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探討打瞌睡腦波之神經調控機制 

學生：莊尚文       指導教授：林文杰博士  

                                     林進燈博士 

Chinese Abstract                  中文摘要 

人腦中存在有許多的功能區域性腦波律動(Brain rhythm)，與人類的行為有關聯性的

連結，很多過去的文獻指出，大腦許多皮層的腦波律動都與打瞌睡的程度有正相關性。

因此，我們假設有腦波律動調控機制，透過大腦皮層間的神經傳導或者散佈在大腦各處

不同的腦波律動調控子來調控大腦皮層的神經律動。 

在此研究中，我們利用虛擬環繞場景結合六軸動態平台，研究從清醒到昏睡時的腦

電波活動，並探討打瞌睡腦波的神經調控機制。了解不同大腦皮層之間的互動。我們使

用時頻分析與獨立成份分析(Independent Component Analysis, ICA)去找出腦波律動調控

子(modulator)，並且發現有兩種不同種類的腦波律動調控子，分別調控大腦律波的 alpha

頻帶與 theta-beta 頻帶。 

本實驗結果顯示，當受測者開始打瞌睡的時候，alpha (8-12 Hz)頻帶調控子

(alpha-band modulator)強度會持續性的增強，而進入深度瞌睡時， alpha頻帶調控子強度

則會輕微的降低。另外，受測者清醒狀態從輕度至深度瞌睡過程中，theta (4-7 Hz)頻帶

調控子(theta-band modulator)強度則持續的增強。跟瞌睡程度有正向相關性，透過實驗結

果證明本研究提出的分析方法，讓我們對神經調控系統有更清楚的了解。 

 

關鍵字︰打瞌睡、腦電波、獨立成分分析、神經調控系統、調控機制、認知狀態、Alpha 

波、Theta 波 
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Co-modulation of EEG Activity during Drowsiness 

Student: Shang-Wen Chuang Advisor: Dr. Wen-Chieh Lin            

English Abstract                                        Dr. Chin-Teng Lin 

Abstract 
 

Rhythmic electrical fluctuations measurable on the human scalp were the first direct 

evidence for the link between electrophysiological processes in the brain and behavior. 

Several studies have shown the EEG power spectra at various scalp locations are correlated 

with drowsiness in various sustained-attention experiments. We hypothesize that there seems 

to be modulators mediated spectral activations of the cortical areas by intra-cortical feedback 

loops, or distributed over different parts of the brain comprising a large number of neurons.  

In this study, we investigate the neuromodulatory system from alertness to drowsiness in 

a realistic virtual-reality based driving environment to understand the interactions among 

different cortical areas. We model spectral fluctuations of independent components from EEG 

activations as the actions of independently modulator processes, and report two main classes 

of spectral modulation patterns, alpha modulator and theta-beta modulator. The theta-beta 

modulator fluctuates very little during the low LDE periods, and increases monotonically 

from low LDE to high LDE. Different with the theta-beta band, the alpha modulator 

fluctuates very large during the low LDE periods. Therefore, the theta-beta modulator is high 

correlated with performance changes, and alpha modulator in this study might be partially 

contributed by cortical idling. The neuromodulatory system can be explored more by the 

method we propose here. 

 

Keyword: Drowsiness, Electroencephalogram, Independent Component Analysis, 

Neuromodulatory System, Modulation, Cognitive State, Alpha Wave, Theta Wave. 
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1. Introduction 

1.1 Brain Dynamics in Neural System 

Neural systems operated in various dynamic states that determined how they process 

cognitive information (Livingstone and Hubel, 1981; Kisley and Gerstein, 1999). Cortical 

electrical activity reflected the different behavioral states that comprise the wake–sleep cycle 

in higher vertebrates (Caton, 1875; Berger, 1929; Timo-Iaria et al., 1970). These electrical 

activations were produced by the release of several neuromodulators in the thalamus and 

cortex. For instance, during arousal, cells in the brainstem laterodorsal tegmentum increased 

their firing rates (Steriade et al., 1990), releasing acetylcholine in the thalamus (Williams et al., 

1994), which depolarized thalamocortical neurons (McCormick, 1992), increasing their firing 

rates in the tonic firing mode and enhancing the transmission of low-frequency sensory inputs 

through the thalamus (Singer, 1977; Steriade et al., 1997; Sherman and Guillery, 2001). The 

postsynaptic depolarization of thalamocortical neurons during arousal also strongly facilitates 

the transmission of high-frequency sensory inputs through the thalamus (Castro-Alamancos, 

2002a), which were normally filtered during quiescent states.  

When subjects dropped asleep or drowsiness, most subjects ignored the stimulus from 

environment and then reduced the influences in brain activity by environment through 

thalamus gate (Castro-Alamancos., 2002b; Miller et al., 2000) or breakdown of cortical 

effective connectivity (Massimini et al., 2005). 

 

1.2 Alpha and Theta Rhythm 

 The frequency of the EEG rhythmic activities may reflect both intrinsic membrane 

properties of single neurons and the organization and interconnectivity of networks. Lopes da 

Silva had shown that both thalamo-cortical as well as cortico-cortical loops played an 

important role in the generation and controlled especially alpha rhythms (8-12 Hz) (Lopes da 
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Silva, 1991).  

Alpha rhythm is the first defined EEG rhythm (Berge, 1929) which power increase is an 

electrophysiological correlated with cortical idling (Laufs et al., 2003; Robin et al., 2002; 

Pfurtscheller et al., 1996). These studies showed that alpha power increase accompanied with 

the decline of the performance (Parikh et al., 2004; Schier., 2000). Theta rhythm is the EEG 

characteristic of sleep stage 1 and microsleep (Bear et al., 2001; Gennaro et al., 2001). 

Degradation in performance is also correlated with increased EEG theta power (Beatty et al., 

1974; Lal et al., 2002; Takahashi et al., 1997). Moreover, the performance accompanied with 

the ascension of the alpha and theta activities (Campagne et al., 2004; Keckluno et al., 1993).  

 

1.3 Locations of the EEG Activities Accompanying Cognitive-state Changes  

Several studies have shown the EEG power spectra at various scalp locations are 

correlated with drowsiness in various sustained-attention experiments. The occipital and 

parietal are the principal areas of scalp that EEG activities accompany changes with 

performance (Beatty et al., 1974; Parikh et al., 2004; Campagne et al., 2004). Few studies also 

reported the similar phenomena in the frontal and central regions of the scalp (Schier., 2000; 

Takahashi et al., 1997). Recently, we applied ICA to multi-channel EEG, and the EEG results 

showed that component power spectral fluctuations of several components primarily projected 

to the frontal, central, occipital and parietal scalp locations all exhibited high correlations with 

the changes in task performance (Lin et al., 2006; Huang et al., 2008).  

 

1.4 Aims of this thesis: Modulators in the Brain Dynamics 

Inspired by Onton and Makeig (2007), we hypothesize that there seems to be modulators 

mediated spectral activations of the cortical areas by intra-cortical feedback loops, or 

distributed over different parts of the brain comprising a large number of neurons, e.g. 
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controlled by thalamo-cortical feedback loops. These modulators influence EEG sources 

influenced by a sub-cortical influence, such as norepinephrine, serotonin, etc. This study 

investigates the comodulation of the neural system from alertness to drowsiness in a realistic 

virtual-reality based driving environment to understand the interactions among different 

cortical areas. The basic principle is shown in Fig. 1-1. 

 

Figure 1-1: The basic principle of neuromodulation. Our EEG sources, here depicted as 

colored patches, which can express variable oscillatory activity depending on the 

circumstance, may be influenced by a sub-cortical influence, such as norepinephrine, 

serotonin, etc, but here just labeled as IM1. This modulator may influence more than one IC, 

which expresses the cortical source, since we know that neuromodulators have widespread 

connections to the cortex. The influence of this modulator might be to encourage oscillations 

at 9 Hz, for example. Whereas IM2 may encourage a 15 Hz rhythm in a different, but partially 

overlapping set of ICs. Thus, the blue patch of cortex would express bimodal alpha at 9 and/ 

or 11 Hz depending on the relative strengths of IM1 and IM2.  
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2. Materials and Methods 

2.1. Dynamic virtual reality environment 
The dynamic VR environment provided a safe, time saving and low cost approach to 

study human cognition under realistic stimuli. The dynamic VR environment consists of three 

elements: (1) a six-degree-of-freedom Stewart motion platform; (2) a real car; and (3) a 

360-degree 3D VR scene consisting seven projectors. Our driving environment provided not 

only high-fidelity VR scene, but also kinesthetic inputs and realistic driving environment (as 

shown in Fig. 2-1). These could make subjects feel that they were driving in a real vehicle on 

the real road.  

Figure 2-1: The overview of the dynamic VR environment, Brain Research Center, National 

Chiao-Tung University, Taiwan, ROC. The dynamic VR environment consists of three 

elements: (1) a six-degree-of-freedom Stewart motion platform; (2) a real car; and (3) a 

360-degree 3D VR scene consisting seven projectors. The movements of the platform are 

according to the car dynamics and the condition of the road surface.  

2.1.1. VR scene 

The VR-based high-fidelity 3D interactive highway scene was developed by using the 

WorldToolKit (WTK) 3D engine. The 3D view was composed of seven identical PCs running 

the same VR program and the seven PCs were synchronized by LAN that all scenes were 

going at exactly same pace. The VR scenes of different viewpoints were projected on 
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corresponding locations.  

Literatures showed that the horizontal field of view (FOV) of 120° is needed for correct 

speed perception (Jamson, 2000). In our VR scenes, the surrounded screens covered 206° 

frontal FOV and 40° back FOV (Fig. 2-2). Frames projected from 7 projectors were 

connected side by side to construct a surrounded VR scene. The size of each screen had 

diagonal measuring 2.6-3.75 meters. The vehicle was placed at the center of the surrounded 

screens.  

 

 

 

Figure 2-2: The configuration of the 3D surrounded scene. The 3D VR scene consists of 7 

projectors, creating a surrounded view. Frontal screen is overlapped by 2 projector frames in 

different polarizations, providing a stereoscopic VR scene for 3D visualization. 
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2.1.2. Stewart motion platform 

 The Stewart motion platform had a lower base platform and an upper payload platform 

connected by six extensible legs with ball joints at both ends (Fig. 2-3). The platform 

generated accelerations in vertical, lateral and longitudinal direction of vehicle as well as 

pitch, roll and yaw angular accelerations.  

(A) (B) 

Figure 2-3: (A) A real vehicle (without the unnecessary weight of an engine and other 

components) and the platform below the real vehicle. (B) The dynamic platform. A real 

vehicle was mounted on this platform. 

2.2. Subjects 

Seventeen right-handed healthy (all males, 18-28 years old) volunteers with normal or 

corrected to normal vision were paid to participate a lane keeping experiment. All subjects 

were free from neurological or psychological diseases and without drug or alcohol abuse. No 

subjects reported with sleep deprivation at one day before the experiment. Subjects were 

required to have lunch at one hour before the experiment since it has been know that the 

drowsiness easily occurred during early morning, mid-afternoon, late nights and especially 

after meal times (Benton et al., 1998).An informed consent were obtained from every subjects 

before the experiment and the experiment protocol was approved by the Institutional Review 

Broad of Taipei Veterans General Hospital. 
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2.3 The Lane Keeping Driving Task 

Subjects were instructed to perform a lane-keeping driving task. In this task, the car 

cruised with a fixed velocity of 100 km/hr on the VR-based highway scene and it was 

randomly drifted either to the left or to the right away from the cruising position with a 

constant velocity. The participants were instructed to steer the vehicle back to the center of 

the cruising lane as quickly as possible when they detected a drifting event. Fig 2-2 shows the 

time course of a typical deviation event that embedded in the lane-keeping driving task. About 

5 to 10 seconds after the system detected the subjects’ response, the next trial started. When 

subjects fall drowsy, they often exhibit relative inattention to environments, eye closure, less 

mobility, failure to motor control and making decision (Brookhuis et al., 2003). Since the 

response time will increases when subjects falling drowsiness, there is linear relationship 

between response time and deviation. So the vehicle trajectories (driving error) were defined 

as the basic drowsiness index in the experiment. The VR-based four-lane straight highway 

scene was applied in the experiment. In this scene, the four lanes from left to right are 

separated by a median stripe and the distance from the left side to the right side of the road 

was equally divided into 256 points indicating the position of the vehicle as the digital output 

signal of the VR scene at each time instant as shown in Fig 2-4. The width of each lane and 

the car is 60 units and 32 units, respectively. Fig 2-5 shows an example of the driving 

performance represented by the vehicle deviation trajectories.  
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Figure 2-4: The digitized highway scene. The width of highway is equally divided into 256 

units and the width of the car is 32 units.  

Deviation 
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Figure 2-5: An example of the deviation event. The car cruised with a fixed velocity of 100 

km/hr on the VR-based highway scene and it was randomly drifted either to the left or to the 

right away from the cruising position with a constant velocity. The subjects were instructed 

to steer the vehicle back to the center of the cruising lane as quickly as possible. 
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2.4 EEG Data Acquisition 

Thirty-two channel EEG signals (using sintered Ag/AgCl electrodes and reference was 

the mean of the left and right mastoid electrodes ), and one 8-bit digital signal representing the 

driving performance produced from VR scene were simultaneously recorded by the Scan 

NuAmps Express system (Compumedics Ltd., VIC, Australia). Fig 2-6 shows the 32 channel 

EEG electrode cap. All EEG channels were located based on a modified International 10-20 

system as shown in Fig 2-7 and Fig 2-8. The 10-20 system is based on the relationship 

between the locations of an electrode and the underlying area of cerebral cortex. Before 

acquiring EEG data, the contact impedance between EEG electrodes and the skin was 

calibrated to be less than 5kΩ by injecting NaCl based conductive gel. The EEG data were 

recorded with 16-bit quantization levels at a sampling rate of 500 Hz.  

 

Figure 2-6: The electrode cap and the EEG signal amplifier. 
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Figure 2-8: The 10-20 international electrode placement system. 

 

 

Figure 2-7: The International 10-20 system of electrode placement for 32 

electrodes, including the lateral view and top view. 
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Table 2-1: NuAmps Specifications 

Analog inputs 40 unipolar (bipolar derivations can be computed)

Sampling frequencies 125, 250, 500, 1000 Hz per channel 

Input Range ±130mV  

Input Impedance Not less than 80 MOhm 

Input noise 1 µV RMS (6 µV peak-to-peak) 

Bandwidth 3dB down from DC to 262.5 Hz, dependent upon 

sampling frequency selected 
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3. Data Analyses 

3.1. Analysis of driving performance 

 In each session, deviation trajectory was recorded at 60 Hz, and we can retrieve the 

deviation onset latency and response onset latency. Similar to real-world driving experience, 

the vehicle did not always return to the same cruising position after each compensatory 

steering maneuver. Therefore, during each drift/response trial, driving error was measured by 

maximum absolute deviation from the previous cruising position (Fig. 3-1).  

 

Figure 3-1: An example of the driving trajectory, recorded with 653 deviation events in a 

100-min session. Blue lines: raw trajectory. Green dots: deviation onsets. Red dots: 

response onsets. 
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Figure 3-3: (A) Sorted trials by driving error (point). (B) Sorted trials by response time (sec).

Since the car drifted with constant velocity, the relation between response time and the 

driving error was linear (D=c T, c = 60). After transformed the local driving error into 

response time, behavior responses were sorted by response time, and then plotted as Fig.3-3.  

 The response time and local driving error were varied along with drivers’ alertness and 

drowsiness. We had two equal drowsiness indices: response time and the local driving error. 

For instance, when the driver was drowsy, the response time between the onset of deviation 

and steering wheel was increased. On the contrary, when the driver was alter, the response 

time between the onset of deviation and steering wheel was decrease.  

Figure 3-2: (A) Driving trajectory of a 100-min session. (B) The local driving error of a 

100-min session. It was obtained from the driving trajectory through 4 steps: baseline 

removal, compute the absolute value, set a threshold, and moving average. 
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Since the cruising center was set on the third lane of the highway scene, a threshold (85 

pixel) was selected for absolute trajectory to eliminate the diversity of maximum deviation 

between the vehicle drifted to the left and right. Since the alertness level fluctuates with cycle 

lengths longer than 4 minutes (Makeig et al., 1996, 2000), we smoothed the trajectory time 

series by using a causal 90-second square moving-averaged filter to eliminate variances at 

cycle lengths shorter than 1–2 minutes. The smoothed driving error was called local driving 

error (LDE) that is linearly correlated with response time. Since subjects easily exhibited 

relative inattention to environments, eye closure, less mobility, slow or worse motor control 

or responses or decision making (Brookhuis et al., 2003 ), the LDE was varied along with 

drivers’ alertness and drowsiness. Therefore, we had a drowsiness index: local driving error. 

For instance, when the driver was drowsy, the local driving errors were increased. In the 

contrary, the local driving errors were decreased when the driver was alert. 

 

3.2. EEG  

The flow chart of the EEG signal analysis procedure is show in Fig. 3-4. It consists of 

preprocess, independent component analysis, useful component selection, time-frequency 

analysis, component clustering, and independent modulator decomposition. All the EEG data 

were analyzed by using MATLAB and EEGLAB. 
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Figure 3-4: The flow chart for the EEG signals analysis procedure. It consists of preprocess, 

independent component analysis, useful component selection, time-frequency analysis, 

component clustering, and independent modulator decomposition. All the EEG data were 

analyzed by using MATLAB and EEGLAB. 

 

3.2.1. EEG Preprocess 

The acquired multi-channel EEG signals were first down sampled (from 500 to 250 Hz). 

A 500-pt high pass filter with a cut-off frequency at 0.5 Hz is used to remove breathing 

artifacts, and the DC drifts. The width of the transition band of the high pass filter is 0.2 Hz. A 

30-pt low pass filter is then applied to the signal with the cut-off frequency at 50 Hz to 

remove muscle artifacts and line noise. The transition band width of the low pass filter is 7 Hz. 

The artifacts across all channels were then identified and rejected from EEG data by visual 

inspection using the EEGLAB visualization function pop_eegplot(). The rejection strategy 

was to reduce the extreme values data, abnormal electrode activities, and strong muscle 

artifacts. 
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3.2.2. Independent Component Analysis (ICA) 

ICA methods have been extensively applied to the blind source separation problem and 

also demonstrated that was a suitable solution to the problem of EEG source segregation, 

identification, and localization. (Lee et al., 1999; Jung et al., 2000, 2001; Naganawa et al., 

2005; Liao et al., 2005). In this study, we used a version of the infomax algorithm of 

Sejnowski et al. Firstly, we used ICA to decompose EEG signals into various temporally 

statistical independent activations (ICA components) and then excluded the artifact based on 

the time course signals, scalp maps and power spectra of components (Jung et al., 2000; 

Onton et al., 2006). IC activations from each subject were first assessed and categorized as 

brain activity or non-brain artifact (e.g., muscle or line noise, or eye movement activity) by 

visual inspection of their scalp topographies, time courses and activity spectra. Most artifacts 

can be rejected in the process of useless components rejection. The effectiveness of eye 

blinking and other artifacts removal by using ICA had been demonstrated in the Jung et al.’s 

study. Then we employed the time-frequency analysis, which can measures dynamic changes 

in amplitude of the broad band EEG frequency spectrum as a function of time. Then we used 

component clustering method to observe the cross-subjects results. 

The Infomax ICA can separate N sources from N EEG channels. The conduction of the 

EEG sensors is assumed to be instantaneous and linear such that the measured mixing signals 

are linear and the propagation delays are negligible. We also assume that the signal sources of 

muscle activity, eye, and, cardiac signals are not time locked to the sources of EEG activity 

which is regarded as reflecting synaptic activity of cortical neurons. Therefore, the time 

courses of the sources are assumed to be independent. The task of the Infomax ICA algorithm 

is to recover a version, of the original sources S by finding a square matrix W that inverts the 

mixing process linearly and save the identical scale and permutation. For EEG analysis, the 

rows of the input matrix X are the EEG signals recorded at different electrodes, the rows of 
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the output data matrix U = WX are time courses of activation of the ICA components, and the 

columns of the inverse matrix W-1 give the projection strengths of the respective components 

onto the scalp sensors. The scalp topographies of the components provide information about 

the location of the sources (e.g., eye activity should project mainly to frontal sites, and the 

visual event-related potential is on the center to posterior area, etc.). Discarding the sources of 

muscle activity, eye movement, eye blinking, and single electrode noises, we obtained useful 

components to do further analysis. Fig. 3-4 shows the ICA decomposition results of single 

subject. 

Figure 3-5: The statistical independent activations (components) from the EEG signal 

decomposed by ICA. 30 sources are separated from 30 EEG channels in the figure. 
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Figure 3-6: An example of ICA decomposition. The scalp topographies of ICA 

weighting matrix by spreading each element of weight into the plane of the scalp 

which is corresponding to the ICA components based on international 10-20 system. 

3.2.3. Independent Component Selection and Dipole Fitting 

IC activations from each subject were first assessed and categorized as brain activity or 

non-brain artifact (e.g., muscle or line noise, or eye movement activity) by visual inspection 

of their scalp map, activity spectra, and dipole fitting location. ICs were selected by 

observations and large reduced the number of components into around half by rejecting the 

noisy components (Fig. 3-8). 

DIPFIT2 routines from EEGLAB were then used to fit single dipole source models to the 

remaining IC scalp topographies using a fourshell spherical head model (Oostenveld and 

Oostendorp, 2002). In the DIPFIT2 software, the spherical head model is co-registered with 

an average brain model (Montreal Neurological Institute) and returns approximate Talairach 

coordinates for each equivalent dipole source. Fig. 3-7 shows the dipole fitting result and the 

IC spectra. 
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Figure 3-7: An example of the dipole fitting result and the IC spectra. DIPFIT2 

routines from EEGLAB were then used to fit single dipole source models to the 

remaining IC scalp topographies using a fourshell spherical head model. 
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Figure 3-8: Component selection procedure. IC activations from each subject were 

first assessed and categorized as brain activity or non-brain artifact (e.g., muscle or 

line noise, or eye movement activity) by visual inspection of their scalp map, 

activity spectra, and dipole fitting location, and then reject all components of 

non-brain artifacts. In this example, red line shows the rejected components. 

3.2.4. Time frequency analysis 

The processing flow of time frequency analysis was shown in Fig. 3-5. The time 

sequence of EEG channel data or ICA activations were subject to Fast Fourier Transform 

(FFT) with a 500-point window with 250-point overlap. Windowed 500-point epochs were 

further subdivided into several 125-point subwindows with 25-point step. Each 125-point 

frame was extended to 512 points by zero-padding to calculate its power spectrum by using a 

512-point fast Fourier transform (FFT), resulting in power-spectrum density estimation with a 

frequency resolution near 0.5 Hz. A moving median filter was then used to average and 

minimize the presence of artifacts in the EEG records of all sub-windows. Previous reports 

also showed that the EEG spectral amplitudes correlated with the wake-sleep transition more 



 - 21 -

linearly in the logarithmic scale than in the linear scale (Bear et al., 2001; Gennaro et al., 

2001). Thus, the power spectra of IC activations were further converted into a logarithmic 

scale. The resultant time series of log power spectra for each session consisted of the power 

spectra of the IC activations across 20 frequencies (from 1 to 20 Hz) stepping at 2-second 

(500-point, an epoch) time intervals. 

 

Figure 3-9: The smoothed EEG power spectral analysis procedure. The EEG data of the 

extracted ICA components was first accomplished using a 750-point Hanning window 

with 250-point overlap. Windowed 750-point epochs were further subdivided into 

several 125-point subwindows using the Hanning window again with 25-point step. 

Each 125-point frame was extended to 256 points by zero-padding to calculate its power 

spectrum by using a 256-point fast Fourier transform (FFT), resulting in 

power-spectrum density estimation with a frequency resolution near 1 Hz. 
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3.2.5. Component clustering  

In order to discover the corss-subjects results, we employed the component clustering 

analysis after doing ICA decomposition. ICs were first selected by observations and large 

reduced the number of components into around half by rejecting the noisy components (Fig. 

3-8). Then, the selected ICs were first clustered semi-automatically based on the gradients 

values of the component scalp maps, dipole source locations, power spectra, and 

within-subject consistency (Onton et al., 2006) by K-mean algorithm. The K-means clustering 

is to classify or to group objects based on attributes/features into K number of groups. K is a 

positive integer number. The grouping is done by minimizing the sum of squares of distances 

between the data and the corresponding cluster centroid as: 

2∑ −=
i kik yxe                                   (5) 

where ke represent the square error, ix and ky represent the data point and cluster centers, 

respectively.  
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Figure 3-10: The procedure of component clustering analysis. Components of each 

subject were assessed and categorized as brain activity or non-brain artifact by 

component selection procedure. The selected components of all volunteer were 

clustered semi-automatically based on the gradients values, [Gxi Gyi], of the 

component scalp maps by K-mean algorithm based on the gradients values of the 

component scalp maps, dipole source locations, power spectra, and within-subject 

consistency. PSD is the power spectral density of components, and the dipole fitting 

result was generated by DIPFIT2. 
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3.2.6. Independent modulator (IM) decomposition  

Here, we present first results of a new method for decomposing fluctuations in the 

selected independent component (IC) power spectra into independent modulators. The method 

was applied to the selected IC activity spectra from each subject. Mean logarithmic power at 

each frequency was subtracted from each single window power spectral estimate. The 

resulting time series of logarithmic spectral deviations were then concatenated, giving a 

matrix of size (f 　c, t), where f the number of frequency bins, c the number of subject ICs, 

and t is the number of time windows. For each subject, this matrix was reduced to its first 10 

principal dimensions by PCA. The dimension-reduced log spectral data were then 

decomposed by infomax ICA to find independent modulators of log spectral power across 

subsets of time windows within all ICs. Infomax ICA finds a matrix, W, that linearly unmixed 

the IC spectral activations, x, into a sum of maximally temporally independent, and spatially 

fixed modulators, u, such that u = Wx. The rows of the resulting ‘activation’ matrix, u, are 

the independent modulator activations, and its columns, the time points of the input data. 

Columns of the inverse matrix, W-1, give the relative projection weights from each 

independent modulator to each frequency bin of each component. The projection weights, 

which are the frequent patterns, of the modulator provide information about the modulating 

frequencies of the modulator.  

Fig.3-11. shows the relation between single subject comodulation analysis and 

component clusters. Different subject has different components. For example, S4 in this figure 

has only component of frontal. Then we fill in a 'V' marks in the grid of the frontal scalp map. 

It shows that the mean cluster maps are inserted in the 1st row. Then we take the spectral 

activates of the selected components to do single subject comodulation analysis. The 

procedure of the single subject comodulation analysis is shown in Fig. 3-12. 
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Figure 3-11: The relation between single subject comodulation analysis and component 

clusters. Different subject has different components. For example, S4 in this figure has only 

component of frontal. Then we fill in a 'V' marks in the grid of the frontal scalp map. It shows 

that the mean cluster maps are inserted in the 1st row. Then we take the spectral activates of 

the selected components to do single subject comodulation analysis. The procedure of the 

single subject comodulation analysis is shown in Fig. 3-12. 
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Figure 3-12: The independent modulator decomposition procedure. The independent 

modulator decomposition procedure can be divided into five steps. First, the selected dipolar 

ICs is divided into 1s windows FFT window power spectra then transformed to log power. 

Each colored trace represents the power spectrum for a single 1s window. The thick black line 

is the mean power spectrum of all windows. Third, the mean is removed from each power 

spectrum. Forth, these data is converted into matrix format. We concatenate this tall matrix 

from one IC with the same sort of information from all the other selected components, and 

then we have a matrix of dimensions 'spectra (or frequencies)' by 'spectral windows'. This 

matrix was then submitted to PCA for dimension reduction to 10 dimensions and then to ICA 

to find independent spectral modulators from the mean across these selected components. 

Each row is an IC and each column in this illustration is an IM. What come out of this 

decomposition are projection weights of 10 independent modulators. The projection weights, 

which are the frequent patterns, of the modulator provide information about the modulating 

frequencies of the modulator. 
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Fig. 3-13 shows how to plot the frequency weights of the components from each subject 

for 1 of the modulator. As described in Fig.3-11, it’s needed to fill up the table. In this figure 

'V' marks means the frequency weight of each component and the mean frequency weight is 

plotted by red thick line. 

Figure 3- 13: Method of plotting the frequency weights of the components from each subject 

for the theta-beta modulator. In this figure 'V' marks means the frequency weight of each 

component and the mean frequency weight is plotted by red thick line. 
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3.2.7. LDE-Sorted IM activation analysis and statistical analysis  

In order to find the inter-subject relationships between the IM activations and the 

alertness level, the LDE-sorted analysis method was applied to the IM activation across 

subjects. The method sorts the smoothed IM activations according to the LDE index to assess 

the brain dynamics corresponding to the transition from lower LDE to larger LDE. For group 

analysis, we assumed the alertness levels of all subjects in the lowest LDE states were the 

same and the difference of the lowest LDE values corresponding to different subjects are 

caused by the individual reaction speed. To compare the modulator power for the high and 

slow local driving error across subjects, a paired-sample Wilcoxon signed rank test (signrank, 

Matlab statistical toolbox, Mathworks) was applied. The significant onset of the alpha 

increase was earlier than that of the theta increase. All statistical comparisons in this study, a 

significant level was set at p <0.05. 

Figure 3-14: An example of the sorted spectral analysis. The left subplot of Fig 3-6 is 

a subject’s original LDE trajectory (the blue line) and the corresponding modulator 

power changes (the red line). The right subplot sorts the LDE values in ascending 

order and shows the transient modulator powers corresponding to the sorted LDE 

values. It can be found that the modulator power is increasing at the beginning and 

will decrease at the latter when LDE values are ascending. 
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4. Results 

4.1. Behavior performance 

All subjects’ LDE were ranged from 0 to 65 units, indicated that subjects got drowsiness 

in our experimental paradigm. Fig. 4-1 shows the plots of the sorted trials by response time in 

each subject. The performance was changes almost continuously, and we can analyze the EEG 

power changes accompany with LDE variations continuously. 

 

Figure 4-1: The plots of sorted trials by response time of each subject.  
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Table 4-1: Subject list 

 

 

 

SUBJECT No. Exp.Time Sex Age Platform State 

SUBJECT 1 06/02/27 Male 23 motionless 

SUBJECT 2 06/03/03 Male 24 motionless 

SUBJECT 3 06/03/08 Male 25 motionless 

SUBJECT 4 06/06/29 Male 26 motionless 

SUBJECT 5 06/07/06 Male 25 motionless 

SUBJECT 6 06/07/07 Male 25 motionless 

SUBJECT 7 06/07/10 Male 29 motionless 

SUBJECT 8 06/07/11 Male 29 motionless 

SUBJECT 9 06/07/25 Male 23 motionless 

SUBJECT 10 06/10/31 Male 25 motionless 

SUBJECT 11 06/11/01 Male 25 motionless 

SUBJECT 12 06/11/02 Male 23 motionless 

SUBJECT 13 06/11/30 Male 24 motionless 

SUBJECT 14 07/01/02 Male 24 motionless 

SUBJECT 15 07/01/05 Male 23 motionless 

SUBJECT 16 07/01/17 Male 23 motionless 

SUBJECT 17 07/02/07 Male 25 motionless 
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4.2. Component spectral fluctuations related to performance changes 

The grand results show that the trends of alpha and theta power changes from good 

performance to poor performance were similar between different brain regions. The 

performance changes are shown in Fig. 4-2. From the above result, we compared the EEG 

fluctuations in time series between different components of intra-subject to confirm that the 

drowsiness related alpha and theta rhythm in these components may be modulated by the 

same nucleus or synchronized by cortical-cortical interaction. ICA power fluctuations of 

parietal, occipital, frontal and central components in time series were shown in the Fig. 4-2. 

The result shows that the alpha power fluctuation of parietal component was highly correlated 

with the fluctuation of occipital component. Additionally, the theta power fluctuations of 

frontal, parietal and central component were highly correlated with each other. 
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Figure 4-2: The single subject results of performance change accompanying the component 

power changes. It shows that the trends of alpha and theta power changes from good 

performance to poor performance were similar between different brain regions. Hence, we 

compared the EEG fluctuations in time series between different components of intra-subject to 

confirm that the drowsiness related alpha and theta rhythm in these components may be 

modulated by the same nucleus or synchronized by cortical-cortical interaction. Scalp maps on 

the bottom right show the ICA power fluctuations of parietal, occipital, frontal and central 

components in time series. The result shows that the alpha power fluctuation of parietal 

component was highly correlated with the fluctuation of occipital component. Additionally, 

the theta power fluctuations of frontal, parietal and central component were highly correlated 

with each other. 

4.3. Component clustering results 

We clustered all components of 17 subjects into 7 groups, and showed the remarkably 

meaningful and consistent 5 clusters from Fig. 4-3 to Fig.4-7, with the averaged scalp maps, 

each scalp map and the dipole source locations in the clusters. Where Fig. 4-3 shows frontal 

cluster, Fig.4-4 shows occipital cluster, Fig. 4-5 shows right motor cluster, Fig. 4-6 shows left 

motor cluster, and Fig. 4-7 shows parietal cluster. The results of clustering analysis and dipole 

fitting displayed that most of the brain areas involved in the lane-keeping driving task. These 

cluster are more remarkable and stable between different participants in the lane-keeping 

driving task. Hence, only the components that include in these cluster clusters were for further 

analysis. 

In each figure, equivalent dipole source location, spectra and scalp maps for 

independent component clusters are shown. Scalp maps are shown on the top. Dipole source 

location is shown on the bottom right. Spectra are shown on the bottom left. 
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Figure 4-3: Equivalent dipole source location, spectra and scalp maps for 

independent component clusters of frontal cluster. 

Figure 4-4: Equivalent dipole source location, spectra and scalp maps for 

independent component clusters of occipital cluster. 
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Figure 4-5: Equivalent dipole source location, spectra and scalp maps for 

independent component clusters of right motor cluster. 

Figure 4-6: Equivalent dipole source location, spectra and scalp maps for independent 

component clusters of left motor cluster. 
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Figure 4-7: Equivalent dipole source location, spectra and scalp maps for independent 

component clusters of parietal cluster. 

 

4.4. Single Subject Independent modulator (IM) decomposition Results 

     In the section, we discuss the decomposition results of independent modulator. In 

Fig.4-8., representative independent modulation patterns from one subject. IM window 

weights and frequency characteristics derived by multiplying the series of spectral deviations 

from the mean in each 1-s overlapping time window with the PCA/ICA unmixing matrix. 

Each row represents a computed IC, and each column an IM. The figure shows that IM1 

modulated all ICs in alpha-band, and IM2 modulated all ICs in theta-beta-band. The leftmost 

row shows the IC scalp maps, and top column, the IM window weight histograms. The 

numbers in the bottom are the correlation coefficient between IM activation and LDE. 
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Figure 4-8: Representative independent modulation patterns from one subject. IM 

window weights and frequency characteristics. It is derived by multiplying the series 

of spectral deviations from the mean in each 1-s overlapping time window with the 

PCA/ICA unmixing matrix. Each row represents a computed IC, and each column an 

IM. The figure shows that IM1 modulated all ICs in alpha-band, and IM2 modulated 

all ICs in theta-beta-band. The leftmost row shows the IC scalp maps, and top column, 

the IM window weight histograms. The numbers in the bottom are the correlation 

coefficient between IM activation and LDE. 
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4.5. Frequency characteristics of the independent modulators  

     Fig. 4-9 shows the normalized frequency patterns of two stable modulators in each 

cluster. Top panels in Fig. 4-9 show the averaged scalp maps of the clusters, which we 

obtained in component clustering. Middle panels in Fig. 4-9 display frequency characteristics 

of the one stable modulator, and bottom panels in Fig. 4-9 exhibit another one. The modulated 

frequency patterns of corresponding ICs were derived from the column of the inverse matrix, 

W-1, during the procedure of single subject Independent modulator (IM) decomposition. We 

normalized the frequency characteristics to observe the common characteristic of each IM. 

The thin red lines in Fig. 4-9 indicate the modulating frequency of the IM to each component, 

and the thick red lines in Fig. 4-9 indicate the averaged frequency characteristics of the IM in 

the cluster. The IMs in middle panels of Fig. 4-9 modulate the theta band, and reveal a peak 

near 15 Hz in the patterns. This theta dominant modulator affected all areas in our experiment 

design. The IMs in bottom panels of Fig. 4-9 demonstrate the alpha band modulated in very 

wide areas. 
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Figure 4-9: The normalized frequency patterns of two stable modulators related to alertness 

changes in each cluster. Top panels show the averaged scalp maps of the clusters. Middle 

panels display frequency characteristics of the one stable modulator, and bottom panels 

exhibit another one. The modulated frequency patterns of corresponding ICs were derived 

from the column of the inverse matrix, W-1 , during the procedure of single subject 

Independent modulator (IM) decomposition. We normalized the frequency characteristics to 

observe the common characteristic of each IM. The thin red lines indicate the modulating 

frequency of the IM to each component, and the thick red lines indicate the averaged 

frequency characteristics of the IM in the cluster. The IM in middle panels modulate the theta 

band, and reveal a peak near 15 Hz in the patterns. This theta dominant modulator affected all 

areas in our experiment design. The IM in bottom panels demonstrate the alpha band 

modulated in very wide areas. 

4.6. Independent modulator activities accompanying performance changes 

Fig. 4-10 to Fig.4-16 show the two IM activities related to performance changes. First, 

we compared the intra-subject fluctuations of two IMs which may be modulated by the 

nucleus or synchronized by cortical-cortical interaction in time series during different 

alertness levels to confirm that the alpha and theta-beta modulator related drowsiness level. 

Letter a-c shows the fluctuations of the LDE, theta-beta modulator, and alpha modulator for 

two subjects in time series. In Fig. 4-10 to Fig.4-15, (a) exhibits the changes of the LDE 

during whole experiment, and (b) is the fluctuations of the theta-beta modulator, and (c) 

shows the fluctuations of the alpha modulator. The theta-beta modulator fluctuates very little 

during the low LDE periods, and increases monotonically from low LDE to high LDE. 

Different with the theta band, the alpha modulator fluctuates very large during the low LDE 

periods. The correlation results between the LDE and two modulators of each subject were 

exhibited in Tab. 4-2. 



 - 39 -

Figure 4-10: The performance changes related to two IM activities of subject 1. 

Figure 4- 11: The performance changes related to two IM activities of subject 2. 
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Figure 4-12: The performance changes related to two IM activities of subject 4. 

Figure 4-13: The performance changes related to two IM activities of subject 14. 
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Figure 4-14: The performance changes related to two IM activities of subject 15. 

Figure 4-15: The performance changes related to two IM activities of subject 16. 
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Figure 4-16: The LDE-Sorted IM activation on two IM activations of all subjects. It 

showed the mean and SD of the two LDE-sorted IM activations. Fig. 4-16a displays the 

result of the LDE-Sorted theta-band dominant IM activation, and LDE-Sorted theta-beta 

modulator activity was significantly increases monotonically from low LDE to high 

LDE, and the LDE-Sorted alpha modulator, which shows in Fig. 4-16b, was remarkably 

increases and then sustains from low LDE to high LDE. Additionally, we observed the 

variances of the two IM activities in the same value of LDE across 17 subjects. The 

variations were very small in all participants, revealing that the results of the 

LDE-sorted have inter-subject consistence. 

 

 

 

 



 - 43 -

Table 4-2: The correlation coefficients between two modulators and the LDE 
 

SUBJECT No. Theta-Beta Modulator Alpha Modulator 

SUBJECT 1 0.7861 0.5713 

SUBJECT 2 0.7845 0.6093 

SUBJECT 3 0.9433 0.2002 

SUBJECT 4 0.8689 0.6619 

SUBJECT 5 0.7783 0.5189 

SUBJECT 6 0.8201 0.6162 

SUBJECT 7 0.9228 0.029 

SUBJECT 8 0.8715 0.2748 

SUBJECT 9 0.7722 0.3341 

SUBJECT 10 0.7957 0.2485 

SUBJECT 11 0.8043 0.0831 

SUBJECT 12 0.8427 0.683 

SUBJECT 13 0.818 0.1898 

SUBJECT 14 0.7174 0.5748 

SUBJECT 15 0.9282 0.6457 

SUBJECT 16 0.9337 0.6186 

SUBJECT 17 0.7641 0.5353 

Mean Value 0.83246 0.43497 

Standard Deviation 0.06812 0.22137 
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5. Discussion 

5.1 The component spectral fluctuations related to performance  

 The theta and alpha power changes of several components from good performance to 

poor performance were similar between different brain regions. It is consistent with past 

studies (Lin et al., 2006; Huang et al., 2008). Hence, we compared the component fluctuations 

in time series between different components of intra-subject to confirm that the drowsiness 

related alpha and theta rhythm in these components may be modulated by the same nucleus or 

synchronized by cortical-cortical interaction.  

 

5.2 The modulatory model of the neural system   

The modulatory model underlying this analysis was illustrated schematically in Fig. 1-1. 

Independent component analysis (ICA) was applied to EEG data to identifies temporally 

distinct (independent) signals generated by partial synchronization of local field potentials 

within cortical patches (b) and summing in different linear combinations at each electrode 

depending on the distance and orientation of each cortical patch from the scalp (a) and 

reference electrode (c). The spectra of resulting cortical independent components (ICs) 

monotonically decrease with frequency, on average, but exhibit large and frequent variations 

across time. These spectral modulations may be modeled as exponentially weighted 

influences of several near-independent modulator (IM) processes (d) that independently 

modulate the activity spectra of one or more independent component (IC) signals. On 

converting the IC spectra to log power, combined IM influences on IC spectra are converted 

to log-linear weighted sums of IM influences, allowing a second linear ICA decomposition, 

applied to the IC log power spectra, to separate the effects of the individual IM processes (d) 

across EEG frequencies and IC sources (b). 

Some scholars (Feige et al., 2005) used simultaneous measurement of EEG and fMRI to 
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investigate the modulation model. They have examined the correlation between occipital EEG 

alpha rhythm, selectively extracted using ICA, and fluctuations in the BOLD effect during an 

open versus closed eyes and an auditory stimulation versus silence condition. Occipital alpha 

amplitude is consistent with metabolic changes occurring simultaneously, sites in the medial 

thalamus and in the anterior midbrain, with about 2.5 sec lag. Goncalves et al.(2005) used 

simultaneous recording of electroencephalogram/functional magnetic resonance images 

(EEG/fMRI) to identify blood oxygenation level-dependent (BOLD) changes associated with 

spontaneous variations of the alpha rhythm, which is considered the hallmark of the brain 

resting state. They also found the BOLD signal was positively correlated with the alpha 

power in small thalamic areas, supporting the cortical and subcortical modulation of 

electroencephalographic alpha rhythm. 

A combined PET/EEG study by Schreckenberger et al. also supported the hypothesis of 

a close functional relationship between thalamic activity and alpha rhythm in humans 

mediated by corticothalamic loops. (Schreckenberger et al., 2004) This functional 

corticothalamic loop supports the concept of cortical control of thalamic activity in humans 

for modulating cortical EEG activity.  

Physiological processes that may produce these patterns include several brain systems 

regulating brain and behavioral arousal and/or valuation judgments of stimulus and other 

events via the release by midbrain or brainstem neurons of modulatory neurotransmitters – 

dopamine (DA), acetylcholine (ACh), norepinephrine (NE), serotonin, etc. – through their 

extensive cortical and thalamic projections (Robbins, 1997; Bardo, 1998). 
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5.3 The modulator fluctuations from alertness to drowsiness 

In this study, we employed independent modulator decomposition to the spectral 

fluctuations of independent components, and two independent modulators related to 

performance changes were found in all subjects.  

The alpha modulators were very sensitive to the performance changes, so the alpha 

modulator fluctuates very large during the low LDE periods. Therefore, the alpha modulator 

in this study might be partially contributed by cortical idling, decreased attentiveness and 

decline of movements. In the earlier finding (Lee et al., 1999), the frequency of the 8-14 Hz 

synchronizes in the thalamocortical system during quiet sleep. The EEG fluctuations from 

low error to high error were similarly during frontal, central-parietal and occipital lobe in the 

experiment. So that the alpha modulator maybe also modulated by thalamus during 

drowsiness. 

The theta-beta modulators increase monotonically from low LDE to high LDE. Theta 

rhythm is the EEG characteristic of sleep stage 1 and microsleep (Bear et al., 2001; Gennaro 

et al., 2001; Thomas et al., 2003). Past studies also reported the fluctuations in the modulation 

of the beta-wave amplitude related to an indirect measurement of drowsiness (Poupard et al., 

2001). Jung et al. (1997) also reported theta and beta band power were high correlated with 

performance changes.  

The correlation coefficient between modulator power change and LDE is shown in Table 

4-2. The standard deviation is large because the inter-subject behavior states are varied. Some 

subjects were involved more period of stage 1 sleep, others included more time of cortical 

idling, so that results of the independent modulator decomposition depend on drowsiness 

state. 
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6. Conclusions  

In this study, we model spectral fluctuations of independent components from EEG 

activations as the actions of independently modulator processes, and report two main classes 

of spectral modulation patterns, alpha modulator and theta-beta modulator. The theta-beta 

modulator fluctuates very little during the low LDE periods, and increases monotonically 

from low LDE to high LDE. Different with the theta-beta band, the alpha modulator 

fluctuates very large during the low LDE periods. Therefore, the theta-beta modulator is high 

correlated with performance changes, and alpha modulator in this study might be partially 

contributed by cortical idling. In our modulation model, these modulators are modulated by 

the subcortical nucleus or synchronized by cortical-cortical interaction to influence on the 

rhythmic activations of cortical areas. The neuromodulatory systems can be explored more by 

the method we propose here. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 - 48 -

References 

Bardo MT, “Neuropharmacological mechanisms of drug reward: beyond dopamine in the 

nucleus accumbens.” Critical Reviews in Neurobiology, 12,37-67, 1998 

Bear MF, Connors BW, Paradiso MA, “Neuroscience: Exploring the brain.” Lippincott 

Williams and Wilkins, 2001 

Beatty J, Greenberg A, Deibler WP, Hanlon JO, “Operant control of occipital theta rhythm 

affects performance, in a radar monitoring task.” Science, 183, 871-873, 1974 

Benton D, Parker PY, “Breakfast, blood glucose, and cognition.” The american journal of 

clinical nutrition, 67, 772-778, 1998 

Berger H, “Uber das Elektroenkephalogramm des menschen.“ Archives of Psychiatric, 87, 

527–570, 1929 

Brookhuis KA, Waard DD, Fairclough SH, “Criteria for driver impairment.” Ergonomics, 46, 

433-445, 2003 

Campagne A, Pebayle T, Muzet A, “Correlation between driving errors and vigilance level: 

influence of the driver’s age.” Physiology & Behavior, 80, 515– 524, 2004 

Caton R, “The electric currents of the brain.” British Medical Journal, 2, 278, 1875 

Castro-Alamancos MA, “Different temporal processing of sensory inputs in the rat thalamus 

during quiescent and information processing states in vivo.” Journal of Physiology, 539, 

567–578, 2002a 

Castro-Alamancos MA, Oldford E, “Cortical sensory suppression during arousal is due to the 

activity-dependent depression of thalamocortical synapses.” Journal of Physiology, 541, 

319–331, 2002b 

Delorme A, Makeig, S, “EEGLAB: an open source toolbox for analysis of singletrial EEG 

dynamics.” Journal of Neuroscience Methods, 134, 9-21, 2004 

Feige B, Scheffler K, Esposito F, Di Salle F, Hennig J, Seifritz E, “Cortical and subcortical 



 - 49 -

correlates of electroencephalographic alpha rhythm modulation.” Journal of 

Neurophysiology, 93, 2864-72, 2005 

Gennaro LD, Ferrara M, Bertini M, “The boundary between wakefulness and sleep: 

quantitative electroencephalographic changes during the sleep onset period.” 

Neuroscience, 107, 1-11, 2001 

Gonçalves SI, de Munck JC, Pouwels PJ, Schoonhoven R, Kuijer JP, Maurits NM, Hoogduin 

JM, Van Someren EJ, Heethaar RM, Lopes da Silva FH, “Correlating the alpha rhythm 

to BOLD using simultaneous EEG/fMRI: inter-subject variability.” Neuroimage, 30, 

203-13, 2006 

Jung TP, Makeig S, Humphries S, Lee TW, McKeown MJ, Iragui V, Sejnowski TJ, 

“Removing electroencephalographic artifacts by blind source separation.” 

Sychophysiology, 37, 163-78, 2000 

Jung TP, Makeig S, Stensmo M, Sejnowski TJ, “Estimating alertness from the EEG power 

spectrum.” IEEE Transactions on Biomedical Engineering, 44, 1, 1997 

Jung TP, Makeig S, Westerfield W, Townsend J, Courchesne E, Sejnowski TJ, ”Analysis and 

visualization of single-trial event-related potentials.” Human brain Mapping, 14, 166-185, 

2001  

Keckluno G, Akersteot T, “Sleepiness in long distance truck driving: an ambulatory EEG 

study of night driving.” Ergonomics, 36, 1007-1017, 1993 

Kisley MA, Gerstein GL, “Trial-to-trial variability and state dependent modulation of 

auditory-evoked responses in cortex.” Journal of Neuroscience, 19, 10451–10460, 1999 

Lal KL, Craig A, “Driver fatigue: Electroencephalography and psychological Assessment.” 

Psychophysiology, 39, 313-321, 2002 

Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi E, Preibisch C, Krakow K, 

“EEG-correlated fMRI of human alpha activity.” Neuroimage, 19, 1463-1476, 2003 



 - 50 -

Lee TW, Girolami M, Sejnowski TJ, “Independent component analysis using an extended 

infomax algorithm for mixed sub- and super-Gaussian sources.” Neural computation, 11, 

606-633, 1999 

Liao R, Krolik JL, McKeown MJ, “An information-theoretic criterion for intrasubject 

alignment of FMRI time series: motion corrected independent component analysis.” 

IEEE Transactions on Medical Imaging, 24, 29-44, 2005 

Lin CT, Wu RC, Liang SF, Huang TY, Chao WH, Chen YJ, and Jung TP, “EEG-based 

Drowsiness estimation for safety driving using independent component analysis.” IEEE 

Transactions on Circuit and System, 52, 2726-2738, 2005 

Livingstone MS, Hubel DH, “Effects of sleep and arousal on the processing of visual 

information in the cat.” Nature, 291, 554 –561, 1981 

Lopes da Silva, F.H., ”Neural mechanisms underlying brain waves: from neural membranes 

to networks.” Electroencephalography and Clinical Neurophysiology, 79, 81-93, 1991 

Makeig S, Bell AJ, Jung TP, Sejnowski TJ, “Independent component analysis of 

electroencephalographic data.” Advances in neural information processing systems, 8, 

145-151, 1996 

Makeig S, Jung TP, Sejnowski TJ, “Awareness during Drowsiness: Dynamics and 

Electrophysiological Correlates.” Canadian Journal of Experimental Psychology, 54, 

266-273, 2000 

Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G, “Breakdown of cortical 

effective connectivity during sleep.” Science, 309, 2228-2232, 2005 

McCormick DA, “ Neurotransmitter actions in the thalamus and cerebral cortex and their role 

in neuromodulation of thalamocortical activity.” Progress in Neurobiology, 39, 337–388, 

1992 

Miller LM, Schreiner CE, “Stimulus based state control in the thalamocortical system.” The 



 - 51 -

journal of neuroscience, 20(18) 7011–7016, 2000 

Naganawa M, Kimura Y, Ishii K, Oda K, Ishiwata K, Matani A, “Extraction of a plasma 

time-activity curve from dynamic brain pet images based on independent component 

analysis.” IEEE transactions on biomedical engineering, 52, 201–210, 2005 

Onton J, Westerfield M, Townsend J, Makeig S, “Imaging human EEG dynamics using 

independent component analysis.” Neuroscience and Biobehavioral Reviews, 30, 

808–822, 2006 

Oostenveld, R., Oostendorp, T.F., “Validating the boundary element method for forward and 

inverse EEG computations in the presence of a hole in the skull.” Human brain Mapping, 

17, 179–192, 2002 

Parikh P, Tzanakou ME, “Detecting drowsiness while driving using wavelet transform.” 

Bioengineering Conference Proceedings of the IEEE 30th Annual Northeast, 17-18, 

2004 

Pfurtscheller G, Stancak A, Neuper CH, ” Event-related synchronization (ERS) in the alpha 

band-an electrophysiological correlate of cortical idling: A review.” International journal 

of psychophysiology, 24, 39-46, 1996 

Poupard L, Sartène R, Wallet JC, “Scaling behavior in beta-wave amplitude modulation and 

its relationship to alertness.” Biological Cybernetics, 85, 19-26, 2001 

Robbins TW, “Arousal systems and attentional processes.” Biological Psychology, 45, 57-71, 

1997 

Robin G, John S, Jerome E, Mark C, “Simultaneous EEG and fMRI of the alpha rhythm.” 

Brain imaging, 13, 2487-2492, 2002 

Schier MA, “Changes in EEG alpha power during simulated driving: a demonstration.” 

International Journal of Psychophysiology, 37, 155-162, 2000 

Schreckenberger M, Lange-Asschenfeldt C, Lochmann M, Mann K, Siessmeier T, Buchholz 



 - 52 -

HG, Bartenstein P, Gründer G, “ The thalamus as the generator and modulator of EEG 

alpha rhythm: a combined PET/EEG study with lorazepam challenge in humans.”  

Sherman SM, “Guillery RW  Exploring the thalamus.” San Diego, Academic. 2001 

Singer W, “Control of thalamic transmission by corticofugal and ascending reticular pathways 

in the visual system. “ Physiol Rev , 57, 386–420, 1977 

Steriade M, Datta S, Pare D, Oakson G, Curro Dossi RC, “Neuronal activities in brain-stem 

cholinergic nuclei related to tonic activation processes in thalamocortical systems.” 

Journal of Neuroscience, 10, 2541–2559, 1990 

Steriade M, Jones EG, McCormick DA, “Thalamus.” New York: Elsevier. 

Takahashi N, Shinomiya S, Mori D, Tachibana S, “Frontal midline theta rhythm in young 

healthy adults.” Clinical electroencephalography, 28, 49-54, 1997 

Timo-Iaria C, Negrao N, Schmidek WR, Hoshino K, Lobato de Menezes CE, Leme da Rocha 

T, “Phases and states of sleep in the rat.” Physiology and Behavior, 5, 1057–1062, 1970 

Williams JA, Comisarow J, Day J, Fibiger HC, Reiner PB, “Statedependent release of 

acetylcholine in rat thalamus measured by in vivo microdialysis.” Journal of 

Neuroscience, 14, 5236–5242, 1994 

 

 


