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Co-modulation of EEG Activity during Drowsiness

Student: Shang-Wen Chuang Advisor: Dr. Wen-Chieh Lin
Dr. Chin-Teng Lin
Abstract

Rhythmic electrical fluctuations measurable on the human scalp were the first direct
evidence for the link between electrophysiological processes in the brain and behavior.
Several studies have shown the EEG power spectra at various scalp locations are correlated
with drowsiness in various sustained-attention experiments. We hypothesize that there seems
to be modulators mediated spectral activations of the cortical areas by intra-cortical feedback
loops, or distributed over different parts of the brain comprising a large number of neurons.

In this study, we investigate the neuromodulatoty system from alertness to drowsiness in
a realistic virtual-reality based “driving envitronment-to understand the interactions among
different cortical areas. We model-spectral fluctuations of independent components from EEG
activations as the actions of independently modulator processes, and report two main classes
of spectral modulation patterns, alpha modulator and theta-beta modulator. The theta-beta
modulator fluctuates very little during the low LDE periods, and increases monotonically
from low LDE to high LDE. Different with the theta-beta band, the alpha modulator
fluctuates very large during the low LDE periods. Therefore, the theta-beta modulator is high
correlated with performance changes, and alpha modulator in this study might be partially
contributed by cortical idling. The neuromodulatory system can be explored more by the

method we propose here.

Keyword: Drowsiness, Electroencephalogram, Independent Component Analysis,
Neuromodulatory System, Modulation, Cognitive State, Alpha Wave, Theta Wave.
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1. Introduction

1.1 Brain Dynamics in Neural System

Neural systems operated in various dynamic states that determined how they process
cognitive information (Livingstone and Hubel, 1981; Kisley and Gerstein, 1999). Cortical
electrical activity reflected the different behavioral states that comprise the wake—sleep cycle
in higher vertebrates (Caton, 1875; Berger, 1929; Timo-Iaria et al., 1970). These electrical
activations were produced by the release of several neuromodulators in the thalamus and
cortex. For instance, during arousal, cells in the brainstem laterodorsal tegmentum increased
their firing rates (Steriade et al., 1990), releasing acetylcholine in the thalamus (Williams et al.,
1994), which depolarized thalamocortical neurons (McCormick, 1992), increasing their firing
rates in the tonic firing mode and enhancing the transmission of low-frequency sensory inputs
through the thalamus (Singer, 1977; Steriaderet.al.;’1997; Sherman and Guillery, 2001). The
postsynaptic depolarization of thalamocortical neurons during arousal also strongly facilitates
the transmission of high-frequency sensory-inputs through the thalamus (Castro-Alamancos,
2002a), which were normally filtered during ‘quiescent states.

When subjects dropped asleep or drowsiness, most subjects ignored the stimulus from
environment and then reduced the influences in brain activity by environment through
thalamus gate (Castro-Alamancos., 2002b; Miller et al., 2000) or breakdown of cortical

effective connectivity (Massimini et al., 2005).

1.2 Alpha and Theta Rhythm

The frequency of the EEG rhythmic activities may reflect both intrinsic membrane
properties of single neurons and the organization and interconnectivity of networks. Lopes da
Silva had shown that both thalamo-cortical as well as cortico-cortical loops played an
important role in the generation and controlled especially alpha rhythms (8-12 Hz) (Lopes da

-1-



Silva, 1991).

Alpha rhythm is the first defined EEG rhythm (Berge, 1929) which power increase is an
electrophysiological correlated with cortical idling (Laufs et al., 2003; Robin et al., 2002;
Pfurtscheller et al., 1996). These studies showed that alpha power increase accompanied with
the decline of the performance (Parikh et al., 2004; Schier., 2000). Theta rhythm is the EEG
characteristic of sleep stage 1 and microsleep (Bear et al., 2001; Gennaro et al., 2001).
Degradation in performance is also correlated with increased EEG theta power (Beatty et al.,
1974; Lal et al., 2002; Takahashi et al., 1997). Moreover, the performance accompanied with

the ascension of the alpha and theta activities (Campagne et al., 2004; Keckluno et al., 1993).

1.3 Locations of the EEG Activities Accompanying Cognitive-state Changes

Several studies have shown,‘the EEG_power spectra at various scalp locations are
correlated with drowsiness in various sustained-attention experiments. The occipital and
parietal are the principal areas of scalpi thatt EEG activities accompany changes with
performance (Beatty et al., 1974; Parikh etal:; 2004; Campagne et al., 2004). Few studies also
reported the similar phenomena in the frontal and central regions of the scalp (Schier., 2000;
Takahashi et al., 1997). Recently, we applied ICA to multi-channel EEG, and the EEG results
showed that component power spectral fluctuations of several components primarily projected
to the frontal, central, occipital and parietal scalp locations all exhibited high correlations with

the changes in task performance (Lin et al., 2006; Huang et al., 2008).

1.4 Aims of this thesis: Modulators in the Brain Dynamics

Inspired by Onton and Makeig (2007), we hypothesize that there seems to be modulators
mediated spectral activations of the cortical areas by intra-cortical feedback loops, or

distributed over different parts of the brain comprising a large number of neurons, e.g.

.



controlled by thalamo-cortical feedback loops. These modulators influence EEG sources
influenced by a sub-cortical influence, such as norepinephrine, serotonin, etc. This study
investigates the comodulation of the neural system from alertness to drowsiness in a realistic
virtual-reality based driving environment to understand the interactions among different

cortical areas. The basic principle is shown in Fig. 1-1.

(a) Scalp
electrodes

Scalp

(b) Independent
Components (ICs

(c) Reference

(d) Independent ; \
> M1 electrode

Modulators (IMs) J

Figure 1-1: The basic principle of neuromodulation. Our EEG sources, here depicted as
colored patches, which can express variable oscillatory activity depending on the
circumstance, may be influenced by a sub-cortical influence, such as norepinephrine,
serotonin, etc, but here just labeled as IM1. This modulator may influence more than one IC,
which expresses the cortical source, since we know that neuromodulators have widespread
connections to the cortex. The influence of this modulator might be to encourage oscillations
at 9 Hz, for example. Whereas IM2 may encourage a 15 Hz rhythm in a different, but partially
overlapping set of ICs. Thus, the blue patch of cortex would express bimodal alpha at 9 and/

or 11 Hz depending on the relative strengths of IM1 and IM2.




2. Materials and Methods

2.1. Dynamic virtual reality environment

The dynamic VR environment provided a safe, time saving and low cost approach to
study human cognition under realistic stimuli. The dynamic VR environment consists of three
elements: (1) a six-degree-of-freedom Stewart motion platform; (2) a real car; and (3) a
360-degree 3D VR scene consisting seven projectors. Our driving environment provided not
only high-fidelity VR scene, but also kinesthetic inputs and realistic driving environment (as

shown in Fig. 2-1). These could make subjects feel that they were driving in a real vehicle on

the real road.

Figure 2-1: The overview of the dynamic VR environment, Brain Research Center, National
Chiao-Tung University, Taiwan, ROC. The dynamic VR environment consists of three
elements: (1) a six-degree-of-freedom Stewart motion platform; (2) a real car; and (3) a
360-degree 3D VR scene consisting seven projectors. The movements of the platform are

according to the car dynamics and the condition of the road surface.

2.1.1. VR scene

The VR-based high-fidelity 3D interactive highway scene was developed by using the
WorldToolKit (WTK) 3D engine. The 3D view was composed of seven identical PCs running
the same VR program and the seven PCs were synchronized by LAN that all scenes were

going at exactly same pace. The VR scenes of different viewpoints were projected on




corresponding locations.

Literatures showed that the horizontal field of view (FOV) of 120° is needed for correct
speed perception (Jamson, 2000). In our VR scenes, the surrounded screens covered 206°
frontal FOV and 40° back FOV (Fig. 2-2). Frames projected from 7 projectors were
connected side by side to construct a surrounded VR scene. The size of each screen had
diagonal measuring 2.6-3.75 meters. The vehicle was placed at the center of the surrounded

screens.

Figure 2-2: The configuration of the 3D surrounded scene. The 3D VR scene consists of 7
projectors, creating a surrounded view. Frontal screen is overlapped by 2 projector frames in

different polarizations, providing a stereoscopic VR scene for 3D visualization.




2.1.2. Stewart motion platform

The Stewart motion platform had a lower base platform and an upper payload platform
connected by six extensible legs with ball joints at both ends (Fig. 2-3). The platform
generated accelerations in vertical, lateral and longitudinal direction of vehicle as well as

pitch, roll and yaw angular accelerations.

(A) o B)

Figure 2-3: (A) A real vehicle r_(Wi-thout Ihev-uﬁrie(;essary weight of an engine and other
¥ EEHQ %

components) and the platform below the real ‘Veh‘icilre. (B) The dynamic platform. A real

|

vehicle was mounted on this platfom.‘ . 5 1896

2.2. Subjects

Seventeen right-handed healthy (all males, 18-28 years old) volunteers with normal or
corrected to normal vision were paid to participate a lane keeping experiment. All subjects
were free from neurological or psychological diseases and without drug or alcohol abuse. No
subjects reported with sleep deprivation at one day before the experiment. Subjects were
required to have lunch at one hour before the experiment since it has been know that the
drowsiness easily occurred during early morning, mid-afternoon, late nights and especially
after meal times (Benton et al., 1998).An informed consent were obtained from every subjects
before the experiment and the experiment protocol was approved by the Institutional Review

Broad of Taipei Veterans General Hospital.




2.3 The Lane Keeping Driving Task

Subjects were instructed to perform a lane-keeping driving task. In this task, the car
cruised with a fixed velocity of 100 km/hr on the VR-based highway scene and it was
randomly drifted either to the left or to the right away from the cruising position with a
constant velocity. The participants were instructed to steer the vehicle back to the center of
the cruising lane as quickly as possible when they detected a drifting event. Fig 2-2 shows the
time course of a typical deviation event that embedded in the lane-keeping driving task. About
5 to 10 seconds after the system detected the subjects’ response, the next trial started. When
subjects fall drowsy, they often exhibit relative inattention to environments, eye closure, less
mobility, failure to motor control and making decision (Brookhuis et al., 2003). Since the
response time will increases when subjects falling drowsiness, there is linear relationship
between response time and deviation. So the vehicle trajectories (driving error) were defined
as the basic drowsiness index in the experiment. The VR-based four-lane straight highway
scene was applied in the experiment. In this-Scene, the four lanes from left to right are
separated by a median stripe and the distance from the left side to the right side of the road
was equally divided into 256 points indicating the position of the vehicle as the digital output
signal of the VR scene at each time instant as shown in Fig 2-4. The width of each lane and
the car is 60 units and 32 units, respectively. Fig 2-5 shows an example of the driving

performance represented by the vehicle deviation trajectories.



Figure 2-4: The digitized highway scene. The width of highway is equally divided into 256

units and the width of the car is 32 units.

Deviation
Deviation Response
Onset Offset
Cruising Cruising
(Trajectory) Response (Trajectory)
Onset
Time

Figure 2-5: An example of the deviation event. The car cruised with a fixed velocity of 100

km/hr on the VR-based highway scene and it was randomly drifted either to the left or to the

right away from the cruising position with a constant velocity. The subjects were instructed

to steer the vehicle back to the center of the cruising lane as quickly as possible.




2.4 EEG Data Acquisition

Thirty-two channel EEG signals (using sintered Ag/AgCl electrodes and reference was
the mean of the left and right mastoid electrodes ), and one 8-bit digital signal representing the
driving performance produced from VR scene were simultaneously recorded by the Scan
NuAmps Express system (Compumedics Ltd., VIC, Australia). Fig 2-6 shows the 32 channel
EEG electrode cap. All EEG channels were located based on a modified International 10-20
system as shown in Fig 2-7 and Fig 2-8. The 10-20 system is based on the relationship
between the locations of an electrode and the underlying area of cerebral cortex. Before
acquiring EEG data, the contact impedance between EEG electrodes and the skin was
calibrated to be less than 5kQ by injecting NaCl based conductive gel. The EEG data were

recorded with 16-bit quantization levels at a sampling rate of 500 Hz.

Figure 2-6: The electrode cap and the EEG signal amplifier.




Inioh

Preaurical
point

-
tnion 10%

Figure 2-7: The International 10-20 system of electrode placement for 32

electrodes, including the lateral view and top view.

Figure 2-8: The 10-20 international electrode placement system.
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Table 2-1: NuAmps Specifications

Analog inputs 40 unipolar (bipolar derivations can be computed)

Sampling frequencies 125, 250, 500, 1000 Hz per channel

Input Range +130mV

Input Impedance Not less than 80 MOhm

Input noise 1 pV RMS (6 pV peak-to-peak)

Bandwidth 3dB down from DC to 262.5 Hz, dependent upon
sampling frequency selected

-11 -




3. Data Analyses

3.1. Analysis of driving performance

In each session, deviation trajectory was recorded at 60 Hz, and we can retrieve the
deviation onset latency and response onset latency. Similar to real-world driving experience,
the vehicle did not always return to the same cruising position after each compensatory
steering maneuver. Therefore, during each drift/response trial, driving error was measured by

maximum absolute deviation from the previous cruising position (Fig. 3-1).

Right Deviation Trajectory
& « Deviation Onset‘ / * Response Onset |
. A : ' 11K
skl :
position ! “ |“| H‘l |1r.1||1!. il ek H ‘ H I,I'J‘I il 1
S RN LAt

Figure 3-1: An example of the driving trajectory, recorded with 653 deviation events in a
100-min session. Blue lines: raw trajectory. Green dots: deviation onsets. Red dots:

response onsets.
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I Step 1
| ‘ Baseline removal

o ' il M1 Compute the absolute value .
Step 3
Setathreshold I

Step 4 ' o

Moving average T

Figure 3-2: (A) Driving trajectory of a 100-min session. (B) The local driving error of a
100-min session. It was obtained from the driving trajectory through 4 steps: baseline

removal, compute the absolute value, set a threshold, and moving average.

A B
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6 L
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o .

0 0 : . . :
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600
Sorted Trials Sorted Trials

Figure 3-3: (A) Sorted trials by driving error (point). (B) Sorted trials by response time (sec).

Since the car drifted with constant velocity, the relation between response time and the
driving error was linear (D=c T, ¢ = 60). After transformed the local driving error into
response time, behavior responses were sorted by response time, and then plotted as Fig.3-3.

The response time and local driving error were varied along with drivers’ alertness and
drowsiness. We had two equal drowsiness indices: response time and the local driving error.
For instance, when the driver was drowsy, the response time between the onset of deviation
and steering wheel was increased. On the contrary, when the driver was alter, the response

time between the onset of deviation and steering wheel was decrease.
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Since the cruising center was set on the third lane of the highway scene, a threshold (85
pixel) was selected for absolute trajectory to eliminate the diversity of maximum deviation
between the vehicle drifted to the left and right. Since the alertness level fluctuates with cycle
lengths longer than 4 minutes (Makeig et al., 1996, 2000), we smoothed the trajectory time
series by using a causal 90-second square moving-averaged filter to eliminate variances at
cycle lengths shorter than 1-2 minutes. The smoothed driving error was called local driving
error (LDE) that is linearly correlated with response time. Since subjects easily exhibited
relative inattention to environments, eye closure, less mobility, slow or worse motor control
or responses or decision making (Brookhuis et al., 2003 ), the LDE was varied along with
drivers’ alertness and drowsiness. Therefore, we had a drowsiness index: local driving error.
For instance, when the driver was drowsy, the local driving errors were increased. In the

contrary, the local driving errors were decreased when the driver was alert.

3.2. EEG

The flow chart of the EEG signal analysis procedure is show in Fig. 3-4. It consists of
preprocess, independent component analysis, useful component selection, time-frequency
analysis, component clustering, and independent modulator decomposition. All the EEG data

were analyzed by using MATLAB and EEGLAB.
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Figure 3-4: The flow chart for the EEG signals analysis procedure. It consists of preprocess,
independent component analysis, useful’component selection, time-frequency analysis,
component clustering, and independent;modulator decomposition. All the EEG data were

analyzed by using MATLAB and EEGLAB:

3.2.1. EEG Preprocess

The acquired multi-channel EEG signals were first down sampled (from 500 to 250 Hz).
A 500-pt high pass filter with a cut-off frequency at 0.5 Hz is used to remove breathing
artifacts, and the DC drifts. The width of the transition band of the high pass filter is 0.2 Hz. A
30-pt low pass filter is then applied to the signal with the cut-off frequency at 50 Hz to
remove muscle artifacts and line noise. The transition band width of the low pass filter is 7 Hz.
The artifacts across all channels were then identified and rejected from EEG data by visual
inspection using the EEGLAB visualization function pop_eegplot(). The rejection strategy
was to reduce the extreme values data, abnormal electrode activities, and strong muscle

artifacts.
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3.2.2. Independent Component Analysis (ICA)

ICA methods have been extensively applied to the blind source separation problem and
also demonstrated that was a suitable solution to the problem of EEG source segregation,
identification, and localization. (Lee et al., 1999; Jung et al., 2000, 2001; Naganawa et al.,
2005; Liao et al., 2005). In this study, we used a version of the infomax algorithm of
Sejnowski et al. Firstly, we used ICA to decompose EEG signals into various temporally
statistical independent activations (ICA components) and then excluded the artifact based on
the time course signals, scalp maps and power spectra of components (Jung et al., 2000;
Onton et al., 2006). IC activations from each subject were first assessed and categorized as
brain activity or non-brain artifact (e.g., muscle or line noise, or eye movement activity) by
visual inspection of their scalp topographies, time courses and activity spectra. Most artifacts
can be rejected in the process ofiuseless, components rejection. The effectiveness of eye
blinking and other artifacts removal by using-ICA had been demonstrated in the Jung et al.’s
study. Then we employed the time-frequéncy analysis, which can measures dynamic changes
in amplitude of the broad band EEG frequency spectrum as a function of time. Then we used
component clustering method to observe the cross-subjects results.

The Infomax ICA can separate N sources from N EEG channels. The conduction of the
EEG sensors is assumed to be instantaneous and linear such that the measured mixing signals
are linear and the propagation delays are negligible. We also assume that the signal sources of
muscle activity, eye, and, cardiac signals are not time locked to the sources of EEG activity
which is regarded as reflecting synaptic activity of cortical neurons. Therefore, the time
courses of the sources are assumed to be independent. The task of the Infomax ICA algorithm
is to recover a version, of the original sources S by finding a square matrix W that inverts the
mixing process linearly and save the identical scale and permutation. For EEG analysis, the

rows of the input matrix X are the EEG signals recorded at different electrodes, the rows of
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the output data matrix U = WX are time courses of activation of the ICA components, and the
columns of the inverse matrix W' give the projection strengths of the respective components
onto the scalp sensors. The scalp topographies of the components provide information about
the location of the sources (e.g., eye activity should project mainly to frontal sites, and the
visual event-related potential is on the center to posterior area, etc.). Discarding the sources of
muscle activity, eye movement, eye blinking, and single electrode noises, we obtained useful
components to do further analysis. Fig. 3-4 shows the ICA decomposition results of single

subject.

30 Channels 30 Components

Carnbrospinal Flud

(Jung et al., 2000)

Independent Components

'EDC
F3
Cz
Pz

unmixing

w

activations scalp maps
u=WX w!

Figure 3-5: The statistical independent activations (components) from the EEG signal

decomposed by ICA. 30 sources are separated from 30 EEG channels in the figure.
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Figure 3-6: An example of ICA decomposition. The scalp topographies of ICA
weighting matrix by spreading each element.of weight into the plane of the scalp

which is corresponding to the ICA ‘components based on international 10-20 system.

3.2.3. Independent Component-Selection and Dipole Fitting

IC activations from each subject were first assessed and categorized as brain activity or
non-brain artifact (e.g., muscle or line noise, or eye movement activity) by visual inspection
of their scalp map, activity spectra, and dipole fitting location. ICs were selected by
observations and large reduced the number of components into around half by rejecting the
noisy components (Fig. 3-8).

DIPFIT?2 routines from EEGLAB were then used to fit single dipole source models to the
remaining IC scalp topographies using a fourshell spherical head model (Oostenveld and
Oostendorp, 2002). In the DIPFIT2 software, the spherical head model is co-registered with
an average brain model (Montreal Neurological Institute) and returns approximate Talairach
coordinates for each equivalent dipole source. Fig. 3-7 shows the dipole fitting result and the

IC spectra.

-18 -



Dipole and Power Spectra of
Component 4,
060303

Power Spectra (Whole Section)
20,

2 e
o 8 O

Magnitude (dB)

Ao
(=}

1
S
o

20 40
Frequency (Hz)

Dipole and Power Spectra of
Component 6,
060303

Power Spectra (Whole Section)
10

Magnitude (dB)
N &

S
o

20 40
Frequency (Hz)

Figure 3-7: An example of the dipole fitting result and the IC spectra. DIPFIT2
routines from EEGLAB were then used to fit single dipole source models to the

remaining IC scalp topographies using a fourshell spherical head model.
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Figure 3-8: Component selection procedure. IC activations from each subject were
first assessed and categorized as brain activity.or non-brain artifact (e.g., muscle or
line noise, or eye movement activity) by visual inspection of their scalp map,
activity spectra, and dipole fitting location, and /then reject all components of

non-brain artifacts. In this example, red line shows the rejected components.

3.2.4. Time frequency analysis

The processing flow of time frequency analysis was shown in Fig. 3-5. The time
sequence of EEG channel data or ICA activations were subject to Fast Fourier Transform
(FFT) with a 500-point window with 250-point overlap. Windowed 500-point epochs were
further subdivided into several 125-point subwindows with 25-point step. Each 125-point
frame was extended to 512 points by zero-padding to calculate its power spectrum by using a
512-point fast Fourier transform (FFT), resulting in power-spectrum density estimation with a
frequency resolution near 0.5 Hz. A moving median filter was then used to average and
minimize the presence of artifacts in the EEG records of all sub-windows. Previous reports

also showed that the EEG spectral amplitudes correlated with the wake-sleep transition more
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linearly in the logarithmic scale than in the linear scale (Bear et al., 2001; Gennaro et al.,
2001). Thus, the power spectra of IC activations were further converted into a logarithmic
scale. The resultant time series of log power spectra for each session consisted of the power
spectra of the IC activations across 20 frequencies (from 1 to 20 Hz) stepping at 2-second

(500-point, an epoch) time intervals.
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Figure 3-9: The smoothed EEG power spectral analysis procedure. The EEG data of the
extracted ICA components was first accomplished using a 750-point Hanning window
with 250-point overlap. Windowed 750-point epochs were further subdivided into
several 125-point subwindows using the Hanning window again with 25-point step.
Each 125-point frame was extended to 256 points by zero-padding to calculate its power
spectrum by using a 256-point fast Fourier transform (FFT), resulting in

power-spectrum density estimation with a frequency resolution near 1 Hz.
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3.2.5. Component clustering

In order to discover the corss-subjects results, we employed the component clustering
analysis after doing ICA decomposition. ICs were first selected by observations and large
reduced the number of components into around half by rejecting the noisy components (Fig.
3-8). Then, the selected ICs were first clustered semi-automatically based on the gradients
values of the component scalp maps, dipole source locations, power spectra, and
within-subject consistency (Onton et al., 2006) by K-mean algorithm. The K-means clustering
is to classify or to group objects based on attributes/features into K number of groups. K is a
positive integer number. The grouping is done by minimizing the sum of squares of distances

between the data and the corresponding cluster centroid as:

2 (5)

e~ Zi‘Xi I yk
where e, represent the square error,| X;and -V, represent the data point and cluster centers,

respectively.
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component selection procedure.:"-T_he selected ,cg{rnponents of all volunteer were
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component scalp maps, dipole source locations, power spectra, and within-subject
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result was generated by DIPFIT2.
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3.2.6. Independent modulator (IM) decomposition

Here, we present first results of a new method for decomposing fluctuations in the
selected independent component (IC) power spectra into independent modulators. The method
was applied to the selected IC activity spectra from each subject. Mean logarithmic power at
each frequency was subtracted from each single window power spectral estimate. The
resulting time series of logarithmic spectral deviations were then concatenated, giving a
matrix of size (f ¢, t), where f the number of frequency bins, ¢ the number of subject ICs,
and t is the number of time windows. For each subject, this matrix was reduced to its first 10
principal dimensions by PCA. The dimension-reduced log spectral data were then
decomposed by infomax ICA to find independent modulators of log spectral power across
subsets of time windows within all ICs. Infomax ICA finds a matrix, W, that linearly unmixed
the IC spectral activations, X, into,a sum of maximally temporally independent, and spatially
fixed modulators, U, such that u-=\WHXx. The rows of the resulting ‘activation’ matrix, U, are
the independent modulator activations, and itS'columns, the time points of the input data.
Columns of the inverse matrix, W, rgive the relative projection weights from each
independent modulator to each frequency bin of each component. The projection weights,
which are the frequent patterns, of the modulator provide information about the modulating
frequencies of the modulator.

Fig.3-11. shows the relation between single subject comodulation analysis and
component clusters. Different subject has different components. For example, S4 in this figure
has only component of frontal. Then we fill in a 'V' marks in the grid of the frontal scalp map.
It shows that the mean cluster maps are inserted in the 1st row. Then we take the spectral
activates of the selected components to do single subject comodulation analysis. The

procedure of the single subject comodulation analysis is shown in Fig. 3-12.
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Figure 3-11: The relation betvi{_e'en ‘sin'gle%s_l_l_bj,ect cbmodulation analysis and component
clusters. Different subject has diff:er'e'nt-“components;. For example, S4 in this figure has only
component of frontal. Then we fill in a 'V' marks in the grid of the frontal scalp map. It shows
that the mean cluster maps are inserted in the 1st row. Then we take the spectral activates of
the selected components to do single subject comodulation analysis. The procedure of the

single subject comodulation analysis is shown in Fig. 3-12.
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Figure 3-12: The independent mpdulator decomposition procedure. The independent
modulator decomposition procedure canibe divided mto five steps. First, the selected dipolar
ICs is divided into 1s windows;EFT windew power spectra then transformed to log power.
Each colored trace represents the“power‘spectﬁ‘im fora single 1s window. The thick black line
is the mean power spectrum of all windows. Third, the mean is removed from each power
spectrum. Forth, these data is converted into matrix format. We concatenate this tall matrix
from one IC with the same sort of information from all the other selected components, and
then we have a matrix of dimensions 'spectra (or frequencies)' by 'spectral windows'. This
matrix was then submitted to PCA for dimension reduction to 10 dimensions and then to ICA
to find independent spectral modulators from the mean across these selected components.
Each row is an IC and each column in this illustration is an IM. What come out of this
decomposition are projection weights of 10 independent modulators. The projection weights,
which are the frequent patterns, of the modulator provide information about the modulating

frequencies of the modulator.
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Fig. 3-13 shows how to plot the frequency weights of the components from each subject
for 1 of the modulator. As described in Fig.3-11, it’s needed to fill up the table. In this figure
'V' marks means the frequency weight of each component and the mean frequency weight is

plotted by red thick line.
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Figure 3- 13: Method of plotting the frequency weights of the components from each subject
for the theta-beta modulator. In this figure 'V' marks means the frequency weight of each

component and the mean frequency weight is plotted by red thick line.
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3.2.7. LDE-Sorted IM activation analysis and statistical analysis

In order to find the inter-subject relationships between the IM activations and the
alertness level, the LDE-sorted analysis method was applied to the IM activation across
subjects. The method sorts the smoothed IM activations according to the LDE index to assess
the brain dynamics corresponding to the transition from lower LDE to larger LDE. For group
analysis, we assumed the alertness levels of all subjects in the lowest LDE states were the
same and the difference of the lowest LDE values corresponding to different subjects are
caused by the individual reaction speed. To compare the modulator power for the high and
slow local driving error across subjects, a paired-sample Wilcoxon signed rank test (signrank,
Matlab statistical toolbox, Mathworks) was applied. The significant onset of the alpha
increase was earlier than that of the theta increase. All statistical comparisons in this study, a

significant level was set at p <0.05,
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Figure 3-14: An example of the sorted spectral analysis. The left subplot of Fig 3-6 is
a subject’s original LDE trajectory (the blue line) and the corresponding modulator
power changes (the red line). The right subplot sorts the LDE values in ascending
order and shows the transient modulator powers corresponding to the sorted LDE
values. It can be found that the modulator power is increasing at the beginning and

will decrease at the latter when LDE values are ascending.
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4. Results

4.1. Behavior performance

All subjects’ LDE were ranged from 0 to 65 units, indicated that subjects got drowsiness
in our experimental paradigm. Fig. 4-1 shows the plots of the sorted trials by response time in
each subject. The performance was changes almost continuously, and we can analyze the EEG

power changes accompany with LDE variations continuously.
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Figure 4-1: The plots of sorted trials by response time of each subject.
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Table 4-1: Subject list

SUBJECT No. | Exp.Time Sex Age Platform State
SUBJECT 1 06/02/27 Male 23 motionless
SUBJECT 2 06/03/03 Male 24 motionless
SUBJECT 3 06/03/08 Male 25 motionless
SUBJECT 4 06/06/29 Male 26 motionless
SUBJECT 5 06/07/06 Male 25 motionless
SUBJECT 6 06/07/07 Male 25 motionless
SUBJECT 7 06/07/10 Male 29 motionless
SUBJECT 8 06/07/1] Male 29 motionless
SUBJECT 9 06/07/25 Male 23 motionless
SUBJECT 10 06/10/31 Male 25 motionless
SUBJECT 11 06/11/01 Male 25 motionless
SUBJECT 12 06/11/02 Male 23 motionless
SUBJECT 13 06/11/30 Male 24 motionless
SUBJECT 14 07/01/02 Male 24 motionless
SUBJECT 15 07/01/05 Male 23 motionless
SUBJECT 16 07/01/17 Male 23 motionless
SUBJECT 17 07/02/07 Male 25 motionless
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4.2. Component spectral fluctuations related to performance changes

The grand results show that the trends of alpha and theta power changes from good
performance to poor performance were similar between different brain regions. The
performance changes are shown in Fig. 4-2. From the above result, we compared the EEG
fluctuations in time series between different components of intra-subject to confirm that the
drowsiness related alpha and theta rhythm in these components may be modulated by the
same nucleus or synchronized by cortical-cortical interaction. ICA power fluctuations of
parietal, occipital, frontal and central components in time series were shown in the Fig. 4-2.
The result shows that the alpha power fluctuation of parietal component was highly correlated
with the fluctuation of occipital component. Additionally, the theta power fluctuations of

frontal, parietal and central component were highly correlated with each other.
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Figure 4-2: The single subject results of performance change accompanying the component
power changes. It shows that the trends of alpha and theta power changes from good
performance to poor performance were similar between different brain regions. Hence, we
compared the EEG fluctuations in time series between different components of intra-subject to
confirm that the drowsiness related alpha and theta rhythm in these components may be
modulated by the same nucleus or synchronized by cortical-cortical interaction. Scalp maps on
the bottom right show the ICA power fluctuations of parietal, occipital, frontal and central
components in time series. The result shows that the alpha power fluctuation of parietal
component was highly correlated with the fluctuation of occipital component. Additionally,
the theta power fluctuations of frontal, parietal and central component were highly correlated

with each other.

4.3. Component clustering results

We clustered all components of 17 subjects into- 7 groups, and showed the remarkably
meaningful and consistent 5 clusters from Fig:4-3 to Fig.4-7, with the averaged scalp maps,
each scalp map and the dipole source locations in the clusters. Where Fig. 4-3 shows frontal
cluster, Fig.4-4 shows occipital cluster, Fig. 4-5 shows right motor cluster, Fig. 4-6 shows left
motor cluster, and Fig. 4-7 shows parietal cluster. The results of clustering analysis and dipole
fitting displayed that most of the brain areas involved in the lane-keeping driving task. These
cluster are more remarkable and stable between different participants in the lane-keeping
driving task. Hence, only the components that include in these cluster clusters were for further
analysis.

In each figure, equivalent dipole source location, spectra and scalp maps for
independent component clusters are shown. Scalp maps are shown on the top. Dipole source

location is shown on the bottom right. Spectra are shown on the bottom left.
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Figure 4-4: Equivalent dipole source location, Spectra and scalp maps for

independent component clusters of occipital cluster.

-33-




313

Power Spectra (Whole Section)
20,

Magnitude (dB)

% 10 20 30 40 50
Frequency (Hz)

Figure 4-5: Equivalent dipole source''location, spectra and scalp maps for

independent component clusters ot;rlght motor cluster.
s T

b ]

20

Magnitude (dB)

&
=

10 20 30 40 50
Frequency (Hz)

Figure 4-6: Equivalent dipole source location, spectra and scalp maps for independent

component clusters of left motor cluster.
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4.4. Single Subject Indepen-.t.i':eni."i;\oau.ll.él_jto.i"(IM) decomposition Results

In the section, we discuss the decom.position results of independent modulator. In
Fig.4-8., representative independent modulation patterns from one subject. IM window
weights and frequency characteristics derived by multiplying the series of spectral deviations
from the mean in each 1-s overlapping time window with the PCA/ICA unmixing matrix.
Each row represents a computed IC, and each column an IM. The figure shows that IM1
modulated all ICs in alpha-band, and IM2 modulated all ICs in theta-beta-band. The leftmost

row shows the IC scalp maps, and top column, the IM window weight histograms. The

numbers in the bottom are the correlation coefficient between IM activation and LDE.
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from one subject. IM

window weights and frequency characteristics. It is derived by multiplying the series

of spectral deviations from the mean in each 1-s overlapping time window with the

PCA/ICA unmixing matrix. Each row represents a computed IC, and each column an

IM. The figure shows that IM1 modulated all ICs in alpha-band, and IM2 modulated

all ICs in theta-beta-band. The leftmost row shows the IC scalp maps, and top column,

the IM window weight histograms. The numbers in the bottom are the correlation

coefficient between IM activation and LDE.
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4.5. Frequency characteristics of the independent modulators

Fig. 4-9 shows the normalized frequency patterns of two stable modulators in each
cluster. Top panels in Fig. 4-9 show the averaged scalp maps of the clusters, which we
obtained in component clustering. Middle panels in Fig. 4-9 display frequency characteristics
of the one stable modulator, and bottom panels in Fig. 4-9 exhibit another one. The modulated
frequency patterns of corresponding ICs were derived from the column of the inverse matrix,
W-1, during the procedure of single subject Independent modulator (IM) decomposition. We
normalized the frequency characteristics to observe the common characteristic of each IM.
The thin red lines in Fig. 4-9 indicate the modulating frequency of the IM to each component,
and the thick red lines in Fig. 4-9 indicate the averaged frequency characteristics of the IM in
the cluster. The IMs in middle panels of Fig._4-9 modulate the theta band, and reveal a peak
near 15 Hz in the patterns. This theta"‘dor‘m;lant ,rﬁbdulator affected all areas in our experiment
design. The IMs in bottom paneis of Fig.;‘4-;9:‘ démdhgtrate the alpha band modulated in very

wide areas.
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Figure 4-9: The normalized frequency patterns of two stable modulators related to alertness
changes in each cluster. Top panels show the averaged scalp maps of the clusters. Middle
panels display frequency characteristics of the one stable modulator, and bottom panels
exhibit another one. The modulated frequency patterns of corresponding ICs were derived
from the column of the inverse matrix, W' , during the procedure of single subject
Independent modulator (IM) decomposition. We normalized the frequency characteristics to
observe the common characteristic of each IM. The thin red lines indicate the modulating
frequency of the IM to each component, and the thick red lines indicate the averaged
frequency characteristics of the IM in the cluster. The IM in middle panels modulate the theta
band, and reveal a peak near 15 Hz in the patterns. This theta dominant modulator affected all
areas in our experiment design. The IM in bottom panels demonstrate the alpha band

modulated in very wide areas.

4.6. Independent modulator activities-accompanying performance changes

Fig. 4-10 to Fig.4-16 show the two IMactivities related to performance changes. First,
we compared the intra-subject fluctuations of two IMs which may be modulated by the
nucleus or synchronized by cortical-cortical interaction in time series during different
alertness levels to confirm that the alpha and theta-beta modulator related drowsiness level.
Letter a-c shows the fluctuations of the LDE, theta-beta modulator, and alpha modulator for
two subjects in time series. In Fig. 4-10 to Fig.4-15, (a) exhibits the changes of the LDE
during whole experiment, and (b) is the fluctuations of the theta-beta modulator, and (c)
shows the fluctuations of the alpha modulator. The theta-beta modulator fluctuates very little
during the low LDE periods, and increases monotonically from low LDE to high LDE.
Different with the theta band, the alpha modulator fluctuates very large during the low LDE
periods. The correlation results between the LDE and two modulators of each subject were

exhibited in Tab. 4-2.
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Figure 4-10: The performance changes related to two IM activities of subject 1.
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Figure 4- 11: The performance changes related to two IM activities of subject 2.
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Figure 4-12: The performance changes related to two IM activities of subject 4.
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Figure 4-13: The performance changes related to two IM activities of subject 14.
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Figure 4-14: The performance changes related to two IM activities of subject 15.
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Figure 4-15: The performance changes related to two IM activities of subject 16.
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Figure 4-16: The LDE-Sorted IM activation on two-IM activations of all subjects. It
showed the mean and SD of the two LDE-sorted IM-activations. Fig. 4-16a displays the
result of the LDE-Sorted theta-band dominant IM activation, and LDE-Sorted theta-beta
modulator activity was significantly increases monotonically from low LDE to high
LDE, and the LDE-Sorted alpha modulator, which shows in Fig. 4-16b, was remarkably
increases and then sustains from low LDE to high LDE. Additionally, we observed the
variances of the two IM activities in the same value of LDE across 17 subjects. The
variations were very small in all participants, revealing that the results of the

LDE-sorted have inter-subject consistence.
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Table 4-2: The correlation coefficients between two modulators and the LDE

SUBJECT No. Theta-Beta Modulator Alpha Modulator
SUBJECT 1 0.7861 0.5713
SUBJECT 2 0.7845 0.6093
SUBJECT 3 0.9433 0.2002
SUBJECT 4 0.8689 0.6619
SUBJECT 5 0.7783 0.5189
SUBJECT 6 0.8201 0.6162
SUBJECT 7 0.9228 0.029
SUBJECT 8 0.8715 0.2748
SUBJECT 9 0.7722 0.3341
SUBJECT 10 0.7957 0.2485
SUBJECT 11 0:8043 0.0831
SUBJECT 12 0.8427 0.683
SUBJECT 13 0.818 0.1898
SUBJECT 14 0.7174 0.5748
SUBJECT 15 0.9282 0.6457
SUBJECT 16 0.9337 0.6186
SUBJECT 17 0.7641 0.5353
Mean Value 0.83246 0.43497
Standard Deviation 0.06812 0.22137
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5. Discussion

5.1 The component spectral fluctuations related to performance

The theta and alpha power changes of several components from good performance to
poor performance were similar between different brain regions. It is consistent with past
studies (Lin et al., 2006; Huang et al., 2008). Hence, we compared the component fluctuations
in time series between different components of intra-subject to confirm that the drowsiness
related alpha and theta rhythm in these components may be modulated by the same nucleus or

synchronized by cortical-cortical interaction.

5.2 The modulatory model of the neural system

The modulatory model underlying this analysis was illustrated schematically in Fig. 1-1.
Independent component analysig: (ICA) was, applied to EEG data to identifies temporally
distinct (independent) signals generated by partial synchronization of local field potentials
within cortical patches (b) and summing in different linear combinations at each electrode
depending on the distance and orientation of each cortical patch from the scalp (a) and
reference electrode (c). The spectra of resulting cortical independent components (ICs)
monotonically decrease with frequency, on average, but exhibit large and frequent variations
across time. These spectral modulations may be modeled as exponentially weighted
influences of several near-independent modulator (IM) processes (d) that independently
modulate the activity spectra of one or more independent component (IC) signals. On
converting the IC spectra to log power, combined IM influences on IC spectra are converted
to log-linear weighted sums of IM influences, allowing a second linear ICA decomposition,
applied to the IC log power spectra, to separate the effects of the individual IM processes (d)
across EEG frequencies and IC sources (b).

Some scholars (Feige et al., 2005) used simultaneous measurement of EEG and fMRI to
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investigate the modulation model. They have examined the correlation between occipital EEG
alpha rhythm, selectively extracted using ICA, and fluctuations in the BOLD effect during an
open versus closed eyes and an auditory stimulation versus silence condition. Occipital alpha
amplitude is consistent with metabolic changes occurring simultaneously, sites in the medial
thalamus and in the anterior midbrain, with about 2.5 sec lag. Goncalves et al.(2005) used
simultaneous recording of electroencephalogram/functional magnetic resonance images
(EEG/fMRI) to identify blood oxygenation level-dependent (BOLD) changes associated with
spontaneous variations of the alpha rhythm, which is considered the hallmark of the brain
resting state. They also found the BOLD signal was positively correlated with the alpha
power in small thalamic areas, supporting the cortical and subcortical modulation of
electroencephalographic alpha rhythm.

A combined PET/EEG study by Schreckenberger et al. also supported the hypothesis of
a close functional relationship~between thalamic 'activity and alpha rhythm in humans
mediated by corticothalamic doops. (Schreckenberger et al., 2004) This functional
corticothalamic loop supports the concept of cortical control of thalamic activity in humans
for modulating cortical EEG activity.

Physiological processes that may produce these patterns include several brain systems
regulating brain and behavioral arousal and/or valuation judgments of stimulus and other
events via the release by midbrain or brainstem neurons of modulatory neurotransmitters —
dopamine (DA), acetylcholine (ACh), norepinephrine (NE), serotonin, etc. — through their

extensive cortical and thalamic projections (Robbins, 1997; Bardo, 1998).
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5.3 The modulator fluctuations from alertness to drowsiness

In this study, we employed independent modulator decomposition to the spectral
fluctuations of independent components, and two independent modulators related to
performance changes were found in all subjects.

The alpha modulators were very sensitive to the performance changes, so the alpha
modulator fluctuates very large during the low LDE periods. Therefore, the alpha modulator
in this study might be partially contributed by cortical idling, decreased attentiveness and
decline of movements. In the earlier finding (Lee et al., 1999), the frequency of the 8-14 Hz
synchronizes in the thalamocortical system during quiet sleep. The EEG fluctuations from
low error to high error were similarly during frontal, central-parietal and occipital lobe in the
experiment. So that the alpha modulator maybe also modulated by thalamus during
drowsiness.

The theta-beta modulators increase monotonically from low LDE to high LDE. Theta
rhythm is the EEG characteristic-of sleepstagel and microsleep (Bear et al., 2001; Gennaro
et al., 2001; Thomas et al., 2003). Past studies also reported the fluctuations in the modulation
of the beta-wave amplitude related to an indirect measurement of drowsiness (Poupard et al.,
2001). Jung et al. (1997) also reported theta and beta band power were high correlated with
performance changes.

The correlation coefficient between modulator power change and LDE is shown in Table
4-2. The standard deviation is large because the inter-subject behavior states are varied. Some
subjects were involved more period of stage 1 sleep, others included more time of cortical
idling, so that results of the independent modulator decomposition depend on drowsiness

state.
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6. Conclusions

In this study, we model spectral fluctuations of independent components from EEG
activations as the actions of independently modulator processes, and report two main classes
of spectral modulation patterns, alpha modulator and theta-beta modulator. The theta-beta
modulator fluctuates very little during the low LDE periods, and increases monotonically
from low LDE to high LDE. Different with the theta-beta band, the alpha modulator
fluctuates very large during the low LDE periods. Therefore, the theta-beta modulator is high
correlated with performance changes, and alpha modulator in this study might be partially
contributed by cortical idling. In our modulation model, these modulators are modulated by
the subcortical nucleus or synchronized by cortical-cortical interaction to influence on the
rhythmic activations of cortical areas. The neuromodulatory systems can be explored more by

the method we propose here.
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