponding queue: 

regular and DSP queues. It can increase the schedulability bound in the considered 

architecture and allow a more efficient use of the computational resources without still 

maintaining some kind of real-time guarantee. However, there are two problems in [5]. One is 

that the high priority DSP tasks will be blocked by the low priority DSP tasks and the other is 

that a regular task with low priority can be executed earlier than a DSP task with high priority. 

Due to these two problems, Kim et al. [6] proposed a new scheduling model using only a 
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queue combined with regular tasks and DSP tasks ordered by priority. It has better 

schedulability and fewer deadline misses. 

In task critical problems with the mixed workload composed of periodic and aperiodic 

real-time jobs on heterogeneous distributed real-time embedded system, Marcus et al. [10] 

proposed an energy-efficient genetic list scheduling algorithm (EE-GLSA) and an 

energy-efficient genetic list mapping approach (EE-GMA) algorithm to get each aperiodic 

job’s task mapping and find the shortest tasks scheduling length. It has higher energy 

reductions compared to previous DVS scheduling approaches based on constructive 

techniques and total energy savings for mapping and scheduling optimized DVS systems. 

In the valid power-efficient scheduling based on task critical path analysis, Luo et al. 

[11] shows that the static and dynamic variable voltage scheduling algorithms in hard and 

soft real-time systems have hard task deadlines miss in heterogeneous distributed real-time 

embedded systems. 

Table 1 shows the comparison of several existing low power DVS algorithms, and 

the proposed P-LCET (preemptive longer common execution time) and NP-LCET 

(non-preemptive longer common execution time) algorithms for heterogeneous dual-core 

embedded real-time systems. The metric of multi-core type describes if the multi-core is 

homogeneous or heterogeneous. The metric of total energy consumption indicates the CPU 

total energy consumption using each algorithm. The metric of number of preemptions 

indicates the frequency of preemptions. The metric of average waiting time indicates the 

average queuing time of tasks. The metric of deadline miss indicates the real-time tasks can 

not complete before the time constraint. In Chapter 5, we will compare our proposed 

P-LCET and NP-LCET with the work by Kim et al. [6], since it has no deadline miss.  
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Table 1  Comparison of related work. 

 

 

Algorithm Multi-core 
type 

Total energy 
consumption

Number of 
preemption 

Average 
waiting time 

Deadline 
miss 

Intel dual-core 
[4] 

Homogeneous Low N/A N/A N/A 

ILOSA [15] Homogeneous Low N/A N/A N/A 

EE-GLSA 
[10] 

Heterogeneous Medium N/A N/A N/A 

S-and-D [11] Heterogeneous Medium N/A N/A N/A 

Gai et al. [5] Heterogeneous High Medium Medium Yes 

Kim et al. [6] Heterogeneous High Medium Low No 

P-LCET 
(proposed) 

Heterogeneous Low Medium Low No 

NP-LCET 
(proposed) 

Heterogeneous Lowest Low Medium to 
High 

Yes 
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Chapter 4  
Proposed Low Power Scheduling 
Algorithm  
4.1 System model 

The target architecture is a heterogeneous dual-core embedded real-time systems, 

composed by ARM and DSP cores, that can change their supply voltage and operating 

frequency continuously within its operational ranges, ],[ maxmin VV  and ],[ maxmin ff , and all 

cores need to be executed at the same frequency [8]. A task set T  of n  periodic tasks is 

denoted as },...,,,{ 321 nTTTTT = . Each task iT  has its own period ip  and worst-case 

execution time (WCET) iw . The deadline id  of iT  is assumed to be equal to its period ip . 

The thj  instance of iT  is denoted by jiT , . Each task releases its instance periodically and 

all tasks are assumed to be mutually independent [14]. 

The task model we used for low power scheduling with DVS is illustrated in Fig. 2. 

Each task executes for iC  units of time on the master CPU, and may request a DSP 

activity for DSP
iC . We assume that each task performs at most one DSP request, after pre

iC  

units of time, and then execution for other post
iC  units, such as post

i
pre

ii CCC +=  [6]. 

 

Fig. 2 Heterogeneous dual-core task model. 

CPU 

DSP 

pre
iC  

DSP
iC

post
iC  
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Besides, in consideration to hardware power saving support, ACPI spec. (Advanced 

Configuration and Power Interface Specification) [9] is the most used technique for the CPU. 

The power states transition flow diagram of ACPI is shown in Fig. 3 and detailed descriptions 

are shown as follows. 

4.2 State definitions [9]  

0G  Working 

In this state, peripheral devices (peripherals) are having their power states changed 

dynamically. 

 

0C  Processor Power State 

While the processor is in this state, it executes instructions. 

 

0P  Performance State 

While a device or processor is in this state, it uses its maximum performance 

capability and may consume maximum power. 

 

1P  Performance State 

In this performance state, the performance capability of a device or processor is 

limited below its maximum and consumes less than maximum power. 

 

nP  Performance State 

In this performance state, the performance capability of a device or processor is at 

its minimum level and consumes minimal power while remaining in an active state. 
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Fig. 3 Processor power states of ACPI [9]. 

 

And the hardware support constraint in our assumption with ACPI [9] is the same as 

that of [8]. All cores that follow ACPI in one physical package and reside in the same power 

domain must execute at the same performance state (P-state). It means if one core is busy 

running a task at P0, other cores in that package can't enter lower P-states. 

4.3 Problem statement 

In this thesis, we propose a longer common execution time (LCET) algorithm to 

reduce the total execution time of tasks and total energy consumption in heterogeneous 

dual-core embedded real-time systems. From [4], we know that if tasks could execute more 

concurrently in the multi-core, the total execution time of the tasks and the total energy 

consumption can be decreased. 

To illustrate our LCET algorithm we use an example which has two tasks, task 1 and 

task 2, with different priorities and execution times to be run in a dual-core, composed of 

ARM and DSP, as shown in Fig. 4. 

ThrottlingPerformance

  State Px 
C0

C1 C2
C3 

G0 Working 
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Fig. 4 An example: two different tasks. 

 

 

Fig. 5 Different scheduling policies. 

 

Fig. 5 shows that different scheduling priorities have different total execution time 

and total energy consumption for task 1 and task 2. We assume the two tasks arrive at the 

same time. If task 1 has higher priority than task 2 and executes first, we can see that the 

total execution time would become longer than that if task 2 executes first, and thus have 

higher total energy consumption. Therefore, the tasks, which have a different structure of 

pre
iC  and DSP

iC  , at different scheduling priorities will affect the total execution time and 

total energy consumption. To deal with this problem, we propose a priority scheduling 

algorithm which intends to improve the total execution time and the total energy 

consumption in heterogeneous dual-core systems. 

 

ARM 

DSP DSP 

ARM 

ARM 

DSP DSP 

ARM 

CPU 

DSP 

CPU 

DSP 

Arrival time 

(a) Task 1 executes first. 

(b) Task 2 executes first. 

ARM
DSP 

DSP
ARM

Task  1 

Task  2 
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4.4 Proposed mechanisms: P-LCET and NP-LCET 

Before describing our algorithm, we first define the scheduling priority as shown in 

equation (1): 

post
i

DSP
i

pre
i CCCpriorityscheduling //: ……………...…………….……………(1) 

We set task i with scheduling priority 1// <post
i

DSP
i

pre
i CCC  to have higher priority than task 

j with 1// >post
j

DSP
j

pre
j CCC . For those tasks with 1// <post

i
DSP
i

pre
i CCC , we set the shorter 

pre
iC  to have higher priority. Similarly, for tasks with 1// >post

i
DSP
i

pre
i CCC  , we set the 

longer task DSP
iC  to have higher priority. The objective is that we want to find a scheduling 

solution of tasks with the shortest total execution time. 

We propose two different scheduling algorithms: preemptive LECT (P-LCET) and 

non-preemptive LECT (NP-LCET) with/without consideration of the preemptive policy, 

which are shown in Fig. 8 and Fig. 9, respectively. In the P-LCET algorithm, a high priority 

task can preempt the running task with low priority. However, in the NP-LCET algorithm, 

we need to wait for all the tasks arrived before executing NP-LCET. 

Table 2  Example task set. 

Task preC  DSPC  postC  Period 

T1 10 ms 3 ms 1 ms 40 ms 

T2 5 ms 5 ms 1 ms 40 ms 

T3 2 ms 7 ms 1 ms 40 ms 
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(a). An example of P-LCET. 

 

(b). An example of NP-LCET. 

Fig. 6 Task scheduling for P-LCET and NP-NCET. 

 

We use an example with three tasks, as shown in Table 2, to illustrate the P-LCET and 

NP-LCET algorithms. Fig. 6 (a) shows the scheduling result of the P-LCET algorithm. First, 

task 1 arrives and starts running at t = 0. When task 2 arrives at t = 6, task 2 has a higher 

priority (5/5) than task 1 (4/3) and it preempts task 1. When task 3 arrives, due to having a 

higher priority (2/7) than task 2 (3/5), task 2 will be preempted, and the total execution time 

is 25 ms. In Fig. 6 (b), because the NP-LCET algorithm needs to wait for all the tasks 

arrived, the execution order of the three tasks is, task 3, task 2 and task 1, based on their 

scheduling priorities 2/7, 5/5 and 10/3, and the total execution time is 21 ms. 

Fig. 6 (b) shows that the scheduling result of NP-LCET has the shortest total 

execution time of CPU and DSP and the lowest total energy consumption. Although we 

know that the NP-LCET algorithm has the better scheduling result, it will increase the 

average waiting time due to waiting for the next task arrived. In embedded real-time 

T3

T3 

T1 

T1 

3 T2 

T2 

12 
CPU 

DSP 

0 6 8 26 27 29

T2 T2 T1 

T2 

1 T3

T3 T1 

T1 2 3CPU 

DSP 

6 18 80 23 26 
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systems, in order to ensure that each task can complete its work before its deadline and 

avoid having longer average waiting time, we use two different thresholds, called 

Task-Threshold (TTH) and Timer-Threshold (TTR), to solve these problems, as shown as Fig. 

7, where TTH is the bound of tasks number which can wait and be scheduled in the ready 

queue and TTR is the time interval which can wait until the next task arrival. 

 

Fig. 7 Two thresholds used in the ready queue. 

 

NP-LCET : 

Input: },...,,,{ 321 ni TTTTT = , ∑
=

=
n

i i

i
worst p

wU
1

. 

Output: Total execution time (TET) and average waiting time (TWT) of tasks. 

1.  Set TTH and TTR. 

2.  for ( i = 1 to n ) 

         if (Ti) arrives; 

             task number++; 

             Schedule (Ti) by the scheduling priority in the ready queue. 

             if (task number == TTH || TTR expire) 

TET = total execution time of the tasks in the queue; 

TWT = average waiting time of the tasks in the queue; 

                 ∑
=

+=
n

i
iWTETar wTTf

1
/)(  

                 maxfUff worstar ××=  

Fig. 8 Algorithm of NP-LCET. 

Task-Threshold 

Queue 

Timer-Threshold
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P-LCET : 

Input: },...,,,{ 321 ni TTTTT = , ∑
=

=
n

i i

i
worst p

wU
1

. 

Output: Total execution time (TET) and average waiting time (TWT) of tasks. 

1.  for ( i = 1 to n ) 

       if (Ti) arrives; 

            if ( priority of (Ti) > priority of the running task (Tj) ) 

                 Preempt and schedule (Tj) by the scheduling priority in the queue.

            else 

                 Schedule (Ti) by the scheduling priority in the queue. 

    TET = total execution time of the tasks in the queue; 

    TWT = average waiting time of the tasks in the queue; 

    ∑
=

=
n

i
iETar wTf

1
/)(  

    maxfUff worstar ××=  

Fig. 9 Algorithm of P-LCET. 

 

Before applying DVS to our proposed algorithms, NP-LCET and P-LCET, we first 

need to estimate the worst-case utilization worstU , which can be computed by equation (2), 

as follows: 

∑
=

=
n

i i

i
worst p

wU
1

……………..……………………………………………………...(2) 

where n  is the number of tasks in the task set, iw  is the worst-case execution time of task 

iT , and ip  is the period of task iT . Based on the scheduling results of the P-LCET and 

NP-LCET algorithms, we use the total execution time (TET), average waiting time (TWT) and 

the worst-case execution time (∑
=

n

i
iw

1
) to derive a frequency adjustment ratio (far), as shown 

in equations (3) and (4), respectively:  
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In NP-LCET: 

∑
=

+=
n

i
iWTETar wTTf

1
/)( ..…………….……………………...……………..(3) 

In P-LCET: 

∑
=

=
n

i
iETar wTf

1
/)( …………………...………..……………………………...(4) 

And the operating frequency (f) is set according to equation (5)  

maxfUff worstar ××= ………………….………….……………………...….(5) 

where maxf  is the maximum CPU frequency. 

For the task set in Table 2, if we use the maximum frequency and set 1max =f  to run 

the task scheduling as shown in Fig. 6 (a), the total energy consumption is 26 mJ. If we use 

the minimum constant speed, maxfUf worst ×= , and 40/35
1

== ∑
=

n

i i

i
worst p

wU  , we have the 

operating frequency 40/35=f . Notice that by lowering the frequency, the total execution 

time of tasks will increase. So in Fig. 6 (a), the total execution will become 29.71 ms and the 

total energy consumption will become 22.75 mJ. Using our P-LCET in Fig. 6 (a), we can 

get 35/26/)(
1

== ∑
=

n

i
iETar wTf . So the operating frequency can be changed to 

40/26max =××= fUff worstar  and the total execution time will become 40 ms. The total 

energy consumption is 19.31 mJ. In Fig. 6 (b), our algorithm, NP-LCET, can get the shortest 

total execution time of 21 ms and the average waiting time of 11 ms (T1 = 15 ms, T2 = 10 ms, 

T3 = 8 ms and average waiting time TWT = (15 + 10 + 8) / 3 = 11 ms). So we can get 

35/32/)(
1

=+= ∑
=

n

i
iWTETar wTTf  and 40/32max =××= fUff worstar . After we change the 

frequency, the total execution will become 26.25 ms and the total energy consumption will 

become 16.8 mJ. 
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Chapter 5  
Simulation Results and Discussion 
5.1 Simulation model 

In the simulation, we assume the heterogeneous dual-core can change its operating 

frequency and supply voltage continuously within its operational ranges, ],[ maxmin ff  and 

],[ maxmin VV , and all cores need to be execute at the same frequency [8]. The task sets were 

generated using random parameters with uniform distribution with the following 

characteristics [5] [6]: 

 The number of tasks was chosen as a random variable from 10 to 50. 

 Task periods were generated from 10 to 100 ms. 

 Tasks which perform at most one DSP request needs to be executed. 

 The worst-case execution times were selected in such a way that the worst-case 

utilization ∑
=

n

i i

i
p

w
1

 varied from 0.01 to 0.99. 

 DSP
iC  was generated to be a random variable with uniform distribution in the range of 

10% to 80% of tasks. 

 TTR was set to 10 ms. 

 TTH was ranging from 2 to 6. 

In the following discussions, we have normalized all the simulation results of total 

energy consumption to that of all tasks with the worst-case execution time ∑
=

n

i
iw

1
 using the 

maximum frequency, maxf . 
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5.2 Effects of worst-case utilization on total energy 

consumption 

Fig. 10 compares the total energy consumption of NP-LCET under different TTH and of 

P-LCET under different worst-case utilization worstU . 

 P-LCET reduces the total energy consumption by an average of 8% compared with 

Kim et al. [6] using minimum constant speed. 

 NP-LCET reduces the total energy consumption by an average of 16%, 25%, 20%, 

compared with Kim et al. [6] using minimum constant speed as TTH was set to be 2, 4, 

and 6, respectively. 

 The result with TTH = 6 has the worse total energy consumption than that with TTH = 4 

because higher average waiting time will affect the derivation of arf . 
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Fig. 10 Total energy consumption under different worst-case utilization. 

 

5.3 Effects of worst-case utilization on average waiting 

time 

Fig. 11 compares the average waiting time of NP-LCET under different TTR and of 

P-LCET under different worst-case utilization worstU . 
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 NP-LCET increased the average waiting time by an average of 40%, 71% and 113%, 

compared with Kim et al. [6], as TTR was set to be 2, 4, and 6, respectively.  

 From simulation results, we know that NP-LECT will have more average waiting time 

due to that NP-LCET needs to wait until the number of arrival tasks is equal to TTR. 
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Fig. 11 Average waiting time under different worst-case utilization. 

 

5.4 Effects of worst-case utilization on deadline miss 

Fig. 12 compares the deadline miss of NP-LCET under different TTR and of P-LCET 

under different worst-case utilization worstU .  

 The percentage of tasks completed before the deadline using NP-LCET decreases 

slightly when the worst-case utilization increases. This is because that when TTH or the 

worst-case utilization increases, the average waiting time of each task will also 

increase. So it will result in the increase of deadline miss. 
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Fig. 12 Deadline miss under different worst-case utilization. 

 

5.5 Effects of task number on total energy consumption 

Fig. 13 compares the total energy consumption of NP-LCET under different TTR and of 

P-LCET under different task numbers. The worst-case utilization was set to 95%. 

 We observed that the total energy consumption improvement of the Kim et al. [6] and 

P-LCET are almost no change when the number of tasks increases. It is because that 

the DVS algorithm relies on the worst-case utilization, but not on the task number.  

 The total energy consumption improvement using NP-LCET decreases conspicuously 

when the number of tasks in a task set increases. It is because the task arrival 

frequency increases duo to lower average waiting time and a lower frequency used. 
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Fig. 13 Total energy consumption under different number of tasks. 

 

5.6 Effects of task number on average waiting time 

Fig. 14 compares the average waiting time of NP-LCET under different TTH and of 

P-LCET under different task numbers. The worst-case utilization was set to 95%. 

 The average waiting time of NP-LCET algorithms decreased clearly when the number 

of task increases due to the increased task arrival frequency.  
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Fig. 14 Average waiting time under different number of tasks. 
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Chapter 6  

Conclusions and Future Work 

6.1 Concluding remarks 

In this thesis, we have presented two efficient low power scheduling techniques, 

called P-LCET and NP-LCET, for heterogeneous dual-core embedded real-time systems. 

Our design approach was motivated by the heterogeneous dual-core architecture, task 

scheduling and DVS techniques. The main contribution of the P-LCET and NP-LCET is 

that the two proposed scheduling algorithms for heterogeneous dual-core systems have 

better power saving and less total execution time than existing approaches. The proposed 

NP-LCET has better power saving and no preemptive overhead, but has higher average 

waiting time and deadline misses. The proposed P-LCET has less power saving than 

NP-LCET, but the average waiting time will be lower and no deadline miss. Besides, the 

overhead of P-LCET is an increase in the number of preemptions, which results in increased 

energy consumption and clock cycles. Fortunately, these overheads are usually small 

enough and can be neglected. 

6.2 Future work 

In this thesis, the proposed LCET has two different policies, preemptive LCET 

(P-LCET) and non-preemptive LCET (NP-LCET). We know that to have shorter total 

execution time and lower total energy consumption for all tasks is using NP-LCET. But it 

will have higher average waiting time. The other scheduling policy, P-LCET, may not have 

better power saving than NP-LCET, but the average waiting time will be lower. How to 

integrate these two policies to have low total energy consumption, low waiting time, and 

considering the mixed workload as well is our future work. The performance and energy 
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consumption of the integrated approach deserve to further study. 
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