

國 立 交 通 大 學

網路工程研究所

碩 士 論 文

高可用性 SIP 網路中無單點失效的

整合代理/註冊伺服器之設計與實現

Integrated Proxy/Registrar Servers without SPOF

for High Availability SIP Networks

研 究 生：徐偉原

指導教授：王國禎 教授

中 華 民 國 九 十 七 年 六 月

高可用性 SIP 網路中無單點失效的整合代理/註冊伺服器之設計與實現

Integrated Proxy/Registrar Servers without SPOF
for High Availability SIP Networks

研 究 生：徐偉原 Student：Wei-Yuan Hsu

指導教授：王國禎 Advisor：Kuochen Wang

國 立 交 通 大 學
資 訊 學 院

網 路 工 程 研 究 所
碩 士 論 文

A Thesis

Submitted to Institute of Network Engineering

College of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年六月

高可用性 SIP 網路中無單點失效的

整合代理/註冊伺服器之設計與實現

學生：徐偉原 指導教授：王國禎 博士

國立交通大學 資訊學院 網路工程研究所

摘 要

SIP 目前被應用在許多網路服務，如網路電話或 IP 多媒體子系統服務。

在一個高可用性的 SIP 網路中，SIP 代理伺服器和 SIP 註冊器都是相當重要

的元件。在這篇論文中，我們設計並且實作了一個沒有單點失效的整合 SIP

代理/註冊伺服器(IPRS)，以建構一個高可用性的 SIP 網路。我們將使用者

資訊存在每台 SIP 代理/註冊伺服器的記憶體中，而不是存在一個獨立的資

料庫裡。IPRS 提出的 ”n + m” 整合 SIP 代理/註冊伺服器是由 n 個使用中

的 SIP 代理/註冊伺服器和 m 個備援的 SIP 代理/註冊伺服器所組成。每個

使用中的 SIP 代理/註冊伺服器可以經由 OpenAIS 的服務換手到備援的 SIP

i

代理/註冊伺服器。實作測量的結果顯示，在呼叫頻率為每秒四百個連線時，

IPRS 因為使用中的 SIP 代理/註冊伺服器失效而產生的失效呼叫數目比

PPDR 減少了百分之五十六。

關鍵詞：呼叫建立時間，高可用性，OpenAIS，代理伺服器，單點失效，SIP。

ii

Integrated Proxy/Registrar Servers without
SPOF for High Availability SIP Networks

Student：Wei-Yuan Hsu Advisor：Dr. Kuochen Wang

Department of Computer Science
National Chiao Tung University

Abstract

 SIP (session initiation protocol) has been applied to many services, such as VoIP and

IP multimedia subsystem (IMS). The SIP proxy server and SIP registrar play an important role

in high availability SIP networks. In this thesis, we propose and implement a high availability

SIP network architecture that deploys integrated proxy/registrar servers (IPRSs) with no

single point of failure problem (SPOF). It stores each user agent’s (UA’s) information in the

memory of each active proxy/registrar server rather in a separate database. The “n + m”

architecture consists of n active SIP proxy/registrar servers and m standby SIP proxy/registrar

servers to process SIP messages from UAs. Each active proxy/registrar server may failover to

a standby proxy/registrar using the services of OpenAIS. Experimental results show that when

an active SIP proxy/registrar server fails, the number of failed calls in the proposed IPRS is

56% smaller than that of PPDR, a related work with a database involved, under a call rate of

400 calls/per second.

Index Terms — call setup time, high availability, OpenAIS, proxy server, single point of

failure, SIP.

iii

Acknowledgements

Many people have helped me with this paper. I deeply appreciate my thesis advisor, Dr.

Kuochen Wang, for his intensive advice and instruction. I would like to thank all the

classmates in the Mobile Computing and Broadband Networking Laboratory (MBL) for their

invaluable assistance and suggestions. This work was supported by the National Science

Council under Grants NSC94-2219-E-009-023 and NSC96-2219-E-009-012.

Finally, I thank my father and my mother for their endless love and support.

iv

Contents

Abstract (in Chinese) ... i

Abstract (in English) ... iii

Acknowledgements .. iv

Contents ... v

List of Figures .. vi

List of Tables ... vii

Chapter 1 Introduction ... 1

1.1 Basic concept of SIP .. 1

1.2 SIP components ... 2

1.3 SIP and high availability .. 3

Chapter 2 Related Work ... 4

Chapter 3 Design Approach .. 10

3.1 An integrated proxy/registrar server (IPRS) ... 10

3.2 Failover between active and standby SIP proxy/registrar servers 12

Chapter 4 Evaluation and Discussion .. 14

Chapter 5 Conclusion and Future Work ... 21

5.1 Conclusion .. 21

5.2 Future work .. 21

Bibliography .. 22

v

List of Figures

Fig. 1. SIP related protocols 2

Fig. 2. Architecture that applies VRRP to a pair of SIP proxy servers. 6

Fig. 3. A high availability SIP network with multiple SIP dispatchers and SIP proxy

servers. .. 7

Fig. 4. A high availability SIP network using LVS, Keepalived, and VRRP. 8

Fig. 5. The proposed IPRS architecture for high availability. ... 11

Fig. 6. Evaluation environment. ... 15

Fig. 7. INVITE scenario in SIPp. ... 16

Fig. 8. REGISTER scenario in SIPp. ... 16

Fig. 9. Number of failed calls caused by a SIP proxy/registrar server failure. 17

Fig. 10. SIP proxy/registrar server processing time comparison for SIP INVITE messages

under various call rates. .. 18

Fig. 11. SIP call setup time comparison. .. 19

Fig. 12. Service availability under various MTTFs. .. 20

vi

vii

List of Tables

Table. 1. Qualitative comparison of related work for SIP high availability networks 9

Table. 2. Evaluation environment parameter settings ... 15

Chapter 1

Introduction

1.1 Basic concept of SIP

SIP, an application layer protocol, is defined in RFC3261 [1] by the Internet Engineering

Task Force (IETF). SIP is a control protocol to assist in providing telephony services on

Internet. It was developed to establish, modify, and terminate a call session that involves

multimedia messages, such as video, voice, and instant messages. REGISTER, INVITE, ACK,

BYE, CANCEL, and OPTION are six main methods of SIP request messages. REGISTER is

for users to register their actual locations or other information to a registrar server. INVITE is

for inviting a user to join a call session. ACK is for confirming that a final response

corresponding to an INVITE message has been received. BYE is for terminating a call.

CANCEL is for canceling a pending request. OPTION is for querying the capability of a

server. An SIP response message contains a status code of the corresponding request. Six

different classes of status codes are 1XX, 2XX, 3XX, 4XX, 5XX, and 6XX. 1XX represents a

provisional response. 2XX represents a success. 3XX represents a redirection response. 4XX

represents a request failure. 5XX represents a server failure. 6XX represents a global failure.

SIP itself is just a signaling protocol without any ability of handling a multimedia session.

Handling the multimedia session is the responsibility of other protocols, such as real-time

transport (RTP) protocol or real-time control protocol (RTCP) [6]. We can see that SIP plays

an important role in Fig. 1 [2].

1

Fig. 1. SIP related protocols [2].

1.2 SIP components

There are four major components in a SIP network [8]:

•User Agent (UA) — UAs include user agent clients (UACs) and user agent servers (UASs).

UACs are responsible for generating SIP requests to UASs. UASs are responsible for

receiving requests sending from UACs and then generating responses to UACs.

•Proxy Server — It receives SIP messages from UAs and provides the routing operation of

SIP messages. It may simply forward the messages to the appropriate destination. It may also

forward the messages after some processing of the messages based on the routing

information.

•Redirect Server — It receives INVITE messages from UAs and returns another SIP URI or

destination address back to UAs. The UAs can use such information to complete a SIP request

by sending the request to the appropriate destination.

2

•Registrar or Location Server — It receives SIP REGISTER messages from a UA and

stores the UA’s information such as the IP address or port. The UA’s information can be stored

in memory or in a local or remote database depending on the design of system architecture.

1.3 SIP and high availability

Capacity and redundancy are two important elements involved when discussing

availability of a system [10] [11]. Capacity is the maximal processing ability that the system

can achieve. In the aspect of VoIP networks, the capacity is commonly measured in calls per

second that the system can handle. Redundancy is the extra capacity that the system can

provide only when the event of a component failure occurs. The notation “m + n” describes

the deployed capacity (m) and redundancy (n) of nodes in the system. For example, if we

deploy two active SIP proxy servers and a standby SIP proxy server in a system, we use the

notation “2 + 1” to describe the deployed redundancy model. The term “five nines” is another

important metric when discussing carrier-grade availability [23]. If we say that the availability

of a system achieves “five nines,” it means the service availability is 99.999%. The number of

nine reflects the degree of availability in a system.

 OpenAIS (open application interface specification) [19] is a middleware that implements

the Service Availability Forum (SAF) Application Interface Specification (AIS) [20].

OpenAIS AMF (application management framework) service can provide a high availability

of an application by clustering redundant servers. AMF can monitor the states and handle the

failover events between all servers in its management. OpenAIS CKPT (checkpoint) service

provides the information backup operation between active and standby servers.

3

Chapter 2

Related Work

There are several researches considering the availability of SIP-based VoIP networks.

In [5] [15], the main point of the papers is to discuss different methods to failover when some

components fail in SIP-based VoIP networks. They also discussed some load balancing

methods. The backup server should know when the active server fails. There are two ways to

achieve the goal. (1) Active polling: the backup server polls the active server periodically, so

the backup server can know the active server fails when the active server did not send the

response for the polling from the backup server. (2) Passive heartbeat: the active server sends

messages regularly to the backup server, so the backup server can know the active server fails

when it does not receive the heartbeat messages from the active server. When the backup

server knows the active server fails, there are two ways for the backup server to take over the

service. (1) DNS take over: this kind of method can be done by prioritized DNS records and

DNS server updating. Prioritized DNS records assign different priorities to the symbolic

names of the active and backup servers. The client can access the server that owns higher

priority and access the other server owns lower priority if there are errors occurred while

accessing the one that owns higher priority. The following shows an example of DNS SRV

record [16]:

somedomain.com _sip._udp SRV 0 0 active.com

 SRV 1 0 backup.com

In the method of DNS server updating, only the active server is associated with the service,

the backup server updates the DNS association when the active server fails. (2) Local IP

address takes over: active and backup servers are assigned one shared IP address. Normally,

4

the active server owns the shared IP address by associating the shared IP address with its

MAC address. The backup server will reassociate the shared IP address with its MAC address

when the active server fails. The authors [5] [15] also mentioned two load balancing schemes.

(1) DNS load balancing: DNS provides a way to assign a workload to each server with the

same priority. The following is an example:

somedomain.com _sip._udp SRV 0 40 sip1.com

 SRV 0 30 sip2.com

 SRV 0 30 sip3.com

Sip1, sip2, and sip3 servers would receive about 40%, 30%, and 30% of total workload

from UACs, respectively. (2) Load director: the method uses a centralized load balancer to

dispatch SIP messages to the appropriate SIP servers behind the load balancer by some rules.

The rules can be round robin (RR) or hash on call-id of the messages. But the load balancer

becomes the bottleneck of the system.

 In [10] [11], Cisco System, Inc. presented the intelligence at the redundant hop. Fig. 2

shows its basic idea. The virtual router redundancy protocol (VRRP) [3] is a standard

mechanism for a pair of redundant servers (1+1) in a LAN to negotiate who owns a virtual IP

address. When the system starts, one machine is associated with a virtual IP address to be

activated by VRRP, and the other one is standby. The standby SIP proxy server will take over

the service when the active SIP proxy server fails. But the disadvantage of VRRP is that it

only works for 1 + 1 redundancy. Since VRRP itself does not provide any additional function

for backup data between the active SIP proxy server and standby SIP proxy server, the UAs’

information must be stored at a database in this designed architecture although it is not

mentioned in the original paper. However, the architecture faces the single point of failure

problem at the database server.

5

Fig. 2. Architecture that applies VRRP to a pair of SIP proxy servers.

Fig. 3 illustrates the architecture proposed in [7]. The author deployed n + k SIP dispatchers

and m + 0 SIP proxy servers. The SIP dispatcher cluster is responsible for dispatching SIP

messages to the SIP proxy server cluster. There is one active SIP dispatcher handle a SAP at a

time. When an active SIP dispatcher fails, one standby SIP dispatcher will be elected by

OpenAIS to take over the SAP. The SIP dispatcher cluster can know the state of the SIP proxy

server cluster via the OpenAIS checkpoint service. The SIP dispatcher cluster will stop

dispatching the workload to a SIP proxy server when it detects that the SIP proxy server has

failed. Although the authors [7] did not mention that there is any backup operation for UAs’

information between SIP proxy servers, there must be a database for storing and looking up

UAs’ information. This architecture suffers the single point of failure problem at the database.

6

Fig. 3. A high availability SIP network with multiple SIP dispatchers and SIP proxy

servers.

In [13], the authors proposed a PPDR architecture which is illustrated in Fig. 4. The

Linux virtual server (LVS) [18] is a virtual server in aspect of clients, and there are some real

servers inside the virtual server providing load balance and high availability. The architecture

deploys two SIP load directors to dispatch the workload to three SIP proxy servers. The

MySQL database is for the SIP proxy server cluster to store and lookup the UAs’ information.

The load balancing scheme is realized via dispatching by Call-ID in the SIP header field. The

failover scheme between the active SIP load director and the standby SIP load director is

provided by VRRP and Keepalived [4]. The Keepalived on the standby SIP load director can

know the state of the active SIP load director by communicating with the Keepalived on the

active SIP load director with the VRRP protocol. The standby SIP load director will take over

the IP address by using VRRP when the active SIP load director fails. But there is the single

point of failure problem at the MySQL database.

7

In [2], the authors shared the experience using OpenAIS to build a high availability SIP

registrar server. The paper focuses on the lessons the authors learned from implementing their

work. They deployed 1 + 1 SIP registrars by using the service provided by OpenAIS to allow

the standby registrar to take over the service when the active registrar fails. Table. 1

summarizes the above discussion that qualitatively compares these existing approaches with

the proposed IPRS approach.

Fig. 4. A high availability SIP network using LVS, Keepalived, and VRRP.

8

Scheme Ciscos’[10] [
11]

 FFF [7] PPDR [13] IPRS (proposed)

Redundancy
model

Proxy: 1 + 1 Dispatcher: m + k
Proxy: n + 0

Director: 1 + 1
Proxy: n + 0

Proxy: n + k

Failover
mechanism

VRRP OpenAIS LVS + VRRP
+ Keepalived

OpenAIS

Load balancing
support

No Yes Yes Yes

Storage location
for UAs’
information

A database

A database

A database

Proxy/registrar

server

Accessing a
database during a
call setup
procedure

Yes

Yes

Yes

No

Scalability (with
DNS SRV)

No Yes No Yes

Failed calls when
failover

Medium Low Medium to
High

 Low

Call setup time Medium Medium Medium Medium to Low

Table. 1. Qualitative comparison of related work for SIP high availability networks.

9

Chapter 3

Design Approach

3.1 An integrated proxy/registrar server (IPRS)

In this section, we design an architecture that does not suffer the single point of failure

problem for SIP high availability networks. Fig. 5 illustrates the IPRS architecture. We deploy

n + m SIP proxy/registrar servers (n active SIP proxy/registrar servers and m standby SIP

proxy/registrar servers). A SIP proxy/registrar server combines the functions of the SIP proxy

server and the SIP registrar. It is responsible for receiving SIP REGISTER messages from

UAs and storing the information of UAs in its own memory instead of a separate database. In

addition, a SIP proxy/registrar server also has the function of a SIP proxy server. There are

three advantages of storing the information of UAs in the memory instead of a database. First,

we avoid the single point of failure problem caused by a database that is used for storing UAs’

information. Second, we may cost down by eliminating the need for constructing a database

or even achieving high availability of the database. There are many issues to involve

considering the availability of a database, but it needs extra cost and effort [9]. Although SIP

proxy/registrar servers in IPRS store UAs’ information in the memory, not in a database, the

SIP proxy/registrar servers in IPRS can still cooperate with a database to provide extra

services, which as accounting etc. This also means when the database fails, the extra services

based on the database will fail too, but the services provided by IPRS can still work correctly

because the UAs’ information needed by SIP proxy/registrar servers still exist in the memory.

It also means that users can make calls when the database fails. Another merit is that we

achieve the goal of high availability for SIP proxy/registrar servers with low cost. Third, when

a SIP proxy/registrar server receives a SIP message, it will look up the real location of the

10

destination user in the request line of the SIP message from its own memory or a database

after checking the SIP message is for itself. The SIP proxy/registrar then forwards the SIP

messages to the appropriate destination. Because the time required to look up the user’s

location from memory is shorter than from a local or a remote database, we can have shorter

processing time at the SIP proxy/registrar server and thus shorter call setup time compared to

that of deploying a proxy/registrar server with a database.

Fig. 5. The proposed IPRS architecture for high availability.

Fig. 5 shows the proposed IPRS architecture for high availability SIP networks. An

integrated SIP proxy/registrar server can be constructed using OpenSER [17], an open source

for building a SIP dispatcher, SIP proxy server, registrar server, and redirect server as well. A

SAP (Service Access Point) is a virtual IP address that represents one active SIP

11

proxy/registrar server. In Fig. 5, a thick line represents a connection to an active SIP

proxy/registrar server. A dotted line represents a connection to a standby SIP proxy/registrar

server. Assume domain D deploys our designed architecture. Each UA inside domain D first

registers with all active SIP proxy/registrar via SAPs when it joins the SIP network. UAs are

allowed to register with multiple SIP registrar servers. UAs outside domain D can access the

SAPs through DNS SRV as we mentioned in Section 2. The following shows an example

DNS SRV record:

domainD.com _sip._udp SRV 0 30 SAP1

 SRV 0 40 SAP2

 SRV 0 30 SAP3

In this way, SAP1, SAP2, and SAP3 will receive about 30%, 40%, and 30% of total SIP

requests from UAs, respectively. We can provide basic load balancing by this way.

3.2 Failover between active and standby SIP proxy/registrar

servers

OpenAIS AMF service running on each active and standby proxy/registrar servers

periodically sends control messages as heartbeats to each other with a fixed frequency (100

ms, default value), and listens to the heartbeats from others. Therefore, each standby SIP

proxy/registrar server can detect whether any active SIP proxy/registrar server fails or not.

When an active proxy/registrar server receives a SIP REGISTER message sending from a

UA, it stores the UA’s information in memory. The active proxy/registrar server also stores

the contents of received SIP REGISTER packets with the corresponding socket information in

the checkpoint created by OpenAIS CKPT service. OpenAIS CKPT service is responsible for

synchronizing the checkpoint created on the active SIP proxy/registrar server and the

checkpoint created on the standby proxy/registrar server. This means the OpenAIS on the

12

active SIP proxy/registrar server needs to update the checkpoint and notifies the OpenAIS on

the standby SIP proxy/registrar server if the checkpoint is updated. The OpenAIS on the

standby SIP proxy/registrar server will detect that the checkpoint has been updated by the

active SIP proxy/registrar. The standby proxy/registrar server then reads the updated data in

the checkpoint that contains the newest data.

When an active proxy/registrar server fails, one of the standby proxy/registrar servers will

be chosen by OpenAIS AMF service to take over the original service. The chosen

proxy/registrar server will then be notified by OpenAIS that it should claim the virtual IP

(SAP) of the failed active proxy/registrar server. The chosen proxy/registrar server will send

an ARP message to update the ARP tables of other nodes in the same LAN. Then it replaces

the failed active proxy/registrar server and becomes the active proxy/registrar server. The

service can be resumed by the chosen standby SIP proxy/registrar server in a short period.

13

Chapter 4

Evaluation and Discussion

First, we verify the correctness of our proposed architecture. Fig. 6 shows the evaluation

environment. X-Lite [12] is a popular open source for VoIP softphone. We installed it on PC1,

PC2, and PC3 as our VoIP phones for verification. Table. 2 lists the environment parameter

settings. In Fig. 6, PC1, PC2, and PC3 registered with all active SIP proxy/registrar servers

when they wanted to join the SIP network. PC1 invited PC2, and PC2 answered that call. PC1

then hanged up. PC1 invited PC3, and PC3 answered that call. PC1 then hanged up again.

PC2 and PC3 did the same procedure that called the other two PCs. They could establish a

call session to each other successfully. We then let one active SIP proxy/registrar server (PC4)

fail. The UA information of PC1, PC2, and PC3 should be available in the standby SIP

proxy/registrar server (PC5), and PC5 should change its state as active. PC1, PC2, and PC3

did the same procedure mentioned above again. They could establish a call session to each

other successfully. This verified the correctness of the function of the proposed integrated SIP

proxy/registrar server using IPRS.

SIPp [14] is an open source traffic generator for SIP protocols. It includes a few basic

scenarios for UAC and UAS and it establishes multiple calls with INVITE and BYE methods.

We used a default UAC and UAS scenario provided by SIPp for the following test. We

installed SIPp on PC1 for evaluation. Fig. 7 and Fig. 8 illustrate the INVITE scenario and

REGISTER scenario in SIPp, respectively.

14

Environment parameter value

CPU (PC1) Intel Celeron 2.6GHz
Memory (PC1) 1 GB
CPU (PC2) Intel Pentium 2.0 GHz
Memory (PC2) 512 MB
CPU (PC3) Intel Pentium Dual 2.0 GHz
Memory (PC3) 1 GB
CPU (PC4, PC6) Intel Pentium M 1.8GHz
Memory (PC4, PC6) 512MB
CPU (PC5) Intel Pentium M 1.2GHz
Memory (PC5) 768MB
Call rate in SIPp (for evaluating processing
time)

50, 100, 150, 200 calls/sec

Call rate in SIPp (for evaluating number of
failed calls)

100, 200, 300, 400 calls/sec

Call limit 10000 calls

Table. 2. Evaluation environment parameter settings.

Fig. 6. Evaluation environment.

15

Fig. 7. INVITE scenario in SIPp.

Fig. 8. REGISTER scenario in SIPp.

We turned off the retransmission in SIPp when we tested the failover calls caused by a

SIP proxy/registrar server failure so that we could see the failed calls in the results generated

by SIPp. We used the INVITE scenario showed in Fig. 7 for observing failed calls, and let

PC1 as UAC, and PC3 as UAS. We used SIPp UAS to send SIP REGISTER messages to the

active SIP proxy/registrar servers (PC4 and PC6) based on the scenario as shown in Fig. 8.

16

The user name was generated randomly and the length of each user name is three to four

characters. We then used SIPp UAC and UAS to perform the scenario shown in Fig. 7.

When the UAC established a call with UAS, we let the active SIP proxy/registrar server (PC4)

fail and computed the number of failed calls. We evaluated the number of failed calls caused

by the SIP proxy/registrar server failure under various call rates. In Fig. 9, the number of

failed calls in IPRS is smaller than that in PPDR [13]. When an active SIP proxy/registrar

server failed, the number of failed calls using IPRS is reduced by 29%, 31%, 54%, and 56%

compared to that in PPDR under the call rates of 100, 200, 300, and 400 (calls/per second),

respectively. The number of failed calls increases both in IPRS and PPDR when the call rate

increases. However, the increased degree in IPRS is slower than that in PPDR.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

100 200 300 400

Fa
ile
d
ca
lls

Call rates (calls/sec)

Failed calls under different call rates

PPDR

IPRS (proposed)

Fig. 9. Number of failed calls caused by a SIP proxy/registrar server failure.

In PPDR, there is a database constructed by MySQL for storing UAs’ information. The

proposed IPRS stores the UAs’ information in the memory of the SIP proxy/registrar server.

Next, we want to know the effect on the processing time of a SIP proxy/registrar server if a

database is involved in a call setup procedure. We define the processing time of a SIP

17

proxy/registrar server for a SIP INVITE message as the elapsed time from the SIP

proxy/registrar server receiving an INVITE message, looking up the user’s location from a

memory or a database, and then forwarding it to the appropriate destination. We repeated the

above procedure for testing the number of failed calls and computed the processing time of

the active SIP proxy/registrar server (PC4). The only difference in the evaluation environment

between this test and the last test is that PC6 here did not act as an active SIP proxy/registrar

but as a database server constructed by MySQL. The processing time of a SIP proxy/registrar

server under call rates of 50, 100, 150, and 200 (calls/second) is shown in Fig. 10. The results

show that the processing time of a SIP proxy/registrar server without a database involved is

shorter than that with a database involved. The results also show that the processing time of

the active SIP proxy/registrar server in IPRS is less affected by the increased call rate than

that in PPDR.

0

2

4

6

8

10

12

14

16

50 100 150 200

Pr
oc
es
si
ng

 ti
m
e
(m

s)

Call rates (calls/sec)

SIP proxy/registrar server processing time
for SIP INVITE messages

PPDR

IPRS
(proposed)

Fig. 10. SIP proxy/registrar server processing time comparison for SIP INVITE messages

under various call rates.

18

We also compare the call setup time between IPRS (without a database involved) and

PPDS (with a database involved). Fig. 11 shows that in terms of the call setup time.

788.24

792.565

786

787

788

789

790

791

792

793

Ca
ll
se
tu
p
ti
m
e
(m

s
)

No database server
involved (IPRS)

Database server
involved (PPDR)

Fig. 11. SIP call setup time comparison.

 Finally, we analyze the service availability of IPRS in terms of the number of nines. The

availability of a SIP proxy/registar server (Aproxy/registrar) can be calculated by the mean time to

failure of a SIP proxy/registrar server (MTTFproxy/registrar) and the mean time to recovery of a

SIP proxy/registrar server (MTTRproxy/registrar). The availibility of an integrated

proxy/registrar server (Aintegrated proxy/registrar) can be calculated by the availability of a SIP

proxy/registrar server (Aproxy/registrar) and the number of SIP proxy/registrar servers (N). The

availability of the integrated proxy/registrar server is the overall service availability (Aservice).

The following are the equations we used [7].

Aproxy/registrar = MTTFproxy/registrar / (MTTFproxy/registrar + MTTRproxy/registrar)

(1)

Aintegrated proxy/registrar = 1 – (1 - Aproxy/registrar)N

(2)

19

Aservice = Aintegrated proxy/registrar

(3)

Fig. 12. shows experimental results. The service availability is calculated based on various

MTTFs (hours) and MTTRproxy/registrar = 72 hours [7][22]. Experimental results show that if

we want to have higher availability when the MTTF is lower, we need to deploy more SIP

proxy/registrar servers in the IPRS architecture. The result also shows that the smallest

number of SIP proxy/registrar servers needed if we want to achieve “five nines” when the

MTTF is fixed. For example, when we want to achieve “five nines” under MTTF = 1500

hours, the smallest number of SIP proxy/registrar servers required is four. We can analyze the

results in another aspect. We can find out a tolerable MTTF when we deploy a fixed number

of SIP proxy/registrar servers in IPRS and want to achieve “five nines.” For example, when

we want to achieve the “five nines” if three SIP proxy/registrar servers are deployed, the

tolerable MTTF is 6000 hours.

0

2

4

6

8

10

12

200 400 800 1500 3000 6000 10000 30000 50000

N
in
es

MTTF (hours)

Service Availability

4 proxy/registrar
servers

3 proxy/registrar
servers

2 proxy/registrar
servers

1 proxy/registrar
server

Fig. 12. Service availability under various MTTFs.

20

Chapter 5

Conclusion and Future Work

5.1 Conclusion

The proposed IPRS architecture for high availability SIP networks uses a cluster of

integrated SIP proxy/registrar servers without a database involved. It does not suffer the

problem of single point of failure in SIP-based VoIP networks. OpenAIS is the middleware

that provides the functions of failure detection and failover among SIP proxy/registrar servers

in the architecture. In our approach, no modification of SIP protocols is needed for realizing

our architecture. Experimental results have shown that when an active SIP proxy/registrar

server fails, the number of failed calls in IPRS can be reduced by 29%, 31%, 54%, and 56%

compared to that in PPDR under the call rates of 100, 200, 300, and 400 (calls/per second),

respectively. In addition, we have also resolved the single point of failure problem by

reallocating UAs’ registration information from a database to a server’s memory.

5.2 Future work

The load balancing scheme in our architecture is DNS-based. There may be some other

ways to integrate a load balancing scheme into our architecture to make the whole

architecture independent of DNS.

21

Bibliography

[1] J. Rosenberg, et al., SIP: Session Initiation Protocol, RFC 3261, Internet Engineering

Task Force, June 2002.

[2] A. Kamalvanshi and T. Jokiaho, “Using OpenAIS for Building Highly Available Session

Initiation Protocol (SIP) Registrar”, Nokia Corporation, SA Forum, in Proc. of the Third

Annual International Service Availability Symposium, May 2006, pp. 217-228.

[3] R. Hinden, et al., VRRP: Virtual Router Redundancy Protocol, RFC 3768, Internet

Engineering Task Force, April 2004.

[4] “Keepalived,” Available: http://www.keepalived.org/.

[5] K. Singh and H. Schulzrinne, “Failover, Load Sharing and Server Architecture in SIP

Telephony,” Computer Communication, Volume 30, Issue 5, pp. 927-942, March 2007.

[6] H. Schulzrinne, et al., RTP: A Transport Protocol for Real-Time Applications, RFC 3550,

Internet Engineering Task Force, July 2003.

[7] W.-M. Wu, K. Wang, R.-H. Jan, and C.-Y. Huang, “A Fast Failure Detection and Failover

Scheme for SIP High Availability Networks”, in Proc. of the 13th Pacific Rim

International Symposium on Dependable Computing, Dec. 2007.

[8] “SIP Server Technical Overview,”

Available: http://www.radvision.com/NR/rdonlyres/0AFA30DF-DAD6-461D-943C-ED3

3F3E7ABD8/0/SIPServerTechnicalOverviewWhitepaper.pdf.

[9] “A Guide to Database High Availability,”

Available: http://www.greatlinux.com.cn/userfiles/MySQL_WhitePaper_Guide_to_DB_

HighAvailability.pdf.

[10] Cisco Inc., “Overview of High Availability in SIP-Based Voice Networks,”

22

http://www.keepalived.org/
http://www.radvision.com/NR/rdonlyres/0AFA30DF-DAD6-461D-943C-ED33F3E7ABD8/0/SIPServerTechnicalOverviewWhitepaper.pdf
http://www.radvision.com/NR/rdonlyres/0AFA30DF-DAD6-461D-943C-ED33F3E7ABD8/0/SIPServerTechnicalOverviewWhitepaper.pdf
http://www.greatlinux.com.cn/userfiles/MySQL_WhitePaper_Guide_to_DB_HighAvailability.pdf
http://www.greatlinux.com.cn/userfiles/MySQL_WhitePaper_Guide_to_DB_HighAvailability.pdf

Available: http://www.cisco.com/en/US/docs/ios/12_3/vvf_c/cisco_ios_sip_high_availab

ility_application_guide/hachap1.pdf.

[11] Cisco Inc., “High-Availability Solutions for SIP Enabled Voice-over-IP Networks,”

Available: http://www.sipcenter.com/sip.nsf/html/WEBB5YP4SU/$FILE/cisco_high_ava

ilability.pdf.

[12] Counterpath Corporation, “X-Lite”, Available: http://www.counterpath.com/.

[13] V. Matic, I. Franicevic, and D. Sekalec, “Parallel SIP Proxy Servers Using Direct

Routing Approach,” Software in Telecommunications and Computer Networks, Sept.

2006, pp. 218-222.

[14] “SIPp - A Free Open Source Test Tool / Traffic Generator for the SIP Protocol,”

Available: http://sipp.sourceforge.net/.

[15] “High Availability and Scalability of VoIP Infrastructures,”

Available: http://www.fokus.fraunhofer.de/ngni/topics/paper/Whitepaper_SIP_Scalability

.pdf.

[16] A. Gulbrandsen et al., “A DNS RR for Specifying the Location of Services (DNS SRV),”

RFC 2782, Internet Engineering Task Force, February 2000.

[17] “OpenSER,” Available: http://www.openser.org/.

[18] Linux Virtual Server (LVS), Available: http://www.linuxvirtualserver.org/.

[19] “OpenAIS,” Available: http://openais.org/.

[20] Service Availability Forum, Available: http://www.saf.ud.it/.

[21] “MySQL - The World's Most Popular Open Source Database,”

Available: http://www.mysql.com/.

[22] K. Uhlemann et al., “JOSHUA: Symmetric Active/active Replication for Highly

Available HPC Job and Resource Management,” in Proc. IEEE International Conference

on Cluster Computing, Sept. 2006, pp. 1-10.

23

http://www.cisco.com/en/US/docs/ios/12_3/vvf_c/cisco_ios_sip_high_availability_application_guide/hachap1.pdf
http://www.cisco.com/en/US/docs/ios/12_3/vvf_c/cisco_ios_sip_high_availability_application_guide/hachap1.pdf
http://www.sipcenter.com/sip.nsf/html/WEBB5YP4SU/$FILE/cisco_high_availability.pdf
http://www.sipcenter.com/sip.nsf/html/WEBB5YP4SU/$FILE/cisco_high_availability.pdf
http://www.counterpath.com/
http://sipp.sourceforge.net/
http://www.fokus.fraunhofer.de/ngni/topics/paper/Whitepaper_SIP_Scalability.pdf
http://www.fokus.fraunhofer.de/ngni/topics/paper/Whitepaper_SIP_Scalability.pdf
http://www.openser.org/
http://www.linuxvirtualserver.org/
http://openais.org/
http://www.saf.ud.it/
http://www.mysql.com/

24

[23] C. R. Johnson et al., “VoIP Reliability: A Service Provider’s Perspective,” IEEE

Communications Magazine, July, 2004, pp. 48-54.

