

國 立 交 通 大 學

網路工程研究所

碩碩碩碩 士士士士 論論論論 文文文文

在專用控制通道技術架構下使用時間基準之多

重通道無線網狀網路傳輸媒介存取控制協定

TBM: Time-Based Multi-Channel MAC Protocol for Wireless

Mesh Networks under Dedicated Control Channel Approach

研 究 生：鄭宇翔

指導教授：簡榮宏 教授

中中中中 華華華華 民民民民 國國國國 九九九九 十十十十 七七七七 年年年年 七七七七 月月月月

 i

在專用控制通道技術架構下使用時間基準之多重通道無線網狀網路

傳輸媒介存取控制協定

TBM: Time-Based Multi-Channel MAC Protocol for Wireless Mesh
Networks under Dedicated Control Channel Approach

研 究 生：鄭宇翔 Student：Yu-Hsiang Cheng

指導教授：簡榮宏 Advisor：Rong-Hong Jan

國 立 交 通 大 學

網 路 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Network Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

July 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年七月

 ii

在在在在專用控制通道技術架構下使用時間基準專用控制通道技術架構下使用時間基準專用控制通道技術架構下使用時間基準專用控制通道技術架構下使用時間基準

之多重通道無線網狀網路傳輸媒介存取控之多重通道無線網狀網路傳輸媒介存取控之多重通道無線網狀網路傳輸媒介存取控之多重通道無線網狀網路傳輸媒介存取控

制協定制協定制協定制協定

研究生：鄭宇翔 指導教授：簡榮宏 博士

國立交通大學資訊科學國立交通大學資訊科學國立交通大學資訊科學國立交通大學資訊科學與工程與工程與工程與工程研究所研究所研究所研究所

摘摘摘摘 要要要要

在使用多重通道的無線網狀網路中，以專用控制通道技術為基礎的網路架構

可解決目前大部份多重通道上的問題，如多重通道隱藏主機、失聰與廣播支援等

問題。然而在專用控制通道架構下有兩個挑戰：一個是控制通道瓶頸問題，另一

個則是通道動態選擇問題。本篇論文即是在專用控制通道技術的架構下，提出以

時間為基準的多重通道媒介控制存取層協定，簡稱 TBM。此協定包含三大部分，

第一部份透過正確預測控制程序的發起時間，以降低多餘的控制成本；第二部份

依各節點狀態動態決定每次傳輸的資料封包數量；第三部份則在所有可用通道

中，選出對週遭其他節點影響最小的通道來傳輸資料，以提升通道的同時使用

率。前兩者能有效的解決控制通道瓶頸問題，第三部份則能提高資料通道的利用

率。模擬結果顯示出本論文所提出的 TBM 較其他方法能提高相當可觀的效能。

 iii

TBM: Time-Based Multi-Channel MAC

Protocol for Wireless Mesh Networks

under Dedicated Control Channel

Approach

Student: Yu-Hsiang Cheng Advisor: Dr. Rong-Hong Jan

INSTITUTE OF NETWORK ENGININERRING

 NATIONAL CHIAO TUNG UNIVERSITY

Abstract

In wireless mesh networks (WMNs), the dedicated control channel (DCC)

approach can support broadcasting and avoid multi-channel hidden terminal problem

and deafness problem in the multi-channel environment. However, there are two

serious problems in the DCC approach: the control channel bottleneck and dynamic

channel selection problem. In this thesis, a protocol, named the time-based

Multi-channel MAC (TBM), is proposed to resolve these two challenges. The TBM

protocol consists of three components. The first one aims at reducing the control

overhead by properly predicting the control initiation time. The second one can

dynamically aggregate multiple packets to transmit with a single control process. The

final component selects the channel that has the least influence to nearby nodes to

improve channel reusability. Simulation results show that TBM can achieve

significant improvement in the throughput in comparison with the existing work.

 iv

誌謝

在這兩年的碩士生涯中，最需要感謝的人是我的指導教授簡榮宏博士。老師

平日用心指導，在我提出問題時總能指引出最正確的方向，令我在這兩年的研究

生活中，不管是在資訊領域的知識亦或研究能力的培養均成長許多。論文的完成

更得感謝老師的大力協助，使我的論文能夠完整而嚴謹。

我非常感謝我的口試委員──蔣村杰博士、王國禎老師與陳健老師，他們在

我口試的時候給予我的指導讓我有相當大的收穫。再來，必須好好感謝安凱學

長。除了教會我許多研究上所需的能力外，對研究的態度嚴謹而專一的學長是我

在研究這條路上學習的好對象。接著要提的是兩年日子裡陪伴我努力的實驗室夥

伴。與敬之、佑笙、小黑與 NCK 在這兩年一起奮鬥走過的點點滴滴是我無法抹去

的回憶。而總是陪我哈啦打屁的世昌學長，總是呵呵笑的蕙如學姊，比較晚認識

的家瑋與文彬學長也都在研究上與平日生活上給予我很大的幫助。較晚來的志

賢、淑盈與子興也常帶給我許多的歡笑。其他還有很多在這兩年對我有許多幫助

的人，怕自己有所遺漏造成殊憾，故僅謝謝所有給我幫助的朋友們。

最後要感謝的是我的家人，由於他們在背後默默的支持以及鼓勵，在這兩年

我才能無後顧之憂並專心一致地在研究領域上有所進展。這些都是讓我擁有前進

的動力，沒有你們的體諒、包容，相信我無法一個人走到目前的地方。

 v

Content
Abstract (in Chinese) ...ii

Abstract (in English) .. iii

Acknowledgements…………………………………………………………………...iv

Content...v

List of Figures ...vi

List of Tables..vii

Chapter 1 Introduction ...1

Chapter 2 Related Works ...6

2.1 Comparison of MMAC Approaches ..6

2.2 Existing Protocols on DCC Approach ...7

Chapter 3 The Proposed TBM Protocol...10

3.1 Protocol Descriptions...10

3.1.1 Network Model and Symbols ...10

3.1.2 Basic Operation...11

3.2 Components Designs ...14

3.2.1 Control Initiation Time Prediction..15

3.2.2 Dynamic Data Aggregation...16

3.2.3 Enhanced Channel Selection Strategy ..21

Chapter 4 Experiments...25

4.1 Comparison in varied number of data channels...26

4.2 Comparison in varied data rate of data channels ...29

4.3 Comparison in varied data frame size..29

Chapter 5 Conclusion...32

Bibliography…………………………………………………………………………. 33

 vi

List of Figures

1.1 Multi-channel hidden terminal and deafness problems. ..2

1.2 Dedicated control channel MMAC..4

1.3 An example of improper selection of a data channel...4

3.1 Basic operation of the TBM protocol ..12

3.2 Link release time and control initiation time between two nodes u and v.16

3.3 Non-uniform loading in the control channel of node u..17

3.4 Data interface idle time (simplified). ...18

3.5 Control interface idle time (simplified). ..19

3.6 (a) Data interface idle time; (b) Control interface idle time.20

3.7 Increments to node release time if selecting channel 1..24

4.1 10×10 Grid Topology...26

4.2 Variation in the number of data channels (a) Random single-hop; (b) Grid multi-hop;

(c) Random multi-hop...28

4.3 Variation in data rate of data channels (a) Random single-hop; (b) Grid multi-hop;

(c) Random multi-hop...30

4.4 Variation in data frame size (a) Random single-hop; (b) Grid multi-hop; (c) Random

multi-hop...31

 vii

List of Tables

3.1 Meanings of symbols used in the TBM protocol...11

4.1 Simulation Values ..26

 1

Chapter 1 Introduction

In recent years, the wireless mesh networks (WMNs) are the most common networks

used to extend the reach of the last-mile access to the Internet [1]. WMNs consist of two types

of mesh nodes: mesh routers and mesh clients equipped with IEEE 802.11 radio interfaces. A

mesh client can access to the network by connecting to one or more mesh routers which

supply the functionality of access points (APs), and the traffic in the network is relayed

hop-by-hop to the destinations by some mesh routers through wireless links. In this way, a

wireless network backhaul is easily established without any wired connection. However, two

adjacent wireless links using the same channel cannot transmit concurrently. Therefore, it is

expected to exploit multiple channels among mesh nodes to increase capacity of the networks.

For example, the IEEE 802.11 a/b/g provides 12, 3, and 3 orthogonal channels, respectively.

These channels are spread in non-overlapped spectrums and can be simultaneously used for

transmission.

In order to utilize multiple channels in WMNs, designing a multi-channel medium access

control (MMAC) protocol is the most important [2]. However, a mesh node using only one

interface cannot sense carriers and receive control packets (such as RTS/CTS) from different

channel at the same time. This limitation results in three major problems in the design of

MMAC [2]. These problems are the multi-channel hidden terminal problem, deafness

problem, and broadcasting support.

1) Multi-channel Hidden Terminal Problem: The IEEE 802.11 DCF can avoid the hidden

terminal problem, but it is further complicated in the multiple channel environment.

Consider an example in Fig. 1.1a. Node A has data to transfer to B by sending a RTS

packet on channel 2, and then B replies a CTS packet to silent other transmission on

 2

channel 2. During the negotiation between A and B, C and D are in communication using

channel 3 so that C cannot detect the CTS from B. Consequently, at the end of the

communication between C and D, C may illegally initiate a RTS to B using channel 2 and

incur a collision. This problem is called multi-channel hidden terminal problem.

2) Deafness Problem: In Fig. 1.1b, node C wants to communicate with B by sending RTS

using channel 2, but B cannot hear the RTS of C because the interface of B has tuned to

channel 1. Therefore, B will not reply CTS to C, and C will continually retry RTS until

exceeding the number of the maximum retry.

3) Broadcasting Support: In the multi-channel environment, the interface of each node may

not stay on the same channel. Hence, if the higher layer protocol requires broadcasting

support at the link layer, it is hard to reach all nodes by broadcasting on any channel.

 (a) (b)

Fig. 1.1 Multi-channel hidden terminal and deafness problems.

To overcome these problems, the dedicated control channel (DCC) approach was

proposed in the literatures [3-9]. In DCC approach, each node has two interfaces: one is the

control interface and the other is the data interface. The control interface is fixed on a

common channel, named the control channel, for sensing and exchanging control packets.

The data interface can dynamically switch among the remaining channels, named data

 3

channels, for data transmission. The sender negotiates with the receiver by exchanging some

control packets on the control channel to find a data channel which will be free at both sides,

and then the sender transmits a data packet to the receiver using the selected data channel1.

Because all control packets are exchanged in a common channel, the above-mentioned

problems are inherently solved.

However, the design of a DCC MMAC protocol confronts two major challenges:

1) Control channel bottleneck problem: In DCC approach, only one common channel is used

for exchanging control packets. As the example in Fig. 1.2 shows, if the time to transmit a

data packet is about 3 times of the length of one control process, the control channel has

been fully utilized under 3 data channels. Therefore, the throughput of the networks

cannot be further upgraded even if more data channels are added, and the control channel

has become a bottleneck of the overall performance. Analytic evidence in [3] has shown

that the bottleneck problem will become more serious if the number of data channels, data

rate, or node’s density increases.

2) Dynamic channel selection problem: In DCC approach, the channel’s usage of each data

channel is flexible, which can be varied in an on-demand matter. Nevertheless, it would be

difficult to select a proper channel in a dynamic way, because each node has no enough

information about the channel statuses of its neighbor nodes. For example, in Fig. 1.3

node A, B, C and D have free channel lists {1, 2}, {2, 3}, {1, 2, 3}, and {1, 2, 3},

respectively. But if C cannot be aware of the channel statuses of both A and B, it may

choose channel 2 to communicate with D. As a result, the link between A and B cannot be

active at the same time.

1 The negotiation is called the control process and includes the backoff time, inter-frame spaces, propagation
delay, and control packet exchanging dialogue.

 4

Fig. 1.2 Dedicated control channel MMAC.

Fig. 1.3 An example of improper selection of a data channel.

To resolve these two challenges, we propose a new MMAC protocol using the DCC

approach. This protocol consists of the following three components:

1. Control initiation time prediction (CIP): In DCC, the sender has to initiate a control

process with the receiver for coordinating a communicable data channel. Somewhile, a

control process may fail due to no mutual free channel at both sides. If the process fails,

the bandwidth of exchanging control packets is wasted and the control channel

bottleneck problem is aggravated. To reduce such overhead, this component aims at

avoiding the unsuccessful control processes by properly predicting the control process

initiation time.

2. Dynamic data aggregation (DDA): Although CIP component can reduce the number of

the unsuccessful control processes, the bottleneck problem is still serious if the control

process has to be initialized for each data transmission. To completely overcome this

limitation, one effective way is to transmit multiple data packets with a single control

process. However, determining the number of data packets to be aggregated becomes a

complicated issue. If the number is too small, the effect will not be significant; on the

contrary, if it is too large, the retransmission cost would be high. Our DDA component

can dynamically make this decision for each transmission according to the utilization of

the interfaces (control/data interface idle time).

 5

3. Enhanced channel selection (ECS): As illustrated in Fig. 1.3, channel 2 is the only data

channel free for both A and B. But, it is now under used by C and D. Therefore, A

cannot transmit to B until the channel is released by the other two nodes. In other words,

the release time of channel 2 at node C and D is critical to the transmission between A

and B. In our channel selection strategy, any sender-receiver pair will select the channel

that has the least influence to the other neighbor nodes. It means that ECS will choose

the channel which has the least total increment to the release time of the critical

channels of all neighbor nodes. Therefore, the data channels can gain better reusability.

Overall, the main idea of these components is to utilize the information about the time related

to the link-layer operations (i.e. control process initiation time, interface idle time, and

channel release time). Hence, we called this protocol the Time-Based MMAC (TBM).

The remainder of the thesis is organized as follows: In chapter 2, we first compare

different types of MMAC approaches to explain why the DCC approach is preferred in our

study. Then, the protocols related to this approach are reviewed. In section 3-1 of chapter 3,

the basic operation of our protocol is presented. In 3-2, we describe the detail designs of the

three components. In chapter 4, we conduct simulation results for our performance evaluation.

Finally, conclusion remarks are given in chapter 5.

 6

Chapter 2 Related Works

In this chapter, we first compare different types of MMAC approaches to explain why

the DCC approach is preferred in our study. Then, the existing protocols related to the DCC

approach are reviewed.

2.1 Comparison of MMAC Approaches

Several MMAC protocols have been proposed in the literature. In general, these

protocols can be classified into 4 types: the channel-fixed, receiver-based, split control phase,

and dedicated control channel approaches.

1) The Channel-fixed Approach [11, 12]: Each interface is fixed on one channel. Any two

adjacent nodes can communicate with each other only if both of them have an interface

assigned the same channel. However, there are two main problems in this approach. First,

hardware cost is too high. For example, if a node wants to use 3 different channels, it

should be equipped 3 interfaces. Second, the inflexible channels’ usage may confine the

network connectivity. For instance, if two consecutive nodes are on the unique path of

some source-destination pairs but having no interface on the same channel, the network

would be partitioned.

2) The Receiver-based Approach [13]: This approach has no connectivity problem. In this

approach, each interface of each node has been assigned a dedicated channel, and the node

will stay on this channel to listen for request if it has no data to send. Otherwise, the node

can connect with any neighbor by turn its interface to the channel that is pre-specified on

the receiver side. However, since a node’s interface is not always fixed, the multi-channel

hidden terminal and deafness problem may occur. In addition, since a node’s neighbors are

 7

not necessarily on the same channel, it also has the broadcasting support problem.

3) Spilt Control Phase Approach [14, 15]: This approach suggests splitting each beacon

interval into two phases, named control phase and data phase, respectively. In the control

phase, all sender-receiver pairs exchange control packets using a common channel and

select a data channel for data transmission later. Then, at the data phase, each pair can

switch their interfaces to the selected data channel and communicate with each other.

Because all nodes shares the same channel in the control phase, the multi-channel hidden

problem, deafness problem, and broadcasting support problem, are automatically solved.

However, this approach has two drawbacks. First, the channels except the common

channel used for exchanging control packets are idle in the control phase. Second, this

approach relies on strict synchronization mechanism to align the two phases among nodes,

and it is difficult to implement in practice.

4) The Dedicated Control Channel (DCC) Approach: The major advantage of the DCC

approach is that it requires no time synchronization. Each node can perform sensing and

sending control packets using its control interface at any time. Moreover, since control

packets are also exchanged in a common channel, named the control channel, all

advantages in the split control phase approach are preserved except the control channel

cannot be used for data transmission in DCC.

Owing to these merits of DCC approach, it is preferred to design a MMAC protocol based on

this approach. However, as introduced in chapter 1, the performance might be restrained by

the bottleneck of the control channel or the selection of data channels. Hence, the related

works on this approach were primarily focused on solving these two problems.

2.2 Existing Protocols on DCC Approach

The first DCC-based protocol for the multi-channel environment, named the dynamic

 8

channel assignment (DCA), was presented in [3]. In DCA, each node maintains a list of

unused data channels, called the free channel list (FCL). Before sending a data packet, the

sender transmits a RTS carrying its FCL to the intended receiver. Based on the FCL carried by

RTS, the receiver chooses a data channel that is free at both sides, and replies the selected

channel to the sender by sending a CTS. After receiving the response, the sender broadcasts a

RES packet to inhibit its neighbor nodes from using the same data channel. Then, the two

nodes exchange data using the selected data channel.

Compared with the IEEE 802.11 DCF, the DCA protocol needs additional control

bandwidth for the RES packets. To reduce such overhead, Wu and Lee [4] suggested that the

sender shall propose a channel in the RTS based on previously behaviors of the receiver.

Using this way, if the proposed channel is accepted by receiver, the RES can be omitted. A

similar idea is in [5], where the RTS is followed by a reply-to-RTS (RRTS) which indicate

whether or not the channel is acceptable. If not, the process will continue until the both sides

agree on an acceptable channel. In general, the control overhead can be reduced in [4] and [5]

if a proper channel is suggested by the sender. Our protocol can also avoid redundant control

packets by predicting proper control initiation time (by the CIP component).

Another line of researches [6, 7] suggested using multiple control channels instead of a

single one. The authors in [6] suggested that the sender initializes the control process using

the default control channel at the first time. If the default control channel is occupied by

another link, the alternative control channel would be chosen to perform the control process.

Then, the authors showed that the optimal number of control channels is a function of the

total number of available channels and the packet size. For example, with 12 channels, and

data packet size of 1028 bytes, 3 control channels are required. The protocol in [7] also

employs an extra control channel for replying ACK. But its purpose is to avoid collision

between ACK for a receiver and the data packets from other senders, which allows hidden and

exposed nodes to conduct their reception and transmission at the same time. Although using

 9

more control channels is beneficial, the available data channels will be sacrificed. In contrast,

the dynamic data aggregation technique in our protocol can resolve the bottleneck problem

using only one control channel (by the DDA component).

About the channel selection strategy, in the DCA protocol, the sender and receiver have

to negotiate a data channel that will be free at both sides. If there are multiple choices, the

channel will be selected at random by the receiver. Thus, the requirement is only to find a

communicable channel. There are two enhancements in [8] and [9]. The strategy in [8]

requires that the received power in the selected channel is the least in order to avoid potential

interference. Similarly, in [9], the most robust free data channel will be chosen, according to

the carrier-to-interference-ratio. In other words, the both strategies concern not only the

connectivity, but also the quality of the selected channel. However, their strategies do not

concern the influence to nearby nodes, which may lead to a lower channel’s reusability. Our

strategy (the ECS component) will take this factor into consideration.

 10

Chapter 3 The Proposed TBM Protocol

3.1 Protocol Descriptions

In this section, we describe the overview of the TBM protocol. First of all, we define the

network model and symbols that will be used in our protocol in subsection 3.1.1. Then, the

basic operation and the major functionalities of the three components are described in

subsection 3.1.2. The explanation and detail design of each component will be presented in

next section.

3.1.1 Network Model and Symbols

The concerned network consists of (H + 1) non-overlapped channels. Each node has a

control interface and a data interface. The first channel (h = 0) is the control channel fixed on

the control interface for exchanging control packets. The other channels (h = 1, 2, …, H) are

the data channels used by the data interface for data transmission and reception. For each

node u, it maintains its own statuses as following:

� ch_rel_time(u, h): the release time of the hth channel, where h = 0, 1, …, H;

� if_rel_time(u): the release time of the data interface.

Any change to ch_rel_time(u, h), h = 1, …, H, and if_rel_time(u) will be sent to nearby nodes

carried by some control packets, e.g. CTS or RES. Otherwise, each node u maintains two data

structures to record the latest statuses of its neighbor nodes. One is a channel release time

table (CRTu) and the other is an interface release time vector (IRVu). When the node u receives

the control packets from some other node v, it will update CRTu(v, h) and IRVu(v) to keep

records of the ch_rel_time(v, h) and if_rel_time(v) of node v, respectively. In addition, let Nu

 11

denote the set of nodes adjacent to u. For each 1-hop destination v ∈ Nu, a separated queue Qv is

created to buffer any packet that will be sent or forwarded to v. Table 3.1 lists the other symbols

used in our TBM protocol.

Table 3.1 Meanings of symbols used in the TBM protocol

Symbol Meaning

τ The propagation delay.

Tcurr(u) Current time of a node u.

TSIFS Length of the short inter-frame spaces.

TDIFS Length of the distributed inter-frame spaces.

TBF Length of the random backoff period.

TRTS Time to transmit a RTS packet.

TCTS Time to transmit a CTS packet.

TRES Time to transmit a RES packet.

TACK Time to transmit a ACK packet.

TDATA Time to transmit a DATA packet.

H H = {1, 2, …, H}; The set of data channels.

3.1.2 Basic Operation

The basic operation of the TBM protocol is illustrated in Fig. 3.1, and it is primarily

extended from the DCA protocol proposed in [3]. In this subsection, we will present the

overview of the TBM protocol and emphasize on the association with the newly introduced

statuses and the three components. The steps of the basic operation are as following:

1. Once the node u having data packets to transmit to a node x, these packets are buffered in

Qx. The node u chooses one of these nodes (here we take node v) which has the oldest

packet (has the smallest sequence number) in queues as the targeted receiver.

2. Then, u calculates a control initiation time of v in this transmission, denoted as

ctrl_ini_time(u, v) (presented in subsection 3.2.1). The node u can not start to initial the

RTS transmission until this time is equal to Tcurr(u). However, this initiation time is not

 12

fixed. It might be continuously postponed as long as node u observes that it has no chance

to initialize a successful control process, e.g. receiving other node’s control packets with

network allocation vector of the control channel or data channels.

3. At the time Tcurr(u) that is equal to ctrl_ini_time(u, v), node u can start to do the following

processes:

a) First, node u decides the number of data packets to be aggregated for node v,

denoted as Ku,v (presented in subsection 3.2.2). Accordingly, the network allocation

vector of the possible data transmission (NAVDATA) can be set as

NAVDATA = Ku,v × (TDATA+ TSIFS) + TACK + 2τ.

b) Next, if there is no carrier on the control channel in a TDIFS plus the remaining TBF

period, node u will send a RTS to node v with NAVDATA and other essential

information for the succeeding channel selection at the receiver side (presented in

subsection 3.2.3).

c) Otherwise, if there is carrier on the control channel, it has to go back to step 2 to

recalculate a new control initiation time.

Fig. 3.1 Basic operation of the TBM protocol

 13

4. On the node v receiving the RTS from u at a time Tcurr(v), it has to find a data channel h*

based on the information in RTS and its own statuses using an enhanced channel selection

strategy (presented in subsection 3.2.3). If node v selects a data channel h* for the

forthcoming data transmission, node v would do the following two steps:

a) Node v update its if_rel_time(v) and ch_rel_time(v, h*) such that:

if_rel_time(v) = ch_rel_time(v, h*) = Tcurr(v) + Trctrl + TSIFS + NAVDATA – τ,

where Trctrl = TSIFS +TCTS + τ. Note that the period of Trctrl + TSIFS is the remaining

controlling time before u transmits data packets.

b) Then, after a TSIFS, node v replies a CTS to u containing the data channel h* and the

remaining time of its if_rel_time(v) and ch_rel_time(v, h) whenever received by other

nodes, denoted as if_rel_time+(v) and ch_rel_time+(v, h), for any h ∈ H, respectively.

Their values are as following:

if_rel_time+(v) = max{0, if_rel_time(v) –Tcurr(v) – Trcrtl};

ch_rel_time+(v, h) = max{0, ch_rel_time(v, h) –Tcurr(v) – Trcrtl},

Otherwise, if node v has not selected any data channel, after a TSIFS, it directly replies a

CTS with if_rel_time+(v) and ch_rel_time+(v, h) which values are the same as the

above-mentioned. (The additional fields carried by CTS are h*(if any), if_rel_time+(v) and

ch_rel_time+(v, h).)

5. When node u received the CTS at a time Tcurr(u), it performs the following steps:

a) If there is a channel h* in CTS, it updates its data interface and channel’s statuses as

following:

if_rel_time(u) = ch_rel_time(u, h*) = Tcurr(u) + ch_rel_time+(v, h*) + τ.

b) Then, after a TSIFS, node u broadcasts the h* and its own ch_rel_time+(u, h), for any h

∈ H, to nearby nodes using a RES packet, where:

ch_rel_time+(u, h) = max{0, ch_rel_time(u, h) –Tcurr(u) – TSIFS – TRES – τ}.

Note that the NAVDATA has been implicated in both ch_rel_time+(v, h*) and

 14

ch_rel_time+(u, h*) in CTS and RES, respectively. (The additional fields carried by

RES are h* and ch_rel_time+(u, h).)

c) At the same time with broadcasting the RES, node u start to transmit data packets to

v using the selected channel h*.

On the contrary, if there is no h* in CTS, it has to go back to step 2 to recalculate a new

control initiation time, and restart its control process again.

6. On node v completely receiving data packets from u, v replies an ACK packet on h*.

In order to prevent the other nodes from using the control channel during the

RTS-CTS-RES handshaking, as an irrelevant node x (here it is a in Fig. 3.1) received the RTS

from u at a time Tcurr(x), it updates its control channel’s status such that

ch_rel_time(x, 0) = Tcurr(x) + NAVCTRL,

where NAVCTRL = Trctrl + TSIFS + TRES + τ, the time when x may receive a RES from u (as

shown in Fig. 3.1). On the other hand, for any node x surrounding to this transmission (here it

is either a or b), whenever it received the RES or CTS from a node y (here it is either u or v)

at a time Tcurr(x), if a data channel h* is going to be used, it will update its data channel’s

status such that

ch_rel_time(x, h*) = max{ch_rel_time(x, h*), Tcurr(x) + ch_rel_time+(y, h*)}.

Additionally, a node x (including u, v, a, and b) will refresh its recorded statues about IRVx

and CRTx for another node y, according to the received CTS or RES from y such that

IRVx(y) = Tcurr(x) + ch_rel_time+(y, h*);

CRTx(y, h) = Tcurr(x) + ch_rel_time+(y, h), for any h ∈ H.

3.2 Components Designs

In this section, we present the detail designs for the three components in the TBM

protocol.

 15

3.2.1 Control Initiation Time Prediction

First, we describe the design of CIP component. Before each data transmission, the

sender has to initiate a control process with its receiver to coordinate a free data channel. If

the coordination fails frequently, it would spend considerable time and bandwidth for

exchanging control packets, and it would aggravate the control channel bottleneck problem.

Even worse, the NAVCTRL carrying by an ineffective and unnecessary RTS may prevent the

other nodes from initializing or completing their control processes. In order to reduce such

overhead, one important is to properly predict the control initiation time. The idea is based on

utilizing the release time of node’s resources (the data interface and data channels) at both

sides.

Let us consider two nodes u and v. At any time Tcurr(u), node u cannot initialize the

control process until three conditions has been satisfied. These situations are described as

following:

1) First, node u can communicate with v only if there is at least one channel h ∈ H that has

been released at both sides, i.e., Tcurr(u) ≥ ch_rel_time(u, h) and Tcurr(u) ≥ ch_rel_time(v,

h). In other words, the earliest channel release time of u and v, denoted as

ear_ch_rel_time(u, v), can be calculated as

ear_ch_rel_time(u, v) = min{max{ch_rel_time(u, h), ch_rel_time(v, h)}| h ∈ H}.

Clearly, there is no free data channel between u and v before ear_ch_rel_time(u, v).

2) For a transmission between u and v, neither the data interface of u nor v can be under used,

i.e. Tcurr(u) ≥ if_rel_time(u) and Tcurr(u) ≥ if_rel_time(v). Therefore, the time, when the link

of u and v can be released for data transmission, can be defined as,

link_rel_time(u, v) = max{ear_ch_rel_time(u, v), if_rel_time(u), if_rel_time(v)},

which be named the link release time of u and v.

3) Node u cannot start its control process until there is neither physical nor protocol

interference on the control channel, i.e. Tcurr(u) ≥ ch_rel_time(u, 0).

 16

Combining these three facts, we define the control initiation time as

ctrl_ini_time(u, v) = max{ch_rel_time(u, 0), link_rel_time(u, v)}.

Clearly, any control process initiated from u before ctrl_ini_time(u, v) cannot be successful.

In practice, the release time of nearby nodes can be acquired from the CTS and RES sent

by them, and the statuses about ch_rel_time(v, h) and if_rel_time(v) in the above equations can

be replaced by CRTu(v, h) or IRVu(v), respectively. The new equations are as following:

ear_ch_rel_time(u, v) = min{max{ch_rel_time(u, h), CRTu(v, h)}| h ∈ H};

link_rel_time(u, v) = max{ear_ch_rel_time(u, v), if_rel_time(u), IRVu(v)};

ctrl_ini_time(u, v) = max{ch_rel_time(u, 0), link_rel_time(u, v)}.

However, ctrl_ini_time(u, v) may be postponed. As shown in Fig. 3.2, before initiating the

control process, the value of ctrl_ini_time(u, v) has to be continuously postponed, whenever

ch_rel_time(u, 0) or link_rel_time(u, v) is changed due to receiving some control packets. In

Fig. 3.2, the ctrl_ini_time(u, v) is postponed twice, caused respectively by the changes of

ch_rel_time(u, 0) and link_rel_time(u, v), and it is marked as ○a and ○b in Fig 3.2.

Fig. 3.2 Link release time and control initiation time between two nodes u and v.

3.2.2 Dynamic Data Aggregation

Although CIP can reduce unnecessary RTS transmissions, the bottleneck problem is still

subsistent if the control process has to be done before each data transmission. The problem

becomes more serious as the number of data channels, data rate, or node’s density increases

 17

[3]. It is because that the requests for contention and coordination in the control channel

become more intensive under these circumstances. In order to completely break through this

limitation, one effective way is to transmit multiple data packets using only one control

process [10]. It has three advantages in this way. First, both the physical collisions and the

logical blocking by NAVCTRL can be mitigated, because multiple data transmission could be

sent after one control process. Second, the time of inter-frame spaces and the backoff will

become relatively small due to a long packet’s train. Furthermore, the reception of multiple

data packets can be replied using only one ACK packet.

However, a new problem arises: How many packets should be aggregated in one

transmission? If the number is too small, the effect by the above advantages will not be

significant. Because a node uses its data interface for a short packet’s train, it may still spend

the most of time to contend or wait for the access to the control channel. Thus, lead to a lower

utilization of its data interface. On the contrary, if the number is too large, it may incur large

idle time on its control interface due to too long packet’s train. Consequently the performance

could be deteriorated by the increased retransmission cost and the unfairness problem from

the longer packet’s train. On the other hand, for a given node, the loading of the control

channel in its surrounding area is not always uniform, which would be varied due to some

factors such as flow loading, node’s density, and routing path. For example, in Fig. 3-3, it is

easier for u to coordinate with v, since v has only two neighbors, but it is much harder if u

wants to coordinate with w, where other four nodes are surrounded and all of them compete to

create a link with w.

Fig. 3.3 Non-uniform loading in the control channel of node u.

 18

Our main idea is to dynamically adjust the number of data packets to be aggregated for

each link based on the idle time of both the control and data interfaces. The primary goal is to

balance the utilization of the two interfaces such the average throughput can be maximized.

Consider a node u and a destination v ∈ Nu. The number of packets, that will be aggregated

from u to v, is denoted as Ku,v and initiated as 1 at the beginning. Note that each transmission

consists of least one data packet and Ku,v can not be over the queue size. Hence, the range of Ku,v

is bound within 1 and |Qv|.

After node u chooses node v as the targeted destination, u would start to initialize a

control process. Recall that the control initiation time may be postponed by some reasons

(described in 3.2.1). Assuming that node u has been waiting to transmit data packets to v for a

period, and it is preparing to restart the control process with v, as shown in Fig. 3.4. At this time

point, if node u observes that its data interface has experienced a certain amount of time in idle

status, denoted as data_idle_time(u, v) since the start of the current transmission, it will enlarge

its Ku,v such that

Ku,v = min{|Qv|, Ku,v + data_idle_time(u, v) / (TDATA+ TSIFS)}.

The reason is that the data interface’s idle time during this period is resulted from the recent

contention in the control channel of either u or v. It means that the longer data_idle_time(u, v)

is, the more serious the control bottleneck problem is. In order to avoid overly sending control

messages and to arise the utilization of u’s data interface, the length of the packet’s train has to

be expended in proportion to the experienced idle time.

Fig. 3.4 Data interface idle time (simplified).

 19

On the contrary, as shown in Fig. 3.5, if node u observes that its control interface was in

idle status for a period of time during the current data transmission, denoted as ctrl_idle_time(u,

v), in order to increase the control channel’s utilization and avoid possible cost from

retransmission and unfairness problem, it has to shrink back its Ku,v in proportion to the

ctrl_idle_time(u, v). That is, node u adjusts

Ku,v = max{1, Ku,v - ctrl_idle_time(u, v) / (TDATA+ TSIFS)},

at the end of the current transmission to v.

Fig. 3.5 Control interface idle time (simplified).

Now, we formally define the two variables of data_idle_time(u, v) and ctrl_idle_time(u, v).

For a transmission from u to v (refer to the illustration in Fig. 3.6), we denote data_tx_time*(u, v)

and data_tx_time(u, v) as respectively the earliest and the actual time when node u can start

transmitting data packets to v. That is,

data_tx_time*(u, v) = ctrl_ini_time*(u, v) + Tsctrl + TSIFS;

where Tsctrl = TDIFS + TBF + TRTS + τ + TSIFS +TCTS + τ, and ctrl_ini_time*(u, v) is the first control

initiation time predicted for the current transmission by CIP component without any

postponement. By definitions, u’s data interface need not be active before data_tx_time*(u, v)

and it must be under used after data_tx_time(u, v). In other words, at any time Tcurr(u), the data

interface of u is in idle status only if Tcurr(u) ∈ [data_tx_time*(u, v), data_tx_time(u, v)).

However, the gap between data_tx_time*(u, v) and data_tx_time(u, v) is not only caused by the

contention in the control channel, but also results from the change of link_rel_time(u, v), i.e.

Tcurr(u) < link_rel_time(u, v). It means that the statuses of data channels of u or v is not

available. When the later case happens (see the example of the period between t1 to t2 in Fig.

 20

3.6a), there is no free data channel to be used for data transmission even if the control channel

is free. For the reason, the data interface’s idle time should ignore this case. Accordingly, we

have the following definition:

At any time Tcurr(u), the data interface of a node u is idle if and only if

i) data_tx_time*(u, v) ≤ Tcurr(u)< data_tx_time(u, v);

ii) link_rel_time(u, v) < Tcurr(u).

Similarly, referring to Fig. 3.6b, the control interface’s idle time is defined as follows:

At any time Tcurr(u), the control interface of a node u is idle if and only if

i) data_tx_time(u, v) + TRES < Tcurr(u) < data_tx_time(u, v) + NAVDATA;

ii) ch_rel_time(u, 0) < Tcurr(u)

iii) There is no physical carrier on the control channel of u.

(a)

(b)

Fig. 3.6 (a) Data interface idle time; (b) Control interface idle time.

 21

3.2.3 Enhanced Channel Selection Strategy

In the primitive DCC-based protocol [3], there is no well-designed channel selection

strategy, and it is simply to find an available data channel that is free at both sides. If there are

multiple choices, the channel will be randomly selected. Therefore, it results in the dynamic

channel selection problem mentioned in chapter 1. Our ECS component aims at improving the

channels’ reusability such that more data transmissions among different nodes can be active

simultaneously. The main idea is to select the data channel that will cause the least total

increment to the release time of the critical recourses (either data channels or data interface)

essential for the possible transmissions at nearby nodes.

Let us formally describe our strategy using symbol terms. Consider a sender u and a

receiver v. The time Tcurr(u) is now at ctrl_ini_time(u, v). At this time, node u performs three

calculations for each neighbor w ∈ Nu – {v}.

1. First, sender u calculates the current status of neighbor w.

2. Node u forms a free channel list as follows, according to the channel statuses of v in CRTu

FCL(u | v) = {h ∈ FCL(u)| CRTu(v, h) ≤ Tcurr(u) + Tsctrl},

where

FCL(u) = {h ∈ H | ch_rel_time(u, h) ≤ Tcurr(u) + Tsctrl},

Then, node u calculates the future status of neighbor w if node u and v select a data

channel h ∈ FCL(u | v) for data transmission.

3. Final, u calculates the total increment to the release time of a data channel h ∈ FCL(u | v)

by the current and future statuses of each neighbor w, and sends the results to v by RTS.

After receiving RTS, receiver v performs the same three calculations as sender u, and chooses

the data channel for data transmission according to these calculating results.

Now, we formally define the detailed calculations. First, u calculates the earliest time

when at least one data channel will be released at node w ∈ Nu – {v}, denoted as CRu(w), based

 22

on its CRTu, i.e.,

CRu(w) = min{CRTu(w, h)| h ∈ H }.

Combining with w’s data interface release time in IRVu, we define

NRu(w) = max{CRu(w), IRVu(w)}.

The two variables of CRu(w) and NRu(w) are called the critical channel release time and node

release time of w, respectively. The NRu(w) implicates the earliest time when node w can start a

transmission, since for any destination s ∈ Nw, its control initiation time is confined as

NRu(w) ≤ link_rel_time(w, s) ≤ ctrl_ini_time(w, s).

In other words, node w can not start a transmission before NRu(w), and it can represent the

status of w before u and v select a data channel for data transmission.

Then, if node u has selected a data channel h ∈ FCL(u | v), the new critical channel release

time of w ∈ Nu – {v}, denoted as)|(hwCRu
+ , may be enlarged by the NAVDATA on channel h. It

can be formulated as follows

{ } 















−∈








+++=+

}{'|)',(min

,
)(

),,(
max

min)|(

hhhwCRT

NAVTTuT

hwCRT

hwCR

u

DATASIFSsctrlcurr

u

u

H

.

This equation indicates the original value may be replaced by the release time of another

channel h' ∈ H – {h} if the release time of the original critical channel is enlarged so that it is no

longer critical. Similarly, the corresponding node release time of w can be rewrote as

)}(),|(max{)|(wIRVhwCRhwNR uuu
++ = ,

and it can represent the new status of neighbor w after node u and v select a communicable

channel h ∈ FCL(u | v) for data transmission. Using these terms, the increment to the node

release time of w, resulted from the data transmission between u and v on data channel h can be

characterized as

 23












++++
−++++

=∆
+

})(),(max{

})(),|(max{
),(

τ
τ

RESSIFSsctrlcurru

RESSIFSsctrlcurru
u

TTTuTwNR

TTTuThwNR
hw .

Notice that this equation neglects the part of increment before τ++++ RESSIFSsctrlcurr TTTuT)(,

since the neighbor w cannot use the control channel due to receiving the RTS packet and w can

initial the control process after it has received the RES packet from u. Accordingly, the total

increment to the node release time of u’s neighbors can be defined by

∑ −∈
∆=∆

}{
),()(

vNw uu
u

hwh .

Node u will calculate the ∆u(h) for each h ∈ FCL(u | v) and sends this information and Nu to v

accompanying with the RTS packet. (There are four additional types of information carried by

RTS: NAVDATA, FCL(u | v), ∆u(h), and Nu.)

When node v received the RTS at a time Tcurr(v), it performs the same calculation for each

free data channel h ∈ FCL(v) ∩ FCL(u | v) and neighbor w ∈ Nv – {u} – Nu, where

FCL(v) = {h ∈ H | ch_rel_time(v, h) ≤ Tcurr(v) + Trctrl},

except

{ } 















−∈








−+++=+

}{'|)',(min

,
)(

),,(
max

min)|(

hHhhwCRT

NAVTTvT

hwCRT

hwCR

v

DATASIFSrctrlcurr

v

v τ ,

and

∑ −−∈

+












+
−+

=∆
uv NuNw

rctrlcurrv

rctrlcurrv
v

TuTwNR

TuThwNR
h

}{ })(),(max{

})() ,|(max{
)(.

Then, for each h ∈ FCL(v) ∩ FCL(u | v), the total increment to the node release time of all

neighbors of either u or v are merged into the following cost function

)()()(, hhh vuvu ∆+∆=∆ .

The channel h that has the least ∆u,v(h) will be chosen as the communication channel, and

denotes as h*. The selected channel h* wi ll be sent back to u using a CTS and then broadcasted

 24

to u’s neighbor using a RES packet.

An example of this channel selection strategy is illustrated in Fig. 3.7, where node u

transmits to v using channel 1. The node release time of b is increased by ∆v(b,1) > 0, since

channel 1 is no longer the critical channel of b. It also influences node c, but the range is started

by the time when c received the RES. Likewise, the critical channel of d is altered from 1 to 3,

but the NRu(d) is not changed, because the interface release time of d dominates the value.

Lastly, the transmission has no influence to node a, since channel 1 is not critical to a.

 NAVDATA(1)

 NAVDATA(3)

 NAVDATA(2)
 NAVDATA(3)

 NAVDATA(2)

D B RTS

RTS S CTS

CTS RESS

RES

 NAVCTRL

 NAVDATA(3)
 NAVDATA(2)
 NAVDATA(1)

 NAVDATA(2)
 NAVDATA(1)

NAVDATA(1)

NRu(c)

 NAVCTRL

RTS

RTS

CTS

CTS

c

a

u

v

b

d

ACK

new NAVDATA(1)

new NAVDATA(1)

new NAVDATA(1)

new NAVDATA(1)

DATA S DATA S DATA

ACKDATA DATA DATA S

Tcurr(u)

RES

RES

Tcurr(u)

Tcurr(v) + Trctrl

Tcurr(u)+ Tsctrl'

Tcurr(u) + Tsctrl

 NRu(a)

NRu
+(c)u(c,1)

Data reception from other node

v(b,1) NRv
+
(b)NRv(b)

NRv(d)

NRu
+(a)

NRv
+
(d)

CRv(d)

Fig. 3.7 Increments to node release time if selecting channel 1.

 25

Chapter 4 Experiments

In this chapter, we conduct simulation results to evaluate the performance of our TBM

protocol, and compare with IEEE 802.11 MAC protocol and DCA protocol proposed in [3].

Our simulations were conducted using the network simulator 2 (ns-2) [16] with CMU wireless

extensions. The network topologies under test are classified into two categories:

1) Random Single-hop Networks: In each run, there are 100 nodes randomly placed on a

region. We generate single hop flows for 50 distinct node pairs. The performance here

measures the link layer throughput.

2) Multi-hop Networks: We focus on the end-to-end throughput. There are two subcases:

b) Grid Multi-hop Networks: As shown in Fig. 4.1, a 10×10 grid topology with 10

horizontal flows and the other 10 vertical flows was tested. The distance between

adjacent nodes is 100m. In each run, the source node and the destination node of each

flow are randomly chosen from the margin of the grid.

c) Random Multi-hop Networks: For each random multi-hop network, we also randomly

place 100 nodes on a region, while 20 multi-hop flows are established 20 distinct

source and destination pairs. Each flow will go through the shortest routing path,

fixed at the beginning.

Under these network topologies, we study the impact from three factors:

a) Number of data channels is varied from 2 to 11.

b) Data rate of data channels are varied by 0.5Mbps, 1Mbps, 2Mbps, 5.5Mbps, and

11Mbps.

c) Data frame size is varied by 256 bytes, 512 bytes, 1024 bytes, and 2048 bytes.

The detail parameters setting are listed in Table 4.1.

 26

Table 4.1 Simulation Values

Parameters Values

Deployment Region 1000m×1000m

Number of Nodes 100 nodes

Transmission Range 250 meters

Carrier Sensing Range 250 meters

Number of Channels (H) 12 non-overlapped channels

Data Rate of the Control Channel 11 Mbps

Data Rate of each Data Channel 11 Mbps

Data Frame Size 1024 Bytes

Queue Size 50 packets

Traffic Type UDP flow with Constant Bit Rate (CBR)

11 Mbps in the single-hop topology Flow Rate

2 Mbps in the multi-hop topology

Simulation Duration 100 seconds

Number of runs 20 runs

100 m

100 m

100 m

Fig. 4.1 10×10 Grid Topology

4.1 Comparison in varied number of data channels

In this section, we study the impact of the number of data channels to observe two things:

the effect on the aggregate throughput of the networks and the utilization of data channels of

each scheme. Fig. 4.2a and 4.2b indicate that our CIP scheme can elevate the aggregate

throughput at least 5% and 7% in random single-hop networks and random multi-hop networks,

 27

respectively. The upgrade comes from that CIP can effectively prevent from unnecessary RTS

transmission. Fig. 4.2c shows the improvement from CIP can be up to 120% in the grid

topology. The significant enhancement in the grid topology has two reasons. First, the

transmission target changes frequently. Compared to DCA, the node using CIP scheme has

more detailed information of its neighborhood’s channel release time after the transmission

target switches to another one. Therefore, the node using CIP could transmit RTS when the

destination has the same free channel. Second, the node density in the grid networks is more

uniform than the density in the other two networks. Therefore, each node in the grid topology

confronts much more contention than the other two topologies. Because of the more

contention, the unsuccessful control processes which CIP focuses are so much that the

performance DCA achieves is only a little higher than 802.11. Hence, CIP can gain good

improvement by reducing the unsuccessful control processes.

In addition, the curves in Fig. 4.2 depict that the throughput of DCA is saturated as the

number of data channels is more than three. In contrast, our protocol with DDA component is

not saturated until the number of data channels is more than six. Fig. 4.2 also indicates that the

aggregate throughput synergically achieved by DDA and CIP is higher than DCA over 97% in

single-hop topology (Fig. 4.2a), 340% in grid topology (Fig. 4.2b), and 86% in random

multi-hop topology (Fig. 4.2c). The results have verified that DDA have higher throughput and

achieves higher utilization of data channels. Finally, Fig. 4.2a presents that ECS can effectively

improve the throughput of the link layer and upgrade the utilization of data channels further. In

Fig. 4.2a, ECS improves 18% compared to DDA scheme as there are six data channels, and

ECS has 30% enhancement more than DDA as there are 11 data channels. However, Fig. 4.2b

and Fig. 4.2c display that compared to DDA, ECS only upgrades the throughput at most 18%

and 6% in the grid topology and in the random multi-hop topology, respectively.

 28

(a)

(b)

(c)

Fig. 4.2 Variation in the number of data channels (a) Random single-hop; (b) Grid multi-hop; (c) Random

multi-hop

 29

4.2 Comparison in varied data rate of data channels

Analytic evidence in [3] has shown that the bottleneck problem will become more

serious if the data rate increases. In this subsection, we vary the data rate of data channels to

observe its effect. In Fig. 4.3a, as the data rate of data channels is 5.5 Mbps, DCA has 145%

improvement more than 802.11, but it is down to 93% when the data rate of data channels is 11

Mbps. The results verify that the faster the data rate is, the more serious the bottleneck

problem is. Compared to DCA, CIP scheme gets significant improvement of the throughput in

the grid topology even if the data rate is 0.5 Mbps. Besides, in Fig. 4.3a and 4.3c, the

throughput achieved by our TBM protocol is not saturate even the data rate is up to 11 Mbps.

The simulation results in Fig. 4.3 demonstrate that our TBM protocol can achieve higher

throughput as the data rate of data channels increases because the control channel bottleneck

problem can be resolved by TBM protocol efficiently.

4.3 Comparison in varied data frame size

In this section, we vary the frame size of the data packet. In Fig. 4.4a, DCA has 90% and

147% improvement more than 802.11 when frame size is 1024 bytes and 2048 bytes,

respectively. It indicates that the level of the control channel bottleneck problem decreases as

the data frame size increases. In the contrary, DDA upgrades the throughput 192% and 63%

more than DCA as frame size is 1024 bytes and 2048 bytes, respectively. The results in Fig. 4.4

demonstrate that our DDA scheme can achieve higher throughput than DCA even if the data

frame size is as small as 256 bytes.

 30

(a)

(b)

(c)

Fig. 4.3 Variation in data rate of data channels (a) Random single-hop; (b) Grid multi-hop; (c) Random multi-hop.

 31

(a)

(b)

(c)

Fig. 4.4 Variation in data frame size (a) Random single-hop; (b) Grid multi-hop; (c) Random multi-hop.

 32

Chapter 5 Conclusion

In this thesis, we have proposed a Time-based MMAC (TBM) protocol to overcome the

control channel bottleneck and the dynamic channel selection problem for the DCC approach.

There are three components in the TBM protocol. The control initiation time prediction (CIP)

can reduce the unnecessary control process by properly predicting the control initiation time

to increase the chance for a successful coordination. The dynamic data aggregation (DDA)

can dynamically adjust the number of aggregated packets according to the real-time condition

of both the control and data interfaces. The enhanced channel selection strategy (ECS) can

gain better channel reusability by selecting the channel that has the least influence to nearby

nodes. Simulation results have shown that our protocol with these components achieves

significant improvement in comparison with previous works, especially when the number of

channels, data frame size, and data rate of data channels are large.

 33

Bibliography

[1]. I. F. Akyildiz and X. Wang, Weilin, “Wireless mesh networks: a suvery,” Computer

Network and ISDN System, vol. 47, pp. 445-487, 2005.

[2]. J. Mo. H.-S. So, and J. Walrand, "Comparison of multichannel MAC protocols," IEEE

Transaction on Mobile Computing, vol. 7, no. 1, 2008.

[3]. S.-L. Wu, Y. Lin, Y.-C. Tseng, and J.-P. Sheu, "A new multi-channel MAC protocol with

on-demand channel assignment for multi-hop mobile ad hoc networks," In Proc. of Int'l

Symp. on Parallel Architectures, Algorithms and Networks (ISPAN'00), pp. 232-237,

2000.

[4]. P.-J. Wu and C.-N. Lee, "On-demand commection-oriented multi-channel MAC protocol

for ad-hoc network," In Proc. of 3rd IEEE Conf. Society Conf. on Sensor and Ad Hoc

Networks, pp. 621-625, 2006.

[5]. W.-C. Hung, K.-L.-E. Law, and A. Leon-Garcia, "A dynamic multi-channel mac for

ad-hoc LAN," In Proc. of 21st Biennial Symp. On Communications, pp. 31-35, 2002.

[6]. H. Koubaa, "Fairness-enhance multiple control channels MAC for ad hoc networks,"

2005.

[7]. M.-B. Benveniste and Z. Tao, "Performance evaluation of a medium access control

protocol for IEEE 802.11s mesh networks," In Proc. of IEEE Sarnoff Symp., 2006.

[8]. J. Zhang. Y. Wang, and J. Wang, "DCC-MAC: A new MAC protocol for ad-hoc

networks based on dual control channel," In Proc. of 25th IEEE Int'l Symp. on Personal

Indoor and Mobile Radio Communication, pp. 1341-1345, 2003.

[9]. N. Jain, S-R. Das, A. Nasipuri, "A multichannel CSMA MAC protocol with

receiver-based channel selection for multihop wireless network," In Proc. of 10th Int'l

Conf. on Computer Communications and Networks (ICCCN'01), 2001.

[10]. P. Kyasanur, J. Padhye, and P. Bahl, "On the efficacy of separating control and data into

 34

different frequency bands," In Proc. of Broadband Networks, pp. 646-655, 2005.

[11]. A. Raniwala, K. Gopalan, and T. C. Chiueh, “Centralized channel assignment and

routing algorithm for multi-channel wireless mesh networks,” ACM Mobile Computing

and Communications Review, vol. 8, no. 2, pp. 50-55, 2004.

[12]. A.K. Das, H.M.K Alazemi, R. Vijayakumar and S. Roy, “Optimization models for fixed

channel assignment in wireless mesh networks with multiple radios,” IEEE SECON,

2005.

[13]. J. Crichigno, M.-Y. Wu, W. Shu, "Protocols and architectures for channel assignment in

wireless mesh networks," Ad Hoc Networks, to appear, 2007.

[14]. J. So, and N. Vaidy, "Multi-channel MAC for ad hoc networks: handling multi-channel

hidden terminals using a single transceiver," In Prof. of MobiHoc’04, 2004.

[15]. J. Chen, S. Sheu, C. Yang, "A new multichannel access protocol for IEEE 802.11 ad hoc

wireless LANs," In proc. of IEEE Int'l Symp. on Personal, Indoor and Mobile Radio

Communications, 2003.

[16]. ns-2. [Online]. Available: http://www.isi.edu/nsnam/ns/

