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ARM指令集架構應用程式之靜態二進位轉譯及最佳

化 

 

學生：陳俊宇 指導教授：楊 武 博士 

國立交通大學網路工程所碩士班  

摘 要  

二進位碼的轉譯經常被用於將現有的程式移轉到新開發的指令集平台上。這篇

論文裡將探討一個靜態二進位碼轉譯器，此轉譯器能將ARM指令集架構的二進位碼轉

譯成類MIPS指令集架構的二進位碼，這個類MIPS指令集架構是專為嵌入式系統設計

的新架構。此靜態轉譯器的功能包含基礎指令集架構轉換，以及以減少執行指令數

為目標的最佳化。由於ARM指令集架構是一個條件式執行的指令集架構，在轉譯的過

程中需要特別處理條件式執行的指令，也因此轉譯器對於條件式執行亦頇提供最佳

化。在經過各種對條件式執行的最佳化後，在我們用來評估效能的EEMBC程式集中，

相對於被轉譯的ARM二進位碼，經由轉譯得到的二進位碼只需要額外執行35%的指令 
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On Static Binary Translation and 

Optimization for ARM-based Applications 

 
Student: Jiunn-Yeu Chen Advisor: Dr. Wuu Yang 

Institute of Network Engineering 

National Chiao Tung University  

 

Abstract  
Binary translation is often used in migrating legacy binaries to new 

architecture-based platforms. This thesis describes a static binary translator which 

translates ARM binaries to a MIPS-like architecture designed for embedded systems. The 

static translator handles basic architecture translations and performs optimizations to 

minimize instruction overhead. The conditional execution feature in the ARM 

architecture requires special attention on binary translation and optimization. With 

several optimizations to minimize condition updates and checks, the translated code from 

ARM to our target architecture increases the instruction path length by only 35% on the 

EEMBC benchmark. 
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Chapter 1 Introduction 

 

Binary translation, the process of translating one binary executable into a different 

binary executable, has been commonly used in various applications, such as ISA 

(Instruction Set Architecture) migration [1][2][3][4], static binary instrumentation [5][6], 

fast architecture simulation [7], dynamic binary instrumentation [8][9], and  runtime 

optimization [10][11][12].  

    In general-purpose ISA migration, using dynamic binary translation has almost 

become a standard procedure. For example, Aries [2] migrates HP-PA binaries to the 

IA-64 architecture, Rosetta [4] migrates Power PC code to IA-32, IA-32EL [3] migrates 

IA-32 executables to IA-64. The primary purpose of using process virtual machines [14] 

to migrate existing application executables is to support compatibility. However, some 

dynamic binary translation systems are used to increase the applications available on a 

new platform. For instance, DEC FX!32 [1] was developed to make numerous IA-32 

applications available to the DEC Alpha platform. A successful binary translation system 

could certainly reduce the time-to-market requirement for having a large number of 

applications available for a newly defined ISA. The number of ISAs in general-purpose 

computing has been declining in the past several years. Few companies can afford to 

support and maintain their proprietary ISA. However, in the embedded system area, new 

architectures have often been introduced. Using binary translation to migrate embedded 

applications may become commonplace in the future. 

    In general-purpose computing, dynamic binary translation has been used more often. 

A dynamic binary translation system normally will incur significant overhead on program 
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start-up where the legacy binary must be translated on the first invocation. However, 

since the most important factor of binary translation in this area is to make legacy 

applications available to users, the performance of a migrated application is of secondary 

importance. For embedded systems, the consideration may be different due to some 

additional important requirements. For example, a migrated application should have 

reasonably fast start-up since embedded system users may have less patience for a slow 

start-up. The requirement of high energy efficiency also plays an important role that 

limits the use of dynamic binary translation. This implies both the execution time and the 

space overhead of the translated binary should be acceptable. With such requirements in 

mind, a mix of static and dynamic translation approach to migrate embedded applications 

becomes more attractive. 

Static translation has the advantage of avoiding the translation overhead at runtime. 

With that advantage, a static translation system can perform more time-consuming, but 

performance-critical optimizations to improve the code quality and to reduce the space 

required for the generated code. As a matter of fact, more and more embedded binaries 

are generated by compilers rather than hand coded. Compiler generated code is much 

more friendly to static binary translators. Therefore, a mixed approach would let the static 

translator handle most of the code in an application, and let the dynamic translator handle 

the cases left by static translation.  

    In this report, we present a static binary translator which is part of our mixed 

static/dynamic binary translation system. This static binary translator converts 

ARM-based binary code to the MIPS’ architecture. We show that the EEMBC [17] 

benchmark suite can be translated correctly with minimal loss of execution efficiency 

(with optimization, the translated instruction path length is increased by less than 35%). 
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In Chapter 2, we describe the high-level view of the static translator and how it handles 

typical binary translation issues like (a) code discovery problems and (b) code location 

problems for indirect branches [14]. We also discuss how unique architecture features in 

ARM, such as conditional execution, are translated to MIPS’.  Chapter 3 provides 

details on the optimizations implemented in our translator to minimize the overhead of 

flag emulation. Chapter 4 gives our experiment setup, including the simulators and the 

benchmark used in the study. Chapter 5 discusses the performance of our static binary 

translation on the benchmark suite.  Chapter 6 summaries and concludes this report. 
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Chapter 2 Code Generation Overview 

  

For our static binary translator, the source architecture is ARM. Just like IA-32 

executables dominate general-purpose computing applications, ARM executables 

dominate embedded applications. Our target architecture is the MIPS’ architecture, which 

is similar to MIPS with some additional features, such as 16-bit instructions and 

load/store multiple words instructions. Here we highlight the translation issues for the 

major differences between the source and the target architectures. 

2.1 PC-relative data access 

There are data embedded in the text section of the ARM binary.  For example, a 

load instruction can access such data using PC-relative addressing as follows: 

 

ldr   r1, [pc + 0xoffset] 

 

The data embedded in the text section are mainly large immediate that cannot fit in 

the immediate field and the jump table for switch statements. From the perspective of 

code generation, the generated target machine code will reference the location in the text 

section.  In Chapter 3, we will discuss how to optimize the PC-relative data accesses. 

Since we need to keep the text section around for the dynamic translator to handle 

exceptions and corner cases at runtime, PC-relative data accesses can get the needed data 

from the preserved text section.  Although PC-relative data accesses are not frequent, 

they do exist. Table 1 shows the relative frequency of such instructions in the ARM 

binary for the EEMBC benchmark, compiled by the GCC compiler. EEMBC-base is 
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compiled with no optimization (i.e. –O0), EEMBC-speed is compiled with optimization 

for speed (i.e. –O2), and EEMBC-space is compiled with optimization for space 

(i.e. –Os).  

 

Benchmark Total ARM 

instructions (static) 

PC-relative 

accesses 

Percentage 

EEMBC-base 10855 207 1.91% 
EEMBC-speed 9919 204 2.06% 
EEMBC-space 9872 209 2.12% 

Table  1.  Frequency of PC-relative data accesses in the EEMBC benchmark. 

 

2.2 Shifter Operand and shifter carry out  

The general ARM instructions support a shifter operand. For example, in the 

following add instruction: 

 

add  r0, r 1, r2, lsl #2  

 

The third operand, register r2, shall be shifted left by 2 before it is used by the add 

instruction. Our target architecture does not support such shifter operands, so additional 

instructions are needed to implement the shift operation.  Fortunately, shifter operands 

are not that frequent in ARM binaries. Table 2 shows the frequency of some commonly 

used shifter operands. 

As the shifter operand is generated, shifter carry out [18] is also generated at the 

same time. Though the shifter carry out is not directly used by the operations, such as the 

add in the example, it is used to update the condition flag Carry.  Thus, additional 

instructions are also needed to update the Carry flag.  
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 LSL-immediate LSR-immediate ASR-immediate 

EEMBC-base 2.45% 2.01% 0.83% 

EEMBC-speed 2.52% 2.06% 0.85% 

EEMBC-space 2.46% 2.07% 0.80% 

Table  2. Frequency of the shifter operands in the EEMBC benchmark, including 

logical shift left (LSL), logical shift right (LSR), and arithmetic shift right (ASR).   

2.3 Conditional execution  

Conditional execution is a mechanism to perform predicated execution. In the ARM 

ISA, almost all instructions are predicated instructions (with the exception of certain v5T 

instructions). Four flag bits stored in the CPSR (Current Program Status Register) register 

are used to decide if the instruction should be executed. The four flag bits are named as 

Negative (N), Zero (Z), Carry (C) and Overflow (V) and these four condition bits are 

illustrated in Figure 1. 

There are sixteen different conditions as shown in Figure 1. Some of the condition 

checks only need to examine one specific bit, and some need to check multiple bits. The 

code generated for each check will be different. For example, the following addeq  

instruction checks if  one  condition bit  is  set. On the other hand, the addge 

instruction shown on the right side of the addeq instruction checks if the N flag is equal 

to the V flag. In the following code example, r15 is allocated to hold condition flags 

(CPSR), and r21, r22, r23 are temporary registers. 

 

ARM : 

 addeq  r0, r1, r2  addge  r0, r1, r2 

MIPS’:                                   

 btst  r21, r15, 1  btst  r21, r15, 0 
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 beqz  r21, 8   btst  r22, r15, 3 

 add  r0, r1, r2  sub  r23, r21, r22 

      beqz  r23, 8 

      add  r0, r1, r2 

 

Instructions with condition code AL do not need to check any condition bits, and the 

instructions with NV are never executed (like a NOP) except for some extensions in v5T 

[18].  Our translator generates one or multiple branches to handle condition checks. If 

the specified condition is not met, the attempted operation is skipped. In the EEMBC 

benchmark, conditionally executed instructions are used rather frequently. Table 3 shows 

the percentage of all executed ARM instructions that specify conditions other than AL 

and NV. 

 Check  condition  code 

EEMBC-base 10.27% 

EEMBC-speed 19.57% 

EEMBC-space 19.84% 

Table 3. Frequency of the condition code check in the EEMBC benchmark.  
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Opcode  Mnemonic  Meaning  Condition flag 

state 

0000 EQ Equal Z 

0001 NE Not equal !Z 

0010 CS/HS Carry set/unsigned high or same C 

0011 CC/LO Carry clear/unsigned lower !C 

0100 MI Minus/negative N 

0101 PL Plus/positive or zero !N 

0110 VS Overflow V 

0111 VC No overflow !V 

1000 HI Unsigned higher C && !Z 

1001 LS Unsigned lower or same !C || Z 

1010 GE Signed greater than or equal N == V 

1011 LT Signed less than N != V 

1100 GT Signed greater than Z == 0 && N == 

V 

1101 LE Signed less than or equal Z == 1 || N != V 

1110 AL Always  Any 

1111 NV Special use None 

 

 

 

 

 

Figure 1.  All 16 condition codes in the ARM architecture.  N, Z, C, and V mean the 

respective condition bits are set.[18] 
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2.4 Condition flags handling  

The four condition flags in the ARM ISA are N, Z, C, and V. They are located at bits 

[31:28] of the CPSR register. Two types of ARM instructions modify these four flags: the 

comparison instructions, and the ALU instructions or the move instructions with the s-bit 

set. 

One target register can be preserved to store the four condition flags. However, to 

access such bits is rather expensive since it requires at least two instructions (i.e. a shift 

and a logical OR) to update one condition flag. 

 

/* Instructions that calculate the new C flag */ 

slli  r21, r21, 2 // store the C flag in bit[2] 

or  r15, r15, r21 // update the flag register 

 

The overhead for updating condition flags increases for instructions that set more 

condition bits. Table 4 shows the frequency of all executed ARM instructions in EEMBC 

that need to update the condition flags.  

 

 Percentage  

EEMBC-base 9.49% 

EEMBC-speed 14.99% 

EEMBC-space 15.18% 

Table 4.  Frequency of instructions that update condition flags in the EEMBC 

benchmark. 
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In order to minimize instruction overhead for condition flag updates, we allocate 

each of the four flags in separate target registers. This would avoid the shift operations 

for each flag update.  However, the downside is the use of three more registers which 

might be better used for some optimizations which require additional temporary registers.  

Since our target architecture has 16 more general-purpose registers than the ARM 

architecture, we can afford reserving four registers for the condition flags, given that the 

frequency of flag update is fairly high in the ARM application binaries.  

2.5 Processor mode and Thumb instruction set  

ARM supports regular execution mode and the Thumb execution mode. The Thumb 

execution mode allows 16-bit ARM instructions to be used. Using Thumb execution code 

can effectively reduce the code size, and is considered important for many embedded 

applications. A special instruction, bx, must be used to switch between the Thumb 

execution mode and the regular ARM mode. The bx instruction format is as follows: 

 

 Bx  r1 

 

The execution will bring the processor to the Thumb mode if the least significant bit 

of register r1 is 1. Otherwise, the processor stays in the ARM mode. Since the prefix of a 

Thumb instruction is similar to that of an ARM instruction, the translator must know the 

execution mode to correctly parse the instructions. Therefore, this feature makes static 

translation difficult because the value of register r1 may not be known at translation time. 

Our static translator does not handle Thumb instructions. Thumb mode execution will be 

handled by the dynamic translator.  
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2.6 Register mapping 

    There are 31 general-purpose registers in the ARM architecture, but only 16 of them 

are visible to programmers and compilers. The rest are used to speed up exception 

handling. Furthermore, registers r8-r14 are banked, which means there are multiple 

physical copies of each register.  Which physic registers are actually referenced depends 

on the current execution mode. Our static binary translator supports only user mode, so 

we do not need to take care of which physical registers are used. The number of ARM 

registers needs to be maintained as part of the architecture state is 16. The MIPS’ 

architecture has 32 32-bit general-purpose registers, so the 16 ARM registers can be 

mapped directly as a subset of the target architecture registers.  It is worth noting that 

the register r0 in MIPS’ is not a constant zero as is in the MIPS architecture. 

Register mapping is conducted in two steps:  (a) ARM registers r0 to r11 are 

mapped to MIPS’ architecture registers r0 to r11, and (b) ARM registers r12 to r15 are 

mapped to target registers r28 to r31.  ARM registers r12 to r15 are special registers 

such as PC, LR, SP, and so on. Mapping them to consecutive target registers is preferred 

so that we may translate the load/store multi-word instructions in ARM directly into 

similar load/store multiple word instructions in the target ISA which requires the registers 

to be contiguous.  

    Other than the 16 registers reserved for mapping to ARM registers, the remaining 

registers in the MIPS’ architecture are used for temporary registers and for special usages 

such as the shifter operand.  In our current translator, five of them are used as temporary 

registers, two of them are reserved for handling privileged mode, and four of them are 

saved for future usage.  
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    In section 2.4.1 we discussed the need to allocate registers to hold each condition 

flag so that the cost of flag update and check can be significantly reduced.  Initially, we 

allocated the four condition flags in one register (r15, a mapped register for CPSR). Now 

we separated them out and assigned one register for each.  The allocation of the target 

registers not mapped to the 16 ARM registers is listed in Table 5. 

Index  Usage Index  Usage 

12 Shifter operand 20 V flag 

13 Shifter carry out 21 Temp register 1 

14 Top of RAS 22 Temp register 2 

15 Unused 23 Temp register 3 

16 Special condition flags 24 Temp register 4 

17 N flag 25 Temp register 5 

18 Z flag 26 Reserved 

19 C flag 27 Reserved 

Table 5. New register allocation for the MIPS’ architecture.  The ones mapped to the 16 

ARM registers (i.e. r0-r11 and r28-r31) are excluded. 

2.7 Executable layout 

    Layouts of ARM and MIPS’ executables are contrasted in Figure 2.  The binary 

layout of the target executable can be divided into three parts: the ARM program sections, 

the MIPS’ program sections, and the control management sections. The original ARM 

program sections are stored as part of the MIPS’ executable.  Keeping the ARM 

program sections is needed for future dynamic translation, and it also allows the target 

program to access the data in the ARM program sections.  All the ARM sections are 

allocated in the same address as in the original ARM executable. This decision makes the 

memory accesses much easier to handle, since no additional computation is needed to 

calculate the memory address of the operands.  

The MIPS’ executable has the regular text, data, and bss sections. These sections are 
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allocated in higher memory address since the lower addresses are used for the ARM 

sections. The control management part has return address stack (RAS), address mapping 

table, and address stub sections. The purpose of these three sections will be discussed in 

section 2.9.  

 

 

 

 

 

 

 

 

 

 

 

 This initial binary layout allocated the ARM binary in the same address space as an 

original binary. This approach has the advantage that all address computation in the ARM 

binary can remain the same (such as relocation). The newly generated MIPS’ code and 

the supporting data structure, such as the address mapping table, were allocated to the 

address space not used by the ARM binary. However, we later encountered some 

Figure 2. Memory layout of the original ARM executable and the translated 

executable. In 2.b, the target architecture is MIPS’, and RAS means the return 

address stack. 
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applications that used such memory space for I/O buffers. This would cause instructions 

or the address mapping table to be modified at runtime. 

 To avoid this type of memory address overlap, we propose a new binary layout. In 

the new binary layout, we allocate the translated MIPS’ code and the control management 

code and data before the ARM.heap section. Allocating the new code in the heap is safer 

because heap is for dynamic memory allocation, and programmers should never presume 

how heap space is allocated. One possible downside of this new approach is that the heap 

space is reduced by a small amount.   

 

Figure 3. New layout of the translated executable is showed in 3.b. Compared 

with 2.b, the new sections are moved to between the ARM.Bss section and the 

ARM.Heap section 
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2.8 Control flow graph 

Like other static binary translation tools [5][6], we also build the control flow graph 

of each translation unit.  The control flow graph serves the purpose of control 

management and code optimization.   

    Our translator constructs the control flow graph by recognizing potential basic 

blocks and establishing the relation between different blocks. The usual way to recognize 

basic blocks in binary code is to identify the leader of each basic block. Typical leaders 

are instructions following direct or indirect branches, instructions targeted by direct 

branches, and the program entry point. Here we must handle one additional case: the 

addresses for PC-relative data. The basic blocks contain PC-relative data are identified to 

prevent treating PC-relative data as instructions, so they are excluded from the control 

flow graph.   

   The control flow graph we built is not precise because the targets of indirect branches 

may not be known at translation time.   In Chapter 3, we will discuss code 

optimizations implemented in our translator.  Since some optimizations are based on the 

control flow graph, and if there is an indirect branch to the middle of a basic block, our 

code optimization may become invalid.  Therefore, when the address mapping routine 

discovers at runtime that the target of an indirect branch is not a recognized basic block, it 

will throw an exception and transfer control to our runtime translation system to handle 

such cases. 

2.9 Program control management 

    Program control management includes updating the ARM-PC and handling direct 
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and indirect branches. The following subsections describe mechanisms used in the 

translator to manage control transfers. 

2.9.1 Lazy update to PC 

    In the generated code, updating the ARM-PC is required since other instructions 

may reference the PC.  However, updating ARM-PC for each instruction incurs 

unacceptable high overhead.  Notice that only a small percentage of instructions need to 

reference the PC explicitly.  In many cases, the PC referenced is a known value at 

translation time – it is an offset to the text section.  Therefore, our translator employs a 

method that updates PC only when it is needed and cannot be resolved at translation time.  

This means the translator generates instructions to update the PC before it is to be 

referenced.  For instance, ARM-PC update is generated for an instruction that pushes the 

current ARM-PC onto the stack. 

    For PC-relative data access, the ARM-PC value is directly embedded as an 

immediate of the target instruction as shown in the following example:  

 

ARM : 

 add r1, pc, #228 

MIPS’ : 

 movi   r31, 0x0000811c   //  updated ARM -PC 

 addi  r1, r31, 228 

 

2.9.2 Indirect branch handling 

Direct branches can be handled at translation time since the branch target address for 

the translated block is known. For indirect branches, since the branch target is usually 
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unknown at compile/translation time (the target is in the register), they must be handled 

differently. Indirect branches can be divided into two categories: structured and 

unstructured. Structured indirect branches are generated from program structures such 

procedure returns and switch statements (or something similar such as virtual functions or 

computed GoTo in Fortran). They may also be used when the branch target is beyond the 

reaching limits of direct jumps (MIPS Jump instruction has 26 bit for immediate). 

Structured indirect branches can be handled at translation time. Unstructured indirect 

branches are usually used by assembly programmers in hand-crafted code to handle 

arbitrary targets, and are considered non-manageable. For return branches, our translator 

applies the shadow stack technique [14], and will be discussed in details in section 2.9.4. 

For switch related indirect branches, we search the binary backwards from the indirect 

branch to figure out where the jump table is. Once the starting address of the jump table 

is known, the remaining translation can be straight forward – each entry in the jump table 

will be replaced by the translated address. This is discussed in section 2.9.5. In addition, 

we have a general address mapping approach as the safety net for “unstructured” indirect 

branches. For unstructured indirect branches, their target addresses will be used to search 

the ARM-to-MIPS’ address mapping table to obtain the translated address. 

2.9.3 Address mapping table 

The ARM-to-MIPS’ mapping table is generated by the translator and stored as part 

of the data section in the translated executable. The table maps an ARM instruction 

address to the address of the translated instruction. It is used to provide the target address 

for “unstructured” (non-return, non-switch) indirect branches (although we currently also 

use it for switch-based indirect branches).  To minimize the size of the table, we do not 

keep one entry for every ARM instruction. Instead, we attempt to allocate one entry for 
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each basic block so that the table size may be reduced. This approach has the drawback 

that a hand-crafted code may set arbitrary instruction as the target of an indirect branch 

and we may fail to keep the entry address in our table. However, this case should be rare 

and when it occurs, the execution should trap to the runtime system to invoke the 

dynamic translator. Our initial attempt was successful for normally compiled programs 

such as the EEMBC suite. Therefore, we further reduce the address mapping table size by 

allocating entries for a more limited set of basic blocks. For example, the entry of a 

function; the entry of a function call return; the entry that immediately follows a function; 

and the address of a “likely” target stored in the text and data section. A well known 

example for the “likely” target case is a switch table. It is important that we keep the 

entry address of each function in the table because function pointers are often used for the 

target address of indirect branches (e.g. virtual function calls). 

One challenge here is how to ensure every function entry can be detected. We 

initially locate the instruction following a function return. Although this approach may 

collect some false function entries because a function may have multiple return 

instructions, this is not a serious issue because those extra entries would not cause 

incorrect execution. The real difficulty comes from PC-relative data and padding for 

alignment requirements. Table 6 shows a comparison of the number of entries we stored 

in the address mapping table and the number of basic blocks. The number of selected 

entries is much lower than the number of basic blocks.  

 

 Ratio of the table entries to the number of basic blocks 

EEMBC-base 0.388 

EEMBC-speed 0.392 
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EEMBC-space 0.393 

Table 6.  Ratio of the number of table entries to the number of basic blocks in the 

EEMBC benchmark. 

    Each time an unstructured ARM indirect branch is executed, the control will transfer 

to a stub generated by the binary translator. This stub is used to look up the address 

mapping table and check if the current entry contains the correct ARM address. Since this 

table lookup is performed at runtime, it must be efficient to avoid excessive overhead.  

A simple hash function is used to hash the ARM address into an index to the table.  If 

the search is a hit, the stub will return a target address for the execution to continue.  A 

hash collision is resolved by linear probing.  However, we allow the table to grow as 

needed during translation time to minimize collisions.  For the EEMBC benchmark suite, 

the generated table entry count is either 1K or 2K.  If the search missed in the table, the 

stub will trap to our runtime system.  

The frequency of the table look-up in the EEMBC benchmark is less than 1%.  At 

present, they are mainly switch-based indirect branches.  We will eliminate most of 

them in the next version of the translator and leave the address mapping table for true 

“unstructured” indirect branches. 

2.9.4 Return address stack 

Although the addressing mapping table can handle all indirect branches, searching 

the address mapping table is relatively expensive (about 10-12 instructions). In order to 

accelerate indirect branch handling, a prediction mechanism is often used in various 

binary translators. If the branch target is as predicted, a direct branch can be used instead. 

This approach usually works well; unfortunately, return branches, which are also indirect 
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branches, are difficult to predict since a procedure can often be called from many 

different places. Hence, we implement the return address stack, also called shadow return 

address stack in [14], to speed up return branch handling. 

2.9.5 Switch table lookup 

Just like the return address stack for the return indirect branch handling, some 

mechanisms are also needed for speeding up switch indirect branch handling. In [19], a 

method to discover the jump table in the text section is presented. In our binary translator, 

a similar method is also used to discover the jump table stored in the text section in ARM 

executables. By applying this mechanism, the starting address and the table size of the 

jump table can be easily obtained, and so are the switch branch targets.  

The translated jump table requires both the ARM address and the MIPS’ address of 

the switch target. Unlike the ARM executables, which store the jump table in the text 

section, the translated jump table is stored in the MIPS’ code section. Each entry of the 

jump table stores both the ARM target address and the MIPS’ target address. Every time 

a switch related indirect branch in ARM is executed, the translated code will first load 

both the ARM target address stored in the ARM jump table and the MIPS’ target address 

stored in the translated jump table. It then checks if the address in the register and the 

ARM target address stored in the translated jump table are the same. If the two addresses 

are equal, the control flow will jump to the MIPS’ target address stored in the translated 

jump table. If not, the general address mapping table lookup will be invoked. 
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Chapter 3 Code optimization overview 

In Chapter 2, we describe code generation issues for translating ARM instructions to 

our target architecture, MIPS’. In this chapter, we discuss optimizations that we have 

implemented and their associated issues. To make the code examples concise, we use the 

new register mapping introduced in Section 2.6. 

3.1 PC-relative data access optimization  

First of all, PC-relative data should not be translated as code since it will increase 

the target code size. Our translator does not translate blocks that cannot be reached. Some 

blocks may not be reached based on static analysis, but may be reached by indirect 

branches at runtime. For such a case, our address mapping table and stubs will catch this 

exception at runtime and generate a trap to the runtime translation system.  

PC-relative data accesses are usually translated into move instructions. However, to 

load a PC-relative data, we must maintain the source PC. So a simple PC-relative load 

may require two target instructions, one to update the ARM-PC, and the other to load the 

data from the ARM-text section. One way to optimize for this case is to inline the 

PC-relative data so that only a single movi instruction is needed, or if the immediate is 

large, another sethi instruction coould be added. However, there is a potential risk for this 

optimization because the PC-relative location may be modified, so that the data might 

change at runtime. Inlining the data at translation time would be wrong in such cases. Our 

translator checks all the store instruction to find the PC-relative data that might be stored, 

and then inline the remaining PC-relative data. We also make the ARM-text section 

read-only, so that if some non-PC-relative stores touch the ARM-text section, our trap 

handler will detect such cases. 
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3.2 Check condition code selectively 

For conditional execution instructions, the translated code will test for the condition 

and skip over the actual operation should the check fail.  There are optimization 

opportunities for multiple conditional execution instructions with the same conditions.  

In this case, our translator can simply generate the check-condition instructions only once 

but carefully adjusts the target of the branch to the correct place.  

    The code generator will check the next instruction to see whether the two 

instructions are under the same execution condition.  Figure 4 shows one example of 

this optimization.  In Figure 4, the baseline translation would generate four target 

instructions.  However, since the two ARM instructions check the same condition code, 

our optimization can remove the second branch by modifying the target address of the 

first branch to skip over two instructions instead of one. 

    A similar optimization can be applied for two instructions having reversed condition 

codes. In this case, we may not eliminate the second check-condition instruction, but we 

can create a shorter execution path.  The consecutive instructions with inverse condition 

codes implies that if the condition-code check of the first instruction fails, the 

condition-code check of the second instruction must be met, so that the offset of the 

condition branch for the first conditional execution instruction can be modified to bypass 

the second check.  This is illustrated in Figure 5. 
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ARM : 

addeq $Rd1,  $Rs1,  $Rt1 

subne $Rd2,  $Rs2,  $Rt2 

 

MIPS’:  

 

beqz  $R_FLAG_Z,  12 

add  $Rd1,  $Rs1,  $Rt1 

bnez  $R_FLAG_Z,  8 

sub  $Rd2,  $Rs2,  $Rt2 

 

Figure 5. Example of two conditional instructions with a reverse condition. The 

branch offset of the first instruction is modified as shown in bold face. 

 

ARM : 

addeq $Rd1,  $Rs1,  $Rt1 

subeq $Rd2,  $Rs2,  $Rt2 

 

MIPS’: 

beqz  $R_FLAG_Z ,  8 

add  $Rd1,  $Rs1,  $Rt1 

sub  $Rd2,  $Rs2,  $Rt2 

 

Figure 4. Example of translating two conditional instructions with the same 

condition. The condition-code check of the second ARM instruction is eliminated. 

 

3.3 Update condition flag selectively  

Translating the update-condition-flags instructions will incur a high instruction 

overhead.  For example, if we update all four condition flags for each instruction, the 

instruction overhead could be as high as 8 times (i.e. two additional instructions 



 24 

generated per flag).  It is one of the most critical areas that call for optimization.  

In [1], the FX!32 translator  deals with the same challenge since the x86 

architecture has a similar condition-code architecture as ARM.  FX!32 traces the 

condition code dependency in the control flow graph of each translated unit.  A flag is 

not updated unless it is actually used.  In other words, we try to locate those unnecessary 

flag updates, and avoid generating flag-updating instruction.  For example, if instruction 

A updates all flags, and instruction B, which follows instruction A, also updates all the 

flags, then there is no need to translate the flag update for A, since no other instructions 

will use such updated flags from A.  All the flag updates from instruction A will be 

overwritten by those from B. Through this analysis, we can selectively update the 

condition flags and eliminate most of the redundant updates to condition flags. As 

performed in FX!32, we also traverse successor blocks to further reduce unnecessary 

condition flag updates cross blocks.  The performance impact of cross block redundant 

flag updates elimination is very significant. 

3.4 Special condition code 

The previous two subsections deal with redundant condition check/update 

elimination.  However, there are cases we must check/update the condition flags and the 

instruction overhead is high.  These are cases where multiple condition flags need to be 

checked.  For example, the GT condition indicates Z, N, and V flags must be checked. 

To avoid the cost of updating three flags, however, we could combine multiple 

condition-code check into one special condition to check.  As illustrated in Figure 6, the 

check of the GE condition can be implemented with the set-less-than condition in MIPS’.  

In order to carry out this optimization, we must ensure there is only one type of check 
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ARM : 

cmp  Rd1,  0 

add  Rd2,  Rs1,  Rs2 

addge Rd3,  Rs3,  Rs4 

cmp  Rd1,  0 

 

MIPS’ : 

movi R_TEMP_1,  0 

slts  R_FLAG_SPECIAL, Rd1,  R_TEMP_1 

//Set the flag if Rd1 is great than or equal to R_TEMP_1 

add  Rd2,  Rs1,  Rs2 

bnez  R_FLAG_SPECIAL,  8 

//If the flag were not set, the condition code is not matched 

add  Rd3,  Rs3,  Rs4 

 

Figure 6. An example of replacing ordinary condition flags with special conditions 

flag. 

between two condition code updates. 

    The multiple condition code update/check cases include HI, LS, GE, LT, GT, and 

LE. Since these six condition codes are set based on a less-than test, we can use only one 

set-less-than instruction to update the register allocated to represent the special condition 

code. This optimization reduces multiple condition bit updates and checks to only one 

update and check. 

3.5 Combined conditional branch 

ARM uses condition codes to carry out conditional branches. In some cases, while 

the MIPS’ only requires one compare-and-branch instruction, ARM may need two 

instructions, one to set condition flags and one to branch based on the condition code set, 
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to get the job done.  Such cases include: 

 

1)  CMP + conditional branch 

2)  TST + conditional branch 

3)  TEQ + conditional branch 

 

    Although it seems that the cases above favor MIPS-like architectures, in practice, 

the advantage is not very significant. This is because the condition flags may be used in 

instructions other than the conditional branch, so the update of the condition flag cannot 

be eliminated.  

Conditional branch optimization provides some interesting results on the translated 

EEMBC code.  For some functions, the translated binary has even fewer target 

instructions than the source instructions.  This is rather unusual when translating a more 

complex ISA (i.e. ARM) to a simpler ISA (i.e. MIPS’). 

3.6 Other optimizations  

The optimization methods introduced in the previous sections are part of the code 

generation components which work on the ARM’s IR.  Optimizations at code generation 

time are rather limited since they do not have the knowledge of other instructions that 

have not yet been emitted.  For example, the redundant condition code check 

elimination and the inverse condition check optimization are limited to consecutive 

instructions.  More powerful optimizations can be implemented after the target IR’s are 

generated.  For example, some classical local optimizations such as DCE (Dead Code 

Elimination), CSE (Common Sub-expression Elimination), CF (Constant Folding) and 
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CP (Constant Propagation and Copy Propagation) can be applied within a larger scope. 

Adding this phase of optimization may serve two purposes: 1) There may be optimization 

opportunities missed by the ARM compiler (which could be compiled with no 

optimizations) and 2) There may be new opportunities introduced during our binary code 

translation.  

We have implemented a local optimization phase which identifies and reports on 

opportunities existing in the target IR’s.  This phase also estimates the potential 

performance gain in terms of the number of instructions eliminated. This optimization 

phase is iterative.  Based on profile analysis, we collect code patterns that may be 

optimized.  Such patterns are given to the local optimization phase to identify and report 

on the complete set of benchmark.  Based on the estimated performance gain, we set 

priorities on what transformations to implement first.  The performance estimation of 

those local optimizations is discussed in Chapter 5. 
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Chapter 4 Simulation Environment 

The target platform and the tool chain for our binary translation system are still 

under development.  The processor chip has been under sampling and some test boards 

are available now.  However, the evaluation of the performance of our binary translator 

is carried out with simulations where we could have hooks to collect more detailed 

profiles on benchmark execution. 

4.1 Simulators  

We have conducted both functional and performance simulations.  For functional 

simulation, we have a MIPS’ simulator ported from SID [15].  SID is a simulator that 

supports multiple ISAs, and also provides support for testing, validation and debugging. 

We use a modified GDB 6.3 [16] to verify ARM binaries and collect profiles.  

For performance simulation with micro-architecture details, we use the SimpleScalar 

ARM to measure the executed cycles.  We also have a MIPS’ micro-architecture 

simulator to measure the performance of MIPS’ code.  The configurations we used for 

ARM and MIPS’ are similar: for example, we assume a single issue, in-order processor 

with 32KB of I-cache and 32KB of D-cache.  The MIPS’ has a deeper pipeline than the 

SimpleScalar ARM, but we assume both have the same clock frequency.   

4.2 Benchmarks  

The benchmark we use is the EEMBC [17] benchmark suite version 1.1.  EEMBC 

benchmark is commonly used for embedded system developers to tune their hardware 

design and software tool chains.  There are 55 programs and are divided into six 

categories: 8-16 bit, automotive, consumer, networking, office, and telecom.  The 

EEMBC benchmark can be compiled as normal versions or as lite versions.  To speed 
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up our simulations, we use the lite versions. 

The ARM compiler we used to compile EEMBC is GCC 3.4.3 with static linking.  

To test our static translation comprehensively, we compiled the EEMBC benchmark with 

3 different options: EEMBC-base, EEMBC-speed, and EEMBC-space.  EEMBC-base is 

compiled with option “-O0”, EEMBC-speed is compiled with option “-O2”, and 

EEMBC-space is compiled with “-Os”.  Since our translator does not translate the 

Thumb instruction set, we did not create versions with Thumb instructions. 
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Chapter 5 Experimental results 

 

In this Chapter we evaluate the performance of the optimizations discussed in 

Chapter 3. 

5.1 Baseline code generation  

The performance improvements from each optimization discussed in Chapter 3 are 

presented in Figure 7.  The baseline we used in comparison is the translated code using 

basic translations described in Chapter 2.  The performance is measured by the ARM to 

MIPS’ execution ratio.  For example, the performance of the baseline translation, which 

is labeled as “BASELINE” is 2.58 for EEMBC-base, 3.62 for EEMBC-speed, and 3.6 for 

EEMBC-space.  The number, say 2.58, means the ratio of the dynamic number of 

executed MIPS’ instructions to the number of ARM instructions is 2.58.  In other words, 

for each ARM instruction, on average, the basic translation would take 2.58 translated 

MIPS’ instruction to execute.  The ratios are higher for optimized ARM binaries, 3.62 

for EEMBC-speed and 3.6 for EEMBC-space.  Optimized ARM binaries tend to have a 

higher translation ratio because compiler optimizations would have eliminated many 

simple instructions, such as the copy operation, which can often be translated into a 

single target instruction. The baseline ratio of 2.58 is somewhat expected based on past 

experience of binary translation of various general-purpose architectures. 

    The performance bar of each optimization is tagged with a name.  For example, the 

bar for the optimization to eliminate redundant condition checks is labeled “CHECK”, 

and the performance bars for this optimization which eliminates unnecessary flag updates 

is labeled “UPDATE”.  The optimizations are implemented in order, so the performance 
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gain is cumulative.  For example, the performance gain of “UPDATE” includes the gain 

from “CHECK” and the “REG MAPPING” includes the gain attributed by all other 

optimizations. 

5.2 Selectively check condition code  

    As shown in Table 3, a large fraction of instructions are conditional – they must 

check the condition code to determine if execution is needed.  There are nearly 20% of 

such instructions in both EEMBC-speed and EEMBC-space.  This indicates eliminating 

redundant condition checks may have a good potential for performance improvement 

when translating ARM binaries to other RISC architectures with no predicated execution 

instructions.  Although it may be interesting to translate ARM instructions to Itanium 

architecture, which does have predicated instructions, there are no practical needs to do 

so because Itanium is not designed for embedded systems. 

    The bars under the name “CHECK” in Figure 7 are results from applying the 

redundant condition check elimination.  Compared with the baseline translation, this 

optimization yields no gains for EEMBC-base, and small gains for both EEMBC-speed 

(from 3.62 to 3.57) and EEMBC-space (from 3.6 to 3.55).  This seemingly low 

performance gain indicates that although conditional execution is frequent in ARM code, 

there are not many consecutive instructions using the same condition in the compiled 

EEMBC code.  The frequency of using the same condition increased slightly when 

ARM binaries are optimized (i.e. in EEMBC-speed and EEMBC-space).  

    However, there is a different way to conduct redundant condition check elimination, 

which would require more complex data flow analysis and incur a much higher 

transformation cost.  Notice that there may be instructions having the same condition as 
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execution predicates, but not next to each other.  We can use a separate phase to search 

and group them together.  For such a group, a single branch could skip the entire group.  

This is different from translating predicated instructions.  For architectures with 

predicates, the analysis to determine if two instructions are under the same condition is 

easier – just check if the common predicate is updated between the two instructions.  To 

determine whether two non-consecutive instructions are under the same execution 

conditions is a little more complex since multiple condition bits are involved.  We are 

currently evaluating the potential for such an optimization.  

5.3 Selectively update condition flag  

Table 4 shows the percentage of instructions that may update condition flags in the 

origin ARM program.  The percentage of instructions that update condition flags is 

almost as frequent as the instructions that check condition codes in the EEMBC-base.  

For EEMBC-speed and EEMBC-space, flag-update instructions are somewhat less 

frequent than conditional execution instructions.  

The performance result of applying redundant condition update elimination is shown 

by the bars labeled as “UPDATE” in Figure 7.  The ratio of EEMBC-base is decreased 

from 2.58 to 1.87, a 38% of performance improvement.  The other two benchmarks 

have even higher improvements; the ratio is dropped from 3.57 to 2.48 for EEMBC-speed, 

a 44% of performance gain, and from 3.55 to 2.44 for EEMBC-space, with a 46% of 

performance gain.  The redundant flag update elimination is the most significant 

optimization.  When translating ARM binaries to other embedded architectures, this 

shall be the first optimization to consider.  

Although it seems that flag updating is as frequent as condition checking, the cost of 
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flag updating is higher, thus the optimization yields a higher return.  

5.4 Combined conditional branch 

Combining condition code checking with a branch into a single compare-and-branch 

is a more interesting optimization discussed here.  Most of the other optimizations 

eliminate redundancies introduced by binary code translation, but this combined 

conditional branch transformation not only eliminates redundancies but also compresses 

multiple instructions into one instruction.  It gives our translator a chance (although 

small) to reduce the number of translated instructions executed to be even less than the 

number of source instructions. 

The performance result of combined conditional branch is showed by the bars 

labeled as “CCB” in figure 7.  All three benchmarks have very good improvement. 

Different from previous two optimizations, this optimization improves EEMBC-base 

more than the other two.  The ratio of EEMBC-base decreased from 1.87 to 1.47, 27% 

of performance gain.  For EEMBC-speed and EEMBC-space, the improvement is about 

19%.  

5.5 Special condition flag  

    Special condition flag optimization combines multiple condition updates and checks 

into one condition update and check, thus saving instruction overhead for flag updates 

and condition checks.  In Figure 7, EEMBC-base has only slight improvement from this 

optimization (from 1.46 to 1.39, about 5% of gain), while EEMBC-speed and 

EEMBC-space have much greater speed up.  The improvement for EEMBC-speed is 

about 18% (from 2.08 to 1.77) and 14% for EEMBC-space (from 2.08 to 1.82). 

5.6 Check inverse condition code selectively  
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The check inverse condition code optimization has a minor impact to performance. 

All three benchmarks benefit 2-3% from this optimization.  This should be no surprise 

to us because Section 5.2 indicates even the same condition optimization does not render 

notable performance gains.  The approach that groups instructions with the same 

execution conditions (i.e. predicates) and use one branch for each group (as discussed in 

section 5.2) can also be applied here to enhance the reverse condition check optimization. 

5.7 Register remapping 

In the initial design, we allocated the four condition flags in one register, that is, a 

mapped register for CPSR.  The flag checking and updating operations are carried out 

just like the ARM architecture.  After learning the importance of flag emulation, we 

decided to keep each flag in a separate register to avoid instruction overhead to 

fetch/store the flag from/to the flag register. 

In Figure 7, the bars with name “REGMAPPING” show the performance of this 

optimization.  For EEMBC-base, the gain is about 12% (from 1.36 to 1.21), and the gain 

is more significant for the optimized ARM binaries.  EEMBC-speed gains 21% (from 

1.73 to 1.43) and EEMBC-space gains 25% (from 1.77 to 1.42).  

With all above optimizations, the translated code can run at ratio 1.21 for 

EEMBC-base, 1.43 for EEMBC-speed, and 1.42 for EEMBC-space.  The average ratio 

of the three benchmarks is 1.35.  It is generally considered very cost-effective to get 

many applications ready for a new platform with only 35% of instruction path length 

overhead 

. 
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Figure 7.  Performance improvement from various optimizations. (Y-axis shows the executed 

instruction count ratio.) 
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5.8 Local optimization estimation 

As discussed in section 3.6, local optimizations such as DCE, CSE, CF and CP, may 

be applied to the target architecture IR’s after the code generation from the ARM IR’s. 

This is to exploit possible redundancy elimination opportunities introduced by the code 

translator.  We implemented a local optimizer to identify such opportunities and 

estimate the potential contribution from such optimizations.  Figure 8 shows the 

estimation – adding local optimizations may eliminate additional 5% of target 

instructions. 

5.9 Cycle count of the benchmark 

It might be unfair to compare the performance of translated code merely based on 

the instruction path length.  For modern embedded processors, micro-architectures also 

play a very important role.  In Figure 9, we compare the performance between ARM 

code and translated code using simulated execution cycles.  As mentioned in section 4.1, 

Figure 8: Estimation of the potential of local optimization (Blue bars: before 

local optimization; Red bars: after local optimization) 
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we use SimpleScalar ARM and the MIPS’ SID for cycle simulations.  Although the 

SimpleScalar ARM simulator is easily accessible, its micro-architecture may not be ideal 

for implementing ARM processors because it first maps ARM instructions into 

micro-operations similar to modern Intel x86 implementations.  Therefore, we select 

two configurations of SimpleScalar ARM to compare with our MIPS’ micro-architecture 

simulation.  The first uses the default configuration for ARM, which we called 

DEFAULT.  The second tries to make the simulated ARM compatible with our MIPS’ 

configuration, which we called COMPATIBLE.  The configuration we used for our 

target MIPS’ is single issue, in-order execution, with separate 32KB I-cache and 32KB 

D-cache, and 35 cycle cache miss latency.  

The measured cycle count ratios are shown in Figure 9.  The DEFAULT ARM 

configuration yields an average CPI close to 1.45 for all three EEMBC benchmarks.  

Our simulated MIPS’ has an average CPI of 1.6.  With the compatible setting, which 

forces the SimpleScalar ARM to issue one micro-operation per cycle, the average CPI of 

SimpleScalar ARM yields an average CPI close to 1.7.  The total execution cycle ratio 

of MIPS’/DEFAULT becomes 1.31 (EEMBC-space), 1.53 (EEMBC-speed), and 1.53 

(EEMBC-space). The total execution cycle ratio of MIPS’/COMPATIBLE becomes 1.10 

(EEMBC-space), 1.30 (EEMBC-speed), and 1.31 (EEMBC-space). 
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5.10 Discussion on predicated execution and conditional 

branches 

In the EEMBC benchmark, there is one program where the translated code executes 

fewer instructions than the original ARM program.  It is the rotate01_lite in the 

EEMBC-base benchmark, and the instruction ratio of ARM/MIPS’ is 0.94.  The reason 

for a lower-than-1 ratio is because of the combined conditional branch transformation. 

The frequent use of conditional branches in this program provides our binary translator 

such an opportunity.   

However, we notice that there could be other opportunities for our translator to yield 

lower-than-1 execution ratio for more programs.  This is the case we mentioned in 

section 5.2.  A conditional executed instruction is translated into a branch and a regular 

instruction, where the branch may skip the regular instruction.  Although we may skip 

Figure 9: comparison of the instruction count ratio and the cycle count ratio 

between the two architectures. 
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the regular instruction, we will have to execute the branch instruction so that the chance 

of reducing translated instruction is not obvious.  Nevertheless, if we add a separate 

phase to group instructions with the same or reversed conditions together, we will have a 

greater opportunity to skip more instructions.  In other words, programs with more 

“predicated false” instructions can have greater potential for our translated code to 

achieve a less-than-1 execution ratio.  

    Predicated execution will execute more instructions in general, but may minimize 

the cost of branch mis-predictions.  Modern embedded processors may adopt deeper 

pipelines to achieve a higher clock rate (but must balance with power consideration), and 

increase the cost of branch mis-prediction.  Our translated code does incur more 

branches as shown in Table 7.  In Table 7, we can observe that the translated code, on 

average, have 4% more conditional branches in the executed instructions. 

 Conditional branch in 

ARM 

Conditional branch in 

MIPS’ 

EEMBC-base 7.86% 12.4% 

EEMBC-speed 11.4% 15% 

EEMBC-space 11.23% 14.8% 

Table 7: Percentage of conditional branches in ARM binary and the MIPS’ binary. 

 

    Another consideration is the performance of the memory subsystem.  Since our 

translation must keep the original ARM code, the executable will be at least twice as 

large as the original ARM binary.  This, however, may not have a significant impact to 

the I-cache performance since most instruction accesses are from the translated code.  

The ARM code section is rarely referenced except for PC-relative data references, and 

when exceptions occur and the code must trap to the runtime system to get help from the 
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dynamic translator.  

    The primary purpose of a binary translation system is not for performance – it is to 

make more applications available at the time a new architecture is introduced.  However, 

the performance and power efficiency gap should not be too severe to make the new 

embedded system attractive.  With this in mind, our static translator, with code 

optimizations, can provide help to migrate application binary from ARM to other 

MIPS-like platforms. 

5.11 Switch table lookup 

The switch table lookup is used to accelerate the switch indirect branch, and a 

separate switch table is used to store all the potential switch target fields in ARM .text 

section. Unfortunately, the EEMBC benchmark suite rarely uses the switch statement, 

and the improvement by using switch table lookup is nearly zero. To show the power of 

the switch table lookup, we designed a new test program.  

The program we tested contains a switch statement in a loop, and the switch targets 

are varied when the switch statement is executed. The loop runs about one million times, 

which minimizes the impact of startup code. Table 8 shows the result after we translate 

the ARM jump table into MIPS’ table. On average, the switch table lookup approach 

successfully reduced the instruction path length from 3.07 to 2.09. Almost one-third of 

the instructions in the original application are eliminated. Apparently, the switch table 

lookup is an effective way to handle indirect branches caused by switches.  

 I-Count Raio w/o 

switch table 

lookup 

I-Count Raio with 

switch table 

lookup 

Diff. 

Base 2.159 1.571 0.588 

Speed 3.654 2.385 1.269 
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Space 3.4 2.3 1.1 

Avg. 3.071 2.085 0.986 

Table 8. Instruction count ratio after applying switch table lookup 

5.12 Comparison of code size 

 The code size is always an important issue for embedded systems, no matter it is 

static or dynamic code sizes. Larger static code size will requires more non-volatile 

storage.  Lrager dynamic code size will demand for more memory, which is usually very 

limited in embedded systems. 

 Table 9 shows the comparison of the code sizes in ELF format, and both the ARM 

executable and MIPS’ executable are already stripped. The code size ratios in Table 9 

show that the MIPS’ executable needs 80% more storage than the ARM executable.  

 ARM binary size MIPS’  binary size MIPS’ /ARM ratio 

Base 105422 183123 1.811 

Speed 99415 170984 1.806 

Space 99234 169941 1.803 

Table 9: A comparison of the executable size of the source program and the target 

program 

The .text section and the address mapping table are the two largest sections in the 

newly generated code. The comparison of the size of .text sections of the two programs is 

shown in Table 10. It shows that the MIPS’ .text section needs 70% more storage than the 

ARM .text section. The address mapping table section needs about 16KB to 32KB, which 

is about 11% of the average code size. 

 ARM .text size MIPS’  .text size MIPS’ /ARM 

Base 44174 75073 1.714 

Speed 38537 68252 1.771 

Space 38376 68152 1.775 

Table 10: A comparison of the .text section size of the source program and the target 

program 
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 Table 11 shows the total sizes for both programs. The ratio of the total size of the 

sections is about 2.6, which is higher than the ratio of the .text section size. This may be 

caused by the difference of the sizes of other sections. Table 12 shows the comparison of 

the sizes of other sections. The ratio between the non-text section size in MIPS’ 

executable and the non-text section size in ARM executable is about 7.7. This seems 

worrisome, but the non-text sections only needs 25% (Table 13) of the size of all sections 

in the ARM executable. So the impact is less severe.  

Most of non-text sections is used by ARM.text section and the address mapping 

table section in the MIPS’ executable. Table 14 shows the size of adding the ARM.text 

section and the address mapping table section is about 78% of the total storage for 

non-text sections. We can reduce half of the size of the non-text section by simply 

removing the ARM.text section. Although not all the pages in the sections would be 

swapped into memory, the high ratio of the section size indicates that the MIPS’ program 

may incur more page faults at runtime. The difference of the executable’s size in Table 9 

and the total size in the Table 11 shows that the ARM executable needs more space than 

the MIPS’ executable to store the metadata such as file headers.  

 ARM total section 

size 

MIPS’  total 

section size 

MIPS’ /ARM ratio 

Base 71958 166453 2.606 

Speed 65951 153027 2.661 

Space 65789 152446 2.665 

Table 11: A comparison of the total sizes of the source program and the target program 

 ARM non-text 

section size 

MIPS’  non-text 

section size 

MIPS’ /ARM ratio 

Base 27784 91380 8.048 

Speed 27413 84179 7.624 

Space 27413 83996 7.613 

Table 12: A comparison of the non-text section sizes of the source program and the target 
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program 

 Percentage of non-text section size in total section size in the 

ARM executable 

Base 25% 

Speed 26.2% 

Space 26.3% 

Table 13: The percentage of non-text section sizes in total sizes in the ARM 

executable 

 Percentage of 

ARM text in 

non-text sections in 

MIPS’  executable 

Percentage of 

address mapping 

table in non-text 

sections in MIPS’  

executable 

Percentage of the 

sum of the two 

sections 

Base 55.8% 22.9% 78.7% 

Speed 54% 24% 78% 

Space 53.9% 24% 77.9% 

Table 14: A comparison of the non-text section sizes of the source program and the target 

program 
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Chapter 6 Conclusion 

 

Dynamic binary translation is a common way to migrate existing application 

executables to new platforms.  However, dynamic binary translation is known to have 

some weaknesses like slow start-up, less efficient code space utilization, and high 

translation overhead for short running applications.  For embedded systems, where 

quick start-up is highly desirable, and power efficiency is critical, and many applications 

may be short running, a pure dynamic translation system is not appropriate.  We 

therefore consider a mixed approach which combines the advantages of static translation 

and dynamic translation for migrating ARM based application binaries to other newly 

introduced platforms.  

The ARM architecture has some features that must be handled carefully in binary 

translation.  For example, the conditional execution instructions, the frequent condition 

flag updates, and the PC-relative data accesses require special optimizations.  Our 

baseline translation without optimizations achieves execution ratio of 2.58 

(EEMBC-base), 3.62 (EEMBC-speed) and 3.6 (EEMBC-space), with an average of 3.27. 

However, with our optimization for selective condition updates, combined conditional 

branch generation, special condition generation, register reallocation for condition flags, 

and PC-relative data inlining, the execution ratio improved to 1.21 (base), 1.43 (speed) 

and 1.42 (space), with an average of 1.35 for all three benchmarks.  The overall 

performance improvement is 2.4 times.  Furthermore, we have estimated a set of local 

optimizations applied to the target IR’s which could yield 5% of additional performance.  

With the static binary translator and its optimizations, we gain confidence on that our 
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combined binary translation system may offer an attractive solution to application 

migration for newly developed embedded systems. 
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