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Embedded TaintTracker: 一個輕型污染資料追縱系統 

以對抗緩衝區溢位的惡意程式碼攻擊 

 

學生: 吳梵誠                  指導教授: 林盈達 

國立交通大學網路工程研究所 

 

摘要 

緩衝區溢位是指在一已配置的記憶體中，寫入超過配置大小的資料，其目的

在於取得系統的控制權。在過去的數年裡，有將近 40%的程式弱點屬於緩衝區溢

位。先前的解決方案中，有人提出了基於污染追縱的方式來對抗緩衝區溢位攻

擊，他們藉由將欲保護的程式運行在模擬器上，得以追縱源自網路上的污染資料

並檢查是否有執行它們。然而，這類的實做方式卻造成了龐大的效能損失。我們

分析其來源，發現有近 60%的損失是來自模擬器、另外 40%的損失則是用來動態

欄截指令及維護污染資料的資訊。在本論文中，我們提出了 Embedded 

TaintTracker，一個新的對抗緩衝區溢位的輕型污染資料追縱系統。這個系統藉

著將檢查機制壓縮至作業系統的核心中，以及將汙染資料的追縱程式在編譯時期

插入，得以消除來自模擬器及動態欄截指令的效能損失。在我們的實驗中，證實

了運作在 Embedded TaintTracker 的程式只會有 9.3%的效能損失，比起之前的

解決方案 TaintCheck 其效能至少增進了 8倍。 

 

關鍵字: 程式安全、緩衝區溢位、汙染追縱 
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Embedded TaintTracker: Lightweight run-time tracking of taint 
data against arbitrary code execution in buffer overflow attacks 

 
Student: Fan-Cheng Wu    Advisor: Dr. Ying-Dar Lin 

Department of Network Engineering 

National Chiao Tung University 

 

Abstract 

A buffer overflow attack occurs when a program writes data outside the allocated 

memory and aims at invading a system. Around forty percent of all software 

vulnerabilities were attributed to buffer overflow over the past several years. The 

previous works based on taint tracking, a novel technique to prevent buffer overflow, 

ran a victim's program on an emulator to dynamically instrument the code for tracking 

the propagation of data originated from network in memory and checking whether 

malicious code is executed. However, the critical problem of these works is their 

heavy performance overhead. We analyzed the overhead and found that 60% of 

overhead is from the emulator and remaining 40% is from dynamic instrumentation 

and taint information maintenance. In this thesis, a new taint-style system, Embedded 

TaintTracker, is proposed to eliminate overhead in the emulator and dynamic 

instrumentation by compressing a checking mechanism into the kernel of operating 

system (OS) and moving instrumentation from runtime to compilation time. The 

evaluation demonstrated that our system imposes only 9.3% performance degradation, 

and thus it outperforms the previous work, TaintCheck, by at least 8 times. 

 

Keywords: Software security, Buffer overflow, Taint tracking
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Chapter 1 Introduction 
The first buffer overflow attack, Morris Worm [1], was exposed in 1988 and 

caused a disruption never seen before. Over the last two decades, buffer overflow has 

become one of the well-known software vulnerabilities, and is still a significant threat 

to the security of computer systems. As statistics from vulnerabilities notes of 

US-CERT, there were about 40% vulnerabilities belonging to buffer overflow [2] in 

recent years. 

 
Fig. 1. Frequency of buffer overflow vulnerabilities in recent years. 

 

A buffer overflow attack occurs when a program writes data outside the allocated 

memory and aims at controlling a system. To launch a buffer overflow attack, an 

attacker must inject attack code to the address space of a victim program by any 

legitimate form of input, and then corrupts a code pointer in the address space by 

overflowing a buffer to make the code pointer points to the injected code. The most 

common and simplest type of attacks, “stack smashing”, hijacks a program by 

overflowing the buffer on the stack with the malicious code and the address to start of 

malicious code so that the return address is modified and the program will jump to the 

malicious code when it tries to return to its caller, as shown in Fig. 2. The more 

complex types of attacks [3,4] may not change the return address but attempt to 
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corrupt other code pointers, including function pointers, global offset table (GOT) 

entries, and longjmp buffers, to cause that a program executes malicious code. 

 

Fig. 2. Stack smashing attack. 

 

Many methods with either static approaches or dynamic approaches have been 

proposed to defend buffer overflow attacks. Static approaches, usually applied at 

development time, analyze potential buffer overflow vulnerabilities without executing 

programs, while dynamic approaches apply detection in run-time. However, current 

solutions have various drawbacks. For example, static approaches produce a lot of 

false alarms and miss certain vulnerabilities due to run-time information leakage, such 

as path reachability and variable aliases. Although dynamic approaches applied 

detection in run-time can achieve better accuracy than static ones, they either do not 

protect against all forms of buffer overflow attack or impose too high performance 

overhead to be adopted in real-time usage, which is important for detection of buffer 

overflow attack because the attack traffic is a specific pattern and difficult to produce 

in lab testing.  

Many methods with either static or dynamic approaches have been proposed to 

defend against buffer overflow attacks. Static approaches analyze potential buffer 

overflow vulnerabilities without execution. Dynamic approaches usually inject the 

code at compilation time for code pointer protection or bounds checking and detect 

the attack at run-time. However, these approaches have various drawbacks. Static 
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approaches produce a lot of false alarms and miss certain vulnerabilities due to 

run-time information leakage, such as path reachability and variable aliases [5]. 

Dynamic approaches applied detection at run-time can achieve better accuracy than 

static ones, but these approaches suffer from a heavy performance overhead in order 

to protect against all forms of buffer overflow attacks. With the heavy performance 

overhead, they are only applied at testing time and impractical for detection of buffer 

overflow attacks, because the payload of such attacks is usually a particular and 

complicated pattern that is difficult to be generated in testing time. 

In this thesis, a run-time lightweight system, Embedded TaintTracker, is 

proposed to defend against all forms of buffer overflow attacks. Embedded 

TaintTracker based on a well-known dynamic technique, taint tracking, which 

defends the attacks by prohibiting from the execution of attack code. Based on this 

technique, two representative methods, TaintCheck [6] and TaintTrace [7], run a 

victim’s program on an emulator to monitor all its operations, and track the 

propagation of taint data, which refer to data originated from untrusted sources, such 

as the Internet. When a program executes a piece of taint data as part of its code, these 

methods will immediately freeze the program and trigger an alarm to indicate a 

possible instance of malicious code execution before a suspect attack. At the same 

time, these methods are able to extract the signature of the attack for intrusion 

prevention system (IPS) and keep the complete program status for developers to fix 

the hole. However, these methods impose heavy performance overhead. Our proposed 

method, Embedded TaintTracker, implements taint tracking with a novel approach to 

keep the original advantage of a taint tracking system and boost the performance to be 

acceptable for practical use. 

The rest of this thesis is organized as follows. Chapter 2 briefs the ways to 

generate a buffer overflow attack and reviews some solutions. We present the design 
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concept and implementation of Embedded TaintTracker in Chapter 3. In Chapter 4, 

we demonstrate the ability of Embedded TaintTracker to detect known buffer 

overflow attacks with excellent performance. Finally, Chapter 5 concludes this thesis 

with a discussion of some future directions. 
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Chapter 2 Background 

 

Buffer overflow vulnerabilities and attacks come in a variety of forms, and many 

tools were proposed to defend against them. In this chapter, we introduce buffer 

overflow vulnerabilities, steps to launch an attack on such vulnerabilities, and some 

solutions to detect these attacks. 

 

2.1 Buffer overflow attack 
Buffer overflow takes place when a program does not check if the data exceeds 

its memory buffer size and copies the excess data into location adjacent to the 

buffer. It mainly occurs in string functions supported by standard C library, such as 

strcpy(), strcat(), sprintf(), gets() and so on. Programmer should 

avoid using these unsafe functions and replaces with the “safe” string functions like 

strn*(). However, there are still many pitfalls in the “safe” functions. For 

instance, strncpy() is inconsistent with strncat() at null terminator 

handling, leading to an off-by-one bug, a form of buffer overflow vulnerability. 

strncpy(dst, src, n), which copies a string of at most n bytes from buffer 

src to dst , may leave dst unterminated if there is no null character among the 

first n bytes of src. It is dissimilar with strncat(), which always appends a 

null terminator in the destination buffer. Additional pitfalls are discussed in [8].  

A careless programmer may easily encounter these pitfalls and expose host 

his/her computer to denial of service attacks or even arbitrary code execution, 

which allows attackers to control the host. It is the major goal of buffer overflow 

attack. 

To launch a buffer overflow attack, an attacker must inject attack code to the 
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address space of a victim program by any legitimate form of input, and then 

corrupts a code pointer in the address space by overflowing a buffer to make the 

code pointer points to the injected code. A common and simple way to corrupt a 

code pointer, as mentioned in Chapter 1, is the stack smashing attack that overflows 

the return address and jumps to attack code when the function returns. The other 

ways to change the control flow including corruption of a function pointer, longjmp 

buffer, and entries in global offset table (GOT). If the function pointer is redirected 

to the attack code by overflowing, the attack code will be executed when the 

function pointer is dereferenced. Another method is overflowing longjmp buffer. 

When setjmp() is executed, longjmp buffer will store current stack context such 

as a code pointer and local variables for rollback later. The attacker can overflow 

the code pointer in this buffer, and make the program jumps to attack code when 

longjmp() is called. Yet another venue is overflowing entries in GOT. The GOT 

stores absolute address of a function call symbol used in dynamically linked code. 

The attacker can replace the address in GOT with the address of attack code, so the 

program will jump to attack code when the function with the overwritten address is 

called. 

 
2.2 Solutions for buffer overflow attacks 

The tools for detecting buffer overflow operate either a static or dynamic manner. 

Static tools used in development time analyze potential buffer overflow vulnerabilities 

without executing programs. These tools do not incur run-time overhead, but have 

theoretical and practical limits on accuracy. For example, precise analysis of arbitrary 

C programs depends on several undecidable problems, including path reachability and 

variable aliases [5], and static tools all have to face a tradeoff between precision and 

scalability. Dynamic tools used in runtime do not have the limits, but performance 
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overhead is a critical problem. Table 1 summarized the comparisons of static solution 

and variety of dynamic solutions. In the following section, we will introduce some 

static and dynamic tools. 

Table 1. Techniques for buffer overflow detection 

Dynamic Solutions 
Criteria 

Static 
Solutions Pointer 

Protection 
Bound 

Checking 
Taint 

Tracking 
Accuracy      

Coverage      

Bug Fixing      
Signature 
Generation 

    

Performance 
Overhead* 

0 ~0 0.9x 4.7x 

: Complete  : Partial  : No supported  

* The performance overhead is evaluated with Apache web server. 

2.2.1 Static detector 

Wanger et al. [9] formulated buffer overflow detection as an integer range 

analysis problem. The approach models a C string as a pair of integer ranges of 

allocated size and length. Vulnerable functions in the C standard library are modeled 

as their operations on the integer ranges. This tool checks whether its inferred string 

length is less than allocated size in each string operations. However, the tool is 

impractical to use since a lot of false positives are produced along with some false 

negatives due to imprecision in the range analysis. Splint [10] is an annotation-based 

analysis tool extended from LCLint [11] by introducing new annotations which 

allows the declaration of a set of preconditions and postconditions in each function. 

The experiment result shows Splint still produce a number of false positives that is 

impossible to eliminate because of general undecidability of static analysis. 
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2.2.2 Dynamic detector 

Dynamic approaches could be classified into bounds checking, pointer protection, 

and taint tracking, according to what technologies they use. A summary is shown in 

Table 1. 

Table 2. Dynamic buffer overflow detector. 

Class Tool Coverage 
Performance 

overhead 
J & K Complete 10X – 30X 
CCured Complete 1X – 2X 

Bounds 

Checking 

CRED Complete 0 – 0.9X 
StackGuard Adjacency overflowing in 

activation records 
~0 

LibsafePlus String function in C 
library when attacking 
activation records 

0 – 1X 

Pointer 

protection 

PointGuard Pointers integrity 0 – 0.2X 
TaintCheck Executing malicious code 25X Taint 

tracking  TaintTrace Executing malicious code 4X 

 

Bound checking provides perfect protection against buffer overflows via 

complex analysis and patch on source codes, and thus the tools based on bounds 

checking incur a substantial cost in compatibility with existing codes and performance. 

The tool proposed by Jones and Kelly [17] is based on the principle that an address 

computed from an in-bounds pointer must have the same referent object as the 

original pointer. Thus this tool maintains a run-time object table which collects all the 

base addresses and size information of all static, heap and stack objects. Performance 

overhead of this tool is high, approximately ten to thirty times slowdown. CCured 

[12] is a hybrid language designed to be a safer version of the C programming 

language. It transforms unsafe types of a C program into safe types through static 
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analysis. Programs that cannot be represented to safe types are instrumented with 

run-time checks in order to monitor the safety of executions. Performance overhead is 

still high at approximately two to three times. CRED [13] replaces every 

out-of-bounds (OOB) pointer value with the address of a special OOB object created 

for that value. The OOB object will maintain the actual pointer value and information 

on the referent object. Any pointer derived from the address is bounds checked before 

it can be dereferenced. CRED has the best performance among all bounds checking 

tools, but the slowdown can still achieve up to 1.2 times in some cases. 

Pointer protection aims to confine pointer manipulation to a limit of range or 

modify the behavior of reference and dereference from a pointer. These tools have 

excellent performance that can be used in products, but they do not leave any useful 

clues for developer to patch the holes. The developer must spend much time on 

finding the bug to fix, and the victim program will remain vulnerable to the attack 

during this period, leading to denial of service. StackGuard [14] is perhaps the most 

well-referenced tools. The tool prevents stack smashing attack by placing a canary 

word prior to the return address, and verifying whether the canary word is changed 

before the subroutine returns to the original instruction location. PointGuard [16] 

provides integrity for pointers by encrypting pointers when stored in memory, and 

decrypting them only when loaded into CPU. When an address is overwritten to a 

malicious address, it decrypts the address to a random value that reasonably crashes 

the program. LibsafePlus [17] uses a dynamic library which provides wrapper 

functions for unsafe C library functions. A wrapper function determines the source 

and the target buffer sizes, provided by GCC debugging option -g, and makes sure 

that invocation of the wrapper functions would not result in an overflow. 

Taint tracking is the third dynamic technique against buffer overflow. This 

technique keeps track of the propagation of untrusted (taint) data during program 
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execution. Taint data represent any data from an untrusted source such as network or 

some specific devices. When a program executes a piece of code derived from an 

untrusted source, a tool based on this technique will produce an alarm to indicate a 

possible instance of malicious code execution. TaintCheck performs taint tracking for 

a program by running the program in an emulator Valgrind [18], which allows 

TaintCheck to monitor and control the program’s execution. Fig. 3 illustrated how 

TaintCheck keeps track of taint data and examines an attack code is executed. When 

the program was loaded into the emulator of Valgrind, the instrumentation will 

determine the kind of the instruction, and insert codes for taint information 

maintenance and instruction pointer examination if needed. However, this way to 

implement taint tracking imposes heavy overhead up to thirty times, which is possibly 

due to instrumentation at runtime, high frequency of checking malicious execution, 

and the emulator itself. Thus another solution, TaintTrace, is designed to decrease the 

overhead which leveraging DynamoRIO [19] which is a dynamic code modification 

system including a number of optimization techniques to keep low overhead, but the 

experiment shows it still brings over five times slowdown. 

 

Fig. 3. System architecture of TaintCheck.
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Chapter 3 Design and Implementation of Embedded 

TaintTracker 
 

Taint tracking tracks taint data propagation and examines if a program is 

executing a piece of taint data. The previous works, including TaintCheck and 

TaintTrace, achieve these goals through executing the program on an emulator to 

monitor each instruction at runtime, but this causes a heavy overhead from the 

emulator, instrumentation at runtime and frequent malicious execution examinations. 

Our proposed architecture of Embedded TaintTracker avoids such overhead by 

interacting with the protected program differently through its three components, Static 

Instrumentation, Taint Recorder and Exploit Inspector, as shown in Fig. 4. Static 

Instrumentation and Taint Recorder are used to track taint propagation and maintain 

taint information table respectively. Exploit Inspector produces an alarm if arbitrary 

code is executed. In the following section, we will first give a system overview and 

then elaborate these components in detail. 

 

3.1 System overview 
As shown in Fig. 4, Static Instrumentation inserts taint-tracking codes into the 

original program at compilation time. Taint Recorder maintains the taint information 

table and provides a set of functions for the inserted codes to track taint propagation 

through the taint information table. Exploit Inspector is a kernel module that provides 

a checking subroutine to examine whether the program is executing code from a piece 

of tracked taint data. The first two components move injection of taint-tracking code 

from execution time to compilation time. The last component reduces the frequency 

of checking malicious execution from each jump-instruction to each switch between 
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user mode and kernel mode. Note that we assume that a piece of malicious code will 

invoke a system call when invading a system. For example, when an attacker would 

like to add a new user, he must invoke open, write and close system calls. When the 

attacker wants to execute an external program, fork, vfork, or clone system call will 

be invoked. 

Exploit Inspector
Kernel Space
User Space 

Taint Recorder

LibTaint

Program

System call routines

Update 
(/proc/taint)

copy_from_user(…)

Memory Copy Operations

Socket Read Operations

Syscall Operations

Other Operations
0x00000000

0x00000000

Page Directory

0x08123456

System call entry point

Checking 
subroutine

Page Directories

0x08123456

Static InstrumentationProgram Source Codes
Compilation 

Time

Runtime

Pages

0 1 0

 
Fig. 4. Architecture of Embedded TaintTracker and the interaction with protected program. 

 

To enable detection mechanism of our system on a program, at compilation time 

the source code of a program must be injected with a sequence of function calls near 

the memory copy operations for maintaining taint information, so that taint 

information can be dynamically updated in runtime. These functions are provided by 

the library of Taint Recorder which should be linked to the instrumented program. 

When the program is executing and invoking a system call, Exploit Inspector will be 

triggered to examine the instruction pointer. If the pointer points to taint data, then an 

arbitrary code execution is implicated. Exploit Inspector will terminate the victim’s 

process, provide an alarm of the attack to the administrator and dumps some useful 

information for further analysis. 
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3.2 Static Instrumentation 
Static Instrumentation discovers copy operations and injects taint propagation 

tracking codes near these copy operations at compilation time. There are several 

stages of source code transformation during compilation to offer an opportunity for 

discovering copy operations. Fig. 5 shows four major compilation phases, 

pre-processor, parser, code generator, and architecture-dependent optimizer, in GCC 

[20]. Since we did not want to modify the compiler, discovery at stages C and D 

inside the compiler was not considered. The preprocessed stage B immediately after 

the preprocessor phase was finally chosen because source code at this stage has been 

processed by the preprocessor to yield cleaner source than that at the previous stage, 

as macros and comments have already been expanded and deleted, respectively. 

Moreover, at the preprocessed stage, context important for optimization is still present. 

For example, any variable used in a loop as the increment counter is always untainted 

so it is not necessary to set taint status repeatedly in each loop body. It is easier to 

discover such variables in the preprocessed stage than in the machine code stage. 

 

 

Fig. 5. Major compilation phases of GCC. 

 

Taint data propagation at the preprocessed stage is operated in two ways: 

undefined function invocations and assignment operations. A function in a program is 
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either a defined function which is defined within the project and the source code is 

available or an undefined function which is defined in another library and the source 

code is unavailable. A defined function can be inserted with taint propagation tracking 

code, while an undefined function can not be inserted with additional code. Thus we 

alternatively associate a pre-defined taint propagation behavior to each undefined 

function. For example, memcpy(void *dest, const void *src, size_t n) 

is an undefined function that would propagate n byte data from src to dest and no 

return value. Therefore, we define this propagation behavior by a pseudo code where 

the three parameters of memcpy are named $1, $2 and $3: 

memcpy($1,$2,$3): taint_copy($1,$3,$2) 

The subroutine taint_copy provided by Taint Recorder will copy taint status from 

address $2 to address $1 for length $3. This pre-defined behavior will be 

concatenated to memcpy. $1, $2 and $3 will be mapped to actual parameters passed 

to memcpy upon injection. 

Assignment operations appear with a special identifier '=', and the taint data will 

propagate from the address of the RHS (right-hand side) operand to the address of the 

LHS (left-hand side) operand. The address of the LHS operand is retrieved simply 

with address-of operator '&', but determining the taint status of the RHS operand is 

complicated because the RHS operand has many forms. Table 3 summarizes common 

forms of the RHS operand and their corresponding processing of taint propagation. 

The taint propagation of the first form where the RHS is a constant value sets the taint 

status of the LHS variable address to false. The second form where the RHS operand 

is a variable corresponds to copying taint status of the address of the RHS variable to 

that of the LHS variable. With the third form, the RHS operand is a series of 

arithmetic operations, and the taint status of the LHS address is set true if any 
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constituent operand of the RHS operations is taint. The last form features a function 

call on the RHS. This form of propagation has different processes depending on 

function type. In case the function is a defined function, the taint status of the LHS 

variable would be transferred from a global variable that stores the address for return 

variable in each function; otherwise, a pre-defined behavior for an undefined function 

would decide the taint status of the LHS variable. 

The above covers most processes of taint propagation through assignments. 

However, an exception transpires when data are propagated via deliberate control 

transfer. For example, code like if ( x==1 ) y=1; else if ( x== 2) y=2; … 

uses tainted data x to influence the value of y. This problem is also faced by similar 

approaches proposed by earlier works. In this case, our system requires users to 

modify related code manually.  

Besides, in order to fix bugs easily, we define a global variable for preserving the 

instruction pointer and inject code for updating that value before each function 

invoked. The value can be translated to implicate the function in which the attack had 

taken place by addr2line, a tool of GNU toolchain that can convert an address into 

file name and line number in source code. 

Table 3. RHS variable forms and their corresponding processing of taint propagation. 

Variable forms Example of operation Propagation Description 
Constant D = ‘A’ Set taint status of LHS to be untaint. 
Variable D = S Transfer taint status from RHS to LHS 
Arithmetic 
operations 

D = S1 + S2 LHS will be set to be taint if any operands 
in RHS are taint. 

Function call D = func() If the function is defined, copy taint status 
from the address of return value; 
otherwise, append a pre-defined behavior. 
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3.3 Taint Recorder 
Taint Recorder provides a set of functions and a taint information table for the 

victim program to record taint memory in its address space. The library exports three 

basic functions for operating taint information table, summarized in Table 4. 

set_taint(void *to, size_t len) sets taint status to be true from address 

to to to+len-1, which is used when reading data from socket, and 

clear_taint(…) is the opposite function that set taint status of a range of memory 

to be false. taint_copy(void *to, size_t len, void *from) copies 

length of len bytes taint status from address from to address to in case copy 

operations are found in source code. 

Table 4. Exported functions in the library of Taint Recorder. 

Function prototype Description 
set_taint(void *to, 

size_t len) 
Set taint status to true from address to to 
to+len-1. 

clear_taint(void *to, 

size_t len) 
Set taint status to false from address to to 
to+len-1. 

taint_copy(void *to, 

size_t len, void *from)
Copy taint status from address from address to 
address to for length len. 

 

Another component of Taint Recorder, taint information table, records taint 

status for each memory block. It could be implemented with bitmap data structure 

mapping each byte of memory to one bit in taint information table. However, bitmap 

data structure would require an enormous amount of memory; for example, the table 

requires 4 GB/8=512 MB runtime memory in a 32-bit architecture. Since a program 

usually only uses a small portion of the entire 4 GB memory space when it is executed, 

we adopt a page-table-like structure that dynamically allocates a new page when taint 

propagation happens. Fig. 6 illustrates the page-table-like structure and how to 
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acquire taint status from an address. The data structure which we call taint 

information table consists of a page directory and a number of bit map pages. The 

page directory keeps 1024 32-bit page addresses, so the size required is the same as 

the default page size 4 KB used in Linux memory management, and the size of a bit 

map page is 219 Bytes = 512 KB. When we acquire the taint status from an address, 

the address is split into three parts. The first part includes a 10 bit prefix of the address 

which is used to look up the corresponding bit map page location in the page directory. 

The next 19 bit segment addresses the byte in the referred page, and the 3 bit suffix is 

the bit offset within the referred byte. The example in Fig. 6 shows the procedures of 

deriving the taint status from an address. The 10 bit prefix of the address is indexed to 

the bit map page at 0x08500000. The next 19 bit segment addresses the byte in 

0x08500000, where the byte is (11100011)2. The 3 bit suffix (110) 2 of address points 

out the 5th bit of (11100011)2 is untainted for the given address. 

Address: 1011 1111 1100 0000 0001 0010 0011 0110

0x00000000

0x08500000

10 bits 19 bits

Page Directory

0x08530000

0x00000000

Pages
(Allocation on demand)

1 1 1 0 0 0 1 1

3 bits

The address 
in memory is 

untainted

 

Fig. 6. Obtain an taint status via page information table.. 

 

3.4 Exploit Inspector 
Exploit Inspector is a kernel component used to examine whether a program is 

executing code from a piece of tracked taint data. It consists of a checking subroutine 

and a cache of page directories for different processes to decrease the frequency of 

communication between user space and kernel space. The checking subroutine would 
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be triggered to examine whether the instruction pointer (IP) of user space points to 

taint data, after a system call is invoked and the system control flow gets into the 

system call entry point for reserving user-space execution environment and parameter 

verification. The checking subroutine acquires the taint status of IP in user-space, as 

described in Fig. 6. To decrease the communication overhead between user space and 

kernel space, the page directories accessed by IP are cached in the kernel for 

consequent use. If the checking subroutine determines the pointed address is innocent, 

the system call will be ordinarily invoked; otherwise, the subroutine will terminate the 

process and dump process status for analysis and defense as the memory near the 

value of IP may be populated by the execution code of the exploit. If the execution 

code can be isolated, it can be used in IPS as signature of the attack. 

The implementation of Exploit Inspector requires a communication channel 

between user and kernel spaces and an instruction pointer retrieval mechanism which 

greatly depends on machine architecture and operation system. We implemented this 

system on IA-32 architecture with Linux kernel 2.6.22-9. The communication channel 

between user and kernel spaces adopts pseudo-filesystem /proc [21] and kernel API 

copy_from_user(…) [22]. Retrieving instruction pointer is complicated and 

needs a series of modifications on kernel. When Linux switched from user mode to 

kernel mode, extended instruction pointer (EIP) register and other registers which 

relate execution status would be pushed automatically to stack. In order to access 

these registers correctly, kernel defines a constant offset for each register; for example, 

it defines PT_EIP for register EIP at line 78 in 

arch/i386/kernel/asm-offset.c, as shown in Fig. 7. The entry point of a 

system call on Linux is located at line 376 in arch/i386/kernel/entry.S. We 

added two lines following syscall_call label that copy user-space EIP into 

thread structure thread_info, and we can access user-space EIP at our checking 
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subroutine. The codes we added in kernel are summarized in Fig. 7, Fig. 8 and Fig. 9. 

File: arch/i386/kernel/asm-offsets.c 

[ADD]  59   OFFSET(TI_user_eip, thread_info, user_eip); 
………… 
78   OFFSET(PT_EIP, pt_regs, eip); 
………… 

Fig. 7. Constant offset for variable user_eip of thread_info structure and register EIP. 

 
File: arch/i386/kernel/entry.S 

376 syscall_call: 
[ADD]  377   movl PT_EIP(%esp), %ecx 
[ADD]  378   movl %ecx,TI_user_eip(%ebp) 

Fig. 8. Store EIP of user space into thread_info structure. 

 
File: include/asm-i386/thread_info.h 

27 struct thread_info { 
……… 

[ADD]  47 unsigned long   user_eip; 

Fig. 9. Add a new variable user_eip in thread_info structure. 
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Chapter 4 Experimental Evaluation 

 

Embedded TaintTracker is evaluated on effectiveness and performance. In 

effectiveness evaluation, we reproduced a return address smashing attack against a 

vulnerable echo server. For the performance evaluation, we took the most widely used 

web server, Apache, as the testing target and evaluated the impact on latency, 

throughput and the sustainable number of requests per second. 

 

4.1 Effectiveness 
A buffer overflow attack has to first inject malicious code into victim’s memory 

space and then corrupt code pointers of different types including return address, 

function pointer, longjmp buffer and GOT. Many solutions for buffer overflow 

defense were proposed to prohibit code pointer corruption, so their effectiveness 

should be evaluated for the enumerated code pointer types. However, our system, 

based on taint tracking technique, does not prevent code pointer corruption but avoid 

malicious code execution since any type of corrupt code pointers is finally targeted to 

execute malicious code. Thus we only need to verify whether it blocks malicious code 

execution to demonstrate that it is able to defend against buffer overflow attacks.  

Our test program was an echo server [23] with a synthetic vulnerability that 

copies the string received from the client into local buffer without bound checking, 

and sends it back to client. The vulnerability is exploited when the copied string 

exceeds the size of the local buffer to inject malicious code and overflow return 

address, where the malicious code adds a new account for the attacker. Fig. 10 shows 

the system log after the attack was lunched. As shown in the figure, Embedded 

TaintTracker successfully identified the attack and logged what and where the system 
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call was invoked. Besides, the log also recorded the value of instruction pointer to the 

last function invoked for bug fixing and dumped the memory near the address of 

system call invocation for signature generation. 

 

Attack 
Identification

Bug Fixing

Signature
Generation

 

Fig. 10. The log from Embedded TaintTracker after detecting an attack. 

 
4.2 Performance 

We measured the performance degradation of Embedded TaintTracker on an 

Apache web server [24] which is the most widely used server on the Web [25]. There 

are three key criteria for performance evaluation including latency, throughput and 

sustainable number of requests per second. Our evaluation was performed on a system 

with an Intel Core 2 Duo T5600 (1.86 GHz) CPU and 2 GB of RAM, running Ubuntu 

7.10 on Linux kernel 2.6.22. 

In order to compare with previous work, TaintCheck, and profile the source of 

overhead, we additionally measured the performance of Apache with the kernel 

component of Embedded TaintTracker, Valgrind Nullgrind [26] and MemCheck [27], 

denoted as Embedded TaintTracker - Kernel, Nullgrind, and Memcheck, respectively, 

in Fig. 11. The kernel component of Embedded TaintTracker is used to measure the 

performance overhead when the mechanism that examination of execution on taint 

data is alone enabled. Nullgrind and Memcheck, like TaintCheck, are extensions of 
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the emulator Valgrind. These extensions have diverse degrees of instrumentation that 

can represent two primary sources of overhead from TaintCheck. Nullgrind does not 

instrument any additional instructions, implying that the extra execution time is 

caused by the emulator Valgrind itself. MemCheck is a substitute for TaintCheck since 

the source code of TaintCheck is unavailable. MemCheck looks for memory leak and 

illegal memory access by means of the same data structure as TaintCheck to trace the 

status of memory and instrumentation on all memory operations. Its performance is 

better than TaintCheck because TaintCheck requires extra interception of each 

jump-instruction, and the author of TaintCheck also had demonstrated that the 

performance of TaintCheck is worse than that of MemCheck [6]. 

In the evaluation of latency, we requested different size of web pages from 1 KB 

to 10 MB, and timed how long it took to connect, send the request, receive the 

response, and disconnect to server. In order to prevent resource contention in the test 

bed, the server was connected to another machine running the testing program. The 

testing program was executed five rounds, and for each round, we requested the same 

page 60 times. The result is the average median in each testing round. 
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Fig. 11. Experimental result of performance evaluation: a) latency in different page sizes requested, and 

Y-axis is the slowdown factor which is latency of mechanism-enabled divided by native execution time; 

b) and c) are degradation on throughput and requests per second for different numbers of clients. The 

native results are listed below X-axis with parentheses. 
 

Fig. 11 (a) shows the result of latency with a slowdown factor which is execution 

time of measured target divided by execution time of Apache. The slowdown factor 

decreases as the size of the request grows because the server becomes less 

CPU-bound and more I/O bound. Embedded TaintTracker generates a 1.37 

slowdown in case that 1 KB page is requested and almost no overhead when the 

size of the accessed page exceeds 100 KB. The performance of MemCheck is much 

worse than our system especially when the page size is less than 100 KB. 

The throughput and sustainable number of requests per second for different 

numbers of clients were evaluated with WebBench, as shown in Fig. 11 (b) and (c). 

On average, our system imposes only 9.3% (73.48 KB/sec) performance 

degradation which outperforms, by eight folds, the 75.2% (592.08 KB/sec) 

performance degradation caused by MemCheck. Running Apache under Valgrind 
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already brings a great overhead of 60% (358.78 KB/sec) in the degradation of 

MemCheck. Dynamic instrumentation of all memory access operations and 

memory information maintenance contributes the remaining 40% (233.3 KB/sec) 

overhead, which would increase in proportion to the number of instrumented 

operations and result in the overhead of TaintCheck to be more acute. For example, 

when there are twenty clients, memory access and jump represent 31% and 8% of 

operations respectively. TaintCheck would impose extra overhead from 

instrumentation of the additional 8% jump operations for checking malicious 

execution. 

Fig. 11 also shows that the kernel component of Embedded TaintTracker influences 

slightly performance, meaning that the major overhead of our system is not from 

the examination of execution on taint data but from maintenance of taint 

information. Thus we further profiled time consumed in subroutines for 

maintaining taint information table. When 1 KB pages are requested 1000 times, 

61% of the extra time is spent on the bit-copy subroutine which is used to copy 

taint status from one bit to another, and another 36% is spent on address translation 

for page tables. The overheads from these subroutines may be reduced as we 

designed them to reduce performance overhead rather than memory usage. For 

example, the time for address translation can be diminished by changing the 

structure of taint information table to bitmap.  
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Chapter 5 Conclusions and Future Works 

In this article, we proposed Embedded TaintTracker, a lightweight taint-style 

system to defend against buffer overflow attacks. It is able to protect against various 

forms of buffer overflow attacks and achieves acceptable performance. We analyzed 

performance overhead of previous method and found that there are 60% of overhead 

from emulator and 40% from dynamic instrumentation and taint information 

maintenance. Our system successfully diminished these two main sources of 

performance overhead by compressing the emulator mechanism into kernel and 

moving instrumentation from runtime to compilation time. The evaluation 

demonstrated that our system only imposed 9.3% performance degradation, which 

outperforms TaintCheck by at least 8 times. 

Embedded TaintTracker is able to dump system and program status to provide 

logs for helping developers in analyzing the attack and generating attack signature. 

We currently dumped a section of memory as a possible piece of attack code. 

However, if the section of memory is used as the signature of an attack for an IPS, we 

should analyze which part of the memory represents the attack and refine it. A future 

extension of this work is to automate and integrate it with an IPS, so that the attack 

may be temporarily filtered out until the vulnerability is patched. 
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