R+ & X

Y AR S N BB R R

A AR AKARE TR UH FEHEAR IR Bk

An Efficient Low Power Schedulingfor Heterogeneous Dual-Core

Embedded Real-Time Systems

x4 i ikpd

B 1 RH H

REREBE L+t FXEA

PR 0 N TEE G sz o A R AR AR

An Efficient Low Power Scheduling for
Heterogeneous Dual-Core Embedded Real-Time Systems

Foyo2 T HkE Student : Pochun Lin

R 2R Advisor : Kuochen Wang

squirements

for the Degree of
Master
in
Computer Science

June 2008

Hsinchu, Taiwan, Republic of China

PER R LS ER

ﬂ %ﬁ.%*ﬁz‘b SN ;\A E:'T’F@b/?: %fb—L

TR R A AR B

g4 ki PR I RA B4

RIS S SR S R e

R

U R A S AN K EPIS A R 0 o8 A B B 32 B F #oH R
AR F R o B T B B R BOR AR R A FEAR o K AR IR A HEAE R & — 18
AT EAR G RRM - RS UILA KA TR A Fe4EA2 00 By 18 TR AR5 5
%o RARS AR —CPUSREAR HMEY ZHZCRAHL - KT » &

EZHMNEBSCHBAXFEF A &KL RO E — B &% BT

=N

(LCET)iR 3Lk A M AL G EETRAER TR

B

A0 o REEIE6
S EREE T H— o ERTIREBMIEILIE R R A BT AR S S AR
PPEF 2 4t Loy TR HATIFM 5 6 = &AM i — S IR A 54281k e)

BHATIF R FE TR RIARAEEIKAR TR - RBERET > BE

7 Kimetal ik EEAER)SEERAEZT » KMPTREGT

> R AE T # ke LCET (P-LCET) & &~ T # %49 LCET (NP-LCET) » &-#h

4T 8% A 16% ~ 25% (13% % 33% ~ 38%) 44 48 48 & 4648 ©

An Efficient Low Power Scheduling for
Heterogeneous Dual-Core Embedded
Real-Time Systems

Student: Pochun Lin Advisor: Dr. Kuochen Wang
Department of Computer Science

National Chiao Tung University

Abstract

In recent years, heterogeneous dual-core embedded real=time systems, such as personal
digital assistants (PDAs) and cellular phones, have become more and more popular. In order
to achieve real ;time performance and low energy. ‘consumption, dow power scheduling
becomes a critieal Issue. Most researches on low power scheduling.with dynamic voltage
scaling (DVS) were targeted at only,;one:CPU or homogeneous multi-core systems. In this
thesis, we propose a low power. scheduling -algerithm called ;Longer Common Execution
Time (LCET) for DVS enabled heterogeneous dual-core embedded real-time systems,
which includes two steps.iFirst, we reduce total execution‘time of tasks by using LCET in
heterogeneous dual-core embedded™ real-time Systems. Second, we further exploit the
reduced total execution time to adjust voltage and frequency levels in order to reduce the
total energy consumption. Simulation results show that the proposed P-LCET (a preemptive
version) and NP-LCET (a non-preemptive version) can effectively reduce the total energy
consumption by 8% and 16% ~ 25% (13% and 33% ~ 38%) compared with the work by

Kim et al. with (without) dynamic voltage scaling.

Keywords: Dynamic voltage scaling, embedded real-time system, heterogeneous dual-core,

low power scheduling, total execution time.

Acknowledgements

Many people have helped me with this thesis. | deeply appreciate my thesis advisor,
Dr. Kuochen Wang, for his intensive advice and instruction. | would like to thank all the
classmates in Mobile Computing and Broadband Networking Laboratory (MBL) for their
invaluable assistance and suggestions. The support by the NCTU EECS-MediaTek Research

Center under Grant Q583 and, the: National Science Council under Grants

NSC96-2628-E-009-140-M° 628-E-002-138-MY3 is also grateful
acknowledged.

Finally, | thar dless love and support.

Contents

ADSEract (IN ChINESE)...... et e e e e e e e

Abstract (in ENGliSN)........ooo i iii

Acknowledgements..........) T %
Contents................. .. BT N, o T Vi

List of Figures . (I - R viii

List of Tables........... .. o g g s iX
Chapter 1 Introduction T R 1
Chapter 2 AT . . FUUOURTURTN 4
2.1 o5 of inter-ta R 4
2.2 Priority SChedUIING.......ccoe i 5
Chapter 3 Related WOKK ..o s 6
Chapter 4 Proposed Low Power Scheduling Algorithm ... 9
4.1 SYSIEM MOUEI ... 9
4.2 State definitionS [9] ...ccvvvveiiee e 10
4.3 Problem Statement ..o 11

Vi

4.4 Proposed mechanisms: P-LCET and NP-LCETcccccceeeveieiveninnen. 13

Chapter 5 Simulation Results and DiSCUSSION...........cccovvriveierenene e 18
51 Simulation Model...........ooiiiiiii 18
5.2 Effects of worst-case utilization on total energy consumption............ 19
5.3 Effects of worst-case utilization on average waiting time................... 19
5.4 Effects of worst-case utilization on deadline missc.ccocvvvvnnene 20

55 Effects of taskn) . (o] o [FURPRRURRIRRIS 21

5.6 0 erage Waiting timeocoevvveenenns 22

Chapter 6 clusi I B 23
1

6.1 nclu o a _ S e R 23

6.2 uture L DR, ... LR 23

Bibliography....... y . . CHUURURURURURR 25

vii

List of Figures

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

10

11

12

13

14

Heterogeneous dual-core architecture [6]........ccccoovvvvevieeieiiieniveie e 2
Heterogeneous dual-core task model............cccoovevieieice i 9
Processor power states 0f ACPI[9]........cccoovviiieiie e, 11
Anexample: two different tasks. ..o e 12
Different scheduling POIICIES. ...t viiiee e abeesisstie s eese e e e se e 12
Task scheduling for P-LCET and NP-NCET........ccccveviviiiiiniiieieeen 14
Two thresholds used in.the ready qUeue. ..ot 15
Algorithmof NP-LCET. ... f it et 15
AIGOFItNM OF P-LCET.oiiiiineeseioisibeareasie et 16
Total energy consumption under different worst-case utilization. 19
Average waiting time under different worst-case utilization.................... 20
Deadline miss under different worst-case utilization.c.cccceevvenee 21
Total energy consumption under different number of tasks. 22
Average waiting time under different number of tasks.c.cccccvennne. 22

viii

List of Tables

Table 1 Comparison of related WOrK.ccoerieiiiiniieiiceeieee e 8

Table 2 EXamPle task SEL.cveieiiiie et e 13

Chapter 1

Introduction

With more and more multimedia applications, low energy consumption is extremely
important for heterogeneous dual-core embedded real-time systems, like the PDA and
smart-phone. Most mobile handhelds are dual-core systems [6] . A dual-core system is
mainly composed of an ARM processor and a DSP. Fig: 1.shows a heterogeneous dual-core
architecture. Like the OMARP processor, which is manufactured by TI (Texas Instruments)
for mobile applications, includes two cores, ARM926 (ARMS9 core) and TMS320C55X
(DSP coprocesser) [12] . The Freescale i:300-30 processor also includes two cores: ARM11
and StarCore S€140 (DSP processor) [13]:

In order to conserve energy.for: battery-powered real-timesystems, several low
power techniques were propesed.” Dynamic- voltage scaling (DVS) and dynamic power
management (DPM) have been ‘'employed as available-techniques to reduce the energy
consumption of CMOS microprocessor systems.[1]. The DVS is a design technique to
adjust the CPU’s supply voltage and frequency. The primary design goal is to exploit the
slack time. Since in battery-powered systems, the battery lifetime impacts the utility and
duration of the system directly, reducing the energy consumption and extending the battery

lifetime should be a primary design metric [16].

Memory 1/0

Fig. 1 Heterogeneous dual-core architecture [6].

We know that the energy consumption E of ‘a CMOS circuit is dominated by its

supply voltage and iS proportional to the square of-its supply voltage, which is expressed as

E=Cy V& -C [2], where Cg-is-the effective switched capacitance, vy, is the supply

voltage, and C'1s the number of execution cycles: Reducing the supply voltage also drops
the maximum operating frequency proportionally (v, « 1). Thus, E could be approximated
as being proportional to the operating frequencysquared (&« f2). Therefore, lowering
operating frequencyand-according supply voltage Is an effective technique for reducing
energy consumption [14}.

In real-time systems with periodic tasks, no deadline miss is an important requirement
of the systems. For example, embedded real-time systems must complete the tasks before
their deadlines to maintain the system stability. Energy-efficient scheduling for hard
real-time tasks on DVS processors is to minimize the energy consumption, while all the
real-time tasks are done in time.

In this paper, we focus on low power scheduling for heterogeneous dual-core
embedded real-time systems. In contrast to most of existing low power scheduling
approaches that were targeted at only one CPU or homogeneous multi-core systems, we

consider low power scheduling for heterogeneous dual-core embedded real-time systems.

2

The rest of the thesis is organized as follows. Chapter 2 includes DVS and scheduling
preliminaries. Chapter 3 reviews related work. The system model and the proposed design
approach are described in Chapter 4. Simulation results are discussed in Chapter 5 and

conclusions and future work are given in Chapter 6.

Chapter 2
Preliminaries

DVS exploits the slack time to adjust the CPU frequency and voltage levels in order
to reduce the energy consumption and guarantee all tasks completed before the deadlines.
Therefore, a good slack time estimation method is very important to reduce energy

consumption.

2.1 Categoriesiof inter-task DVS strategies

There are two categories of-DVS algorithms [3]: inter-taskiDVS and intra-task DVS.
The inter-task DVS algorithm-adjusts-the CPU frequency task-by-task, which allocates the
slack time between the current task and the following tasks. And the intra-task DVS
algorithm adjusts the CPU frequency within‘a task, which uses the slack time when a task is
predicted to complete before iits worsi=casesexecutionstime (WCET).

In this thesis, we consider inter-task DVS algorithms for periodic tasks, which

usually exploit one or more of the following four strategies to estimate the slack time.

(1) Minimum constant speed [3] [7]
This strategy is defined as the lowest possible clock speed that guarantees the

feasible scheduling of the task set.

(2) Stretching to NAT [3] [7]
This strategy is based on that the scheduling already knows the next task arrival time

(NAT) of periodic tasks.

(3) Priority-based slack stealing [3] [7]
Not all the execution times of tasks are in the worst cases. If high priority tasks
complete earlier than their WCETSs, the next lower priority task can use the remaining slack

time to adjust the frequency.

(4) Utilization updating [3] [7]
The utilization updating technique estimates the required processor performance at
the current scheduling point by recalculation the expected worst case processor utilization

using the actual execution times of completed task instances.

2.2 Priority scheduling

Existing real-time scheduling policies can be -classified into rate-monotonic (RM)

scheduler and earliest-deadline-first (EDF) scheduler..Both of them are dynamic scheduling.

(1) Rate-Monotonic scheduling (RM)
The RM Scheduling fis the, fixed-priority-scheduling.’It always gives the highest

priority to the task which has.the shortest period in the ready queue.

(2) Earliest-Deadline-First scheduling (EDF)
The EDF scheduling is the dynamic-priority scheduling. It always gives the highest

priority to the task which has the latest deadline in the ready queue.

Chapter 3
Related Work

Recently, to achieve high computation performance and lower energy consumption,
the researches on multi-core embedded systems have become more and more popular [4] [5]
[6] [10] [11] [15]. There are two categories of multi-core architecture. The cores in a given
chip package are symmetric, called a homogeneous multi-core; otherwise, it is called a
heterogeneous multi-core for asymmetric processors.in a chip package.

In homogeneous:multi-core systems, Alon et al: [4] shows that the total energy
consumption of applications with single-thread (ST) is different from that of multi-thread
(MT). It shows that the energy consumption by using.an MT code s twice less than that by
an ST code in corresponding performance-states and reduces the half of total execution time
in Intel Core Duo systems. In the real-time loop task scheduling problem, Chen et al. [15]
proposed the retiming and rotation®algorithms. By reducing the task schedule length and
using slack time, it.ean reduce.more energy consumption and solve this problem.

In the periodie’hard real-time tasks scheduling problem on heterogeneous dual-core
systems composed by ARMcore and DSP, Gai et al. [5] proposed a mechanism that divides
the tasks into two groups: regular and DSP, where regular is the tasks without DSP workload
and the one with DSP workload is called DSP, and each group has its corresponding queue:
regular and DSP queues. It can increase the schedulability bound in the considered
architecture and allow a more efficient use of the computational resources without still
maintaining some kind of real-time guarantee. However, there are two problems in [5]. One is
that the high priority DSP tasks will be blocked by the low priority DSP tasks and the other is
that a regular task with low priority can be executed earlier than a DSP task with high priority.

Due to these two problems, Kim et al. [6] proposed a new scheduling model using only a

queue combined with regular tasks and DSP tasks ordered by priority. It has better
schedulability and fewer deadline misses.

In task critical problems with the mixed workload composed of periodic and aperiodic
real-time jobs on heterogeneous distributed real-time embedded system, Marcus et al. [10]
proposed an energy-efficient genetic list scheduling algorithm (EE-GLSA) and an
energy-efficient genetic list mapping approach (EE-GMA) algorithm to get each aperiodic
job’s task mapping and find the shortest tasks scheduling length. It has higher energy
reductions compared to previous DVS scheduling approaches based on constructive
techniques and total energy savings for.mapping and scheduling optimized DVS systems.

In the valid power-efficient scheduling based on'task critical path analysis, Luo et al.
[11] shows that the static and dynamic variable voltage scheduling algorithms in hard and
soft real-time systems have hard-task deadlines 'miss in heterogeneous distributed real-time
embedded systems.

Table 1'shows the comparison_of several existing low power DVS algorithms, and
the proposed P-LCET (preemptiveslonger-scommony execution time) and NP-LCET
(non-preemptive longer common execution time) algorithms for heterogeneous dual-core
embedded real-time systems. The metric of multi-core type ‘describes if the multi-core is
homogeneous or heterogeneous. The metric of total energy consumption indicates the CPU
total energy consumption using each algorithm. The metric of number of preemptions
indicates the frequency of preemptions. The metric of average waiting time indicates the
average queuing time of tasks. The metric of deadline miss indicates the real-time tasks can
not complete before the time constraint. In Chapter 5, we will compare our proposed

P-LCET and NP-LCET with the work by Kim et al. [6], since it has no deadline miss.

Table 1 Comparison of related work.
Algorithm Multi-core Total energy Number of Average Deadline
type consumption preemption | waiting time miss
Intel dual-core | Homogeneous Low N/A N/A N/A
[4]
ILOSA[15] | Homogeneous Low N/A N/A N/A
EE-GLSA Heterogeneous Medium N/A N/A N/A
[10]
S-and-D [11] | Heterogeneous Medium N/A N/A N/A
Gai etal. [5] | Heterogeneous High Medium Medium Yes
Kimetal. [6] | Heterogeneous High Medium Low No
P-LCET Heterogeneous Low Medium Low No
(proposed)
NP-LCET Heterogeneous Lowest Low Medium to Yes
(proposed) High

Chapter 4
Proposed Low Power Scheduling
Algorithm

4.1 System model

The target architecture is a heterogeneous dual-core embedded real-time systems,
composed by ARM and DSP ‘cores, that can.change their supply voltage and operating

frequency continuously “within_its operational ranges, Muin:Vimax] and [, fruax], and all

cores need to be executed at the same frequency [8]. Aitask set T of n periodic tasks is
denoted as T =4T,;,T,,T;,...., T, ¥ Each task ‘T, has its own period p; and worst-case

execution time (WCET) w; . The deadline d;, .of ;" is assumed to bé equal to its period p; .

The j™ instance of ‘T, is denoted by T; ;«'Each task releases its instance periodically and

all tasks are assumed to be mutually independent {14].
The task model we used for low power scheduling with.-DVS is illustrated in Fig. 2.

Each task executes for 'C, units.of time on- the master-CPU, and may request a DSP

activity for C . We assume that each task performs at most one DSP request, after C,”

units of time, and then execution for other C,”* units, suichas C, =C”® +C" [6].

Cpl’e Cpost
cpu []

A
\ 4

DSP

DSP
Ci

Fig. 2 Heterogeneous dual-core task model.

Besides, in consideration to hardware power saving support, ACPI spec. (Advanced
Configuration and Power Interface Specification) [9] is the most used technique for the CPU.
The power states transition flow diagram of ACPI is shown in Fig. 3 and detailed descriptions

are shown as follows.

4.2 State definitions [9]
G, Working
In this state, peripheral devices (peripherals) are having their power states changed

dynamically.

C, Processor Power State

While the processor is in this state, It executes.instructions.

P, Performance State

While a device or processor 1S in this state,~it uses its maximum performance

capability and may.eonsume maximum power:

P, Performance State

In this performance state, the performance capability of a device or processor is

limited below its maximum and consumes less than maximum power.

P, Performance State

In this performance state, the performance capability of a device or processor is at

its minimum level and consumes minimal power while remaining in an active state.

10

Performance

State Py

Go Working

And the har ' ; U n wi PI [9] is the same as
that of [8]. All eside in the same power
domain must execute a , _I Eﬁﬁ- .- It means if one core is busy
running a task at Py, ¢ cores |ﬁat package can't ente_r_ fo

In this thesis, we propose a longer common execution time (LCET) algorithm to
reduce the total execution time of tasks and total energy consumption in heterogeneous
dual-core embedded real-time systems. From [4], we know that if tasks could execute more
concurrently in the multi-core, the total execution time of the tasks and the total energy
consumption can be decreased.

To illustrate our LCET algorithm we use an example which has two tasks, task 1 and
task 2, with different priorities and execution times to be run in a dual-core, composed of

ARM and DSP, as shown in Fig. 4.

11

Task 1 ARM

Task 2 ARM

Fig. 4 An example: two different tasks.

Arrival time

CPU ARM ARM

DSP

B =

® () Task 1 executes first. |

CPU
DSP

same time. If task 1 has higher prior and executes first, we can see that the
total execution time would become longer than that if task 2 executes first, and thus have

higher total energy consumption. Therefore, the tasks, which have a different structure of

CP® and CP"* , at different scheduling priorities will affect the total execution time and

total energy consumption. To deal with this problem, we propose a priority scheduling
algorithm which intends to improve the total execution time and the total energy

consumption in heterogeneous dual-core systems.

12

4.4 Proposed mechanisms: P-LCET and NP-LCET

Before describing our algorithm, we first define the scheduling priority as shown in
equation (1):

scheduling priority :C.P® /CP* /CP™
We set task i with scheduling priority c ™ /Cc¥® /Cc™ <1 to have higher priority than task

Jj with cPe/c>* /¢ >1. For those tasks with c™ /C>" /C™ <1, we set the shorter
C.”™ to have higher priority. Similarly, for tasks with ¢ /cP® /c” >1 , we set the

longer task C°* to have'higher priority. The objective is that we want to find a scheduling

solution of tasks with the shortest total execution time.

We propose two different_scheduling-algorithms: ‘preemptive LECT (P-LCET) and
non-preemptive LECT' (NP-LCET) with/without consideration of the preemptive policy,
which are showngin Fig. 8 and'Fig. 9, respectively. In the P-LL.CET algerithm, a high priority
task can preempt.the running task-with low priority. However, in the NP-LCET algorithm,

we need to wait forall the. tasks arrived before executing NP-LCET.

Table 2 Example task set.

Task C e C Ps® C Post Period
T1 10 ms 3ms 1ms 40 ms
T2 5ms 5ms 1ms 40 ms
T3 2 ms 7ms 1ms 40 ms

13

0 6 8 18 23 26

A A
CPU " Tzi 2 " i j‘ ﬁ

(@). Anexample of P-LCET.

0 6 8 26 27 29

~ | s Bl [

T2 Tl

(b). An example of NP-LCET.

Fig. 6 Task scheduling for P-LCET and NP-NCET.

We use an example with.threetasks, as shown in Table 2, to illustrate the P-LCET and
NP-LCET algorithms. Fig. 6 (a)'shows the scheduling result of the P-LCET algorithm. First,
task 1 arrives and starts running at t = 0. When task 2 arrives at t = 6, task 2 has a higher
priority (5/5) than task 1 (4/3) and it preempts task 1. When task 3 arrives, due to having a
higher priority (2/7) than task 2 (3/5), task 2 will be preempted, and the total execution time
IS 25 ms. In Fig. 6 (b), because the NP-LCET algorithm needs to wait for all the tasks
arrived, the execution order of the three tasks is, task 3, task 2 and task 1, based on their
scheduling priorities 2/7, 5/5 and 10/3, and the total execution time is 21 ms.

Fig. 6 (b) shows that the scheduling result of NP-LCET has the shortest total
execution time of CPU and DSP and the lowest total energy consumption. Although we
know that the NP-LCET algorithm has the better scheduling result, it will increase the

average waiting time due to waiting for the next task arrived. In embedded real-time

14

systems, in order to ensure that each task can complete its work before its deadline and
avoid having longer average waiting time, we use two different thresholds, called
Task-Threshold (T++) and Timer-Threshold (T+r), to solve these problems, as shown as Fig.
7, where Ty is the bound of tasks number which can wait and be scheduled in the ready

queue and Trr is the time interval which can wait until the next task arrival.

Task-Threshold Timer-Threshold

QOueue

of tasks.

task number
Schedule (T;) by the scheduling priority in the ready queue.
if (task number == T || T1r expire)

Ter = total execution time of the tasks in the queue;

Twr = average waiting time of the tasks in the queue;

far Z(TET +TWT)/ZW|

i=1

f=1f,xU,qxf

worst max

Fig. 8 Algorithm of NP-LCET.

15

P-LCET :

Input: T, ={T,,T,, T4, T.}, U, = ZV% .
i=1

Output: Total execution time (Ter) and average waiting time (Twr) of tasks.
1. for(/=/ton)
if (T;) arrives;
if (priority of (T;) > priority of the running task (T;))
Preempt and schedule (T;j) by the scheduling priority in the queue.
else
Schedule (T;) by the seheduling priority in the queue.
Ter = total execution time of the tasks in the queue;

Twr = average waiting time of the tasks 'in the queue;

far = (TET)/z W
i=1

f = far ><LJWOI’SI x fmax

Fig: 9 Algorithm of P-LCET.

Before applying"DVS to-our proposed algorithms, NP<LCET and P-LCET, we first
need to estimate the worst-case utilization U, , Which can be computed by equation (2),

as follows:

i=1

where n is the number of tasks in the task set, w, is the worst-case execution time of task
T;, and p; is the period of task T;. Based on the scheduling results of the P-LCET and

NP-LCET algorithms, we use the total execution time (7zr), average waiting time (7z) and
n

the worst-case execution time (ZWi) to derive a frequency adjustment ratio (fa), as shown
i=1

in equations (3) and (4), respectively:

16

In NP-LCET:

far = (Ter + T)/ D Wi e s 3)
i=1
In P-LCET:
far = (Ter)/ D Wi e (4)
i=1

And the operating frequency (f) is set according to equation (5)

where fay is the maximum CPU frequency.

For the task set in Table.2, if we use the maximum.frequency and set f_ =1 torun

the task scheduling as"shown in Fig. 6 (a), the total energy eonsumption is 26 mJ. If we use

— “lworst

the minimum constant speed, f =U o feand U, = ZVV =35/40 , we have the
= i

operating frequency f =35/40. Notice that by, lowering the' frequency, the total execution
time of tasks will increase. So in Fig. 6 (a); the total execution will become 29.71 ms and the

total energy consumption will beeome*22.75 'mJ."Using our P-LCET in Fig. 6 (a), we can

get f, =(TET)/ZWi =26/85 .4 So the ‘operating frequency can be changed to

i=1

f =1, xU X fr =26/40. and the total execution time will become 40 ms. The total

worst
energy consumption is 19.31 mJ. In Fig. 6 (b), our algorithm, NP-LCET, can get the shortest
total execution time of 21 ms and the average waiting time of 11 ms (T1 =15 ms, T2 = 10 ms,

T3 = 8 ms and average waiting time Twr = (15 + 10 + 8) / 3 = 11 ms). So we can get

for = (Ter +Tyr)/ D W, =32/35 and f =f, xU . x ., =32/40. After we change the

i=1

frequency, the total execution will become 26.25 ms and the total energy consumption will

become 16.8 mJ.

17

Chapter 5
Simulation Results and Discussion

5.1 Simulation model

frequency and supply voltage continuously within its operational ranges, [f

In the simulation, we assume the heterogeneous dual-core can change its operating

] and

min ! fmax

[Vmin»Vmax], @nd all cores need to berexecute atjthe same frequency [8]. The task sets were

generated using random’ parameters with uniform distribution with the following

characteristics [5] [6]:

The number of tasks was chosen as a random variable from 10 to 50.
Task periods‘were generated from 10 to 100.ms.
Tasks which perform at'most one DSP request needs to be executed.

The worst-case execution ‘times “were selected “in such a way that the worst-case

utilization Z V% varied from 0.01 to 0.99.
i=1 I

CiDSP was generated.to be-a.random variable with uniform distribution in the range of

10% to 80% of tasks.
Ttr Was set to 10 ms.
Trn was ranging from 2 to 6.

In the following discussions, we have normalized all the simulation results of total

energy consumption to that of all tasks with the worst-case execution time ZWi using the

i=1

maximum frequency, frax .

18

5.2 Effects of worst-case utilization on total energy

consumption

Fig. 10 compares the total energy consumption of NP-LCET under different Ty and of

P-LCET under different worst-case utilization U, -

® P-LCET reduces the total energy consumption by an average of 8% compared with
Kim et al. [6] using minimum constant speed.

® NP-LCET reduces the total energy consumption by an average of 16%, 25%, 20%,
compared with Kim et al. [6]:ising minimum-constant speed as Tty was set to be 2, 4,
and 6, respectively:

® The result with Tyy =6 has the worse total energy consumption than that with Ty = 4

because higher average waiting time will.affect the derivation of f,, .

= 0.8

E - 06 —e— Kim et al. [6]
E 2 —=— P CET

= 5 04 —+— NP-LCET (2)
li g 0 —— NP-LCET (6)
g ’ —%— NP-LCET (4)
Z.,

0 01 02 03 04 05 06 07 08 09 1

Worst-Case Utilization

Fig. 10 Total energy consumption under different worst-case utilization.

5.3 Effects of worst-case utilization on average waiting
time

Fig. 11 compares the average waiting time of NP-LCET under different Ttr and of

P-LCET under different worst-case utilization U, -

19

NP-LCET increased the average waiting time by an average of 40%, 71% and 113%,
compared with Kim et al. [6], as T+g was set to be 2, 4, and 6, respectively.
From simulation results, we know that NP-LECT will have more average waiting time

due to that NP-LCET needs to wait until the number of arrival tasks is equal to T+r.

30
25

—*— NP-LCET (6)
—*— NP-LCET 4)
—&— NP-LCET (2)
—o— Kim et al. [6]

—=— P-LCET

20
15
10

Average Waiting Time (ms)

0 01 02 03 04 05 06 07 08 09 1

Worst-Case Utilization

Figall Average'waiting time under different worst-casewutilization.

5.4 Effects of worst-case-utilization on deadline miss

Fig. 12 compares the deadline miss of NP-LCET under different Trr and of P-LCET

under different worst-case utilization U, -

The percentage of tasks completed before|the deadline using NP-LCET decreases
slightly when the worst-case utilization increases. This is because that when Ty or the
worst-case utilization increases, the average waiting time of each task will also

increase. So it will result in the increase of deadline miss.

20

1.01

o]

£ L—I—I—H—I—I—I—I—I=J

z 1 —e— Kim et al. [6]

§ O —=—P-LCET

% 098 | —+— NP-LCET (2)

& 097 —*— NP-LCET (4)

Gy

§ 096 L —<— NP-LCET (6)
0.95

0 0.1020.3040.50.60.70.809 1

Worst-Case Utilization

Fig. 12 Deadline miss under different worst-case utilization.

5.5 Effects of task number on total energy consumption

Fig. 13 compares the total energy consumption of NP-LCET under different T1g and of

P-LCET under different task numbers. The worst-case utilization was Set to 95%.

® \\e observed that the total energy-consumption improvement of the Kim et al. [6] and
P-LCET are almost no change when the number of tasks increases. It is because that
the DVS algorithm relies on‘the worst-case utilization, but not on the task number.

® The total energy consumption-improvement using NP-LCET decreases conspicuously
when the number of tasks“in a task set increases. It is because the task arrival

frequency increases duo to lower average waiting time and a lower frequency used.

21

>

ol

()

@ g —&— Kim et al. [6]
= 2 —=— P.LCET

S E

; 5 —a— NP-LCET (2)
s 5 —— NP-LCET (6)
=0

g 02 [~ —*%— NP-LCET (4)
o

Z.

10 15 20 25 30 35 40 45 50
Number of Tasks

Fig. 13 Total energy consumption under different number of tasks.

5.6 Effects of task number on average waiting time

Fig. 14 compares the average waiting time of NP-LCET under different Tty and of
P-LCET under different task numbers. The worst-case utilization was set to 95%.
® The average waiting time of NP-LCET algorithms decreased clearly when the number

of task increases due to the incréased task-arrivalfrequency:

25

20
—>— NP-LCET (6)

—*— NP-LCET (4)
—4— NP-LCET (2)
—¢— Kim et al. [6]
—=®— P.ICET

15

10

Average Waiting Time (ms)

10 15 20 25 30 35 40 45 50
Number of Tasks

Fig. 14 Average waiting time under different number of tasks.

22

Chapter 6
Conclusions and Future Work

6.1 Concluding remarks

In this thesis, we have presented two efficient low power scheduling techniques,
called P-LCET and NP-LCET, for heterogeneous dual-core embedded real-time systems.
Our design approach was motivated by _the heterogeneous dual-core architecture, task
scheduling and DVS techniques. The main contribution ef the P-LCET and NP-LCET is
that the two proposed: scheduling algorithms for heterogeneous dual-core systems have
better power saving and less total execution time than existing approaches. The proposed
NP-LCET has better power saving and no preemptive overhead, but has higher average
waiting time and deadline misses. The ‘proposed P-LCET has less power saving than
NP-LCET, but the average waiting_time‘will be lower and no deadline miss. Besides, the
overhead of P-LCET is an increasein the number-of preemptions, which results in increased
energy consumption-and clock cycles. Fortunately, these overheads are usually small

enough and can be neglected.

6.2 Future work

In this thesis, the proposed LCET has two different policies, preemptive LCET
(P-LCET) and non-preemptive LCET (NP-LCET). We know that to have shorter total
execution time and lower total energy consumption for all tasks is using NP-LCET. But it
will have higher average waiting time. The other scheduling policy, P-LCET, may not have
better power saving than NP-LCET, but the average waiting time will be lower. How to
integrate these two policies to have low total energy consumption, low waiting time, and

considering the mixed workload as well is our future work. The performance and energy

23

consumption of the integrated approach deserve to further study.

24

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

L. Miao, Y. Qi, D. Hou, C. I. Wu, Y. H. Dai, “Dynamic power management and
dynamic voltage scaling in real-time CMP systems,” in Proceedings of International
Conference on Networking, Architecture, and Storage, pp. 249 — 250, July 2007.

B. Moyer, “Low-power design for embedded processors,” in Proceedings of IEEE,
Volume 89, Issue 11, pp. 157641587, November 2001.

W. Kim, D. Shin,<H. ' S. Yun, J. Kim and S. L. Min,“Performance comparison of
dynamic voltage scaling algorithms for hard real-time systems,” in Proceeding of the
Eighth IEEE on Real-Time and Embedded Technology and Applications Symposium,
pp. 219 — 228, Sept. 2002.

“Intel dual-core”
http://www.intel.com/technology/it)/2006/volume10issue02/art03_Power_and_Therma
|_Management/p02. intro:htm:

P. Gai, L. Abeni and' G. Buttazzo, "Multiprocessor DSP seheduling in system-on-a-chip
architectures,” in Proceedings of 14th Euromicro Conference on Real-Time Systems, pp.
231 - 238, June 2002.

K. Kim, D. Kim and C. Park, “Real-time scheduling in heterogeneous dual-core
architectures,” in Proceedings of 12th International Conference on Parallel and
Distributed Systems, pp. 1 - 6, July 2006.

P. Pillai and K.G. Shin. “Real-time dynamic voltage scaling for low-power embedded
operating systems,” in Proceedings of 18th ACM symposium on Operating Systems, pp.

89-102, October 2001.

25

[8] Intel multi-core,
http://www.intel.com/technology/itj/2007/v11i4/9-process/6-linux-scheduler.htm.

[9] ACPI spec., http://www.acpi.info/DOWNLOADS/ACPIspec30a.pdf.

[10] M.T. Schmitz, B.M. Al-Hashimi and P. Eles, “Energy-efficient mapping and
scheduling for DVS enabled distributed embedded systems,” in Proceedings of Europe
Conference and Exhibition on Design, Automation and Test, pp. 514 — 521, March
2002.

[11] J. Luo and J. N, “Static and dynamic variable voltage scheduling algorithms for
real-time heterogeneous, distributed embedded systems,” in Proceedings of ASP-DAC
2002. 7th Asia and South Pacific and the 15th*International Conference on VLSI
Design, pp. 719 - 726, Jan. 2002

[12] OMAP processor,
http://focus:ti.com/general/docs/wtbu/wtbuproductcontent.tsp?templateld=6123&navig
ationld=11991&contentld=4670.

[13] Freescale i.300-30 processof,
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=i.300-30&nodeld=
01J4Fsm6cyDbFf,

[14] J. M. Chen, K. Wang and M. H. Lin, “Energy efficient scheduling for real-time systems
with mixed workload”, in Proceedings of International Federation for Information
Processing, pp. 33—44, Dec. 2007.

[15] Y. Chen, Z. Shao, Q. Zhuge, C. Xue, B. Xiao and E.H.-M. Sha, “Minimizing energy
via loop scheduling and DVS for multi-core embedded systems” in Proceedings of
11th International Conference on Parallel and Distributed Systems, pp, 2—6, July 2005.

[16] C. Yuan, S.M. Reddy, I. Pomeranz and B.M. Al-Hashimi, “Battery-aware dynamic
voltage scaling in multiprocessor embedded system” in Proceedings of IEEE
International Symposium on Circuits and Systems, pp. 616 — 619, May 2005.

26

