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摘要 

 

我們提出了使用網路編碼技術於 UDP 檔案傳輸的方法，並且分析評估它的效

能。針對這個方法所設計的 PRNC 通訊協定是結合了 UDP 以及網路編碼技術的優

點。使用 UDP 做傳輸資料可以降低封包往返造成的延遲並且提供協定設計者更多

的使用彈性。而加入了網路編碼技術，我們傳輸的不再是原始資料，而是經過加

密的線性組合。傳統的傳輸中，我們要知道遺失的是哪一個封包，並且再次傳送

遺失的封包。加入了網路編碼技術後，我們不必知道遺失的是哪一個封包，只要

收集到的封包組成的線性方程組是可以解的，我們就能還原原始資料。實驗結果

顯示，我們提出的方法具有和 FTP 接近且更好的效能，而網路吞吐量更是 UFTP

的二到三倍。 



Abstract

We propose a UDP-based file transfer protocol using network coding and eval-

uate the performance. The designed protocol, which we call PRNC protocol,

takes the advantages of UDP and network coding. Packets transmission over

UDP reduces the round trip propagation delay and provides more flexibility

than transmission over TCP. And with the help of network coding, we send

linear combinations instead of original data. When some packets were lost,

if the collected linear combinations were sufficient to be solved, we could still

get the original data successfully. Since we don’t need to know which packet

we exactly lost, some acknowledgements may be saved. The evaluation re-

veals that PRNC protocol behaves almost the same with traditional FTP

and has almost three times throughput compare to UFTP.
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Chapter 1

Introduction

1.1 Network coding

The concept of network coding is first proposed in 2000, and has received

extensive attention. The main idea of network coding is to allow coding

at the nodes between the source and the receivers. This coding gives the

packets some information more than original data. The receivers could use

these information to recover the original data or infer the transmission status.

First we introduce the famous butterfly example to explain the main idea

of network coding. In Fig. 1.1(a), the model does not apply network coding

while the model in fig. 1.1(b) uses network coding to transmit packets. The

link capacity is one bit per unit time in both models. In order to know

how network coding affects, we put the same scenario into both models.
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Figure 1.1: Butterfly example

At beginning, the source node generates p1 and p2 and the two packets are

bounded for both D1 and D2. In the model without network coding, we

could easily find that the bottleneck occurs at the intermediate nodes W and

X because the node W can only send one packet. No matter which packet

W decides to send first, it still have to transmit the other packet at the next

time. Meanwhile, in the model with network coding, the node W calculate

p1 ⊕ p2 and send the result to the X. When the node D1 received p1 ⊕ p2

from X, it could get p2 by calculating p1⊕ (p1⊕ p2). The node D2 could get

p1 using the same method. Therefor, the average throughput in the model

with network coding is 2 data bits per unit time while it is only 3
2

without

network coding.
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1.2 Motivation

With the previous study in network coding, we observed that there are bene-

fits if network coding implemented over UDP but merely mentioned in above

works. Therefore, we tried hard to find the way to put network coding into

UDP and BT system. Finally, we developed the PRNC algorithm and PRNC

protocol. And we found the solution to cowork between PRNC protocol and

exist Bittorrent protocol. There are two main benefits in our proposed solu-

tion:

1. Less coding overhead compare to linear network coding

2. Less round trip delay and ACK compare to TCP

The use of pseudo-random number reduce the coefficients overhead in linear

network coding. Since the overhead is possibly larger than the original data

while the coding segment is large, the linear network coding is hard to be

used in real system. Therefore, use pseudo-random number to replace the co-

efficients greatly reduce the overhead. Another benefit is the round trip delay

and times of ACK are reduced. We use the characteristic of network coding

to mix data into UDP packets with the same sequence number. Therefore,

the receiver only have to send one ACK for one segment and we have less

ACK times.

3



1.3 Organization

In the next chapter, we introduce the related work. The development of net-

work coding would be introduced here. And in the third chapter, the main

idea and implement would be detailed. The system architecture, PRNC

algorithm and PRNC protocol are described in this chapter. Also, the per-

formance evaluation results are in the third chapter. Finally we conclude in

the fourth chapter.

4



Chapter 2

Related Work

2.1 Network Coding Development

The concept of ’network coding’ is first proposed by Ahlswede et al [1]. The

authors introduce a new class problems which is called network information

flow. Their research reveals that if network coding is employed at the node,

the bandwidth could be saved.

In [2] and [3], they present a algebraic methods for network coding. The

packets transmitted could be seen as one linear combination. Receiver could

collect different linear combination from other nodes. Once the receiver get

sufficient linear combinations, it could recover the original data by solving

the linear equations. They show the surprising result when a multicast con-

nection is achievable under different failure scenarios.
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In [4], the authors proposed a novel approach called randomized coding.

It provides robust, distributed transmission and compression of information.

They give a lower bound for success probability andalso the upper bound on

failure probability.

In [5], the authors’ research focus on the performance of network cod-

ing when the network has dynamic node arrival and departure patterns.

Their demonstration shows that network coding mechanism could improve

the download time by more than 2-3 times compared to the one without

network coding.
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Chapter 3

System Implementation

With the previous study in network coding, we have found a novel idea about

network coding over P2P network. In order to see how practice our idea is,

we put this idea into real system. Our implementation system is based on

the BitTorrent architecture which includes tracker server and peer clients.

Every component in our system plays the same role in the BitTorrent archi-

tecture. Besides the ’data transmission’, the whole behaviors in our system

are the same with the ones in BitTorrent. Our network coding mechanism

could facilitate the data transmission and data distribution. In this chapter,

the system architecture would be depicted first. And in the next section,

the Pseudo-random network coding algorithm would be described in detail.

Finally, the PRNC protocol which provide reliability for data transfer over

UDP would be discussed here.
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3.1 System Architecture

In our implement system, there is one tracker server and three peer clients.

The torrent files are stored in all peer clients in advance, thus the HTTP

server could be omitted here. Figure 3.1 shows our system architecture.

When a peer client starts downloading, it sends request and communicates

with the tracker server via Tracker HTTP/HTTPS protocol. After commu-

nicating with the tracker server, the client could get a list of peers. Notice

that the seed server is always in the list of peers. Then the peer client would

send a handshake message to the seed server to build up the tunnel. All

messages used in Wire Peer Protocol are exchanged in this TCP tunnel. But

unlike original Bittorrent client, our peer client transmit data over UDP tun-

nel instead of TCP tunnel. Clients use Wire Peer Protocol to control the

whole process and use PRNC Protocol to transmit data.

Assume there is one peer client start downloading and get the list of

peers in which the seed server is the only one candidate. In this situation,

the P2P network could be simplified as a point-to-point network. This help

us to understand what we have done in a peer client. We could see the peer

client architecture in Figure 3.2. In the top layer, the rTorrent is an BT

client application which provides interface for users to control process. The

rTorrent uses the library which called libtorrent. We created a new entity in

8



Figure 3.1: System Architecture

libtorrent which called NC. Our main algorithm PRNC is implemented here.

While the libtorrent received a request for sending pieces via TCP tunnel,

the NC would create an UDP tunnel, encode raw data and transmit encoded

packages via PRNC Protocol. Messages in Peer Wire Protocol are sent via

TCP and coded data are sent in UDP.

In the next section, we will introduce the algorithm used in the entity

NC. And the PRNC Protocol would be described in the third section.

9



Figure 3.2: Architecture of peer clients

3.2 Pseudo-Random Network Coding Algo-

rithm

3.2.1 Pseudo-Random Network Coding Library

To the purpose of putting network coding mechanism into real system. We

spend efforts on building network coding library which provides flexibility for

any other applications. And in order to make network coding more practical,

we develop a new approach called PRNC. The main idea in PRNC is using

random seed instead of random numbers. In the traditional linear network

coding, the overhead is proportional to the coding size. But in PRNC, the

10



overhead is constant. This minimizes the overhead and greatly improves the

efficiency. In the following contents, we will introduce the PRNC algorithm

and our implemented library in detail.

Notation Definition

Now we are going to present our main idea. Before the discussion of our

algorithm, there are some notations needed to be introduced in advance.

These notations are described below:

• File: The original data. A File can be fragmented into coding segments.

Notice that in the last segment, the left data size is merely match the

fragment size. In this case, the left space in the fragment will filled

with zeros.

• Segment: One coding segment consists of blocks. The size of segment

equals to the number of blocks. This implies the number of independent

equations needed to recover the original data when decoding.

• Block: One block represents a variable in linear system. In order to

do calculation in Galois Field, one block is fragmented into number of

GF. The size of one block equals to the number of GF.

• GF: The size of one GF equals to w in GF (2). For example, the size

of GF is 8 bits in GF (28).

11



Figure 3.3: Fragmentation diagram in GF (28)

• PRN: PRN means pseudo-random number. It is a random seed used

to generate coefficients in GF.

• B: B is the matrix which represents one segment. Each row in B

represent one block and the number of rows equals to the size of one

segment. Every entity in B is a value in GF. Therefore the number of

columns equals to the size of one block.

• C: C is the square matrix which represents the coefficients. Every

entity in C is a value in GF and is generated by PRN. The number of

rows equals to the segment size.

• E: E is the matrix which represents the encoded data. The number of

rows and columns are the same as B.

The figure above provides an example in GF (28). It helps to understand

our notation more easily. Although it seems very simple in this figure, we

12



have to take care about these notations, especially for the notation segment

and the notation block. The segment can be taken as a list of variables

and can be represented as B = {B0, B1, ..., Bn} where n is the segment size.

While the block also implies a variable Bi in B and can be represented as

Bi = {Bi,0, Bi,1, ..., Bi,k} where k is the block size.

PRNC Algorithm

Here we are going to introduce the PRNC algorithm. First we will talk about

the steps in encoding and then explain how decoding works. And finally the

whole procedure of PRNC algorithm would be depicted.

When we are going to encode one segment, the raw data in this segment

would be fragmented and saved as B. Each element in the matrix B is a

GF and the elements in the same row compose one block. Assume that the

segment size is n and the block size is k, the matrix B can be represented as

following:

B =




B0,0 · · · B0,k

B1,0 · · · B1,k

B2,0 · · · B2,k

...
. . .

...

Bn,0 · · · Bn,k




All Bi,j in B are GF and the size of Bi,j depends on the degree of Galois

13



Field we use. If we use GF (28), the size of Bi,j is 8 bits (1 byte). And if we

use GF (232), the size is 32 bits (4 bytes). The choice of Galois Field degree

will affect the fragmentation, computing complexity and decode probability.

What Galois Field degree we should use depends on what we are focus on. If

we want nearly 100% decode probability, according to the previous study(city

large scale...), GF (216) is the best. If we prefer high computing speed, GF (28)

is absolute the best.

In order to explain how fragmentation works in practical, here is an exam-

ple. Assume that we want to fragment this file with segment size 10 and block

size 5 in GF (28). First, we know the size of GF is 1 byte in GF (28). Then

the size of one block is 5 byes and the segment size is 50 bytes. Therefore we

could get the matrix B as

B =




B0,0 · · · B0,4

...
. . .

...

B9,0 · · · B9,4




After fragmentation, we pick up a random number PRN. PRN plays a

random seed to generate series of random numbers. We call these random

numbers as coefficients. The coefficients are values in Galois Field and are

saved in the matrix C. Next, we use the matrix multiplication to calculate

C × B and save the result in E . Finally, we concatenate the PRN and the

elements in E to form the codec. The figure below could shows the steps

14



to generate one codec. Notice that one PRN could only generate one codec.

Each codec can be taken as a linear equation. In the linear system, we

needs n independent equations to solve n variables. Therefore, to completely

decode, we needs at leat n PRN and generate at leat n codec.

Figure 3.4: PRNC encoding process

When we collect sufficient independent codec, we could start decoding to

get the original data. First, the coefficients in each codec are recovered by

PRN. Because we use the same random function, the new coefficients gener-

ated in decoding process are the same with the ones generated in encoding

process. As Figure shows below , all codec are merged into the combinational

matrix C|E.
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


C0,0 C0,1 C0,2 · · · C0,n E0,0 · · · E0,k

C1,0 C1,1 C1,2 · · · C1,n E1,0 · · · E1,k

...
...

...
. . .

...
...

. . .
...

Cn,0 Cn,1 Cn,2 · · · Cn,n En,0 · · · En,k




Now it is a traditional linear system problem. But we are not going to

solve this directly. There are two phase in decoding process. In the first

phase, the matrix C|E is eliminated into a upper triangle matrix. Then we

will check the dependency in the upper triangle matrix C′|E′. If there is any

dependent equation, the linear system can’t be solved. Therefore we have to

wait until new codec arrived and makes the whole equations are independent.




1 C ′
0,1 C ′

0,2 · · · C ′
0,n E ′

0,0 · · · E ′
0,k

0 1 C ′
1,2 · · · C ′

1,n E ′
1,0 · · · E ′

1,k

...
...

...
. . .

...
...

. . .
...

0 0 0 · · · 1 E ′
n,0 · · · E ′

n,k




If all linear equations are independent, we start to do the second phase.

In the second phase, we solve this linear system by reduce the rows bottom-

up. The matrix C′|E′ would be reduced to I|E′′. The right matrix E′′ is the

original segment B.

16






1 0 0 · · · 0 E ′′
0,0 · · · E ′′

0,k

0 1 0 · · · 0 E ′′
1,0 · · · E ′′

1,k

...
...

...
. . .

...
...

. . .
...

0 0 0 · · · 1 E ′′
n,0 · · · E ′′

n,k




The idea of PRNC algorithm is described in detail above. To better

understand our algorithm and the library functions which we are going to

introduce, here is a state transition diagram. This diagram depicts the whole

process in encoding and decoding. Moreover, the related functions are shown

in this diagram. Notice that this diagram only explain how our library works

in PRNC algorithm. It is meaningless for a host to encode one file and then

decode in real system. But this program could do some performance analysis

with different parameters such as degree of Galois Field, segment size block

size and etc. Here, we only describe the procedure in this diagram.

When program starts, it begin reading original files and retrieving one

segment. Then the segment is fragmented and saved in the double array. The

program generates codec continuously until the number of codec is larger or

equal to the segment size n. When the number of codec is larger or equal

to n, the program does the first phase in decoding. If there is dependency

happened, the state transits to gf encode. Then the program would generate

a new codec and replace the dependent codec. The loop will continue until

17



Figure 3.5: PRNC decoding process

the codec are independent. Once all codec are sufficient and independent,

the program can decode these codec and transit the state to gf decode. After

all, the recovered data would be written into new file. The procedure is keep

working until the EOF which means the end of file. Notice that there need

some special handle in the tail of the file. Because the last part of one file is

merely equals to the size of one segment. In this case, we fill zero into these

empty part and only write the valid data.

18



Figure 3.6: state transition diagram for PRNC algorithm

PRNC Encoding Methods

• gf read buffer(): Read one segment from file and store in buffer.

• gf random(): Randomly create one PRN and generate coefficients by

using this PRN as random seed.

• gf encode(): Using matrix multiple in Galois field to encode one seg-

ment.

PRNC Decoding Methods

• gf random(): Randomly create one PRN and generate coefficients by

using this PRN as random seed.

• gf rref(): Reduce the codec and check the dependency in this linear

19



system.

• gf decode(): If the linear system is independent, the function gf decode

is called and the original data would be recover.

• gf write buffer(): Write the segment stored in buffer into file.

3.2.2 Performance Analysis

In order to know how the parameters affect the calculate efficiency, we write

programs to test the performance. These programs are written in C and

we run the programs on the computer with Intel(R) Core(TM)2 Duo CPU

2.1GHz. The size of our target file is 13.5KB. Our interested metrics are the

encoding time, decoding time, equations needed and dependent ratio. We

analyze these metrics in different Galois Field degree, block size and segment

size. The results are shown below. According to these results, in order to

achieve best performance, the segment size should be set as 100 and the

Galois Field degree should be set as 16. The block size doesn’t affect much

when Galois Field degree equals to 16 and the dependent ratio is nearly

equals to zero.

20



Figure 3.7: Encoding Time for PRNC algorithm

Figure 3.8: Decoding Time for PRNC algorithm

3.3 Pseudo-Random Network Coding Proto-

col

In this section we introduce the PRNC protocol. The first subsection de-

scribes the reliable approach for UDP transmission. In this issue, we use

Jacobson/Karels algorithm as our adaptive retransmission algorithm and the

21



Figure 3.9: Total equations needed to recover the source file

Figure 3.10: Dependent ratio for PRNC Algorithm

batch mechanism to provide flow control. In the next subsection, the detail

of PRNC protocol would be introduced. With the help of PRNC protocol,

the transmission delay and network coding overhead could be reduced.

22



3.3.1 Reliable Approach for UDP Transmission

UDP does not implement flow control or reliable/ordered delivery, thus we

need to do a little more work to ensure the transmission reliability. In our

designed protocol, there is two mechanism used for the purpose. One is adap-

tive retransmission and another is batch mechanism. The first mechanism

handle the situations when packet lost occur and the batch mechanism pro-

vide flow control and congestion control. In the following paragraph, there

are more detail about these mechanism.

Adaptive Retransmission

Because the original UDP send packets without reliability, the lost of packet

would not be discovered by the both side. In order to handle this problem,

the acknowledgement and auto retransmission is required. The choice of

retransmission timeout is not easy. If the RTO (Retransmission Timeout)

is too large, the retransmission delay time is large when packets lost. If the

RTO is too short, the packets redundancy is large so that the bandwidth is

occupied by these useless packets.

To overcome these problem, we use Jacobson/Karels algorithm. This is

an adaptive retransmission algorithm so that the RTT would change accord-

ing to the network situation. To introduce this algorithm, we begin with a

23



Figure 3.11: Three scenarios to show how RTT works

simple algorithm for computing a timeout value between two host. The host

keeps calculate average of the RTT and then to compute the timeout. Every

time we send a packet, the time would be recorded and when the ACK for

this packet arrives, the arrival time would be saved. We takes the differ-

ence between these two times as a SampleRTT. Moreover, we compute an

EstimatedRTT as a weighted average. That is,

Difference = SampleRTT − EstimatedRTT

EstimatedRTT = EstimatedRTT + (δ ×Difference)

Diviation = Deviation + δ(|Difference| −Deviation)

where the value δ is between 0 and 1.

Then the timeout value could be computed by the function of Estimate-

dRTT and Deviation.

TimeOut = µ× EstimatedRTT + ϕ×Deviation

24



According to the experience, µ is mostly set to 1 and ϕ is set to 4.

Batch Mechanism

To the purpose of maximize the efficiency of packets transmission, we use the

batch transmission mechanism. We transmit number of segments first and

wait for the ACK. The retransmission would be trigger if the host did not

receive the ACK. One batch consists of segments and one segment consists

of packets. Packets in the same segment has the same sequence number.

With the network coding technique, we do not need to tag different sequence

number of the packets in the same segment. Because once we collect sufficient

packets (equations), we could recover the original segment sequentially. All

we care in one coding segment is the number of independent codec we have.

In the other hand, one segment could taken as one super packet.

Figure 3.12: Illustration of batch transmission

While the sender starts to send packets, the batch size is set to be one

(it means that one batch contains one segment). The batch size would be

increased by one if the NEED in received ACK is zero, that implies no packets
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lost. But if the NEED is larger then zero, there must be some packets lost.

In this situation, the batch size would not change. And unlike the sliding

window protocol for TCP, the batch window would not shift until the whole

segments in this batch are transmitted successfully.

Figure 3.13: Example for batch mechanism

For example, if we want to transmit three segments and each segment

consist of two packets. At first, only the first segment in the batch window

would be send and two encoded packets in the first segment are send. The

receiver receives these packets and sends back ACK with NEED = 0 (assume

the two encoded packets are independent). The batch size of the sender

increase by one because there are no packet lost in the last transmission.

Then the index of batch window shifts to the next two segments, the second
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segment and the third segment. All the coded packets in the batch window

are send out. But unfortunately the second packet of the third segment is

missed. The receiver finds this mistake and send ACK with NEED = 1 after

RTO (Retransmission Timeout). The sender keep the second segment and

the third segment in the batch window cause there is one packet needed. In

this situation, the batch window size would not increase and send one packet

in the third segment. After the receiver ACK this segment with NEED = 0,

the sender could confirm this transmission is finish.

3.3.2 PRNC Protocol

PRNC protocol puts the PRNC algorithm into real network environment.

With the adaptive retransmission and batch mechanism mentioned above,

our PRNC algorithm could be applied in UDP. The characteristic of linear

network coding gives the advantages of data distribution and data mixing.

The flexibility of UDP packet formate helps us to construct the ideal packet

regardless of the restrict in TCP packet formate. Therefore, in PRNC proto-

col, we choose UDP as our development protocol. The following paragraph

describe the PRNC protocol in detail.
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System Architecture

The figure below depicts the architecture in one host. One host contains

the batch mechanism, PRNC encode and PRNC decode. The host receive

codec from other peers via batch mechanism and then use PRNC decode

to recover the original data. If there are other peers wants these data, the

host use PRNC encode to make codec and transmit to the peers via batch

mechanism. Notice that, in the PRNC algorithm, there are two phase for

decoding. The host do the first phase if the accumulated codec is larger than

the watermark and do the second phase if the result of the first phase is zero,

which means the codec is solvable.

Figure 3.14: The architecture for PRNC protocol

Notation Definition

To specify the detail in PRNC protocol, we have the following notation de-

scribtion:
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• Batch: One batch contains number of segments. The size of the batch

window can be presented as W .

• Segment: One segment represents one coding unit. The size of one

segment is n.

• Codec: The codec is generated from the segment by using PRNC algo-

rithm. The size of one codec is k.

• NEED: The NEED is the number of dependent equations when decod-

ing.

• watermark: The watermark is the point to trigger the PRNC decoding

and can be denoted as w.

• lost rate: The lost rate can be denoted as lt and can be calculated by

NEED/RTT .

Packet Formate

The packet format for PRNC protocol are described here. There are two

kind of UDP packets through the PRNC protocol. For the codec packet,

besides the basic UDP header which includes source port, destination port,

length and checksum, there are three header in this format: SegmentID,

Timestamp and PRN. The SegmentID identify one packet’s segment. It is
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very important that we do not use sequence number to identify every packet.

In TCP, it is necessary to identify every packet so that it can reconstruct

the original data sequentially. In PRNC protocol, there is no need to record

every packet. Instead, it records the segments. And the timestamp attribute

is to provide adaptive retransmission. Finally, the PRN attribute is used for

PRNC decoding. The last part in one codec packet is the coded data, which

can be calculated by the PRNC encoding.

When the receiver get the codec, it would check the number of collected

codec. If the codec in the same segment is larger than w, it would start PRNC

decoding phase 2. When the segment is recovered or RTT is triggered, the

receiver would send ACK back which indicates the NEED. The header

of the ACK packet format are SegmentID, Timestamp and NEED. The two

former attributes are the same with codec packet. The third attribute implies

the number of dependent equations and request for more codec.

State Transition diagram

To illustrate how the PRNC protocol works in one host, there are two state

transition diagram for both sender and receiver. In the first diagram, sender

initial the batch window and set the next batch. Then we do PRNC encode

for all segments in the batch window. There are W × n codec generated at

this stage. These codec would be send out in the next stage - Send Segments.
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Figure 3.15: The packet formate in PRNC protocol

After sending out segments, the sender start waiting ACK. If the ACK arrives

with NEED = 0, the sender starts preparing the next batch (the batch

window size increased by one). But if the ACK arrives with NEED 6= 0, the

sender will prepare NEED number of codec to retransmit and wait for the

ACK again. If the ACK does not arrive in RTO, we assume the whole codec

were missing. In such situation, the sender will prepare W × n codec and

send again. The overhead is great when the timeout trigger. Therefore, the

adaptive retransmission is very important and we don’t increase the batch

window dramatically.

At the side of receiver, first we have to initialize the batch table and

set the expect batch window. The packets with different SegmentID would

be ignored when arrived. When the first expected packet arrive, the receiver

start counting time. If the time is larger than RTO, the ACK with NEED =
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Figure 3.16: State transition diagram of the sender in PRNC protocol

n for the segment would be send back. If the number of packets is larger

than watermark w, the receiver start doing PRNC decode phase 1. After row

reduce, we could check the codec dependency. If the codec in one segment

are determined independent, the receiver could do PRNC decode phase 2

and then send ACK back with NEED = 0. But if there are no sufficient

codec or codec dependency is found, the receiver would send ACK back with

NEED = NumberofDependency. Then go back the stage Receive Packets

waiting for additional codec.
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Figure 3.17: State transition diagram of the receiver in PRNC protocol

3.3.3 Performance Analysis

In order to know how practical our protocol is, we implement a file transfer

program which is build with PRNC protocol. This program is written in

C. Our test environment is in WLAN. We compare the performance with

FTP and UFTP. The download time and throughput are recorded in dif-

ferent file size with size from 100KB to 10MB. According to the result, we

found the PRNC protocol has much more performance compare with UFTP

and is nearly equals to the FTP. Although network coding mechanism has
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some overhead such as computing time, but the transmission time is still

the bottleneck. Our batch mechanism could save the times of transmission

ACK, since one ACK message is send to acknowledge one segment of pack-

ets. Compare to the FTP, the PRNC has better performance in transmitting

larger file. The larger file is transmitted, the more packets may be lost. It

implies that our PRNC protocol could sustain unreliable environment.

Figure 3.18: Download time comparison for PRNC protocol, pure FTP and

UFTP
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Figure 3.19: Throughput comparison for PRNC protocol, pure FTP and

UFTP

35



Chapter 4

Conclusion

We proposed the novel idea in network coding and develop PRNC protocol.

The PRNC protocol provide better performance compare to the traditional

file transfer protocol and also provides security. And it could not only applied

in end-to-end file transfer but also peer-to-peer network. We believe that the

benefits would be more when it is used in peer-to-peer network. In the future

work, we could implement peer-to-peer applications using PRNC protocol

and analysis the performance compare to the one without PRNC protocol.

These issue are left for anyone interested in.
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