
國 立 交 通 大 學

網 路 工 程 研 究 所

碩 士 論 文

ARM指令集架構應用程式之靜態二進位轉譯及最佳

化

On Static Binary Translation and Optimization for

ARM-based Applications

研 究 生：陳俊宇

指導教授：楊 武 博士

中 華 民 國 九 十 七 年 六 月

 i

ARM指令集架構應用程式之靜態二進位轉譯及最佳

化

On Static Binary Translation and Optimization for ARM-based

Applications

研 究 生：陳俊宇 Student：Jiunn-Yeu Chen

指導教授：楊 武 博士 Advisor：Dr. Wuu Yang

國 立 交 通 大 學

網 路 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Networking Engineering

College of Computer Science and Information Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Institution of Network Engineering

June. 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年六月

 ii

ARM指令集架構應用程式之靜態二進位轉譯及最佳

化

學生：陳俊宇 指導教授：楊 武 博士

國立交通大學網路工程所碩士班

摘 要

二進位碼的轉譯經常被用於將現有的程式移轉到新開發的指令集平台上。這篇

論文裡將探討一個靜態二進位碼轉譯器，此轉譯器能將ARM指令集架構的二進位碼轉

譯成類MIPS指令集架構的二進位碼，這個類MIPS指令集架構是專為嵌入式系統設計

的新架構。此靜態轉譯器的功能包含基礎指令集架構轉換，以及以減少執行指令數

為目標的最佳化。由於ARM指令集架構是一個條件式執行的指令集架構，在轉譯的過

程中需要特別處理條件式執行的指令，也因此轉譯器對於條件式執行亦頇提供最佳

化。在經過各種對條件式執行的最佳化後，在我們用來評估效能的EEMBC程式集中，

相對於被轉譯的ARM二進位碼，經由轉譯得到的二進位碼只需要額外執行35%的指令

 iii

On Static Binary Translation and

Optimization for ARM-based Applications

Student: Jiunn-Yeu Chen Advisor: Dr. Wuu Yang

Institute of Network Engineering

National Chiao Tung University

Abstract
Binary translation is often used in migrating legacy binaries to new

architecture-based platforms. This thesis describes a static binary translator which

translates ARM binaries to a MIPS-like architecture designed for embedded systems. The

static translator handles basic architecture translations and performs optimizations to

minimize instruction overhead. The conditional execution feature in the ARM

architecture requires special attention on binary translation and optimization. With

several optimizations to minimize condition updates and checks, the translated code from

ARM to our target architecture increases the instruction path length by only 35% on the

EEMBC benchmark.

 iv

誌 謝

關於這篇論文的完成，首先我要感謝論文指導老師楊武教授，以及主持這

項計畫的徐慰中教授。兩位老師在研究上的指導以及提點，讓我能夠一步步完

成研究，也感謝兩位老師總是很有耐心的與我討論並給予我建議，讓我得以不

斷的修正及嘗試，練習研究的方法及培養研究的態度。感謝晶心科技的技術長

蘇泓萌博士在硬體方面給予的建議，並對研究方向給予不少實用的提問。感謝

一起合作這項計畫，現於美國普林斯頓大學攻讀博士學位的的洪資涵，在合作

過程中給予我相當大的啟發。

感謝給予指導的博士班學長及程式語言與系統實驗室的所有夥伴們，很榮

幸能與你們一起度過研究生活。感謝柏瞱學長不吝分享研究的知識，讓我在專

注此研究之餘也對資訊領域的其他技術有更多的認識;感謝禮君，帥維，奕圻，

你們是互相打氣的好夥伴;感謝德發，耀崙，有倫，冠旭，培翔幾位學弟，祝

你們研究順利。

感謝這兩年陪伴我的朋友們，讓我研究，生活得以平衡的朋友們。同校多

年的死黨彭彭，大學的室友沈老二，牛，阿婆，生活上給予我很多幫助的阿吉，

予中，廷潮，喻暄，以及交大資科的同學們，感謝你們提供的支援，並且使我

研究生活不致單調。

最後感謝我的家人，我的父母及兄長，感謝你們包容一個彆扭的小孩，如

果不是你們悉心的教導，我不會有機會從事並完成這項研究，由衷的感謝。

僅將這篇論文獻給你們。

 v

Table of Contents

摘 要…………………………………………………………………………………...…ii

Abstract……………………………………………………………………………….…iii

誌 謝……………………………………………………………………………..............iv

Table of Contents………………………………………………………………………...v

List of Tables……………………………………………………………………………vii

List of Figures………………………………………………………………………….viii

Chapter 1 Introduction………………………………………………………………….1

Chapter 2 Code Generation Overview………………………………………………….4

2.1 PC-relative Data Access..4

 2.2 Shifter Operand and Shifter Carry Out………………………………………5

2.3 Conditional Execution……………………………………………………….…6

2.4 Condition Flag Handling……………………………………………………….9

2.5 Processor Mode and Thumb Instruction Set………………………………..10

2.6 Register Mapping……………………………………………………………...11

2.7 Executable Layout…………………………………………………………….12

2.8 Control Flow Graph…………………………………………………………..15

2.9 Control Flow Management…………………………………………………...15

 2.9.1 Lazily Update to ARM PC…………………………………………….16

 2.9.2 Indirect Branch Handling……………………………………………..16

 2.9.3 Address Mapping Table……………………………………………….17

 2.9.4 Return Address Stack………………………………………………….19

 2.9.5 Switch Table Lookup…………………………………………………..20

Chapter 3 Code Optimization Overview……………………………………………...21

3.1 PC-relative Data Access Optimization……………………………………….21

3.2 Check Condition Code Selectively……………………………………………22

3.3 Update Condition Flags Selectively…………………………………………..23

3.4 Special Condition Flags……………………………………………………….24

3.5 Combined Conditional Branch……………………………………………….25

3.6 Other Optimizations…………………………………………………………..26

Chapter 4 Results and Analyses……………………………………………………….28

4.1 Simulators……………………………………………………………………...28

4.2 Benchmarks……………………………………………………………………28

Chapter 5 Experimental Results……………………………………………………….30

 5.1 Baseline Code Generation…………………………………………………….30

 5.2 Selectively Check Condition Code……………………………………………31

 5.3 Selectively Update Condition Flags…………………………………………..32

 5.4 Combined Conditional Branch……………………………………………….33

 5.5 Special Condition Flag………………………………………………………...33

 5.6 Check Inverse Condition Code Selectively…………………………………..33

 5.7 Register Remapping…………………………………………………………...34

 5.8 Local Optimization Estimation……………………………………………….36

 5.9 Cycle Counts of the Benchmarks……………………………………………..36

 5.10 Discussion on Predicted Execution and Conditional Branch……………..38

 vi

 5.11 Switch Table Lookup………………………………………………………...40

 5.12 Comparison of Code Size……………………………………………………41

Chapter 6 Conclusions………………………………………………………………….44

Reference………………………………………………………………………………..44

 vii

List of Tables
Table 1. Frequency of PC-relative data accesses in the EEMBC benchmark……….....P.5

Table 2.Frequency of the shifter operands in the EEMBC benchmark, including logical

shift left (LSL), logical shift right (LSR), and arithmetic shift right (ASR)…………....P.6

Table 3. Frequency of the condition code check in the EEMBC benchmark…………...P.7

Table 4. Frequency of instructions that update condition flags in the EEMBC

benchmark……………………………………………………………………………….P.9

Table 5. New register allocation for the target architecture. The ones mapped to the 16

ARM registers (i.e. r0-r11 and r28-r31) are excluded…………………………………P.12

Table 6: Code template of the conditional moves of different condition code

checks……………………………………………………………………………….....P.18

Table 7: Percentage of conditional branches in ARM binary and the MIPS’ binary…..P.39

Table 8: A comparison of the executable’s size of the source program and the target

program………………………………………………………………………………...P.40

Tablee 9: A comparison of the .text section sizes of the source program and the target

program……………………………………………………………………………...…P.41

Table 10: A comparison of the total sizes of the source program and the target

program……………………………………………………………………………...…P.41

Table 11: A comparison of the total sizes of the source program and the target

program………………………………………………………………..……………….P.42

Table 12: A comparison of the non-text section sizes of the source program and the target

program………………………………………………………………………………...P.42

Table 13: The percentage of non-text section sizes in total sizes in the ARM

executable…………………………………………………………………………...…P.43

Table 14: A comparison of the non-text section sizes of the source program and the target

program...P.43

 viii

List of Figures
Figure 1. All 16 condition codes in the ARM architecture. N, Z, C, and V mean the

respective condition bits are set………………………………………………………....P.8

Figure 2. Memory layout of the original ARM executable and the translated executable.

In 2.b, MIPS’ is the target architecture, and RAS is the return address stack………….P.13

Figure 3. New layout of the translated executable is showed in 3.b. Compared with 2.b,

the new sections are moved between the ARM.Bss section and the ARM.Heap

section………………………………………………………………………………….P.14

Figure 4. Example of translating two conditional instructions with the same condition.

The condition-code check of the second ARM instruction is eliminated……………...P.23

Figure 5. Example of two conditional instructions with a reverse condition. The branch

offset of the first instruction is modified as shown in bold face…………………….....P.23

Figure 6. An example of replacing ordinary condition flags with special conditions

flag……………………………………………………………………………………..P.25

Figure 7. Performance improvement from various optimizations. (Y-axis shows the

executed instruction count ratio.)……………………………………………………...P.35

Figure 8: Estimation of the potential of local optimization (Blue bars: before local

optimization; Red bars: after local optimization)……………………………………...P.36

Figure 9: comparison of the instruction count ratio and the cycle count ratio between the

two architectures……………………………………………………………………….P.38

 1

Chapter 1 Introduction

Binary translation, the process of translating one binary executable into a different

binary executable, has been commonly used in various applications, such as ISA

(Instruction Set Architecture) migration [1][2][3][4], static binary instrumentation [5][6],

fast architecture simulation [7], dynamic binary instrumentation [8][9], and runtime

optimization [10][11][12].

 In general-purpose ISA migration, using dynamic binary translation has almost

become a standard procedure. For example, Aries [2] migrates HP-PA binaries to the

IA-64 architecture, Rosetta [4] migrates Power PC code to IA-32, IA-32EL [3] migrates

IA-32 executables to IA-64. The primary purpose of using process virtual machines [14]

to migrate existing application executables is to support compatibility. However, some

dynamic binary translation systems are used to increase the applications available on a

new platform. For instance, DEC FX!32 [1] was developed to make numerous IA-32

applications available to the DEC Alpha platform. A successful binary translation system

could certainly reduce the time-to-market requirement for having a large number of

applications available for a newly defined ISA. The number of ISAs in general-purpose

computing has been declining in the past several years. Few companies can afford to

support and maintain their proprietary ISA. However, in the embedded system area, new

architectures have often been introduced. Using binary translation to migrate embedded

applications may become commonplace in the future.

 In general-purpose computing, dynamic binary translation has been used more often.

A dynamic binary translation system normally will incur significant overhead on program

 2

start-up where the legacy binary must be translated on the first invocation. However,

since the most important factor of binary translation in this area is to make legacy

applications available to users, the performance of a migrated application is of secondary

importance. For embedded systems, the consideration may be different due to some

additional important requirements. For example, a migrated application should have

reasonably fast start-up since embedded system users may have less patience for a slow

start-up. The requirement of high energy efficiency also plays an important role that

limits the use of dynamic binary translation. This implies both the execution time and the

space overhead of the translated binary should be acceptable. With such requirements in

mind, a mix of static and dynamic translation approach to migrate embedded applications

becomes more attractive.

Static translation has the advantage of avoiding the translation overhead at runtime.

With that advantage, a static translation system can perform more time-consuming, but

performance-critical optimizations to improve the code quality and to reduce the space

required for the generated code. As a matter of fact, more and more embedded binaries

are generated by compilers rather than hand coded. Compiler generated code is much

more friendly to static binary translators. Therefore, a mixed approach would let the static

translator handle most of the code in an application, and let the dynamic translator handle

the cases left by static translation.

 In this report, we present a static binary translator which is part of our mixed

static/dynamic binary translation system. This static binary translator converts

ARM-based binary code to the MIPS’ architecture. We show that the EEMBC [17]

benchmark suite can be translated correctly with minimal loss of execution efficiency

(with optimization, the translated instruction path length is increased by less than 35%).

 3

In Chapter 2, we describe the high-level view of the static translator and how it handles

typical binary translation issues like (a) code discovery problems and (b) code location

problems for indirect branches [14]. We also discuss how unique architecture features in

ARM, such as conditional execution, are translated to MIPS’. Chapter 3 provides

details on the optimizations implemented in our translator to minimize the overhead of

flag emulation. Chapter 4 gives our experiment setup, including the simulators and the

benchmark used in the study. Chapter 5 discusses the performance of our static binary

translation on the benchmark suite. Chapter 6 summaries and concludes this report.

 4

Chapter 2 Code Generation Overview

For our static binary translator, the source architecture is ARM. Just like IA-32

executables dominate general-purpose computing applications, ARM executables

dominate embedded applications. Our target architecture is the MIPS’ architecture, which

is similar to MIPS with some additional features, such as 16-bit instructions and

load/store multiple words instructions. Here we highlight the translation issues for the

major differences between the source and the target architectures.

2.1 PC-relative data access

There are data embedded in the text section of the ARM binary. For example, a

load instruction can access such data using PC-relative addressing as follows:

ldr r1, [pc + 0xoffset]

The data embedded in the text section are mainly large immediate that cannot fit in

the immediate field and the jump table for switch statements. From the perspective of

code generation, the generated target machine code will reference the location in the text

section. In Chapter 3, we will discuss how to optimize the PC-relative data accesses.

Since we need to keep the text section around for the dynamic translator to handle

exceptions and corner cases at runtime, PC-relative data accesses can get the needed data

from the preserved text section. Although PC-relative data accesses are not frequent,

they do exist. Table 1 shows the relative frequency of such instructions in the ARM

binary for the EEMBC benchmark, compiled by the GCC compiler. EEMBC-base is

 5

compiled with no optimization (i.e. –O0), EEMBC-speed is compiled with optimization

for speed (i.e. –O2), and EEMBC-space is compiled with optimization for space

(i.e. –Os).

Benchmark Total ARM

instructions (static)

PC-relative

accesses

Percentage

EEMBC-base 10855 207 1.91%
EEMBC-speed 9919 204 2.06%
EEMBC-space 9872 209 2.12%

Table 1. Frequency of PC-relative data accesses in the EEMBC benchmark.

2.2 Shifter Operand and shifter carry out

The general ARM instructions support a shifter operand. For example, in the

following add instruction:

add r0, r 1, r2, lsl #2

The third operand, register r2, shall be shifted left by 2 before it is used by the add

instruction. Our target architecture does not support such shifter operands, so additional

instructions are needed to implement the shift operation. Fortunately, shifter operands

are not that frequent in ARM binaries. Table 2 shows the frequency of some commonly

used shifter operands.

As the shifter operand is generated, shifter carry out [18] is also generated at the

same time. Though the shifter carry out is not directly used by the operations, such as the

add in the example, it is used to update the condition flag Carry. Thus, additional

instructions are also needed to update the Carry flag.

 6

 LSL-immediate LSR-immediate ASR-immediate

EEMBC-base 2.45% 2.01% 0.83%

EEMBC-speed 2.52% 2.06% 0.85%

EEMBC-space 2.46% 2.07% 0.80%

Table 2. Frequency of the shifter operands in the EEMBC benchmark, including

logical shift left (LSL), logical shift right (LSR), and arithmetic shift right (ASR).

2.3 Conditional execution

Conditional execution is a mechanism to perform predicated execution. In the ARM

ISA, almost all instructions are predicated instructions (with the exception of certain v5T

instructions). Four flag bits stored in the CPSR (Current Program Status Register) register

are used to decide if the instruction should be executed. The four flag bits are named as

Negative (N), Zero (Z), Carry (C) and Overflow (V) and these four condition bits are

illustrated in Figure 1.

There are sixteen different conditions as shown in Figure 1. Some of the condition

checks only need to examine one specific bit, and some need to check multiple bits. The

code generated for each check will be different. For example, the following addeq

instruction checks if one condition bit is set. On the other hand, the addge

instruction shown on the right side of the addeq instruction checks if the N flag is equal

to the V flag. In the following code example, r15 is allocated to hold condition flags

(CPSR), and r21, r22, r23 are temporary registers.

ARM :

 addeq r0, r1, r2 addge r0, r1, r2

MIPS’:

 btst r21, r15, 1 btst r21, r15, 0

 7

 beqz r21, 8 btst r22, r15, 3

 add r0, r1, r2 sub r23, r21, r22

 beqz r23, 8

 add r0, r1, r2

Instructions with condition code AL do not need to check any condition bits, and the

instructions with NV are never executed (like a NOP) except for some extensions in v5T

[18]. Our translator generates one or multiple branches to handle condition checks. If

the specified condition is not met, the attempted operation is skipped. In the EEMBC

benchmark, conditionally executed instructions are used rather frequently. Table 3 shows

the percentage of all executed ARM instructions that specify conditions other than AL

and NV.

 Check condition code

EEMBC-base 10.27%

EEMBC-speed 19.57%

EEMBC-space 19.84%

Table 3. Frequency of the condition code check in the EEMBC benchmark.

 8

Opcode Mnemonic Meaning Condition flag

state

0000 EQ Equal Z

0001 NE Not equal !Z

0010 CS/HS Carry set/unsigned high or same C

0011 CC/LO Carry clear/unsigned lower !C

0100 MI Minus/negative N

0101 PL Plus/positive or zero !N

0110 VS Overflow V

0111 VC No overflow !V

1000 HI Unsigned higher C && !Z

1001 LS Unsigned lower or same !C || Z

1010 GE Signed greater than or equal N == V

1011 LT Signed less than N != V

1100 GT Signed greater than Z == 0 && N ==

V

1101 LE Signed less than or equal Z == 1 || N != V

1110 AL Always Any

1111 NV Special use None

Figure 1. All 16 condition codes in the ARM architecture. N, Z, C, and V mean the

respective condition bits are set.[18]

 9

2.4 Condition flags handling

The four condition flags in the ARM ISA are N, Z, C, and V. They are located at bits

[31:28] of the CPSR register. Two types of ARM instructions modify these four flags: the

comparison instructions, and the ALU instructions or the move instructions with the s-bit

set.

One target register can be preserved to store the four condition flags. However, to

access such bits is rather expensive since it requires at least two instructions (i.e. a shift

and a logical OR) to update one condition flag.

/* Instructions that calculate the new C flag */

slli r21, r21, 2 // store the C flag in bit[2]

or r15, r15, r21 // update the flag register

The overhead for updating condition flags increases for instructions that set more

condition bits. Table 4 shows the frequency of all executed ARM instructions in EEMBC

that need to update the condition flags.

 Percentage

EEMBC-base 9.49%

EEMBC-speed 14.99%

EEMBC-space 15.18%

Table 4. Frequency of instructions that update condition flags in the EEMBC

benchmark.

 10

In order to minimize instruction overhead for condition flag updates, we allocate

each of the four flags in separate target registers. This would avoid the shift operations

for each flag update. However, the downside is the use of three more registers which

might be better used for some optimizations which require additional temporary registers.

Since our target architecture has 16 more general-purpose registers than the ARM

architecture, we can afford reserving four registers for the condition flags, given that the

frequency of flag update is fairly high in the ARM application binaries.

2.5 Processor mode and Thumb instruction set

ARM supports regular execution mode and the Thumb execution mode. The Thumb

execution mode allows 16-bit ARM instructions to be used. Using Thumb execution code

can effectively reduce the code size, and is considered important for many embedded

applications. A special instruction, bx, must be used to switch between the Thumb

execution mode and the regular ARM mode. The bx instruction format is as follows:

 Bx r1

The execution will bring the processor to the Thumb mode if the least significant bit

of register r1 is 1. Otherwise, the processor stays in the ARM mode. Since the prefix of a

Thumb instruction is similar to that of an ARM instruction, the translator must know the

execution mode to correctly parse the instructions. Therefore, this feature makes static

translation difficult because the value of register r1 may not be known at translation time.

Our static translator does not handle Thumb instructions. Thumb mode execution will be

handled by the dynamic translator.

 11

2.6 Register mapping

 There are 31 general-purpose registers in the ARM architecture, but only 16 of them

are visible to programmers and compilers. The rest are used to speed up exception

handling. Furthermore, registers r8-r14 are banked, which means there are multiple

physical copies of each register. Which physic registers are actually referenced depends

on the current execution mode. Our static binary translator supports only user mode, so

we do not need to take care of which physical registers are used. The number of ARM

registers needs to be maintained as part of the architecture state is 16. The MIPS’

architecture has 32 32-bit general-purpose registers, so the 16 ARM registers can be

mapped directly as a subset of the target architecture registers. It is worth noting that

the register r0 in MIPS’ is not a constant zero as is in the MIPS architecture.

Register mapping is conducted in two steps: (a) ARM registers r0 to r11 are

mapped to MIPS’ architecture registers r0 to r11, and (b) ARM registers r12 to r15 are

mapped to target registers r28 to r31. ARM registers r12 to r15 are special registers

such as PC, LR, SP, and so on. Mapping them to consecutive target registers is preferred

so that we may translate the load/store multi-word instructions in ARM directly into

similar load/store multiple word instructions in the target ISA which requires the registers

to be contiguous.

 Other than the 16 registers reserved for mapping to ARM registers, the remaining

registers in the MIPS’ architecture are used for temporary registers and for special usages

such as the shifter operand. In our current translator, five of them are used as temporary

registers, two of them are reserved for handling privileged mode, and four of them are

saved for future usage.

 12

 In section 2.4.1 we discussed the need to allocate registers to hold each condition

flag so that the cost of flag update and check can be significantly reduced. Initially, we

allocated the four condition flags in one register (r15, a mapped register for CPSR). Now

we separated them out and assigned one register for each. The allocation of the target

registers not mapped to the 16 ARM registers is listed in Table 5.

Index Usage Index Usage

12 Shifter operand 20 V flag

13 Shifter carry out 21 Temp register 1

14 Top of RAS 22 Temp register 2

15 Unused 23 Temp register 3

16 Special condition flags 24 Temp register 4

17 N flag 25 Temp register 5

18 Z flag 26 Reserved

19 C flag 27 Reserved

Table 5. New register allocation for the MIPS’ architecture. The ones mapped to the 16

ARM registers (i.e. r0-r11 and r28-r31) are excluded.

2.7 Executable layout

 Layouts of ARM and MIPS’ executables are contrasted in Figure 2. The binary

layout of the target executable can be divided into three parts: the ARM program sections,

the MIPS’ program sections, and the control management sections. The original ARM

program sections are stored as part of the MIPS’ executable. Keeping the ARM

program sections is needed for future dynamic translation, and it also allows the target

program to access the data in the ARM program sections. All the ARM sections are

allocated in the same address as in the original ARM executable. This decision makes the

memory accesses much easier to handle, since no additional computation is needed to

calculate the memory address of the operands.

The MIPS’ executable has the regular text, data, and bss sections. These sections are

 13

allocated in higher memory address since the lower addresses are used for the ARM

sections. The control management part has return address stack (RAS), address mapping

table, and address stub sections. The purpose of these three sections will be discussed in

section 2.9.

 This initial binary layout allocated the ARM binary in the same address space as an

original binary. This approach has the advantage that all address computation in the ARM

binary can remain the same (such as relocation). The newly generated MIPS’ code and

the supporting data structure, such as the address mapping table, were allocated to the

address space not used by the ARM binary. However, we later encountered some

Figure 2. Memory layout of the original ARM executable and the translated

executable. In 2.b, the target architecture is MIPS’, and RAS means the return

address stack.

 14

applications that used such memory space for I/O buffers. This would cause instructions

or the address mapping table to be modified at runtime.

 To avoid this type of memory address overlap, we propose a new binary layout. In

the new binary layout, we allocate the translated MIPS’ code and the control management

code and data before the ARM.heap section. Allocating the new code in the heap is safer

because heap is for dynamic memory allocation, and programmers should never presume

how heap space is allocated. One possible downside of this new approach is that the heap

space is reduced by a small amount.

Figure 3. New layout of the translated executable is showed in 3.b. Compared

with 2.b, the new sections are moved to between the ARM.Bss section and the

ARM.Heap section

 15

2.8 Control flow graph

Like other static binary translation tools [5][6], we also build the control flow graph

of each translation unit. The control flow graph serves the purpose of control

management and code optimization.

 Our translator constructs the control flow graph by recognizing potential basic

blocks and establishing the relation between different blocks. The usual way to recognize

basic blocks in binary code is to identify the leader of each basic block. Typical leaders

are instructions following direct or indirect branches, instructions targeted by direct

branches, and the program entry point. Here we must handle one additional case: the

addresses for PC-relative data. The basic blocks contain PC-relative data are identified to

prevent treating PC-relative data as instructions, so they are excluded from the control

flow graph.

 The control flow graph we built is not precise because the targets of indirect branches

may not be known at translation time. In Chapter 3, we will discuss code

optimizations implemented in our translator. Since some optimizations are based on the

control flow graph, and if there is an indirect branch to the middle of a basic block, our

code optimization may become invalid. Therefore, when the address mapping routine

discovers at runtime that the target of an indirect branch is not a recognized basic block, it

will throw an exception and transfer control to our runtime translation system to handle

such cases.

2.9 Program control management

 Program control management includes updating the ARM-PC and handling direct

 16

and indirect branches. The following subsections describe mechanisms used in the

translator to manage control transfers.

2.9.1 Lazy update to PC

 In the generated code, updating the ARM-PC is required since other instructions

may reference the PC. However, updating ARM-PC for each instruction incurs

unacceptable high overhead. Notice that only a small percentage of instructions need to

reference the PC explicitly. In many cases, the PC referenced is a known value at

translation time – it is an offset to the text section. Therefore, our translator employs a

method that updates PC only when it is needed and cannot be resolved at translation time.

This means the translator generates instructions to update the PC before it is to be

referenced. For instance, ARM-PC update is generated for an instruction that pushes the

current ARM-PC onto the stack.

 For PC-relative data access, the ARM-PC value is directly embedded as an

immediate of the target instruction as shown in the following example:

ARM :

 add r1, pc, #228

MIPS’ :

 movi r31, 0x0000811c // updated ARM -PC

 addi r1, r31, 228

2.9.2 Indirect branch handling

Direct branches can be handled at translation time since the branch target address for

the translated block is known. For indirect branches, since the branch target is usually

 17

unknown at compile/translation time (the target is in the register), they must be handled

differently. Indirect branches can be divided into two categories: structured and

unstructured. Structured indirect branches are generated from program structures such

procedure returns and switch statements (or something similar such as virtual functions or

computed GoTo in Fortran). They may also be used when the branch target is beyond the

reaching limits of direct jumps (MIPS Jump instruction has 26 bit for immediate).

Structured indirect branches can be handled at translation time. Unstructured indirect

branches are usually used by assembly programmers in hand-crafted code to handle

arbitrary targets, and are considered non-manageable. For return branches, our translator

applies the shadow stack technique [14], and will be discussed in details in section 2.9.4.

For switch related indirect branches, we search the binary backwards from the indirect

branch to figure out where the jump table is. Once the starting address of the jump table

is known, the remaining translation can be straight forward – each entry in the jump table

will be replaced by the translated address. This is discussed in section 2.9.5. In addition,

we have a general address mapping approach as the safety net for “unstructured” indirect

branches. For unstructured indirect branches, their target addresses will be used to search

the ARM-to-MIPS’ address mapping table to obtain the translated address.

2.9.3 Address mapping table

The ARM-to-MIPS’ mapping table is generated by the translator and stored as part

of the data section in the translated executable. The table maps an ARM instruction

address to the address of the translated instruction. It is used to provide the target address

for “unstructured” (non-return, non-switch) indirect branches (although we currently also

use it for switch-based indirect branches). To minimize the size of the table, we do not

keep one entry for every ARM instruction. Instead, we attempt to allocate one entry for

 18

each basic block so that the table size may be reduced. This approach has the drawback

that a hand-crafted code may set arbitrary instruction as the target of an indirect branch

and we may fail to keep the entry address in our table. However, this case should be rare

and when it occurs, the execution should trap to the runtime system to invoke the

dynamic translator. Our initial attempt was successful for normally compiled programs

such as the EEMBC suite. Therefore, we further reduce the address mapping table size by

allocating entries for a more limited set of basic blocks. For example, the entry of a

function; the entry of a function call return; the entry that immediately follows a function;

and the address of a “likely” target stored in the text and data section. A well known

example for the “likely” target case is a switch table. It is important that we keep the

entry address of each function in the table because function pointers are often used for the

target address of indirect branches (e.g. virtual function calls).

One challenge here is how to ensure every function entry can be detected. We

initially locate the instruction following a function return. Although this approach may

collect some false function entries because a function may have multiple return

instructions, this is not a serious issue because those extra entries would not cause

incorrect execution. The real difficulty comes from PC-relative data and padding for

alignment requirements. Table 6 shows a comparison of the number of entries we stored

in the address mapping table and the number of basic blocks. The number of selected

entries is much lower than the number of basic blocks.

 Ratio of the table entries to the number of basic blocks

EEMBC-base 0.388

EEMBC-speed 0.392

 19

EEMBC-space 0.393

Table 6. Ratio of the number of table entries to the number of basic blocks in the

EEMBC benchmark.

 Each time an unstructured ARM indirect branch is executed, the control will transfer

to a stub generated by the binary translator. This stub is used to look up the address

mapping table and check if the current entry contains the correct ARM address. Since this

table lookup is performed at runtime, it must be efficient to avoid excessive overhead.

A simple hash function is used to hash the ARM address into an index to the table. If

the search is a hit, the stub will return a target address for the execution to continue. A

hash collision is resolved by linear probing. However, we allow the table to grow as

needed during translation time to minimize collisions. For the EEMBC benchmark suite,

the generated table entry count is either 1K or 2K. If the search missed in the table, the

stub will trap to our runtime system.

The frequency of the table look-up in the EEMBC benchmark is less than 1%. At

present, they are mainly switch-based indirect branches. We will eliminate most of

them in the next version of the translator and leave the address mapping table for true

“unstructured” indirect branches.

2.9.4 Return address stack

Although the addressing mapping table can handle all indirect branches, searching

the address mapping table is relatively expensive (about 10-12 instructions). In order to

accelerate indirect branch handling, a prediction mechanism is often used in various

binary translators. If the branch target is as predicted, a direct branch can be used instead.

This approach usually works well; unfortunately, return branches, which are also indirect

 20

branches, are difficult to predict since a procedure can often be called from many

different places. Hence, we implement the return address stack, also called shadow return

address stack in [14], to speed up return branch handling.

2.9.5 Switch table lookup

Just like the return address stack for the return indirect branch handling, some

mechanisms are also needed for speeding up switch indirect branch handling. In [19], a

method to discover the jump table in the text section is presented. In our binary translator,

a similar method is also used to discover the jump table stored in the text section in ARM

executables. By applying this mechanism, the starting address and the table size of the

jump table can be easily obtained, and so are the switch branch targets.

The translated jump table requires both the ARM address and the MIPS’ address of

the switch target. Unlike the ARM executables, which store the jump table in the text

section, the translated jump table is stored in the MIPS’ code section. Each entry of the

jump table stores both the ARM target address and the MIPS’ target address. Every time

a switch related indirect branch in ARM is executed, the translated code will first load

both the ARM target address stored in the ARM jump table and the MIPS’ target address

stored in the translated jump table. It then checks if the address in the register and the

ARM target address stored in the translated jump table are the same. If the two addresses

are equal, the control flow will jump to the MIPS’ target address stored in the translated

jump table. If not, the general address mapping table lookup will be invoked.

 21

Chapter 3 Code optimization overview

In Chapter 2, we describe code generation issues for translating ARM instructions to

our target architecture, MIPS’. In this chapter, we discuss optimizations that we have

implemented and their associated issues. To make the code examples concise, we use the

new register mapping introduced in Section 2.6.

3.1 PC-relative data access optimization

First of all, PC-relative data should not be translated as code since it will increase

the target code size. Our translator does not translate blocks that cannot be reached. Some

blocks may not be reached based on static analysis, but may be reached by indirect

branches at runtime. For such a case, our address mapping table and stubs will catch this

exception at runtime and generate a trap to the runtime translation system.

PC-relative data accesses are usually translated into move instructions. However, to

load a PC-relative data, we must maintain the source PC. So a simple PC-relative load

may require two target instructions, one to update the ARM-PC, and the other to load the

data from the ARM-text section. One way to optimize for this case is to inline the

PC-relative data so that only a single movi instruction is needed, or if the immediate is

large, another sethi instruction coould be added. However, there is a potential risk for this

optimization because the PC-relative location may be modified, so that the data might

change at runtime. Inlining the data at translation time would be wrong in such cases. Our

translator checks all the store instruction to find the PC-relative data that might be stored,

and then inline the remaining PC-relative data. We also make the ARM-text section

read-only, so that if some non-PC-relative stores touch the ARM-text section, our trap

handler will detect such cases.

 22

3.2 Check condition code selectively

For conditional execution instructions, the translated code will test for the condition

and skip over the actual operation should the check fail. There are optimization

opportunities for multiple conditional execution instructions with the same conditions.

In this case, our translator can simply generate the check-condition instructions only once

but carefully adjusts the target of the branch to the correct place.

 The code generator will check the next instruction to see whether the two

instructions are under the same execution condition. Figure 4 shows one example of

this optimization. In Figure 4, the baseline translation would generate four target

instructions. However, since the two ARM instructions check the same condition code,

our optimization can remove the second branch by modifying the target address of the

first branch to skip over two instructions instead of one.

 A similar optimization can be applied for two instructions having reversed condition

codes. In this case, we may not eliminate the second check-condition instruction, but we

can create a shorter execution path. The consecutive instructions with inverse condition

codes implies that if the condition-code check of the first instruction fails, the

condition-code check of the second instruction must be met, so that the offset of the

condition branch for the first conditional execution instruction can be modified to bypass

the second check. This is illustrated in Figure 5.

 23

ARM :

addeq $Rd1, $Rs1, $Rt1

subne $Rd2, $Rs2, $Rt2

MIPS’:

beqz $R_FLAG_Z, 12

add $Rd1, $Rs1, $Rt1

bnez $R_FLAG_Z, 8

sub $Rd2, $Rs2, $Rt2

Figure 5. Example of two conditional instructions with a reverse condition. The

branch offset of the first instruction is modified as shown in bold face.

ARM :

addeq $Rd1, $Rs1, $Rt1

subeq $Rd2, $Rs2, $Rt2

MIPS’:

beqz $R_FLAG_Z , 8

add $Rd1, $Rs1, $Rt1

sub $Rd2, $Rs2, $Rt2

Figure 4. Example of translating two conditional instructions with the same

condition. The condition-code check of the second ARM instruction is eliminated.

3.3 Update condition flag selectively

Translating the update-condition-flags instructions will incur a high instruction

overhead. For example, if we update all four condition flags for each instruction, the

instruction overhead could be as high as 8 times (i.e. two additional instructions

 24

generated per flag). It is one of the most critical areas that call for optimization.

In [1], the FX!32 translator deals with the same challenge since the x86

architecture has a similar condition-code architecture as ARM. FX!32 traces the

condition code dependency in the control flow graph of each translated unit. A flag is

not updated unless it is actually used. In other words, we try to locate those unnecessary

flag updates, and avoid generating flag-updating instruction. For example, if instruction

A updates all flags, and instruction B, which follows instruction A, also updates all the

flags, then there is no need to translate the flag update for A, since no other instructions

will use such updated flags from A. All the flag updates from instruction A will be

overwritten by those from B. Through this analysis, we can selectively update the

condition flags and eliminate most of the redundant updates to condition flags. As

performed in FX!32, we also traverse successor blocks to further reduce unnecessary

condition flag updates cross blocks. The performance impact of cross block redundant

flag updates elimination is very significant.

3.4 Special condition code

The previous two subsections deal with redundant condition check/update

elimination. However, there are cases we must check/update the condition flags and the

instruction overhead is high. These are cases where multiple condition flags need to be

checked. For example, the GT condition indicates Z, N, and V flags must be checked.

To avoid the cost of updating three flags, however, we could combine multiple

condition-code check into one special condition to check. As illustrated in Figure 6, the

check of the GE condition can be implemented with the set-less-than condition in MIPS’.

In order to carry out this optimization, we must ensure there is only one type of check

 25

ARM :

cmp Rd1, 0

add Rd2, Rs1, Rs2

addge Rd3, Rs3, Rs4

cmp Rd1, 0

MIPS’ :

movi R_TEMP_1, 0

slts R_FLAG_SPECIAL, Rd1, R_TEMP_1

//Set the flag if Rd1 is great than or equal to R_TEMP_1

add Rd2, Rs1, Rs2

bnez R_FLAG_SPECIAL, 8

//If the flag were not set, the condition code is not matched

add Rd3, Rs3, Rs4

Figure 6. An example of replacing ordinary condition flags with special conditions

flag.

between two condition code updates.

 The multiple condition code update/check cases include HI, LS, GE, LT, GT, and

LE. Since these six condition codes are set based on a less-than test, we can use only one

set-less-than instruction to update the register allocated to represent the special condition

code. This optimization reduces multiple condition bit updates and checks to only one

update and check.

3.5 Combined conditional branch

ARM uses condition codes to carry out conditional branches. In some cases, while

the MIPS’ only requires one compare-and-branch instruction, ARM may need two

instructions, one to set condition flags and one to branch based on the condition code set,

 26

to get the job done. Such cases include:

1) CMP + conditional branch

2) TST + conditional branch

3) TEQ + conditional branch

 Although it seems that the cases above favor MIPS-like architectures, in practice,

the advantage is not very significant. This is because the condition flags may be used in

instructions other than the conditional branch, so the update of the condition flag cannot

be eliminated.

Conditional branch optimization provides some interesting results on the translated

EEMBC code. For some functions, the translated binary has even fewer target

instructions than the source instructions. This is rather unusual when translating a more

complex ISA (i.e. ARM) to a simpler ISA (i.e. MIPS’).

3.6 Other optimizations

The optimization methods introduced in the previous sections are part of the code

generation components which work on the ARM’s IR. Optimizations at code generation

time are rather limited since they do not have the knowledge of other instructions that

have not yet been emitted. For example, the redundant condition code check

elimination and the inverse condition check optimization are limited to consecutive

instructions. More powerful optimizations can be implemented after the target IR’s are

generated. For example, some classical local optimizations such as DCE (Dead Code

Elimination), CSE (Common Sub-expression Elimination), CF (Constant Folding) and

 27

CP (Constant Propagation and Copy Propagation) can be applied within a larger scope.

Adding this phase of optimization may serve two purposes: 1) There may be optimization

opportunities missed by the ARM compiler (which could be compiled with no

optimizations) and 2) There may be new opportunities introduced during our binary code

translation.

We have implemented a local optimization phase which identifies and reports on

opportunities existing in the target IR’s. This phase also estimates the potential

performance gain in terms of the number of instructions eliminated. This optimization

phase is iterative. Based on profile analysis, we collect code patterns that may be

optimized. Such patterns are given to the local optimization phase to identify and report

on the complete set of benchmark. Based on the estimated performance gain, we set

priorities on what transformations to implement first. The performance estimation of

those local optimizations is discussed in Chapter 5.

 28

Chapter 4 Simulation Environment

The target platform and the tool chain for our binary translation system are still

under development. The processor chip has been under sampling and some test boards

are available now. However, the evaluation of the performance of our binary translator

is carried out with simulations where we could have hooks to collect more detailed

profiles on benchmark execution.

4.1 Simulators

We have conducted both functional and performance simulations. For functional

simulation, we have a MIPS’ simulator ported from SID [15]. SID is a simulator that

supports multiple ISAs, and also provides support for testing, validation and debugging.

We use a modified GDB 6.3 [16] to verify ARM binaries and collect profiles.

For performance simulation with micro-architecture details, we use the SimpleScalar

ARM to measure the executed cycles. We also have a MIPS’ micro-architecture

simulator to measure the performance of MIPS’ code. The configurations we used for

ARM and MIPS’ are similar: for example, we assume a single issue, in-order processor

with 32KB of I-cache and 32KB of D-cache. The MIPS’ has a deeper pipeline than the

SimpleScalar ARM, but we assume both have the same clock frequency.

4.2 Benchmarks

The benchmark we use is the EEMBC [17] benchmark suite version 1.1. EEMBC

benchmark is commonly used for embedded system developers to tune their hardware

design and software tool chains. There are 55 programs and are divided into six

categories: 8-16 bit, automotive, consumer, networking, office, and telecom. The

EEMBC benchmark can be compiled as normal versions or as lite versions. To speed

 29

up our simulations, we use the lite versions.

The ARM compiler we used to compile EEMBC is GCC 3.4.3 with static linking.

To test our static translation comprehensively, we compiled the EEMBC benchmark with

3 different options: EEMBC-base, EEMBC-speed, and EEMBC-space. EEMBC-base is

compiled with option “-O0”, EEMBC-speed is compiled with option “-O2”, and

EEMBC-space is compiled with “-Os”. Since our translator does not translate the

Thumb instruction set, we did not create versions with Thumb instructions.

 30

Chapter 5 Experimental results

In this Chapter we evaluate the performance of the optimizations discussed in

Chapter 3.

5.1 Baseline code generation

The performance improvements from each optimization discussed in Chapter 3 are

presented in Figure 7. The baseline we used in comparison is the translated code using

basic translations described in Chapter 2. The performance is measured by the ARM to

MIPS’ execution ratio. For example, the performance of the baseline translation, which

is labeled as “BASELINE” is 2.58 for EEMBC-base, 3.62 for EEMBC-speed, and 3.6 for

EEMBC-space. The number, say 2.58, means the ratio of the dynamic number of

executed MIPS’ instructions to the number of ARM instructions is 2.58. In other words,

for each ARM instruction, on average, the basic translation would take 2.58 translated

MIPS’ instruction to execute. The ratios are higher for optimized ARM binaries, 3.62

for EEMBC-speed and 3.6 for EEMBC-space. Optimized ARM binaries tend to have a

higher translation ratio because compiler optimizations would have eliminated many

simple instructions, such as the copy operation, which can often be translated into a

single target instruction. The baseline ratio of 2.58 is somewhat expected based on past

experience of binary translation of various general-purpose architectures.

 The performance bar of each optimization is tagged with a name. For example, the

bar for the optimization to eliminate redundant condition checks is labeled “CHECK”,

and the performance bars for this optimization which eliminates unnecessary flag updates

is labeled “UPDATE”. The optimizations are implemented in order, so the performance

 31

gain is cumulative. For example, the performance gain of “UPDATE” includes the gain

from “CHECK” and the “REG MAPPING” includes the gain attributed by all other

optimizations.

5.2 Selectively check condition code

 As shown in Table 3, a large fraction of instructions are conditional – they must

check the condition code to determine if execution is needed. There are nearly 20% of

such instructions in both EEMBC-speed and EEMBC-space. This indicates eliminating

redundant condition checks may have a good potential for performance improvement

when translating ARM binaries to other RISC architectures with no predicated execution

instructions. Although it may be interesting to translate ARM instructions to Itanium

architecture, which does have predicated instructions, there are no practical needs to do

so because Itanium is not designed for embedded systems.

 The bars under the name “CHECK” in Figure 7 are results from applying the

redundant condition check elimination. Compared with the baseline translation, this

optimization yields no gains for EEMBC-base, and small gains for both EEMBC-speed

(from 3.62 to 3.57) and EEMBC-space (from 3.6 to 3.55). This seemingly low

performance gain indicates that although conditional execution is frequent in ARM code,

there are not many consecutive instructions using the same condition in the compiled

EEMBC code. The frequency of using the same condition increased slightly when

ARM binaries are optimized (i.e. in EEMBC-speed and EEMBC-space).

 However, there is a different way to conduct redundant condition check elimination,

which would require more complex data flow analysis and incur a much higher

transformation cost. Notice that there may be instructions having the same condition as

 32

execution predicates, but not next to each other. We can use a separate phase to search

and group them together. For such a group, a single branch could skip the entire group.

This is different from translating predicated instructions. For architectures with

predicates, the analysis to determine if two instructions are under the same condition is

easier – just check if the common predicate is updated between the two instructions. To

determine whether two non-consecutive instructions are under the same execution

conditions is a little more complex since multiple condition bits are involved. We are

currently evaluating the potential for such an optimization.

5.3 Selectively update condition flag

Table 4 shows the percentage of instructions that may update condition flags in the

origin ARM program. The percentage of instructions that update condition flags is

almost as frequent as the instructions that check condition codes in the EEMBC-base.

For EEMBC-speed and EEMBC-space, flag-update instructions are somewhat less

frequent than conditional execution instructions.

The performance result of applying redundant condition update elimination is shown

by the bars labeled as “UPDATE” in Figure 7. The ratio of EEMBC-base is decreased

from 2.58 to 1.87, a 38% of performance improvement. The other two benchmarks

have even higher improvements; the ratio is dropped from 3.57 to 2.48 for EEMBC-speed,

a 44% of performance gain, and from 3.55 to 2.44 for EEMBC-space, with a 46% of

performance gain. The redundant flag update elimination is the most significant

optimization. When translating ARM binaries to other embedded architectures, this

shall be the first optimization to consider.

Although it seems that flag updating is as frequent as condition checking, the cost of

 33

flag updating is higher, thus the optimization yields a higher return.

5.4 Combined conditional branch

Combining condition code checking with a branch into a single compare-and-branch

is a more interesting optimization discussed here. Most of the other optimizations

eliminate redundancies introduced by binary code translation, but this combined

conditional branch transformation not only eliminates redundancies but also compresses

multiple instructions into one instruction. It gives our translator a chance (although

small) to reduce the number of translated instructions executed to be even less than the

number of source instructions.

The performance result of combined conditional branch is showed by the bars

labeled as “CCB” in figure 7. All three benchmarks have very good improvement.

Different from previous two optimizations, this optimization improves EEMBC-base

more than the other two. The ratio of EEMBC-base decreased from 1.87 to 1.47, 27%

of performance gain. For EEMBC-speed and EEMBC-space, the improvement is about

19%.

5.5 Special condition flag

 Special condition flag optimization combines multiple condition updates and checks

into one condition update and check, thus saving instruction overhead for flag updates

and condition checks. In Figure 7, EEMBC-base has only slight improvement from this

optimization (from 1.46 to 1.39, about 5% of gain), while EEMBC-speed and

EEMBC-space have much greater speed up. The improvement for EEMBC-speed is

about 18% (from 2.08 to 1.77) and 14% for EEMBC-space (from 2.08 to 1.82).

5.6 Check inverse condition code selectively

 34

The check inverse condition code optimization has a minor impact to performance.

All three benchmarks benefit 2-3% from this optimization. This should be no surprise

to us because Section 5.2 indicates even the same condition optimization does not render

notable performance gains. The approach that groups instructions with the same

execution conditions (i.e. predicates) and use one branch for each group (as discussed in

section 5.2) can also be applied here to enhance the reverse condition check optimization.

5.7 Register remapping

In the initial design, we allocated the four condition flags in one register, that is, a

mapped register for CPSR. The flag checking and updating operations are carried out

just like the ARM architecture. After learning the importance of flag emulation, we

decided to keep each flag in a separate register to avoid instruction overhead to

fetch/store the flag from/to the flag register.

In Figure 7, the bars with name “REGMAPPING” show the performance of this

optimization. For EEMBC-base, the gain is about 12% (from 1.36 to 1.21), and the gain

is more significant for the optimized ARM binaries. EEMBC-speed gains 21% (from

1.73 to 1.43) and EEMBC-space gains 25% (from 1.77 to 1.42).

With all above optimizations, the translated code can run at ratio 1.21 for

EEMBC-base, 1.43 for EEMBC-speed, and 1.42 for EEMBC-space. The average ratio

of the three benchmarks is 1.35. It is generally considered very cost-effective to get

many applications ready for a new platform with only 35% of instruction path length

overhead

.

 35

2.58

3.62 3.6

2.58

3.57 3.55

1.87

2.48 2.44

1.46

2.08 2.08

1.39

1.77 1.82

1.36
1.73

1.77

1.21
1.43 1.42

0

0.5

1

1.5

2

2.5

3

3.5

4

EEMBC-base EEMBC-speed EEMBC-space

BASELINE

CHECK

UPDATE

CCB

SPECIAL

CHECK
INVERSE

REG
MAPPING

Figure 7. Performance improvement from various optimizations. (Y-axis shows the executed

instruction count ratio.)

 36

5.8 Local optimization estimation

As discussed in section 3.6, local optimizations such as DCE, CSE, CF and CP, may

be applied to the target architecture IR’s after the code generation from the ARM IR’s.

This is to exploit possible redundancy elimination opportunities introduced by the code

translator. We implemented a local optimizer to identify such opportunities and

estimate the potential contribution from such optimizations. Figure 8 shows the

estimation – adding local optimizations may eliminate additional 5% of target

instructions.

5.9 Cycle count of the benchmark

It might be unfair to compare the performance of translated code merely based on

the instruction path length. For modern embedded processors, micro-architectures also

play a very important role. In Figure 9, we compare the performance between ARM

code and translated code using simulated execution cycles. As mentioned in section 4.1,

Figure 8: Estimation of the potential of local optimization (Blue bars: before

local optimization; Red bars: after local optimization)

 37

we use SimpleScalar ARM and the MIPS’ SID for cycle simulations. Although the

SimpleScalar ARM simulator is easily accessible, its micro-architecture may not be ideal

for implementing ARM processors because it first maps ARM instructions into

micro-operations similar to modern Intel x86 implementations. Therefore, we select

two configurations of SimpleScalar ARM to compare with our MIPS’ micro-architecture

simulation. The first uses the default configuration for ARM, which we called

DEFAULT. The second tries to make the simulated ARM compatible with our MIPS’

configuration, which we called COMPATIBLE. The configuration we used for our

target MIPS’ is single issue, in-order execution, with separate 32KB I-cache and 32KB

D-cache, and 35 cycle cache miss latency.

The measured cycle count ratios are shown in Figure 9. The DEFAULT ARM

configuration yields an average CPI close to 1.45 for all three EEMBC benchmarks.

Our simulated MIPS’ has an average CPI of 1.6. With the compatible setting, which

forces the SimpleScalar ARM to issue one micro-operation per cycle, the average CPI of

SimpleScalar ARM yields an average CPI close to 1.7. The total execution cycle ratio

of MIPS’/DEFAULT becomes 1.31 (EEMBC-space), 1.53 (EEMBC-speed), and 1.53

(EEMBC-space). The total execution cycle ratio of MIPS’/COMPATIBLE becomes 1.10

(EEMBC-space), 1.30 (EEMBC-speed), and 1.31 (EEMBC-space).

 38

5.10 Discussion on predicated execution and conditional

branches

In the EEMBC benchmark, there is one program where the translated code executes

fewer instructions than the original ARM program. It is the rotate01_lite in the

EEMBC-base benchmark, and the instruction ratio of ARM/MIPS’ is 0.94. The reason

for a lower-than-1 ratio is because of the combined conditional branch transformation.

The frequent use of conditional branches in this program provides our binary translator

such an opportunity.

However, we notice that there could be other opportunities for our translator to yield

lower-than-1 execution ratio for more programs. This is the case we mentioned in

section 5.2. A conditional executed instruction is translated into a branch and a regular

instruction, where the branch may skip the regular instruction. Although we may skip

Figure 9: comparison of the instruction count ratio and the cycle count ratio

between the two architectures.

 39

the regular instruction, we will have to execute the branch instruction so that the chance

of reducing translated instruction is not obvious. Nevertheless, if we add a separate

phase to group instructions with the same or reversed conditions together, we will have a

greater opportunity to skip more instructions. In other words, programs with more

“predicated false” instructions can have greater potential for our translated code to

achieve a less-than-1 execution ratio.

 Predicated execution will execute more instructions in general, but may minimize

the cost of branch mis-predictions. Modern embedded processors may adopt deeper

pipelines to achieve a higher clock rate (but must balance with power consideration), and

increase the cost of branch mis-prediction. Our translated code does incur more

branches as shown in Table 7. In Table 7, we can observe that the translated code, on

average, have 4% more conditional branches in the executed instructions.

 Conditional branch in

ARM

Conditional branch in

MIPS’

EEMBC-base 7.86% 12.4%

EEMBC-speed 11.4% 15%

EEMBC-space 11.23% 14.8%

Table 7: Percentage of conditional branches in ARM binary and the MIPS’ binary.

 Another consideration is the performance of the memory subsystem. Since our

translation must keep the original ARM code, the executable will be at least twice as

large as the original ARM binary. This, however, may not have a significant impact to

the I-cache performance since most instruction accesses are from the translated code.

The ARM code section is rarely referenced except for PC-relative data references, and

when exceptions occur and the code must trap to the runtime system to get help from the

 40

dynamic translator.

 The primary purpose of a binary translation system is not for performance – it is to

make more applications available at the time a new architecture is introduced. However,

the performance and power efficiency gap should not be too severe to make the new

embedded system attractive. With this in mind, our static translator, with code

optimizations, can provide help to migrate application binary from ARM to other

MIPS-like platforms.

5.11 Switch table lookup

The switch table lookup is used to accelerate the switch indirect branch, and a

separate switch table is used to store all the potential switch target fields in ARM .text

section. Unfortunately, the EEMBC benchmark suite rarely uses the switch statement,

and the improvement by using switch table lookup is nearly zero. To show the power of

the switch table lookup, we designed a new test program.

The program we tested contains a switch statement in a loop, and the switch targets

are varied when the switch statement is executed. The loop runs about one million times,

which minimizes the impact of startup code. Table 8 shows the result after we translate

the ARM jump table into MIPS’ table. On average, the switch table lookup approach

successfully reduced the instruction path length from 3.07 to 2.09. Almost one-third of

the instructions in the original application are eliminated. Apparently, the switch table

lookup is an effective way to handle indirect branches caused by switches.

 I-Count Raio w/o

switch table

lookup

I-Count Raio with

switch table

lookup

Diff.

Base 2.159 1.571 0.588

Speed 3.654 2.385 1.269

 41

Space 3.4 2.3 1.1

Avg. 3.071 2.085 0.986

Table 8. Instruction count ratio after applying switch table lookup

5.12 Comparison of code size

 The code size is always an important issue for embedded systems, no matter it is

static or dynamic code sizes. Larger static code size will requires more non-volatile

storage. Lrager dynamic code size will demand for more memory, which is usually very

limited in embedded systems.

 Table 9 shows the comparison of the code sizes in ELF format, and both the ARM

executable and MIPS’ executable are already stripped. The code size ratios in Table 9

show that the MIPS’ executable needs 80% more storage than the ARM executable.

 ARM binary size MIPS’ binary size MIPS’ /ARM ratio

Base 105422 183123 1.811

Speed 99415 170984 1.806

Space 99234 169941 1.803

Table 9: A comparison of the executable size of the source program and the target

program

The .text section and the address mapping table are the two largest sections in the

newly generated code. The comparison of the size of .text sections of the two programs is

shown in Table 10. It shows that the MIPS’ .text section needs 70% more storage than the

ARM .text section. The address mapping table section needs about 16KB to 32KB, which

is about 11% of the average code size.

 ARM .text size MIPS’ .text size MIPS’ /ARM

Base 44174 75073 1.714

Speed 38537 68252 1.771

Space 38376 68152 1.775

Table 10: A comparison of the .text section size of the source program and the target

program

 42

 Table 11 shows the total sizes for both programs. The ratio of the total size of the

sections is about 2.6, which is higher than the ratio of the .text section size. This may be

caused by the difference of the sizes of other sections. Table 12 shows the comparison of

the sizes of other sections. The ratio between the non-text section size in MIPS’

executable and the non-text section size in ARM executable is about 7.7. This seems

worrisome, but the non-text sections only needs 25% (Table 13) of the size of all sections

in the ARM executable. So the impact is less severe.

Most of non-text sections is used by ARM.text section and the address mapping

table section in the MIPS’ executable. Table 14 shows the size of adding the ARM.text

section and the address mapping table section is about 78% of the total storage for

non-text sections. We can reduce half of the size of the non-text section by simply

removing the ARM.text section. Although not all the pages in the sections would be

swapped into memory, the high ratio of the section size indicates that the MIPS’ program

may incur more page faults at runtime. The difference of the executable’s size in Table 9

and the total size in the Table 11 shows that the ARM executable needs more space than

the MIPS’ executable to store the metadata such as file headers.

 ARM total section

size

MIPS’ total

section size

MIPS’ /ARM ratio

Base 71958 166453 2.606

Speed 65951 153027 2.661

Space 65789 152446 2.665

Table 11: A comparison of the total sizes of the source program and the target program

 ARM non-text

section size

MIPS’ non-text

section size

MIPS’ /ARM ratio

Base 27784 91380 8.048

Speed 27413 84179 7.624

Space 27413 83996 7.613

Table 12: A comparison of the non-text section sizes of the source program and the target

 43

program

 Percentage of non-text section size in total section size in the

ARM executable

Base 25%

Speed 26.2%

Space 26.3%

Table 13: The percentage of non-text section sizes in total sizes in the ARM

executable

 Percentage of

ARM text in

non-text sections in

MIPS’ executable

Percentage of

address mapping

table in non-text

sections in MIPS’

executable

Percentage of the

sum of the two

sections

Base 55.8% 22.9% 78.7%

Speed 54% 24% 78%

Space 53.9% 24% 77.9%

Table 14: A comparison of the non-text section sizes of the source program and the target

program

 44

Chapter 6 Conclusion

Dynamic binary translation is a common way to migrate existing application

executables to new platforms. However, dynamic binary translation is known to have

some weaknesses like slow start-up, less efficient code space utilization, and high

translation overhead for short running applications. For embedded systems, where

quick start-up is highly desirable, and power efficiency is critical, and many applications

may be short running, a pure dynamic translation system is not appropriate. We

therefore consider a mixed approach which combines the advantages of static translation

and dynamic translation for migrating ARM based application binaries to other newly

introduced platforms.

The ARM architecture has some features that must be handled carefully in binary

translation. For example, the conditional execution instructions, the frequent condition

flag updates, and the PC-relative data accesses require special optimizations. Our

baseline translation without optimizations achieves execution ratio of 2.58

(EEMBC-base), 3.62 (EEMBC-speed) and 3.6 (EEMBC-space), with an average of 3.27.

However, with our optimization for selective condition updates, combined conditional

branch generation, special condition generation, register reallocation for condition flags,

and PC-relative data inlining, the execution ratio improved to 1.21 (base), 1.43 (speed)

and 1.42 (space), with an average of 1.35 for all three benchmarks. The overall

performance improvement is 2.4 times. Furthermore, we have estimated a set of local

optimizations applied to the target IR’s which could yield 5% of additional performance.

With the static binary translator and its optimizations, we gain confidence on that our

 45

combined binary translation system may offer an attractive solution to application

migration for newly developed embedded systems.

References

1) Anton Chernoff, Mark Herdeg, Ray Hookway, Chris Reeve, Norman Rubin, Tony Tye,

S. Bharadwaj Yadavalli, and John Yates, “FX!32: a Profile-Directed Binary Translator”,

IEEE Micro, vol. 18, no. 2, 1998

2) Cindy Zheng and Carol Thompson, “Aries -- PA-RISC to IA-64: Transparent

Execution, No Recompilation”, IEEE Computer, vol. 33, no. 3, March, 2000.

3) Leonid Baraz, Tevi Devor, Orna Etzion, Shalom Goldenberg, Alex Skaletsky, Yun

Wang and Yigal Zemach, “IA-32 Execution Layer: a two-phase dynamic translator

designed to support IA-32 applications on Itanium® -based systems”, in Proceedings of

36th Annual International Symposium on Microarchitecture, Micro-36, December 2003.

4) Rosetta, Apple Inc., http://www.apple.com/rosetta/

5) Cristina Cifuentes, Mike Van Emmerik, Norman Ramsey and Brian Lewis,

“Experience in the Design, Implementation and Use of a Retargetable Static Binary

Translation Framework”, SUN Microsystem Technical report, TR-2002-105, 2002,

“http://research.sun.com/techrep/2002/abstract-105.html

6) J. Larus and E. Schnarr, “EEL: Machine-Independent Executable Editing”, In

proceedings of PLDI'95, 1995.

7) Bob Cmelik and David Keppel, “Shade: a fast instruction-set simulator for execution

profiling”, Proceedings of the 1994 conference on Measurement and modeling of

computer systems, 1994, Pages 128 – 137.

8) Nicholas Nethercote and Julian Seward, “Valgrind: A Framework for Heavyweight

Dynamic Binary Instrumentation”, in Proceedings of PLDI 2007.

9) PIN - A Dynamic Binary Instrumentation Tool. http://rogue.colorado.edu/.

10) Vasanth Bala, Evelyn Duesterwald and Sanjeev Banerjia “Dynamo, A Transparent

Dynamic Optimization System” Proceedings of the ACM SIGPLAN '00 conference on

Programming language design and implementation, 2000, Pages 1 – 12

11) Jiwei Lu, Howard Chen, Rao Fu, Wei-Chung Hsu, Bobbie Othmer, Pen-Chung Yew,

“The Performance of Runtime Data Cache Prefetching in a Dynamic Optimization

System”, in Proceedings of 36th Annual International Symposium on Microarchitecture,

Micro-36, December 2003.

http://www.apple.com/rosetta/
http://research.sun.com/techrep/2002/abstract-105.html
http://rogue.colorado.edu/

 46

12) Bruening, D., Garnett, T., and Amarasinghe, S. “An Infrastructure for Adaptive

Dynamic Optimization”. In Proceedings of 1st International Symposium on Code

Generation and Optimization (CGO) (2003), pp. 265-275.

13) Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter Sweeney, “A

Survey of Adaptive Optimization in Virtual Machines”, in Proceedings of IEEE, Vol. 93,

No.2, February, 2005.

14) James Smith and Ravi Nair, “Virtual Machines: Versatile Platforms For Systems And

Processes”, Morgan Kaufmann, ISBN-13: 9781558609105, 2005

15) SID, http://sourceware.org/sid/

16) GDB, “GNU Project Debugger”, http://sourceware.org/gdb/

17) EEMBC, “The Embedded MicroProcessor Benchmark Consortium“,

http://www.eembc.com/

18) “ARM Architecture Reference Manual”, Addison-Wesley, 2001

19) Cristina Cifuentes, Mike Van Emmerik, “Recovery of jump table case statements

from binary code, ” Proceedings of the International Workshop on Program

Comprehension, Pittsburgh, USA, IEEE-CS Press, pp 192-199, May 1999

http://sourceware.org/sid/
http://sourceware.org/gdb/
http://www.eembc.com/

