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摘摘摘摘   要要要要 
    

在使用多重通道的無線網狀網路中，以專用控制通道技術為基礎的網路架構

可解決目前大部份多重通道上的問題，如多重通道隱藏主機、失聰與廣播支援等

問題。然而在專用控制通道架構下有兩個挑戰：一個是控制通道瓶頸問題，另一

個則是通道動態選擇問題。本篇論文即是在專用控制通道技術的架構下，提出以

時間為基準的多重通道媒介控制存取層協定，簡稱 TBM。此協定包含三大部分，

第一部份透過正確預測控制程序的發起時間，以降低多餘的控制成本；第二部份

依各節點狀態動態決定每次傳輸的資料封包數量；第三部份則在所有可用通道

中，選出對週遭其他節點影響最小的通道來傳輸資料，以提升通道的同時使用

率。前兩者能有效的解決控制通道瓶頸問題，第三部份則能提高資料通道的利用

率。模擬結果顯示出本論文所提出的 TBM 較其他方法能提高相當可觀的效能。 
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Abstract 

In wireless mesh networks (WMNs), the dedicated control channel (DCC) 

approach can support broadcasting and avoid multi-channel hidden terminal problem 

and deafness problem in the multi-channel environment. However, there are two 

serious problems in the DCC approach: the control channel bottleneck and dynamic 

channel selection problem. In this thesis, a protocol, named the time-based 

Multi-channel MAC (TBM), is proposed to resolve these two challenges. The TBM 

protocol consists of three components. The first one aims at reducing the control 

overhead by properly predicting the control initiation time. The second one can 

dynamically aggregate multiple packets to transmit with a single control process. The 

final component selects the channel that has the least influence to nearby nodes to 

improve channel reusability. Simulation results show that TBM can achieve 

significant improvement in the throughput in comparison with the existing work. 
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Chapter 1 Introduction 

 
In recent years, the wireless mesh networks (WMNs) are the most common networks 

used to extend the reach of the last-mile access to the Internet [1]. WMNs consist of two types 

of mesh nodes: mesh routers and mesh clients equipped with IEEE 802.11 radio interfaces. A 

mesh client can access to the network by connecting to one or more mesh routers which 

supply the functionality of access points (APs), and the traffic in the network is relayed 

hop-by-hop to the destinations by some mesh routers through wireless links. In this way, a 

wireless network backhaul is easily established without any wired connection. However, two 

adjacent wireless links using the same channel cannot transmit concurrently. Therefore, it is 

expected to exploit multiple channels among mesh nodes to increase capacity of the networks. 

For example, the IEEE 802.11 a/b/g provides 12, 3, and 3 orthogonal channels, respectively. 

These channels are spread in non-overlapped spectrums and can be simultaneously used for 

transmission. 

In order to utilize multiple channels in WMNs, designing a multi-channel medium access 

control (MMAC) protocol is the most important [2]. However, a mesh node using only one 

interface cannot sense carriers and receive control packets (such as RTS/CTS) from different 

channel at the same time. This limitation results in three major problems in the design of 

MMAC [2]. These problems are the multi-channel hidden terminal problem, deafness 

problem, and broadcasting support. 

1) Multi-channel Hidden Terminal Problem: The IEEE 802.11 DCF can avoid the hidden 

terminal problem, but it is further complicated in the multiple channel environment. 

Consider an example in Fig. 1.1a. Node A has data to transfer to B by sending a RTS 

packet on channel 2, and then B replies a CTS packet to silent other transmission on 
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channel 2. During the negotiation between A and B, C and D are in communication using 

channel 3 so that C cannot detect the CTS from B. Consequently, at the end of the 

communication between C and D, C may illegally initiate a RTS to B using channel 2 and 

incur a collision. This problem is called multi-channel hidden terminal problem. 

2) Deafness Problem: In Fig. 1.1b, node C wants to communicate with B by sending RTS 

using channel 2, but B cannot hear the RTS of C because the interface of B has tuned to 

channel 1. Therefore, B will not reply CTS to C, and C will continually retry RTS until 

exceeding the number of the maximum retry. 

3) Broadcasting Support: In the multi-channel environment, the interface of each node may 

not stay on the same channel. Hence, if the higher layer protocol requires broadcasting 

support at the link layer, it is hard to reach all nodes by broadcasting on any channel. 

 

         

                       (a)                          (b) 

Fig. 1.1 Multi-channel hidden terminal and deafness problems. 

 

To overcome these problems, the dedicated control channel (DCC) approach was 

proposed in the literatures [3-9]. In DCC approach, each node has two interfaces: one is the 

control interface and the other is the data interface. The control interface is fixed on a 

common channel, named the control channel, for sensing and exchanging control packets. 

The data interface can dynamically switch among the remaining channels, named data 
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channels, for data transmission. The sender negotiates with the receiver by exchanging some 

control packets on the control channel to find a data channel which will be free at both sides, 

and then the sender transmits a data packet to the receiver using the selected data channel1. 

Because all control packets are exchanged in a common channel, the above-mentioned 

problems are inherently solved. 

However, the design of a DCC MMAC protocol confronts two major challenges: 

1) Control channel bottleneck problem: In DCC approach, only one common channel is used 

for exchanging control packets. As the example in Fig. 1.2 shows, if the time to transmit a 

data packet is about 3 times of the length of one control process, the control channel has 

been fully utilized under 3 data channels. Therefore, the throughput of the networks 

cannot be further upgraded even if more data channels are added, and the control channel 

has become a bottleneck of the overall performance. Analytic evidence in [3] has shown 

that the bottleneck problem will become more serious if the number of data channels, data 

rate, or node’s density increases. 

2) Dynamic channel selection problem: In DCC approach, the channel’s usage of each data 

channel is flexible, which can be varied in an on-demand matter. Nevertheless, it would be 

difficult to select a proper channel in a dynamic way, because each node has no enough 

information about the channel statuses of its neighbor nodes. For example, in Fig. 1.3 

node A, B, C and D have free channel lists {1, 2}, {2, 3}, {1, 2, 3}, and {1, 2, 3}, 

respectively. But if C cannot be aware of the channel statuses of both A and B, it may 

choose channel 2 to communicate with D. As a result, the link between A and B cannot be 

active at the same time. 

                                                 

 

 

 
1 The negotiation is called the control process and includes the backoff time, inter-frame spaces, propagation 
delay, and control packet exchanging dialogue. 
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Fig. 1.2 Dedicated control channel MMAC. 

 

 

Fig. 1.3 An example of improper selection of a data channel. 

 

To resolve these two challenges, we propose a new MMAC protocol using the DCC 

approach. This protocol consists of the following three components: 

1. Control initiation time prediction (CIP): In DCC, the sender has to initiate a control 

process with the receiver for coordinating a communicable data channel. Somewhile, a 

control process may fail due to no mutual free channel at both sides. If the process fails, 

the bandwidth of exchanging control packets is wasted and the control channel 

bottleneck problem is aggravated. To reduce such overhead, this component aims at 

avoiding the unsuccessful control processes by properly predicting the control process 

initiation time. 

2. Dynamic data aggregation (DDA): Although CIP component can reduce the number of 

the unsuccessful control processes, the bottleneck problem is still serious if the control 

process has to be initialized for each data transmission. To completely overcome this 

limitation, one effective way is to transmit multiple data packets with a single control 

process. However, determining the number of data packets to be aggregated becomes a 

complicated issue. If the number is too small, the effect will not be significant; on the 

contrary, if it is too large, the retransmission cost would be high. Our DDA component 

can dynamically make this decision for each transmission according to the utilization of 

the interfaces (control/data interface idle time). 
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3. Enhanced channel selection (ECS): As illustrated in Fig. 1.3, channel 2 is the only data 

channel free for both A and B. But, it is now under used by C and D. Therefore, A 

cannot transmit to B until the channel is released by the other two nodes. In other words, 

the release time of channel 2 at node C and D is critical to the transmission between A 

and B. In our channel selection strategy, any sender-receiver pair will select the channel 

that has the least influence to the other neighbor nodes. It means that ECS will choose 

the channel which has the least total increment to the release time of the critical 

channels of all neighbor nodes. Therefore, the data channels can gain better reusability. 

Overall, the main idea of these components is to utilize the information about the time related 

to the link-layer operations (i.e. control process initiation time, interface idle time, and 

channel release time). Hence, we called this protocol the Time-Based MMAC (TBM). 

The remainder of the thesis is organized as follows: In chapter 2, we first compare 

different types of MMAC approaches to explain why the DCC approach is preferred in our 

study. Then, the protocols related to this approach are reviewed. In section 3-1 of chapter 3, 

the basic operation of our protocol is presented. In 3-2, we describe the detail designs of the 

three components. In chapter 4, we conduct simulation results for our performance evaluation. 

Finally, conclusion remarks are given in chapter 5. 
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Chapter 2 Related Works 

 
In this chapter, we first compare different types of MMAC approaches to explain why 

the DCC approach is preferred in our study. Then, the existing protocols related to the DCC 

approach are reviewed. 

2.1 Comparison of MMAC Approaches 

Several MMAC protocols have been proposed in the literature. In general, these 

protocols can be classified into 4 types: the channel-fixed, receiver-based, split control phase, 

and dedicated control channel approaches. 

1) The Channel-fixed Approach [11, 12]: Each interface is fixed on one channel. Any two 

adjacent nodes can communicate with each other only if both of them have an interface 

assigned the same channel. However, there are two main problems in this approach. First, 

hardware cost is too high. For example, if a node wants to use 3 different channels, it 

should be equipped 3 interfaces. Second, the inflexible channels’ usage may confine the 

network connectivity. For instance, if two consecutive nodes are on the unique path of 

some source-destination pairs but having no interface on the same channel, the network 

would be partitioned. 

2) The Receiver-based Approach [13]: This approach has no connectivity problem. In this 

approach, each interface of each node has been assigned a dedicated channel, and the node 

will stay on this channel to listen for request if it has no data to send. Otherwise, the node 

can connect with any neighbor by turn its interface to the channel that is pre-specified on 

the receiver side. However, since a node’s interface is not always fixed, the multi-channel 

hidden terminal and deafness problem may occur. In addition, since a node’s neighbors are 
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not necessarily on the same channel, it also has the broadcasting support problem. 

3) Spilt Control Phase Approach [14, 15]: This approach suggests splitting each beacon 

interval into two phases, named control phase and data phase, respectively. In the control 

phase, all sender-receiver pairs exchange control packets using a common channel and 

select a data channel for data transmission later. Then, at the data phase, each pair can 

switch their interfaces to the selected data channel and communicate with each other. 

Because all nodes shares the same channel in the control phase, the multi-channel hidden 

problem, deafness problem, and broadcasting support problem, are automatically solved. 

However, this approach has two drawbacks. First, the channels except the common 

channel used for exchanging control packets are idle in the control phase. Second, this 

approach relies on strict synchronization mechanism to align the two phases among nodes, 

and it is difficult to implement in practice. 

4) The Dedicated Control Channel (DCC) Approach: The major advantage of the DCC 

approach is that it requires no time synchronization. Each node can perform sensing and 

sending control packets using its control interface at any time. Moreover, since control 

packets are also exchanged in a common channel, named the control channel, all 

advantages in the split control phase approach are preserved except the control channel 

cannot be used for data transmission in DCC. 

Owing to these merits of DCC approach, it is preferred to design a MMAC protocol based on 

this approach. However, as introduced in chapter 1, the performance might be restrained by 

the bottleneck of the control channel or the selection of data channels. Hence, the related 

works on this approach were primarily focused on solving these two problems. 

 

2.2  Existing Protocols on DCC Approach 

The first DCC-based protocol for the multi-channel environment, named the dynamic 
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channel assignment (DCA), was presented in [3]. In DCA, each node maintains a list of 

unused data channels, called the free channel list (FCL). Before sending a data packet, the 

sender transmits a RTS carrying its FCL to the intended receiver. Based on the FCL carried by 

RTS, the receiver chooses a data channel that is free at both sides, and replies the selected 

channel to the sender by sending a CTS. After receiving the response, the sender broadcasts a 

RES packet to inhibit its neighbor nodes from using the same data channel. Then, the two 

nodes exchange data using the selected data channel. 

Compared with the IEEE 802.11 DCF, the DCA protocol needs additional control 

bandwidth for the RES packets. To reduce such overhead, Wu and Lee [4] suggested that the 

sender shall propose a channel in the RTS based on previously behaviors of the receiver. 

Using this way, if the proposed channel is accepted by receiver, the RES can be omitted. A 

similar idea is in [5], where the RTS is followed by a reply-to-RTS (RRTS) which indicate 

whether or not the channel is acceptable. If not, the process will continue until the both sides 

agree on an acceptable channel. In general, the control overhead can be reduced in [4] and [5] 

if a proper channel is suggested by the sender. Our protocol can also avoid redundant control 

packets by predicting proper control initiation time (by the CIP component). 

Another line of researches [6, 7] suggested using multiple control channels instead of a 

single one. The authors in [6] suggested that the sender initializes the control process using 

the default control channel at the first time. If the default control channel is occupied by 

another link, the alternative control channel would be chosen to perform the control process. 

Then, the authors showed that the optimal number of control channels is a function of the 

total number of available channels and the packet size. For example, with 12 channels, and 

data packet size of 1028 bytes, 3 control channels are required. The protocol in [7] also 

employs an extra control channel for replying ACK. But its purpose is to avoid collision 

between ACK for a receiver and the data packets from other senders, which allows hidden and 

exposed nodes to conduct their reception and transmission at the same time. Although using 
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more control channels is beneficial, the available data channels will be sacrificed. In contrast, 

the dynamic data aggregation technique in our protocol can resolve the bottleneck problem 

using only one control channel (by the DDA component). 

About the channel selection strategy, in the DCA protocol, the sender and receiver have 

to negotiate a data channel that will be free at both sides. If there are multiple choices, the 

channel will be selected at random by the receiver. Thus, the requirement is only to find a 

communicable channel. There are two enhancements in [8] and [9]. The strategy in [8] 

requires that the received power in the selected channel is the least in order to avoid potential 

interference. Similarly, in [9], the most robust free data channel will be chosen, according to 

the carrier-to-interference-ratio. In other words, the both strategies concern not only the 

connectivity, but also the quality of the selected channel. However, their strategies do not 

concern the influence to nearby nodes, which may lead to a lower channel’s reusability. Our 

strategy (the ECS component) will take this factor into consideration. 
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Chapter 3  The Proposed TBM Protocol 

3.1 Protocol Descriptions 

In this section, we describe the overview of the TBM protocol. First of all, we define the 

network model and symbols that will be used in our protocol in subsection 3.1.1. Then, the 

basic operation and the major functionalities of the three components are described in 

subsection 3.1.2. The explanation and detail design of each component will be presented in 

next section. 

 

3.1.1 Network Model and Symbols 

The concerned network consists of (H + 1) non-overlapped channels. Each node has a 

control interface and a data interface. The first channel (h = 0) is the control channel fixed on 

the control interface for exchanging control packets. The other channels (h = 1, 2, …, H) are 

the data channels used by the data interface for data transmission and reception. For each 

node u, it maintains its own statuses as following: 

� ch_rel_time(u, h): the release time of the hth channel, where h = 0, 1, …, H; 

� if_rel_time(u): the release time of the data interface. 

Any change to ch_rel_time(u, h), h = 1, …, H, and if_rel_time(u) will be sent to nearby nodes 

carried by some control packets, e.g. CTS or RES. Otherwise, each node u maintains two data 

structures to record the latest statuses of its neighbor nodes. One is a channel release time 

table (CRTu) and the other is an interface release time vector (IRVu). When the node u receives 

the control packets from some other node v, it will update CRTu(v, h) and IRVu(v) to keep 

records of the ch_rel_time(v, h) and if_rel_time(v) of node v, respectively. In addition, let Nu 
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denote the set of nodes adjacent to u. For each 1-hop destination v ∈ Nu, a separated queue Qv is 

created to buffer any packet that will be sent or forwarded to v. Table 3.1 lists the other symbols 

used in our TBM protocol. 

Table 3.1 Meanings of symbols used in the TBM protocol 

Symbol Meaning 

τ The propagation delay. 

Tcurr(u) Current time of a node u. 

TSIFS Length of the short inter-frame spaces. 

TDIFS Length of the distributed inter-frame spaces. 

TBF Length of the random backoff period. 

TRTS Time to transmit a RTS packet. 

TCTS Time to transmit a CTS packet. 

TRES Time to transmit a RES packet. 

TACK Time to transmit a ACK packet. 

TDATA Time to transmit a DATA packet. 

H H = {1, 2, …, H}; The set of data channels. 

3.1.2 Basic Operation 

The basic operation of the TBM protocol is illustrated in Fig. 3.1, and it is primarily 

extended from the DCA protocol proposed in [3]. In this subsection, we will present the 

overview of the TBM protocol and emphasize on the association with the newly introduced 

statuses and the three components. The steps of the basic operation are as following: 

1. Once the node u having data packets to transmit to a node x, these packets are buffered in 

Qx. The node u chooses one of these nodes (here we take node v) which has the oldest 

packet (has the smallest sequence number) in queues as the targeted receiver. 

2. Then, u calculates a control initiation time of v in this transmission, denoted as 

ctrl_ini_time(u, v) (presented in subsection 3.2.1). The node u can not start to initial the 

RTS transmission until this time is equal to Tcurr(u). However, this initiation time is not 
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fixed. It might be continuously postponed as long as node u observes that it has no chance 

to initialize a successful control process, e.g. receiving other node’s control packets with 

network allocation vector of the control channel or data channels. 

3. At the time Tcurr(u) that is equal to ctrl_ini_time(u, v), node u can start to do the following 

processes: 

a) First, node u decides the number of data packets to be aggregated for node v, 

denoted as Ku,v (presented in subsection 3.2.2). Accordingly, the network allocation 

vector of the possible data transmission (NAVDATA) can be set as 

NAVDATA = Ku,v × (TDATA+  TSIFS) + TACK + 2τ. 

b) Next, if there is no carrier on the control channel in a TDIFS plus the remaining TBF 

period, node u will send a RTS to node v with NAVDATA and other essential 

information for the succeeding channel selection at the receiver side (presented in 

subsection 3.2.3). 

c) Otherwise, if there is carrier on the control channel, it has to go back to step 2 to 

recalculate a new control initiation time. 

 

Fig. 3.1 Basic operation of the TBM protocol 
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4. On the node v receiving the RTS from u at a time Tcurr(v), it has to find a data channel h* 

based on the information in RTS and its own statuses using an enhanced channel selection 

strategy (presented in subsection 3.2.3). If node v selects a data channel h* for the 

forthcoming data transmission, node v would do the following two steps: 

a) Node v update its if_rel_time(v) and ch_rel_time(v, h*) such that: 

if_rel_time(v) = ch_rel_time(v, h*) = Tcurr(v) + Trctrl + TSIFS + NAVDATA – τ, 

where Trctrl = TSIFS +TCTS + τ. Note that the period of Trctrl + TSIFS is the remaining 

controlling time before u transmits data packets. 

b) Then, after a TSIFS, node v replies a CTS to u containing the data channel h* and the 

remaining time of its if_rel_time(v) and ch_rel_time(v, h) whenever received by other 

nodes, denoted as if_rel_time+(v) and ch_rel_time+(v, h), for any h ∈ H, respectively. 

Their values are as following: 

if_rel_time+(v) = max{0, if_rel_time(v) –Tcurr(v) – Trcrtl}; 

ch_rel_time+(v, h) = max{0, ch_rel_time(v, h) –Tcurr(v) – Trcrtl}, 

Otherwise, if node v has not selected any data channel, after a TSIFS, it directly replies a 

CTS with if_rel_time+(v) and ch_rel_time+(v, h) which values are the same as the 

above-mentioned. (The additional fields carried by CTS are h*(if any), if_rel_time+(v) and 

ch_rel_time+(v, h).) 

5. When node u received the CTS at a time Tcurr(u), it performs the following steps: 

a) If there is a channel h* in CTS, it updates its data interface and channel’s statuses as 

following: 

if_rel_time(u) = ch_rel_time(u, h*) = Tcurr(u) + ch_rel_time+(v, h*) + τ. 

b) Then, after a TSIFS, node u broadcasts the h* and its own ch_rel_time+(u, h), for any h 

∈ H, to nearby nodes using a RES packet, where: 

ch_rel_time+(u, h) = max{0, ch_rel_time(u, h) –Tcurr(u) – TSIFS – TRES – τ}. 

Note that the NAVDATA has been implicated in both ch_rel_time+(v, h*) and 
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ch_rel_time+(u, h*) in CTS and RES, respectively. (The additional fields carried by 

RES are h* and ch_rel_time+(u, h).) 

c) At the same time with broadcasting the RES, node u start to transmit data packets to 

v using the selected channel h*. 

On the contrary, if there is no h* in CTS, it has to go back to step 2 to recalculate a new 

control initiation time, and restart its control process again. 

6. On node v completely receiving data packets from u, v replies an ACK packet on h*. 

In order to prevent the other nodes from using the control channel during the 

RTS-CTS-RES handshaking, as an irrelevant node x (here it is a in Fig. 3.1) received the RTS 

from u at a time Tcurr(x), it updates its control channel’s status such that  

ch_rel_time(x, 0) = Tcurr(x) + NAVCTRL, 

where NAVCTRL = Trctrl + TSIFS + TRES + τ, the time when x may receive a RES from u (as 

shown in Fig. 3.1). On the other hand, for any node x surrounding to this transmission (here it 

is either a or b), whenever it received the RES or CTS from a node y (here it is either u or v) 

at a time Tcurr(x), if a data channel h* is going to be used, it will update its data channel’s 

status such that 

ch_rel_time(x, h*) = max{ch_rel_time(x, h*), Tcurr(x) + ch_rel_time+(y, h*)}. 

Additionally, a node x (including u, v, a, and b) will refresh its recorded statues about IRVx 

and CRTx for another node y, according to the received CTS or RES from y such that 

IRVx(y) = Tcurr(x) + ch_rel_time+(y, h*); 

CRTx(y, h) = Tcurr(x) + ch_rel_time+(y, h), for any h ∈ H. 

3.2 Components Designs 

In this section, we present the detail designs for the three components in the TBM 

protocol. 
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3.2.1 Control Initiation Time Prediction 

First, we describe the design of CIP component. Before each data transmission, the 

sender has to initiate a control process with its receiver to coordinate a free data channel. If 

the coordination fails frequently, it would spend considerable time and bandwidth for 

exchanging control packets, and it would aggravate the control channel bottleneck problem. 

Even worse, the NAVCTRL carrying by an ineffective and unnecessary RTS may prevent the 

other nodes from initializing or completing their control processes. In order to reduce such 

overhead, one important is to properly predict the control initiation time. The idea is based on 

utilizing the release time of node’s resources (the data interface and data channels) at both 

sides. 

Let us consider two nodes u and v. At any time Tcurr(u), node u cannot initialize the 

control process until three conditions has been satisfied. These situations are described as 

following: 

1) First, node u can communicate with v only if there is at least one channel h ∈ H that has 

been released at both sides, i.e., Tcurr(u) ≥ ch_rel_time(u, h) and Tcurr(u) ≥ ch_rel_time(v, 

h). In other words, the earliest channel release time of u and v, denoted as 

ear_ch_rel_time(u, v), can be calculated as 

ear_ch_rel_time(u, v) = min{max{ch_rel_time(u, h), ch_rel_time(v, h)}| h ∈ H}. 

Clearly, there is no free data channel between u and v before ear_ch_rel_time(u, v). 

2) For a transmission between u and v, neither the data interface of u nor v can be under used, 

i.e. Tcurr(u) ≥ if_rel_time(u) and Tcurr(u) ≥ if_rel_time(v). Therefore, the time, when the link 

of u and v can be released for data transmission, can be defined as, 

link_rel_time(u, v) = max{ear_ch_rel_time(u, v), if_rel_time(u), if_rel_time(v)}, 

which be named the link release time of u and v. 

3) Node u cannot start its control process until there is neither physical nor protocol 

interference on the control channel, i.e. Tcurr(u) ≥ ch_rel_time(u, 0). 
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Combining these three facts, we define the control initiation time as 

ctrl_ini_time(u, v) = max{ch_rel_time(u, 0), link_rel_time(u, v)}. 

Clearly, any control process initiated from u before ctrl_ini_time(u, v) cannot be successful. 

In practice, the release time of nearby nodes can be acquired from the CTS and RES sent 

by them, and the statuses about ch_rel_time(v, h) and if_rel_time(v) in the above equations can 

be replaced by CRTu(v, h) or IRVu(v), respectively. The new equations are as following: 

ear_ch_rel_time(u, v) = min{max{ch_rel_time(u, h), CRTu(v, h)}| h ∈ H}; 

link_rel_time(u, v) = max{ear_ch_rel_time(u, v), if_rel_time(u), IRVu(v)}; 

ctrl_ini_time(u, v) = max{ch_rel_time(u, 0), link_rel_time(u, v)}. 

However, ctrl_ini_time(u, v) may be postponed. As shown in Fig. 3.2, before initiating the 

control process, the value of ctrl_ini_time(u, v) has to be continuously postponed, whenever 

ch_rel_time(u, 0) or link_rel_time(u, v) is changed due to receiving some control packets. In 

Fig. 3.2, the ctrl_ini_time(u, v) is postponed twice, caused respectively by the changes of 

ch_rel_time(u, 0) and link_rel_time(u, v), and it is marked as ○a  and ○b  in Fig 3.2. 

 

Fig. 3.2 Link release time and control initiation time between two nodes u and v. 

3.2.2 Dynamic Data Aggregation 

Although CIP can reduce unnecessary RTS transmissions, the bottleneck problem is still 

subsistent if the control process has to be done before each data transmission. The problem 

becomes more serious as the number of data channels, data rate, or node’s density increases 
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[3]. It is because that the requests for contention and coordination in the control channel 

become more intensive under these circumstances. In order to completely break through this 

limitation, one effective way is to transmit multiple data packets using only one control 

process [10]. It has three advantages in this way. First, both the physical collisions and the 

logical blocking by NAVCTRL can be mitigated, because multiple data transmission could be 

sent after one control process. Second, the time of inter-frame spaces and the backoff will 

become relatively small due to a long packet’s train. Furthermore, the reception of multiple 

data packets can be replied using only one ACK packet. 

However, a new problem arises: How many packets should be aggregated in one 

transmission? If the number is too small, the effect by the above advantages will not be 

significant. Because a node uses its data interface for a short packet’s train, it may still spend 

the most of time to contend or wait for the access to the control channel. Thus, lead to a lower 

utilization of its data interface. On the contrary, if the number is too large, it may incur large 

idle time on its control interface due to too long packet’s train. Consequently the performance 

could be deteriorated by the increased retransmission cost and the unfairness problem from 

the longer packet’s train. On the other hand, for a given node, the loading of the control 

channel in its surrounding area is not always uniform, which would be varied due to some 

factors such as flow loading, node’s density, and routing path. For example, in Fig. 3-3, it is 

easier for u to coordinate with v, since v has only two neighbors, but it is much harder if u 

wants to coordinate with w, where other four nodes are surrounded and all of them compete to 

create a link with w. 

 

 

Fig. 3.3 Non-uniform loading in the control channel of node u. 
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Our main idea is to dynamically adjust the number of data packets to be aggregated for 

each link based on the idle time of both the control and data interfaces. The primary goal is to 

balance the utilization of the two interfaces such the average throughput can be maximized. 

Consider a node u and a destination v ∈ Nu. The number of packets, that will be aggregated 

from u to v, is denoted as Ku,v and initiated as 1 at the beginning. Note that each transmission 

consists of least one data packet and Ku,v can not be over the queue size. Hence, the range of Ku,v 

is bound within 1 and |Qv|. 

After node u chooses node v as the targeted destination, u would start to initialize a 

control process. Recall that the control initiation time may be postponed by some reasons 

(described in 3.2.1). Assuming that node u has been waiting to transmit data packets to v for a 

period, and it is preparing to restart the control process with v, as shown in Fig. 3.4. At this time 

point, if node u observes that its data interface has experienced a certain amount of time in idle 

status, denoted as data_idle_time(u, v) since the start of the current transmission, it will enlarge 

its Ku,v such that 

Ku,v = min{|Qv|, Ku,v + data_idle_time(u, v) / (TDATA+  TSIFS)}. 

The reason is that the data interface’s idle time during this period is resulted from the recent 

contention in the control channel of either u or v. It means that the longer data_idle_time(u, v) 

is, the more serious the control bottleneck problem is. In order to avoid overly sending control 

messages and to arise the utilization of u’s data interface, the length of the packet’s train has to 

be expended in proportion to the experienced idle time. 

 

Fig. 3.4 Data interface idle time (simplified). 
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On the contrary, as shown in Fig. 3.5, if node u observes that its control interface was in 

idle status for a period of time during the current data transmission, denoted as ctrl_idle_time(u, 

v), in order to increase the control channel’s utilization and avoid possible cost from 

retransmission and unfairness problem, it has to shrink back its Ku,v in proportion to the 

ctrl_idle_time(u, v). That is, node u adjusts   

Ku,v = max{1, Ku,v - ctrl_idle_time(u, v) / (TDATA+  TSIFS)}, 

at the end of the current transmission to v. 

 

Fig. 3.5 Control interface idle time (simplified). 

Now, we formally define the two variables of data_idle_time(u, v) and ctrl_idle_time(u, v). 

For a transmission from u to v (refer to the illustration in Fig. 3.6), we denote data_tx_time*(u, v) 

and data_tx_time(u, v) as respectively the earliest and the actual time when node u can start 

transmitting data packets to v. That is,  

data_tx_time*(u, v) = ctrl_ini_time*(u, v) + Tsctrl + TSIFS; 

where Tsctrl = TDIFS + TBF + TRTS + τ + TSIFS +TCTS + τ, and ctrl_ini_time*(u, v) is the first control 

initiation time predicted for the current transmission by CIP component without any 

postponement. By definitions, u’s data interface need not be active before data_tx_time*(u, v) 

and it must be under used after data_tx_time(u, v). In other words, at any time Tcurr(u), the data 

interface of u is in idle status only if Tcurr(u) ∈ [data_tx_time*(u, v), data_tx_time(u, v)). 

However, the gap between data_tx_time*(u, v) and data_tx_time(u, v) is not only caused by the 

contention in the control channel, but also results from the change of link_rel_time(u, v), i.e. 

Tcurr(u) < link_rel_time(u, v). It means that the statuses of data channels of u or v is not 

available. When the later case happens (see the example of the period between t1 to t2 in Fig. 
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3.6a), there is no free data channel to be used for data transmission even if the control channel 

is free. For the reason, the data interface’s idle time should ignore this case. Accordingly, we 

have the following definition:  

At any time Tcurr(u), the data interface of a node u is idle if and only if 

i) data_tx_time*(u, v) ≤ Tcurr(u)< data_tx_time(u, v);  

ii)  link_rel_time(u, v) < Tcurr(u). 

Similarly, referring to Fig. 3.6b, the control interface’s idle time is defined as follows:  

At any time Tcurr(u), the control interface of a node u is idle if and only if  

i) data_tx_time(u, v) + TRES < Tcurr(u) < data_tx_time(u, v) + NAVDATA; 

ii)  ch_rel_time(u, 0) < Tcurr(u)  

iii)  There is no physical carrier on the control channel of u. 

 

(a) 

 

(b) 

Fig. 3.6 (a) Data interface idle time; (b) Control interface idle time. 
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3.2.3 Enhanced Channel Selection Strategy 

In the primitive DCC-based protocol [3], there is no well-designed channel selection 

strategy, and it is simply to find an available data channel that is free at both sides. If there are 

multiple choices, the channel will be randomly selected. Therefore, it results in the dynamic 

channel selection problem mentioned in chapter 1. Our ECS component aims at improving the 

channels’ reusability such that more data transmissions among different nodes can be active 

simultaneously. The main idea is to select the data channel that will cause the least total 

increment to the release time of the critical recourses (either data channels or data interface) 

essential for the possible transmissions at nearby nodes. 

Let us formally describe our strategy using symbol terms. Consider a sender u and a 

receiver v. The time Tcurr(u) is now at ctrl_ini_time(u, v). At this time, node u performs three 

calculations for each neighbor w ∈ Nu – {v}. 

1. First, sender u calculates the current status of neighbor w. 

2. Node u forms a free channel list as follows, according to the channel statuses of v in CRTu 

FCL(u | v) = {h ∈ FCL(u)| CRTu(v, h) ≤ Tcurr(u) + Tsctrl}, 

where 

FCL(u) = {h ∈ H | ch_rel_time(u, h) ≤ Tcurr(u) + Tsctrl}, 

Then, node u calculates the future status of neighbor w if node u and v select a data 

channel h ∈ FCL(u | v) for data transmission. 

3. Final, u calculates the total increment to the release time of a data channel h ∈ FCL(u | v) 

by the current and future statuses of each neighbor w, and sends the results to v by RTS. 

After receiving RTS, receiver v performs the same three calculations as sender u, and chooses 

the data channel for data transmission according to these calculating results. 

Now, we formally define the detailed calculations. First, u calculates the earliest time 

when at least one data channel will be released at node w ∈ Nu – {v}, denoted as CRu(w), based 
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on its CRTu, i.e., 

CRu(w) = min{CRTu(w, h)| h ∈ H }. 

Combining with w’s data interface release time in IRVu, we define 

NRu(w) = max{CRu(w), IRVu(w)}. 

The two variables of CRu(w) and NRu(w) are called the critical channel release time and node 

release time of w, respectively. The NRu(w) implicates the earliest time when node w can start a 

transmission, since for any destination s ∈ Nw, its control initiation time is confined as 

NRu(w) ≤ link_rel_time(w, s) ≤ ctrl_ini_time(w, s). 

In other words, node w can not start a transmission before NRu(w), and it can represent the 

status of w before u and v select a data channel for data transmission. 

Then, if node u has selected a data channel h ∈ FCL(u | v), the new critical channel release 

time of w ∈ Nu – {v}, denoted as )|( hwCRu
+ , may be enlarged by the NAVDATA on channel h. It 

can be formulated as follows 

{ } 















−∈








+++=+

}{'|)',(min

,
)(

),,(
max

min)|(

hhhwCRT

NAVTTuT

hwCRT

hwCR

u

DATASIFSsctrlcurr

u

u

H

. 

This equation indicates the original value may be replaced by the release time of another 

channel h' ∈ H – {h} if the release time of the original critical channel is enlarged so that it is no 

longer critical. Similarly, the corresponding node release time of w can be rewrote as  

)}(),|(max{)|( wIRVhwCRhwNR uuu
++ = , 

and it can represent the new status of neighbor w after node u and v select a communicable 

channel h ∈ FCL(u | v) for data transmission. Using these terms, the increment to the node 

release time of w, resulted from the data transmission between u and v on data channel h can be 

characterized as 
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since the neighbor w cannot use the control channel due to receiving the RTS packet and w can 

initial the control process after it has received the RES packet from u. Accordingly, the total 

increment to the node release time of u’s neighbors can be defined by 
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Node u will calculate the ∆u(h) for each h ∈ FCL(u | v) and sends this information and Nu to v 

accompanying with the RTS packet. (There are four additional types of information carried by 

RTS: NAVDATA, FCL(u | v), ∆u(h), and Nu.) 

When node v received the RTS at a time Tcurr(v), it performs the same calculation for each 

free data channel h ∈ FCL(v) ∩ FCL(u | v) and neighbor w ∈ Nv – {u} – Nu, where 

FCL(v) = {h ∈ H | ch_rel_time(v, h) ≤ Tcurr(v) + Trctrl}, 
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Then, for each h ∈ FCL(v) ∩ FCL(u | v), the total increment to the node release time of all 

neighbors of either u or v are merged into the following cost function 

)()()(, hhh vuvu ∆+∆=∆ . 

The channel h that has the least ∆u,v(h) will be chosen as the communication channel, and 

denotes as h*. The selected channel h* wi ll be sent back to u using a CTS and then broadcasted 
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to u’s neighbor using a RES packet. 

An example of this channel selection strategy is illustrated in Fig. 3.7, where node u 

transmits to v using channel 1. The node release time of b is increased by ∆v(b,1) > 0, since 

channel 1 is no longer the critical channel of b. It also influences node c, but the range is started 

by the time when c received the RES. Likewise, the critical channel of d is altered from 1 to 3, 

but the NRu(d) is not changed, because the interface release time of d dominates the value. 

Lastly, the transmission has no influence to node a, since channel 1 is not critical to a. 
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Fig. 3.7 Increments to node release time if selecting channel 1. 
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Chapter 4 Experiments 

 
In this chapter, we conduct simulation results to evaluate the performance of our TBM 

protocol, and compare with IEEE 802.11 MAC protocol and DCA protocol proposed in [3]. 

Our simulations were conducted using the network simulator 2 (ns-2) [16] with CMU wireless 

extensions. The network topologies under test are classified into two categories: 

1) Random Single-hop Networks: In each run, there are 100 nodes randomly placed on a 

region. We generate single hop flows for 50 distinct node pairs. The performance here 

measures the link layer throughput. 

2) Multi-hop Networks: We focus on the end-to-end throughput. There are two subcases: 

b) Grid Multi-hop Networks: As shown in Fig. 4.1, a 10×10 grid topology with 10 

horizontal flows and the other 10 vertical flows was tested. The distance between 

adjacent nodes is 100m. In each run, the source node and the destination node of each 

flow are randomly chosen from the margin of the grid. 

c) Random Multi-hop Networks: For each random multi-hop network, we also randomly 

place 100 nodes on a region, while 20 multi-hop flows are established 20 distinct 

source and destination pairs. Each flow will go through the shortest routing path, 

fixed at the beginning. 

Under these network topologies, we study the impact from three factors: 

a) Number of data channels is varied from 2 to 11. 

b) Data rate of data channels are varied by 0.5Mbps, 1Mbps, 2Mbps, 5.5Mbps, and 

11Mbps. 

c) Data frame size is varied by 256 bytes, 512 bytes, 1024 bytes, and 2048 bytes. 

The detail parameters setting are listed in Table 4.1. 
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Table 4.1 Simulation Values 

Parameters Values 

Deployment Region 1000m×1000m 

Number of Nodes 100 nodes 

Transmission Range 250 meters 

Carrier Sensing Range 250 meters 

Number of Channels (H) 12 non-overlapped channels 

Data Rate of the Control Channel 11 Mbps 

Data Rate of each Data Channel 11 Mbps 

Data Frame Size 1024 Bytes 

Queue Size 50 packets 

Traffic Type UDP flow with Constant Bit Rate (CBR) 

11 Mbps in the single-hop topology Flow Rate 

2 Mbps in the multi-hop topology 

Simulation Duration 100 seconds 

Number of runs 20 runs 

 

100 m

100 m

100 m

 

Fig. 4.1 10×10 Grid Topology 

4.1 Comparison in varied number of data channels 

In this section, we study the impact of the number of data channels to observe two things: 

the effect on the aggregate throughput of the networks and the utilization of data channels of 

each scheme. Fig. 4.2a and 4.2b indicate that our CIP scheme can elevate the aggregate 

throughput at least 5% and 7% in random single-hop networks and random multi-hop networks, 
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respectively. The upgrade comes from that CIP can effectively prevent from unnecessary RTS 

transmission. Fig. 4.2c shows the improvement from CIP can be up to 120% in the grid 

topology. The significant enhancement in the grid topology has two reasons. First, the 

transmission target changes frequently. Compared to DCA, the node using CIP scheme has 

more detailed information of its neighborhood’s channel release time after the transmission 

target switches to another one. Therefore, the node using CIP could transmit RTS when the 

destination has the same free channel. Second, the node density in the grid networks is more 

uniform than the density in the other two networks. Therefore, each node in the grid topology 

confronts much more contention than the other two topologies. Because of the more 

contention, the unsuccessful control processes which CIP focuses are so much that the 

performance DCA achieves is only a little higher than 802.11. Hence, CIP can gain good 

improvement by reducing the unsuccessful control processes. 

In addition, the curves in Fig. 4.2 depict that the throughput of DCA is saturated as the 

number of data channels is more than three. In contrast, our protocol with DDA component is 

not saturated until the number of data channels is more than six. Fig. 4.2 also indicates that the 

aggregate throughput synergically achieved by DDA and CIP is higher than DCA over 97% in 

single-hop topology (Fig. 4.2a), 340% in grid topology (Fig. 4.2b), and 86% in random 

multi-hop topology (Fig. 4.2c). The results have verified that DDA have higher throughput and 

achieves higher utilization of data channels. Finally, Fig. 4.2a presents that ECS can effectively 

improve the throughput of the link layer and upgrade the utilization of data channels further. In 

Fig. 4.2a, ECS improves 18% compared to DDA scheme as there are six data channels, and 

ECS has 30% enhancement more than DDA as there are 11 data channels. However, Fig. 4.2b 

and Fig. 4.2c display that compared to DDA, ECS only upgrades the throughput at most 18% 

and 6% in the grid topology and in the random multi-hop topology, respectively.  
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(a) 

 

(b) 

 

(c) 

Fig. 4.2 Variation in the number of data channels (a) Random single-hop; (b) Grid multi-hop; (c) Random 

multi-hop 
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4.2 Comparison in varied data rate of data channels 

Analytic evidence in [3] has shown that the bottleneck problem will become more 

serious if the data rate increases. In this subsection, we vary the data rate of data channels to 

observe its effect. In Fig. 4.3a, as the data rate of data channels is 5.5 Mbps, DCA has 145% 

improvement more than 802.11, but it is down to 93% when the data rate of data channels is 11 

Mbps. The results verify that the faster the data rate is, the more serious the bottleneck 

problem is. Compared to DCA, CIP scheme gets significant improvement of the throughput in 

the grid topology even if the data rate is 0.5 Mbps. Besides, in Fig. 4.3a and 4.3c, the 

throughput achieved by our TBM protocol is not saturate even the data rate is up to 11 Mbps. 

The simulation results in Fig. 4.3 demonstrate that our TBM protocol can achieve higher 

throughput as the data rate of data channels increases because the control channel bottleneck 

problem can be resolved by TBM protocol efficiently. 

 

4.3 Comparison in varied data frame size 

In this section, we vary the frame size of the data packet. In Fig. 4.4a, DCA has 90% and 

147% improvement more than 802.11 when frame size is 1024 bytes and 2048 bytes, 

respectively. It indicates that the level of the control channel bottleneck problem decreases as 

the data frame size increases. In the contrary, DDA upgrades the throughput 192% and 63% 

more than DCA as frame size is 1024 bytes and 2048 bytes, respectively. The results in Fig. 4.4 

demonstrate that our DDA scheme can achieve higher throughput than DCA even if the data 

frame size is as small as 256 bytes. 
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(a) 

 

(b) 

 

(c) 

Fig. 4.3 Variation in data rate of data channels (a) Random single-hop; (b) Grid multi-hop; (c) Random multi-hop. 
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(a) 

 

(b) 

 

(c) 

Fig. 4.4 Variation in data frame size (a) Random single-hop; (b) Grid multi-hop; (c) Random multi-hop. 
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Chapter 5  Conclusion 

 
In this thesis, we have proposed a Time-based MMAC (TBM) protocol to overcome the 

control channel bottleneck and the dynamic channel selection problem for the DCC approach. 

There are three components in the TBM protocol. The control initiation time prediction (CIP) 

can reduce the unnecessary control process by properly predicting the control initiation time 

to increase the chance for a successful coordination. The dynamic data aggregation (DDA) 

can dynamically adjust the number of aggregated packets according to the real-time condition 

of both the control and data interfaces. The enhanced channel selection strategy (ECS) can 

gain better channel reusability by selecting the channel that has the least influence to nearby 

nodes. Simulation results have shown that our protocol with these components achieves 

significant improvement in comparison with previous works, especially when the number of 

channels, data frame size, and data rate of data channels are large. 
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