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Embedded TaintTracker: Lightweight run-time tracking of taint
data against arbitrary code execution in buffer overflow attacks

Student: Fan-Cheng Wu Advisor: Dr. Ying-Dar Lin
Department of Network Engineering

National Chiao Tung University

Abstract

A buffer overflow attack occurs when a program writes data outside the allocated
memory and aims at invading a system. Around forty percent of all software
vulnerabilities were attributed to buffer overflow over the past several years. The
previous works based on taint tracking, @ novel technique to prevent buffer overflow,
ran a victim's program on an emulator to dynamically instrument the code for tracking
the propagation of data originated from network inmemory and checking whether
malicious code is executed. However, the critical’ problem of these works is their
heavy performance overhead. We analyzed the overhead and found that 60% of
overhead is from the emulator and remaining 40% is from dynamic instrumentation
and taint information maintenance. In this thesis, a new taint-style system, Embedded
TaintTracker, is proposed to eliminate overhead in the emulator and dynamic
instrumentation by compressing a checking mechanism into the kernel of operating
system (OS) and moving instrumentation from runtime to compilation time. The
evaluation demonstrated that our system imposes only 9.3% performance degradation,

and thus it outperforms the previous work, TaintCheck, by at least 8 times.

Keywords: Software security, Buffer overflow, Taint tracking
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Chapter 1 Introduction

The first buffer overflow attack, Morris Worm [1], was exposed in 1988 and
caused a disruption never seen before. Over the last two decades, buffer overflow has
become one of the well-known software vulnerabilities, and is still a significant threat
to the security of computer systems. As statistics from vulnerabilities notes of
US-CERT, there were about 40% vulnerabilities belonging to buffer overflow [2] in

recent years.
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Fig. 1. Frequency of buffereverflow vulnefabilities in recent years.

A buffer overflow attack occurs when a program writes data outside the allocated
memory and aims at controlling a system. To launch a buffer overflow attack, an
attacker must inject attack code to the address space of a victim program by any
legitimate form of input, and then corrupts a code pointer in the address space by
overflowing a buffer to make the code pointer points to the injected code. The most
common and simplest type of attacks, “stack smashing”, hijacks a program by
overflowing the buffer on the stack with the malicious code and the address to start of
malicious code so that the return address is modified and the program will jump to the
malicious code when it tries to return to its caller, as shown in Fig. 2. The more

complex types of attacks [3,4] may not change the return address but attempt to



corrupt other code pointers, including function pointers, global offset table (GOT)

entries, and longjmp buffers, to cause that a program executes malicious code.
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Fig. 2. Stack smashing attack.

Many methods with either static approaches or dynamic approaches have been
proposed to defend buffer overflow attacks. Static approaches, usually applied at
development time, analyze potential buffer overflow vulnerabilities without executing
programs, while dynamic appreaches apbly detection in run-time. However, current
solutions have various drawbacks. For-example, static approaches produce a lot of
false alarms and miss certain vulnerabilities due to run-time information leakage, such
as path reachability and variable aliases. Although dynamic approaches applied
detection in run-time can achieve better accuracy than static ones, they either do not
protect against all forms of buffer overflow attack or impose too high performance
overhead to be adopted in real-time usage, which is important for detection of buffer
overflow attack because the attack traffic is a specific pattern and difficult to produce
in lab testing.

Many methods with either static or dynamic approaches have been proposed to
defend against buffer overflow attacks. Static approaches analyze potential buffer
overflow vulnerabilities without execution. Dynamic approaches usually inject the
code at compilation time for code pointer protection or bounds checking and detect

the attack at run-time. However, these approaches have various drawbacks. Static
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approaches produce a lot of false alarms and miss certain vulnerabilities due to
run-time information leakage, such as path reachability and variable aliases [5].
Dynamic approaches applied detection at run-time can achieve better accuracy than
static ones, but these approaches suffer from a heavy performance overhead in order
to protect against all forms of buffer overflow attacks. With the heavy performance
overhead, they are only applied at testing time and impractical for detection of buffer
overflow attacks, because the payload of such attacks is usually a particular and
complicated pattern that is difficult to be generated in testing time.

In this thesis, a run-time lightweight system, Embedded TaintTracker, is
proposed to defend against all forms of buffer overflow attacks. Embedded
TaintTracker based on a well-known dynamic technique, taint tracking, which
defends the attacks by prohibiting:from the execution of attack code. Based on this
technique, two representative methods, TaintCheck [6] and TaintTrace [7], run a
victim’s program on an emulator .to--monitor all its operations, and track the
propagation of taint data, which refer to data eriginated from untrusted sources, such
as the Internet. When a program executes a piece of taint data as part of its code, these
methods will immediately freeze the program and trigger an alarm to indicate a
possible instance of malicious code execution before a suspect attack. At the same
time, these methods are able to extract the signature of the attack for intrusion
prevention system (IPS) and keep the complete program status for developers to fix
the hole. However, these methods impose heavy performance overhead. Our proposed
method, Embedded TaintTracker, implements taint tracking with a novel approach to
keep the original advantage of a taint tracking system and boost the performance to be
acceptable for practical use.

The rest of this thesis is organized as follows. Chapter 2 briefs the ways to

generate a buffer overflow attack and reviews some solutions. We present the design
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concept and implementation of Embedded TaintTracker in Chapter 3. In Chapter 4,
we demonstrate the ability of Embedded TaintTracker to detect known buffer
overflow attacks with excellent performance. Finally, Chapter 5 concludes this thesis

with a discussion of some future directions.



Chapter 2 Background

Buffer overflow vulnerabilities and attacks come in a variety of forms, and many
tools were proposed to defend against them. In this chapter, we introduce buffer
overflow vulnerabilities, steps to launch an attack on such vulnerabilities, and some

solutions to detect these attacks.

2.1 Buffer overflow attack

Buffer overflow takes place when a program does not check if the data exceeds
its memory buffer size and copies the excess data into location adjacent to the
buffer. It mainly occurs in string functions supperted by standard C library, such as
strcpy(), strcat(), sprmtf(), gets() and so on. Programmer should
avoid using these unsafe functions and replaces with the “safe” string functions like
strn*(). However, there are Still many pitfalls in the “safe” functions. For
instance, strncpy() is inconsistent with strncat() at null terminator
handling, leading to an off-by-one bug, a form of buffer overflow vulnerability.
strncpy(dst, src, n), which copies a string of at most n bytes from buffer
src to dst , may leave dst unterminated if there is no null character among the
first n bytes of src. It is dissimilar with strncat(), which always appends a
null terminator in the destination buffer. Additional pitfalls are discussed in [8].

A careless programmer may easily encounter these pitfalls and expose host
his/her computer to denial of service attacks or even arbitrary code execution,
which allows attackers to control the host. It is the major goal of buffer overflow
attack.

To launch a buffer overflow attack, an attacker must inject attack code to the



address space of a victim program by any legitimate form of input, and then
corrupts a code pointer in the address space by overflowing a buffer to make the
code pointer points to the injected code. A common and simple way to corrupt a
code pointer, as mentioned in Chapter 1, is the stack smashing attack that overflows
the return address and jumps to attack code when the function returns. The other
ways to change the control flow including corruption of a function pointer, longjmp
buffer, and entries in global offset table (GOT). If the function pointer is redirected
to the attack code by overflowing, the attack code will be executed when the
function pointer is dereferenced. Another method is overflowing longjmp buffer.
When setjymp() is executed, longjmp buffer will store current stack context such
as a code pointer and local variables for rollback later. The attacker can overflow
the code pointer in this buffer, and:make the program jumps to attack code when
longjmp() is called. Yet another.venue is‘overflowing entries in GOT. The GOT
stores absolute address of a functionicall-symbol used in dynamically linked code.
The attacker can replace the address in-GOT with the address of attack code, so the
program will jump to attack code when the function with the overwritten address is

called.

2.2 Solutions for buffer overflow attacks

The tools for detecting buffer overflow operate either a static or dynamic manner.
Static tools used in development time analyze potential buffer overflow vulnerabilities
without executing programs. These tools do not incur run-time overhead, but have
theoretical and practical limits on accuracy. For example, precise analysis of arbitrary
C programs depends on several undecidable problems, including path reachability and
variable aliases [5], and static tools all have to face a tradeoff between precision and

scalability. Dynamic tools used in runtime do not have the limits, but performance



overhead is a critical problem. Table 1 summarized the comparisons of static solution
and variety of dynamic solutions. In the following section, we will introduce some

static and dynamic tools.

Table 1. Technigues for buffer overflow detection

Static Dynamic Solutions

Criteria Pointer Bound Taint
Protection Checking Tracking

Solutions

O: Complete A: Partial X:No suppgr‘téd :

* The performance overhead is evaluatéq-'with A:déiéhé webserver
2.2.1 Static detector ___ Y -

Wanger et al. [9] formula"t:éd__- buffer ov.elrlﬂ_'o'\'/v detection as an integer range
analysis problem. The approach modéis a C string as a pair of integer ranges of
allocated size and length. Vulnerable functions in the C standard library are modeled
as their operations on the integer ranges. This tool checks whether its inferred string
length is less than allocated size in each string operations. However, the tool is
impractical to use since a lot of false positives are produced along with some false
negatives due to imprecision in the range analysis. Splint [10] is an annotation-based
analysis tool extended from LCLint [11] by introducing new annotations which
allows the declaration of a set of preconditions and postconditions in each function.
The experiment result shows Splint still produce a number of false positives that is

impossible to eliminate because of general undecidability of static analysis.



2.2.2 Dynamic detector
Dynamic approaches could be classified into bounds checking, pointer protection,

and taint tracking, according to what technologies they use. A summary is shown in

Table 1.

Table 2. Dynamic buffer overflow detector.
SRR Performance
overhead
Bounds J& K Complete 10X - 30X
Checking CCured Complete 1X -2X

CRED Complete 0-0.9X

Pointer StackGuard Adjacency overflowing in
protection activation records

LibsafePlus String function in C
library when attacking
activation.records

PointGuard = Pointérs integrity

TaintCheck Executing malicieus code

TaintTrace Executing-malicious code

Bound checking provides perfect protection against buffer overflows via
complex analysis and patch on source codes, and thus the tools based on bounds
checking incur a substantial cost in compatibility with existing codes and performance.
The tool proposed by Jones and Kelly [17] is based on the principle that an address
computed from an in-bounds pointer must have the same referent object as the
original pointer. Thus this tool maintains a run-time object table which collects all the
base addresses and size information of all static, heap and stack objects. Performance
overhead of this tool is high, approximately ten to thirty times slowdown. CCured
[12] is a hybrid language designed to be a safer version of the C programming

language. It transforms unsafe types of a C program into safe types through static



analysis. Programs that cannot be represented to safe types are instrumented with
run-time checks in order to monitor the safety of executions. Performance overhead is
still high at approximately two to three times. CRED [13] replaces every
out-of-bounds (OOB) pointer value with the address of a special OOB object created
for that value. The OOB object will maintain the actual pointer value and information
on the referent object. Any pointer derived from the address is bounds checked before
it can be dereferenced. CRED has the best performance among all bounds checking
tools, but the slowdown can still achieve up to 1.2 times in some cases.

Pointer protection aims to confine pointer manipulation to a limit of range or
modify the behavior of reference and dereference from a pointer. These tools have
excellent performance that can be used in products, but they do not leave any useful
clues for developer to patch the.holes. The developer must spend much time on
finding the bug to fix, and the=victim program will-remain vulnerable to the attack
during this period, leading to denial iof service..StackGuard [14] is perhaps the most
well-referenced tools. The tool prévents stack smashing attack by placing a canary
word prior to the return address, and verifying whether the canary word is changed
before the subroutine returns to the original instruction location. PointGuard [16]
provides integrity for pointers by encrypting pointers when stored in memory, and
decrypting them only when loaded into CPU. When an address is overwritten to a
malicious address, it decrypts the address to a random value that reasonably crashes
the program. LibsafePlus [17] uses a dynamic library which provides wrapper
functions for unsafe C library functions. A wrapper function determines the source
and the target buffer sizes, provided by GCC debugging option —g, and makes sure
that invocation of the wrapper functions would not result in an overflow.

Taint tracking is the third dynamic technique against buffer overflow. This

technique keeps track of the propagation of untrusted (taint) data during program
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execution. Taint data represent any data from an untrusted source such as network or
some specific devices. When a program executes a piece of code derived from an
untrusted source, a tool based on this technique will produce an alarm to indicate a
possible instance of malicious code execution. TaintCheck performs taint tracking for
a program by running the program in an emulator Valgrind [18], which allows
TaintCheck to monitor and control the program’s execution. Fig. 3 illustrated how
TaintCheck keeps track of taint data and examines an attack code is executed. When
the program was loaded into the emulator of Valgrind, the instrumentation will
determine the kind of the instruction, and insert codes for taint information
maintenance and instruction pointer examination if needed. However, this way to
implement taint tracking imposes heavy overhead up to thirty times, which is possibly
due to instrumentation at runtime.?-.h'igr.]- fr__ed-u._ehé};_y,:_of checking malicious execution,
and the emulator itself. Thus anb_tﬂ_er soi'd:f:i_c?:f),:-ﬁ:éiﬁ't;ﬁrace, is designed to decrease the
overhead which leveraging DyﬁémoR'I_d:'ﬁQ]i-\_Nhilch_"'is a dynamic code modification
system including a number of oﬁiihﬁi'zét_ion teph’ﬁﬁﬁes to keep low overhead, but the

experiment shows it still brings over five times slowdown.

‘ — Program ‘

1 Valgrind
Instrumentation

Eeator Code injection

I‘ Taint information
m maintenance
(@& &
EE» IP* checker

*IP: Instruction Pointer

Fig. 3. System architecture of TaintCheck.
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Chapter 3 Design and Implementation of Embedded

TaintTracker

Taint tracking tracks taint data propagation and examines if a program is
executing a piece of taint data. The previous works, including TaintCheck and
TaintTrace, achieve these goals through executing the program on an emulator to
monitor each instruction at runtime, but this causes a heavy overhead from the
emulator, instrumentation at runtime and frequent malicious execution examinations.
Our proposed architecture of Embedded TaintTracker avoids such overhead by
interacting with the protected program differently through its three components, Static
Instrumentation, Taint Recorder and Exploit Inspector, as shown in Fig. 4. Static
Instrumentation and Taint Recorder. are used.to track taint propagation and maintain
taint information table respectively. Exploit_Inspector produces an alarm if arbitrary
code is executed. In the following section, we will first give a system overview and

then elaborate these components in detail.

3.1 System overview

As shown in Fig. 4, Static Instrumentation inserts taint-tracking codes into the
original program at compilation time. Taint Recorder maintains the taint information
table and provides a set of functions for the inserted codes to track taint propagation
through the taint information table. Exploit Inspector is a kernel module that provides
a checking subroutine to examine whether the program is executing code from a piece
of tracked taint data. The first two components move injection of taint-tracking code
from execution time to compilation time. The last component reduces the frequency

of checking malicious execution from each jump-instruction to each switch between
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user mode and kernel mode. Note that we assume that a piece of malicious code will
invoke a system call when invading a system. For example, when an attacker would
like to add a new user, he must invoke open, write and close system calls. When the

attacker wants to execute an external program, fork, vfork, or clone system call will

be invoked.
Compilation P Cod Static | !
Time rogram Source Codes » tatic Instrumentation
Taint Recorder Program
LibTaint « | Memory Copy Operations I
[ Socket Read Operations |
0x00000000 y
0x08123456 [ Other Operations |
0x00000000 | Syscall Operations |
1 | !
kil S S 2 O UserSpace
Kernel Space
!p-loitlnspector 1 [ System call entry point
~ Checking
) - x08123456 subroutine System callroutines

- XS A
Fig. 4. Architecture of Embedded'?@ig_tﬁacl?er and j_@%’i‘iﬁteraction with protected program.

g iy
o 5, -

'FTITRI "

To enable detection mechanism of our system on a program, at compilation time
the source code of a program must be injected with a sequence of function calls near
the memory copy operations for maintaining taint information, so that taint
information can be dynamically updated in runtime. These functions are provided by
the library of Taint Recorder which should be linked to the instrumented program.
When the program is executing and invoking a system call, Exploit Inspector will be
triggered to examine the instruction pointer. If the pointer points to taint data, then an
arbitrary code execution is implicated. Exploit Inspector will terminate the victim’s

process, provide an alarm of the attack to the administrator and dumps some useful

information for further analysis.
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3.2 Static Instrumentation

Static Instrumentation discovers copy operations and injects taint propagation
tracking codes near these copy operations at compilation time. There are several
stages of source code transformation during compilation to offer an opportunity for
discovering copy operations. Fig. 5 shows four major compilation phases,
pre-processor, parser, code generator, and architecture-dependent optimizer, in GCC
[20]. Since we did not want to modify the compiler, discovery at stages C and D
inside the compiler was not considered. The preprocessed stage B immediately after
the preprocessor phase was finally chosen because source code at this stage has been
processed by the preprocessor to yield cleaner source than that at the previous stage,
as macros and comments have already beenexpanded and deleted, respectively.
Moreover, at the preprocessed stage, context important for optimization is still present.
For example, any variable used-in a loop.as the increment counter is always untainted
so it is not necessary to set taint"status repeatedly'in each loop body. It is easier to

discover such variables in the preprocessed stage than in the machine code stage.

Csource O R ,

code (*.c) code (*.1) | Inside GCC

1
1
- !
! 1
Pre-processor i
1
| |
! 1
H 1
H a AST i
i | Machine
= !
! I
! 1
! 1
! 1
! 1
! 1
! 1
! |

code (*.s*.0...)
Code Arch-dependent
Generator Optimizer

Fig. 5. Major compilation phases of GCC.

AST: Abstract Syntax Tree
RTL: Register Transfer Language

Taint data propagation at the preprocessed stage is operated in two ways:

undefined function invocations and assignment operations. A function in a program is
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either a defined function which is defined within the project and the source code is
available or an undefined function which is defined in another library and the source
code is unavailable. A defined function can be inserted with taint propagation tracking
code, while an undefined function can not be inserted with additional code. Thus we
alternatively associate a pre-defined taint propagation behavior to each undefined
function. For example, memcpy(void *dest, const void *src, size_tn)
is an undefined function that would propagate n byte data from src to dest and no
return value. Therefore, we define this propagation behavior by a pseudo code where

the three parameters of memcpy are named $1, $2 and $3:

memcpy($1,%$2,$3): taint_copy($1,$3,%$2)

The subroutine taint_copy provided by Taint Recorder will copy taint status from
address $2 to address $1 for length: $3. This pre-defined behavior will be
concatenated to memcpy. $1, $2 and $3-will be mapped to actual parameters passed

to memcpy upon injection.

Assignment operations appear with a special identifier '=', and the taint data will
propagate from the address of the RHS (right-hand side) operand to the address of the
LHS (left-hand side) operand. The address of the LHS operand is retrieved simply
with address-of operator '&', but determining the taint status of the RHS operand is
complicated because the RHS operand has many forms. Table 3 summarizes common
forms of the RHS operand and their corresponding processing of taint propagation.
The taint propagation of the first form where the RHS is a constant value sets the taint
status of the LHS variable address to false. The second form where the RHS operand
is a variable corresponds to copying taint status of the address of the RHS variable to
that of the LHS variable. With the third form, the RHS operand is a series of

arithmetic operations, and the taint status of the LHS address is set true if any
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constituent operand of the RHS operations is taint. The last form features a function
call on the RHS. This form of propagation has different processes depending on
function type. In case the function is a defined function, the taint status of the LHS
variable would be transferred from a global variable that stores the address for return
variable in each function; otherwise, a pre-defined behavior for an undefined function

would decide the taint status of the LHS variable.

The above covers most processes of taint propagation through assignments.
However, an exception transpires when data are propagated via deliberate control
transfer. For example, code like i ( x==1 ) y=1; else if ( x==2) y=2; ..
uses tainted data x to influence the value of y. This problem is also faced by similar
approaches proposed by earlier works, .In..this_ case, our system requires users to

modify related code manually.

Besides, in order to fix bug_s .easily_,_ .W'éfae..ﬁne a _g:;lobal variable for preserving the
instruction pointer and inject Eb’d_e :_f'c'gr ur;a}ifing;-'fhat value before each function
invoked. The value can be translated to impliééte the function in which the attack had
taken place by addr2line, a tool of GNU toolchain that can convert an address into

file name and line number in source code.

Table 3. RHS variable forms and their corresponding processing of taint propagation.

Variable forms | Example of operation | Propagation Description

Constant D = “A” Set taint status of LHS to be untaint.

Variable D=S Transfer taint status from RHS to LHS

Arithmetic D=S1+ S2 LHS will be set to be taint if any operands

operations in RHS are taint.

Function call D = func(Q If the function is defined, copy taint status
from the address of return value;
otherwise, append a pre-defined behavior.
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3.3 Taint Recorder

Taint Recorder provides a set of functions and a taint information table for the
victim program to record taint memory in its address space. The library exports three
basic functions for operating taint information table, summarized in Table 4.
set_taint(void *to, size_t len) sets taint status to be true from address
to to to+len-1, which is used when reading data from socket, and
clear_taint(..) is the opposite function that set taint status of a range of memory
to be false. taint_copy(void *to, size_t len, void *from) copies
length of len bytes taint status from address from to address to in case copy

operations are found in source code.

Table 4. Exported functions in the library of Taint' Recorder.

Function prototype | Description

set_taint(void *to, Set"tairjt_._'é'tatué. to true from address to to
size_t len) : to+_l_.éi"'1—'1. .-

clear_taint(void *to, - | Set faint Status to false from address to to
size_t len) Ttotlen-1

taint_copy(void *to, Copy taint status from address from address to
size_t len, void *from) | address to for length Ien.

Another component of Taint Recorder, taint information table, records taint
status for each memory block. It could be implemented with bitmap data structure
mapping each byte of memory to one bit in taint information table. However, bitmap
data structure would require an enormous amount of memory; for example, the table
requires 4 GB/8=512 MB runtime memory in a 32-bit architecture. Since a program
usually only uses a small portion of the entire 4 GB memory space when it is executed,
we adopt a page-table-like structure that dynamically allocates a new page when taint

propagation happens. Fig. 6 illustrates the page-table-like structure and how to

16



acquire taint status from an address. The data structure which we call taint
information table consists of a page directory and a number of bit map pages. The
page directory keeps 1024 32-bit page addresses, so the size required is the same as
the default page size 4 KB used in Linux memory management, and the size of a bit
map page is 219 Bytes = 512 KB. When we acquire the taint status from an address,
the address is split into three parts. The first part includes a 10 bit prefix of the address
which is used to look up the corresponding bit map page location in the page directory.
The next 19 bit segment addresses the byte in the referred page, and the 3 bit suffix is
the bit offset within the referred byte. The example in Fig. 6 shows the procedures of
deriving the taint status from an address. The 10 bit prefix of the address is indexed to
the bit map page at 0x08500000. The next 19 bit segment addresses the byte in
0x08500000, where the byte is (11200011)2. The 8 bit suffix (110) 2 of address points

out the 5th bit of (11100011)2 is untainted for.the given address.

Address: I1011 1111 1190 0000.0001.0010.0011 0|110‘
'\ 10bits 19 bits 3hits

\ 4
1[1T1fofofol1l1

0x00000000

0x08500000

The address
inmemory is
untainted

0x08530000 -+

0x00000000
Page Directory

Pages
(Allocation on demand)

Fig. 6. Obtain an taint status via page information table..

3.4 Exploit Inspector
Exploit Inspector is a kernel component used to examine whether a program is

executing code from a piece of tracked taint data. It consists of a checking subroutine
and a cache of page directories for different processes to decrease the frequency of

communication between user space and kernel space. The checking subroutine would
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be triggered to examine whether the instruction pointer (IP) of user space points to
taint data, after a system call is invoked and the system control flow gets into the
system call entry point for reserving user-space execution environment and parameter
verification. The checking subroutine acquires the taint status of IP in user-space, as
described in Fig. 6. To decrease the communication overhead between user space and
kernel space, the page directories accessed by IP are cached in the kernel for
consequent use. If the checking subroutine determines the pointed address is innocent,
the system call will be ordinarily invoked; otherwise, the subroutine will terminate the
process and dump process status for analysis and defense as the memory near the
value of IP may be populated by the execution code of the exploit. If the execution
code can be isolated, it can be used in IPS as signature of the attack.

The implementation of Exploit Inspector requires a communication channel
between user and kernel spaces:and.an instruction. pointer retrieval mechanism which
greatly depends on machine architecture-and-operation system. We implemented this
system on 1A-32 architecture with Linux kernel 2:6.22-9. The communication channel
between user and kernel spaces adopts pseudo-filesystem Zproc [21] and kernel API
copy_from_user(..) [22]. Retrieving instruction pointer is complicated and
needs a series of modifications on kernel. When Linux switched from user mode to
kernel mode, extended instruction pointer (EIP) register and other registers which
relate execution status would be pushed automatically to stack. In order to access
these registers correctly, kernel defines a constant offset for each register; for example,
it defines PT_EIP for register EIP at line 78 in
arch/i1386/kernel/asm-offset.c, as shown in Fig. 7. The entry point of a
system call on Linux is located at line 376 in arch/1386/kernel/entry.S. We
added two lines following syscall_call label that copy user-space EIP into

thread structure thread_info, and we can access user-space EIP at our checking
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subroutine. The codes we added in kernel are summarized in Fig. 7, Fig. 8 and Fig. 9.

File: arch/i1386/kernel/asm-offsets.c
[ADD] 59 OFFSET(TI user_eip, thread info, user_eip);

78 OFFSET(PT_EIP, pt_regs, eip);

Fig. 7. Constant offset for variable user_eip of thread_info structure and register EIP.

File: arch/i386/kernel/entry.S

376 syscall_call:
[ADD] 377 movl PT_EIP(%esp), %ecx
[ADD] 378 movl %ecx,Tl user_eip(%ebp)

Fig. 8. Store EIP of user space into thread_info structure.

File: include/asm-i386/thread _info.h
27 struct thread_info {

[ADD] 47 unsigned long user_eip;
saliiiEy,
Fig. 9. Add a new variable user_eip in threg‘:__h'\@r;»ihfd_sffueﬁzg@f

e
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Chapter 4 Experimental Evaluation

Embedded TaintTracker is evaluated on effectiveness and performance. In
effectiveness evaluation, we reproduced a return address smashing attack against a
vulnerable echo server. For the performance evaluation, we took the most widely used
web server, Apache, as the testing target and evaluated the impact on latency,

throughput and the sustainable number of requests per second.

4.1 Effectiveness

A buffer overflow attack has to first inject malicious code into victim’s memory
space and then corrupt code pointers -of different types including return address,
function pointer, longjmp buffer and GOT. Many solutions for buffer overflow
defense were proposed to prohibit code pointer corruption, so their effectiveness
should be evaluated for the enumerated code pointer types. However, our system,
based on taint tracking technique, does not prevent code pointer corruption but avoid
malicious code execution since any type of corrupt code pointers is finally targeted to
execute malicious code. Thus we only need to verify whether it blocks malicious code
execution to demonstrate that it is able to defend against buffer overflow attacks.

Our test program was an echo server [23] with a synthetic vulnerability that
copies the string received from the client into local buffer without bound checking,
and sends it back to client. The vulnerability is exploited when the copied string
exceeds the size of the local buffer to inject malicious code and overflow return
address, where the malicious code adds a new account for the attacker. Fig. 10 shows
the system log after the attack was lunched. As shown in the figure, Embedded

TaintTracker successfully identified the attack and logged what and where the system
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call was invoked. Besides, the log also recorded the value of instruction pointer to the
last function invoked for bug fixing and dumped the memory near the address of

system call invocation for signature generation.

_ :~% tail -5 /var/log/syslog
Jun 5 10:21:07 uuLover kernel: [ 1586.865356] [SocketTracker]Process 4145(echoserv)

pﬁrfnru&nd o -r:u:‘tnm call l’cuc setrenidlg) in taint data [ein=0xhffff28d)

cC a S1EMm Calt SCITCULICID) waint Catia (€1p

Attack _J Jun 5 10:21: B? uuLover kernel [ 1586.065368] [SocketTracker]Process 4145(echoserv)
Identification performed a system call (sys setreuid) in taint data (eip=6xbffff28d)
Jun 5 10:21:07 uuLover kernel: [ 1586.865943] [SocketTracker]Process 4145(echoserv)
= performed a system call (sys open) in taint data (eip=0xbffff2a9)
BugFixing —< Jun 5 10:21:07 uuLover kernel: [ 1586.066494] [SocketTracker]Process 4145(echoserv)
| was terminated at eip=0xbffff2a9, and [last correct eip=0x0804874f |
Signature Jun 5 10:21:07 uuLover kernel: [ 1586.067113] [SocketTracker]Process 4\{45(echoserv)

.~ _d  memory dump from @xbffff299 to @xbffff2c8=83f79b58 97afc74c 82af8e45 ©4098b50 2aB45

Generation d65 cf687ba4 8aBOeB24 96e19c4l Beef8454 abcld250 91cldB4c abd@ad54 dddgpal2 ddbed214
cBbac7le cB8eeBl46

/progs/echo server$ addr2line -e ./echoserv 8x0804874f
fhome/fcwu/prugs/echn server/echnserv cpp:44
~/progs/echo server$ cat -n echoserv.cpp | head -45 | tail -3
43 Readllne(sockfd buffer. MAX LINE<<2);
44 writeline(sockfd, buffer, strlen(buffer));
45

Fig. 10. The log from Embedded TaintTracker after detecting an attack.

4.2 Performance

We measured the performance degradation of*Embedded TaintTracker on an
Apache web server [24] which is the most Widély used server on the Web [25]. There
are three key criteria for performance evaluation including latency, throughput and
sustainable number of requests per second. Our evaluation was performed on a system
with an Intel Core 2 Duo T5600 (1.86 GHz) CPU and 2 GB of RAM, running Ubuntu
7.10 on Linux kernel 2.6.22.

In order to compare with previous work, TaintCheck, and profile the source of
overhead, we additionally measured the performance of Apache with the kernel
component of Embedded TaintTracker, Valgrind Nullgrind [26] and MemCheck [27],
denoted as Embedded TaintTracker - Kernel, Nullgrind, and Memcheck, respectively,
in Fig. 11. The kernel component of Embedded TaintTracker is used to measure the
performance overhead when the mechanism that examination of execution on taint

data is alone enabled. Nullgrind and Memcheck, like TaintCheck, are extensions of
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the emulator Valgrind. These extensions have diverse degrees of instrumentation that
can represent two primary sources of overhead from TaintCheck. Nullgrind does not
instrument any additional instructions, implying that the extra execution time is
caused by the emulator Valgrind itself. MemCheck is a substitute for TaintCheck since
the source code of TaintCheck is unavailable. MemCheck looks for memory leak and
illegal memory access by means of the same data structure as TaintCheck to trace the
status of memory and instrumentation on all memory operations. Its performance is
better than TaintCheck because TaintCheck requires extra interception of each
jump-instruction, and the author of TaintCheck also had demonstrated that the
performance of TaintCheck is worse than that of MemCheck [6].

In the evaluation of latency, we requested different size of web pages from 1 KB
to 10 MB, and timed how long .it took to connect, send the request, receive the
response, and disconnect to server..In order to prevent resource contention in the test
bed, the server was connected to another-machine running the testing program. The
testing program was executed five rounds, and for each round, we requested the same

page 60 times. The result is the average median in each testing round.
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Fig. 11. Experimental result of performance evaluation:a).latency in different page sizes requested, and
Y-axis is the slowdown factor which is Iat;:'ncy of _n:lechan:_is;rﬁ'-enabled divided by native execution time;
b) and c) are degradation on throughpui a'ﬁd reqﬁ'éétls '[_')_e,r:._'slécohd'-_for different numbers of clients. The
native results are listed below X-axis vyith paren_tbeéeg. : '

Fig. 11 (a) shows the result of Iat-'e'ricy_._with a_sl'av{idown factor which is execution
time of measured target divided by execution time of Apache. The slowdown factor
decreases as the size of the request grows because the server becomes less
CPU-bound and more 1/0 bound. Embedded TaintTracker generates a 1.37
slowdown in case that 1 KB page is requested and almost no overhead when the
size of the accessed page exceeds 100 KB. The performance of MemCheck is much
worse than our system especially when the page size is less than 100 KB.

The throughput and sustainable number of requests per second for different
numbers of clients were evaluated with WebBench, as shown in Fig. 11 (b) and (c).
On average, our system imposes only 9.3% (73.48 KB/sec) performance
degradation which outperforms, by eight folds, the 75.2% (592.08 KB/sec)

performance degradation caused by MemCheck. Running Apache under Valgrind
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already brings a great overhead of 60% (358.78 KB/sec) in the degradation of
MemCheck. Dynamic instrumentation of all memory access operations and
memory information maintenance contributes the remaining 40% (233.3 KB/sec)
overhead, which would increase in proportion to the number of instrumented
operations and result in the overhead of TaintCheck to be more acute. For example,
when there are twenty clients, memory access and jump represent 31% and 8% of
operations respectively. TaintCheck would impose extra overhead from
instrumentation of the additional 8% jump operations for checking malicious
execution.

Fig. 11 also shows that the kernel component of Embedded TaintTracker influences
slightly performance, meaning that the major overhead of our system is not from
the examination of execution on taint data but from maintenance of taint
information. Thus we further profiled time . consumed in subroutines for
maintaining taint information table. When-1.KB pages are requested 1000 times,
61% of the extra time is spent on"the: bit-copy. subroutine which is used to copy
taint status from one bit to another, and another 36% is spent on address translation
for page tables. The overheads from these subroutines may be reduced as we
designed them to reduce performance overhead rather than memory usage. For
example, the time for address translation can be diminished by changing the

structure of taint information table to bitmap.
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Chapter 5 Conclusions and Future Works

In this article, we proposed Embedded TaintTracker, a lightweight taint-style
system to defend against buffer overflow attacks. It is able to protect against various
forms of buffer overflow attacks and achieves acceptable performance. We analyzed
performance overhead of previous method and found that there are 60% of overhead
from emulator and 40% from dynamic instrumentation and taint information
maintenance. Our system successfully diminished these two main sources of
performance overhead by compressing the emulator mechanism into kernel and
moving instrumentation from runtime to compilation time. The evaluation
demonstrated that our system only imposed 9.3% performance degradation, which
outperforms TaintCheck by at least8times.

Embedded TaintTracker is-able to dump system and program status to provide
logs for helping developers in analyzing-the.attack and generating attack signature.
We currently dumped a section of memory as a possible piece of attack code.
However, if the section of memory is used as the signature of an attack for an IPS, we
should analyze which part of the memory represents the attack and refine it. A future
extension of this work is to automate and integrate it with an IPS, so that the attack

may be temporarily filtered out until the vulnerability is patched.
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