bl E S RE DT LT G 1T
AFATOR: Anonymous and FAult-TOlerant Routing in

overlay networks

Boyo4 xRy Student : Chia-Chen Wu

i ERER M L Advisor : Dr. Shiuhpyng Shieh

A Thesis
Submitted to Institute of Network Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Computer Science
July 2008

Hsinchu, Taiwan, Republic of China

aif:a\@],i‘;;_&;]

&

B ENRERY O F IHNTRBREL THARF AV EL Do o d
1% fEARLEPANRI BIEI R BE L -2 EN R RESE LR
o et BT F TR AP iE ¢ AR SIS (dentity) ¢ IR R Y X T SHR
FhF FUNT D G F LR GBRE T R RER Y e g kg En L
A1 % K & 4c i (layered encryption) ™ FURER FALE R chioa > 24 B s
a° BhaF I o 2P 4 * Fuzzy Identity-Based Encryption (Fuzzy-1BE) = ;2 k& 3| %
Lotk d BT ch& ERAE 2 45 3F o 1% Fuzzy-IBE > &3 B R F F R hlas b
RAOPEYP R Y FT P L PR RRART b BRY F DN E BT D
oo Flpt o FRRS 0 - SR L AR I BN TR T]
PRl L BE e AR k(s 0 AN E AT EIER IR Z B TR B

feg st o

AFATOR: Anonymous and fault-tolerant

routing in overlay networks

Student: Chia-Chen Wu Advisor: Dr. Shiuhpyng Shieh

Department of Network Engineering

National Chiao-Tung University

Abstract

Anonymity is important for both data-request or response in overlay networks.
Overlay routing reveals information since it requires identity to locate data. We
proposed an Anonymous and FAult-TOlerant Routing protocol (AFATOR), which
provides anonymity against adversaries, and tolerance of node failures. We randomly
select intermediate nodes to forward the messages and use layered encryptions to hide
the originator from the intermediate nodes. We also apply Fuzzy Identity-Based
Encryption (Fuzzy-IBE) scheme for tolerance of node failures in the routing path.
Leveraging Fuzzy-1BE, a user can decrypt a ciphertext encrypted with other's public
key if and only if the two users are within a certain distance. Thus, a node can easily
take over message forwarding if its neighbor node fails. Analysis of anonymity and

failure tolerance of the proposed protocol is also given.

AR A F R T ks & Rl AR AL F R A
& 4p 5 % 4 ¥ (University of California, Berkeley)i& 7 Z #p» B 7 enF % > & jiF
F 30 e P Prof. John Kubiatowicz foist-¥ (7 ek o dp 8 o B 3P, 7 F T30 eh
i T s g R A SRR R E A B RO E R b
R A R EE G AR MY BEFIFTEOLLA A SR
NG ORF AP L FREBDTHL I X0 0¥ S RS R
EAARRBE THKELE RNy B A DR KA R
RPFEAGI > A PRI A F A a5 &
ERARNE - Y RBMTRIOM-RE P S H P frsir) &
AP E AR B F I FF PR R af e BIEGOFE 0 FA 4500
B AT R A S RO L A Stk A G B - g
FEEP(RF R R AR feT € et (P E{oE) S A5
PR sk o EA P BB e
BRERREHADTA - AR FRBAES -2 3 A BA RS BT
WY oA BRMPERE > A A Gt 2 AT EBRBROLE, A
gzl Am od R BT ARG EREER T o ARARITF A

™

'_'g__" '_'g__" WE ﬁgri‘ !

Table of Content

ADSTFACT ... I
=k TR i
Table of Contentc.coooiiiiiiii e vV
LISt Of FIQUIES ... VI
List Of TabIeS......ccvvei e, Vil
Chapter 1 INtroductionccceevie i 1
AV 0] £V U1 o] o e RS 1
1.2 CONIIDULION ...t e i s e 3
1.3 SYNOPSIS coveeuveeieeieiaherens desiasnnnsnnan s seeasiasseessseasseessesssensssessseessenssennnes 3
Chapter 2 BaCKgroUuNd . i cisiieeeeineeseeesieesieesiee e eneeens 4
2.1 OVerlay NEtWOIKSccviiiiiieiieiie et 4
2.2 ldentity-Based CryptoSYSIEM........cccoviiiiiiieieniene e, 5
2.3 SUMIMAIY ...ttt sb e snes 8
Chapter 3 Related WorkK.........ccccooeeiiiiiii e, 9
Sl COMWAS ..o 9
3.2 ONHONT TOF ettt 10
I B -1 72 1o P PRPRPPR 11
A AGYAAL ... e 12
3.5 CASNMEIE. ...t e 13
3.6 SUIEPAtN ..o 15

3.7 SUMIMATY ...ttt bee s 17

Chapter 4 Proposed Scheme (AFATOR).......ccccccvvvveeeinnnn. 18
4.1 INOTALION ...t 19
4.2 PUIMITIVES ...ttt 20
4.3 Node RegISIrationcccvveiiieiieiee e 21
4.4 Topology FOrmMation..........ccceeveieeiieenie e 23
4.5 CoNtent REQUESTvviiiiiiieciiie st 26
4.6 EXAMPIE oo 30
A7 SUMIMATY ceiviie ettt sitee sttt e s e et e e sbae e s sbneessnbaeesnnneeens 35
Chapter 5 ComMPariSONc.cveviieeiiie e 36
5.1 Performance ..ottt il s 36
5.2 SECUIILY ©ovvievieieie e ciies e e saicatbos s sain e ame e aseesnseenteateesseessnesnsesnneensens 40
5.3 SUMIMAIY ... ittt e a sttt shig e esteeenbeeesteeesnaeesnaeeenteeabeens 42
Chapter 6 ANalySIS........ i cisiies e 43
6.1 Threat Model.........cccoooiiiiii e, 43
6.2 ANONYMILY ANAIYSIS...cc.viiiieciieiie e 44
6.3 Resilient to Node Failure ..., 45
6.4 Against traffic ANalYSIS.......cccoiviiieiieiie e 47
5.5 SUMMETY ...oiiiiiiie ettt 48
Chapter 7 ConClUSIONc.ccoviieiiie e 49
REFEIENCE ... 50

List of Figures

Figure 1.1 Communications trough OVErlays...........ccccevverieiieeiesiesiesr e see e eee e 1
Figure 1.2 Node failures in the routing path ..o 2
Figure 2.1 OVErlay NEIWOIKS.......ccuviieiieieeie st ste ettt re e e sneenne s 4
Figure 3.1 Crowds NEIWOIKccoveiieiieiisie ittt nee e nne s 9
Figure 3.2 ONION NEIWOTKcviiieieeie ettt esre e ens 11
Figure 3.3 Tarzan NEIWOIKcccuiiieiiiieiiee et 12
Figure 3.4 AgYaat NEIWOIK..........ccueiiieiiiie ettt ens 13
Figure 3.5 Cashmere NEIWOIKccuoiiiiiieeec e 15
Figure 3.6 SUrePath NEIWOIK..........cccveiiiiiiice e 16
Figure 4.1 Procedure Of KeY eXIIraCtiON .. i e s eerveereererremriesieesiieiesieesieseeseeseesseenees 21
Figure 4.2 Private KeY COMPONENES. . .c.uumradiatiiaka e iaasteeresreesieseeseeseesreesseeseseesseeseennes 22
Figure 4.3 Network tOp0l0gY e s aiaianes e it 24
Figure 4.4 Failure detection in Chord=like' protocol...............ccccovevv e 25
Figure 4.5 Return path formation.........o i e 27
Figure 4.6 Forward path formation...........cccccvieiieii i 27
Figure 4.7 Routing path StripPINg PrOCESScceververierieriiriesiisieeeeeenre et 28
Figure 4.8 Transitions of request and reSPONSE........cccvvveieeieiieere e 32
Figure 5.1 Number of the public and private key pairs’ comparison............ccecervennees 40
Figure 5.2 Key Storage COMPAIISONeivveueiieiieeireseesteesieseesseessesseesseesesseesseeeesnes 40
Figure 6.1 Probability to be INFAtOr..........ccooviiiiee e 45
Figure 6.2 Forward probability with various error tolerant factorscccccvevene. 47

VI

List of Tables

Table 4.1 NOTALION.ciiiieeicir e 19
Table 4.2 MeSSAgES FlOW.......ccviiiieie e 35
Table 5.1 Performance COMPAIiSONc.ccveveieeieaieiiesie e see e seese e sree e esaeseesneas 36
Table 5.2 Security COMPAIISON.cccviiiiieieie et sreas 40

VI

Chapter 1

Introduction

1.1 Motivation

Overlay networks [1] have become tremendously popular over the last few years.
Users distribute lots of information which can be easily observed by others through
overlay networks. They may want to request or provide some secret file, such as
gossip, movie, or music, without revealing identities or eavesdropping by other

adversaries. It is important to develop a secure protocol for anonymity protection.

///’\\/"/_y/ -

i b

Figure 1.1 Communications trough overlays

There are several kinds of anonymity [2] including initiator anonymity, responder
anonymity, and relationship anonymity (i.e. unlinkability). Initiator anonymity means
the identity of the initiator is hidden to all other peers during communications.
Responder anonymity hides the responder from all other peers including the initiator.
But it is against the basic DHT lookup scheme: identifying a node mapping to an
object with the closest identifier. Mutual anonymity provides both initiator anonymity

and responder anonymity. Relationship anonymity, also called initiator-responder
1

unlinkability, means that even if the initiator and the responder are identified as
participating in some communication, they cannot be identified as communicating
with each other.

Most anonymity related systems, such as Onion routing [3], make all the
anonymous connections go through a fixed set of trusted nodes, like onion routers,
which are not preferred in decentralized overlays. By monitoring the traffic of either a
colluding entry or exit, adversaries may easily identify initiator or responder. Failure
of any onion router in the routing path fails to deliver the message. That results data
loss and jitter before the forwarding path is recovered or a new one is constructed.

Now many systems have been designed to exploit peer-to-peer overlays in
anonymous communication, including Agyaat [12], Tarzan [13], EDR [16], and
NEBLO [18] [39] [40]. They use a'sequence of random nodes as anonymous paths or
tunnels. If any node along the foute fails, or-misbehaves, then the message is never
delivered to the destination (See-Figure 1.2).Itis difficult for the initiator to figure out

which node has failed.

[R1,[R2,[R3,[D,[Q)clralro)ri] R1 O
[
Destination

Figure 1.2 Node failures in the routing path
Therefore, we design a protocol to provide an anonymous and fault-tolerant

routing protocol named AFATOR.

1.2 Contribution

At first, we provide anonymous routing without proxies. We use layered
encryption and random intermediaries to achieve anonymity. Secondly, we achieve
unlinkability between initiator and responder without being identify from adversaries.
Every node in the path knows only the previous hop and the next hop. An
intermediate node cannot tell the initiator or responder. Thirdly, it is easy to recover
the routing path without request re-transmission. By using Fuzzy Identity-Based
Encryption (Fuzzy IBE) [4], a user can decrypt a cipher-text encrypted with other's
public key if and only if the two users are within a certain distance. Thus, any node
can easily take over message forwarding if its neighbor node fails. At last, AFATOR

uses smallest key storage and leaks'less information about the responder.

1.3 Synopsis

The rest of this thesis is organized as-follows. In Chapter 2, background is
surveyed. Chapter 3 reviews other relevant research in anonymous systems. In
Chapter 4, we proposed a scheme to provide anonymity against adversaries and
tolerance of node failures. In Chapter 5, we compare AFATOR with other existing
researches in performance level and security level. We give a detailed analysis of the
security of AFATOR in Chapter 6. Finally, the conclusions and further work are

given in Chapter 7 and Chapter 8.

Chapter 2

Background

We give a brief overview of overlay networks and ID-based cryptosystems.

2.1 Overlay Networks

Overlay networks [1] are on top of other networks (See Figure 2.1). The
important feature for privacy and mobility is that they decouple network address from
physical placements of peers. There are two kinds of existing overlay systems:

unstructured overlays and structured overlays.

Physical Layer

Figure 2.1 Overlay networks
An unstructured overlay network system [30] [34] [36] [37] [38] is composed of
peers joining the network without any prior knowledge of the topology. The peers
send queries by flooding across the overlay within a limited scope. When a peer
receives the query, it replies a list of content matching the query to the originating
peer. It is effective to locate the highly replicated data with flooding, and resilient to
join or leave the network. But they are unsuited to locating rare data in the large size

network.

The disadvantages of unstructured overlay system are there’s no guaranteed
lookup of a data and a large resource is needed due to the broadcast of queries. The
advantage is easy to achieve mutual anonymity.

Structured overlay networks like Chord [5], Tapestry [6], Kademlia [35], and
Pastry [7] provide scalable and guaranteed lookup of data, a feature especially
missing in unstructured overlay networks. They are receiving more attention due to
the performance of routing.

Structured overlay is composed of a set of nodes, where nodes are assigned
identifiers uniformly at random from a large identifier space. Keys are assigned to
data items and nodes are organized into a graph that maps each key to a node.

Most structured overlays support Key-Based Routing (KBR) [8], enabling
applications to route a message to any specified key selected from the identifier space.
Applications are allowed to locate data in.a probabilistically bounded and small
number of hop counts while every node-contains only a small number of information
in its routing table.

The advantage is more efficient than unstructured overlays. But the basic DHT
lookup scheme (i.e. to identify a node mapping to an object with closest identifier)

against the responder anonymity.

2.2 ldentity-Based Cryptosystem

ID-Based Cryptosystem [9] was introduced by Shamir in 1984. The main idea is
that the public key of a user can be derived from public information that uniquely
identifies the user, such as an email address or IP address. The traditional approach is
to use the public key infrastructures, in which a certification authority (CA) issues a

certificate which binds a user's identity with his/her public key. The need to make

5

available authentic copies of entities' public keys is a major drawback to the use of
public-key cryptography. By using ID-Based Cryptosystem, all the participants need
not to access public key directory. The major advantage is that it simplifies the key
management process which is a heavy burden in the traditional certificate based
cryptosystems.

Identity-Based Encryption

In 2001, Boneh and Franklin presented an efficient Identity-Based Encryption
(IBE) scheme [10]. They performed encryption and decryption operation by using a
bilinear map (the Weil pairing) over elliptic curves.

The bilinear map transforms a pair of elements in group G; and sends it to an
element in group G, in a way that satisfies some properties. The most important
property is the bi-linearity that it'should be linear in each entry of the pair. Weil
pairing on elliptic curves is selected as the bilinear map. That is, they use the elliptic
curve group as G1 and the multiplicative-group.of a finite field as G2.

Their ID-based encryption scheme.works as follows. A trusted third party called
the private key generator (PKG) initially chooses a secretive master key s and
announces the public information including elliptic curve equation, the base point P,
the public key sP of the system, and other needed hash functions.

Each user has the public key KU = QID that is a point on elliptic curve
corresponding to his ID and is known to all other users. The private key is generated
by KR =sQID, which is obtained from the PKG.

To encrypt a message M, the sender randomly chooses an integer r and sends (U,
V) = (rP,M&h(e(QID, sP)r)) to the receiver, where h is a hash function announced by
PKG in the public information and e is the Weil pairing function to be elaborated in

Section I1-D. To decrypt the received cipher text (U, V), the receiver uses the private

6

key sQID to compute M= V©®h(e(sQID, U)). This decryption procedure yields the
correct message due to the bilinearity of the Weil pairing (i.e., e(sQID, U) = e(sQID,
rP) = e(QID, sP)r).

Fuzzy ldentity-Based Encryption

In 2005, Sahai and Waters proposed Fuzzy lIdentity-Based Encryption (Fuzzy
IBE) [4], where a user can decrypt a cipher-text encrypted with other's public key if
and only if the two users are within a certain distance judged by some metric.

Fuzzy-IBE gives rise to two interesting new applications. The first is an
Identity-Based Encryption system that uses biometric identities. That is we can view a
user’s biometric, for example an iris scan, as that user’s identity described by several
attributes and then encrypt to the user using their biometric identity. Since biometric
measurements are noisy, we cannot use existing IBE systems. However, the
error-tolerance property of Fuzzy-IBE allows for -a private key (derived from a
measurement of a biometric) t0 decrypt-a-cipher-text encrypted with a slightly
different measurement of the same biometric.

Secondly, Fuzzy IBE can be used for an application that we call “attribute-based
encryption”. In this application a party will wish to encrypt a document to all users
that have a certain set of attributes. For example, in a computer science department,
the chairperson might want to encrypt a document to all of its systems faculty on a
hiring committee. In this case it would encrypt to the identity {“hiring-committee”,
“faculty”, “systems”}. Any user who has an identity that contains all of these
attributes could decrypt the document. The advantage to using Fuzzy IBE is that the
document can be stored on an simple untrusted storage server instead of relying on
trusted server to perform authentication checks before delivering a document.

Setup(d): Providing some security parameter as input, the Private Key Generator

7

(PKG) runs this algorithm to generate its master key mk and public parameters
params which contains an error tolerance parameter d. Note that params is given to all
interested parties while mk is kept secret.

Extract(mk, ID): PKG runs this algorithm to generate a private key associated
with ID, denoted by D,p by providing the master key mk and an identity ID as input.
User’s identity, ID, as a set of strings representing a user’s attributes.

Encrypt(M, ID’, params): Providing the public parameters params, an target
identity ID’, and a plaintext M as input, a sender runs this algorithm to generate a
cipher-text C’.

Decrypt(C’, ID, params): Providing the public parameters params, a private key
D\p associated with the identity ID and a cipher-text C’ encrypted with an identity ID’
such that | ID’NID | = d as input, a receiver runs this algorithm to get a decryption,
which is either a plaintext or a “Reject” message. I the set overlap |ID N ID’] is
greater than or equal to d the algorithm will-output the decrypted message M.

When PKG is creating a private key. for.a user, he will associate a randomd — 1
degree polynomial, q(x), with each user with the restriction that each polynomial have
the same valuation at point 0, that is q(0) = y.

If the user is able to “match” at least d components of the cipher-text with their
private key components, then they will be able to perform decryption. However, since
the private key components are tied to random polynomials, multiple users’ are unable

to combine them in any way that allows for collusion attacks.

2.3 Summary

In Chapter 2, we give a brief introduction and backgrounds of overlay networks

and ID-based cryptosystems.

Chapter 3

Related Work

There are many research on anonymous systems such as Crowds, Onion Routing,
TOR, Tarzan, Cashmere, Agyaat, and Surepath. We give a brief introduction about

their features, advantages and disadvantages.

3.1 Corwds

Crowds [14] simply uses no public-key encryption, so any node on a circuit can
read users’ traffic. It provides anenymity by having messages route through
anonymous paths involving a randomly ichosen sequence of nodes. The initiator sends
the message to a randomly-chosen node’called “jondo.” Upon the message, each
jondo randomly decides to either send the message.to the responder or to forward it to

another jondo.(see Figure 3.1)

jondol jondo3

Source

. Destination

Figure 3.1 Crowds network
In such systems, each node is a mix and an anonymous path can follow any
possible path through the system. However, the resulting anonymous paths are

vulnerable to node failures: If a node on a tunnel is down, the request/reply message is
9

not able to route through the tunnel to the destination. Consequently, node failures

pose a functionality problem for anonymous paths.

3.2 Onion/ Tor

Onion Routing [3] uses a static set of dedicated onion routers to redirect network
traffic. Before sending a message, the sender selects a set of currently active routers to
forward through. Session keys are distributed to the chosen routers during the setup
phase. The sender creates an onion by encrypting the message with the public key for
every router in the routing path.

To transfer a message, each onion router decrypts the outside layer by its private
key. After that, it discovers the next hop and forwards the message. Every relay node
knows only its previous and next hops.

Node churns, frequent node arrivals, departures,-and failures, limit the scalability
of Onion Routing.

Tor [17], the second generation of Onien Routing, is one of the most popular
privacy enhancing systems. Its goal is to provide initiator anonymity and responder
anonymity against non-global adversaries by using rendezvous points.

Tor proposes using a directory server to maintain router information but this
approach is also limited in scalability. It has also been shown that if the first or last
router is compromised in an Onion Routing network (see Figure 3.2), the source or

destination is revealed [31].

10

. Destination

Source

Figure 3.2 Onion network
In their current implementations, all of the approaches do not allow client
applications to choose routes that adhere to application-specific criteria. Routes are
chosen using pre-defined immutable heuristics.
Recent work has shown that 4{@@ Tor mmmymlty network is vulnerable to an
attack in which eavesdroppers 'éir;{uurr-is;hgfno‘geneous routing policy by falsely
e '.'_',-

advertising high bandwidth |IH:RS d“raw:ﬁg tr@fﬁc tpwards mixes under its control

[32].

3.3 Tarzan

Tarzan [13] provides anonymity with high resistance against traffic analysis by
using layered encryption, multi-hop routing, cover traffic and a special mix selection
protocol.

The source chooses a set of relays to act as a path and iteratively establishes a
tunnel through these relays with symmetric keys between them. The creation of a
tunnel incurs both significant computation overhead and delay. The source wraps the
packets in several layers of encryption and sends it through relay nodes. The relay

node strip off one layer and sends it to next relay node. The exit point of the tunnel,

11

pseudonymous network address translator (PNAT), decrypts the last layer to extract
the original packet, and operates as a network address translator (NAT). After
translating the private address to one of PNAT’s real addresses, PNAT forwards the

message to the Internet (See Figure 3.3). The response repeats the process in reverse.

|
! relayl | PNAT
|
| O lepriv 9 [Ppub
|
| | o
Source O : Destination

IPpub9 IP

priv
Tunnel private address

Figure 3.3 Tarzan network

Since none of the peers on a‘tunnel know the whole path, an adversary cannot
figure out communicating peers. But this design is still vulnerable if an adversary can
observe traffic throughout the Internet.

Another vulnerability of Tarzan is.the resilience of node failures. The message
cannot reach the destination if any node on a tunnel fails. Consequently, node failures
pose a functionality problem for anonymous paths. The tunnels are static and any
relay failure requires formation of a new tunnel.

Although Tarzan provides a high level of sender and recipient anonymity, the

sender still has to know the address of the recipient in order to communicate.

3.4 Agyaat

Agyaat [12] provides a compromise between anonymity and efficiency by means
of a two-level hybrid organization in which the Chord structured overlay works

together with the Gnutella unstructured system, Gnutella-like “clouds” are connected

12

with one another by means of a Chord ring.

As shown in Figure 3.4, initiator S can flood its request to every peer in its cloud
A. One of those peers takes the request out of the cloud, onto the main DHT ring. A
normal DHT lookup takes over to locate the cloud to which the responding peer D
belongs. At the responder’s end, some peers in the cloud of the responder get the
request and then broadcast it in its cloud. After receiving the request, the responder

peer replies by following a similar path back to the initiator’s cloud.

CloudA

CloudB

EJ“;%?F ﬁ'ﬁ’” 3
| |
Figure 3.4 Agyaat network

Normal DHT maps a key onto a peer, but Agyaat makes a key mapping onto a

cloud which links to the appropriate peer.

3.5 Cashmere

Cashmere [11], a resilient anonymous routing on structured overlay networks,
provides both source anonymity and unlinkabality of source and destination.
Cashmere is designed to use a prefix-routing based on structured overlay network,

such as Tapestry and Pastry. The routing path used in Cashmere is a set of distributed

13

relay groups rather than a single node. There are k unique prefixes and public/private
key pairs for each k-bit nodelD. Each relay group has a m-bit GID, where 1=m=Kk.

Layered encryption is applied on the routing path encryption by the
public/private key pair shared with all members of each relay group. Except all the
members of the relay group in the routing path fail, the routing path is remained valid.
The source node can randomly orders the relay groups to hide the destination relay
group containing the destination node. All nodes in a relay group are capable of
decrypting a message (only the forwarding path information) which was addressed to
that relay group. While a node receives and decrypts the message, it sends the result
to the next relay group and broadcasts the result to all the other members in its relay
group.

The key benefit of Cashmere over traditional approaches is that it provides an
increased resilience to node failures and node churns which generally degrades the
performance of traditional anonymous-routing protocols based on Chaum-Mixes.
Traditionally Chaum-Mixes based"routing protocols achieve anonymity by relaying
the traffic through a sequence of nodes, such that any two nodes, which are not
adjacent to each other along the path, are unable to identify each other. Thus, if the
relayed path contains more than two nodes, then there is no way the destination can
identify the source. More specifically, no downstream node can identify the upstream

nodes.

14

R1 (GID=023)

S -
- -«
N
/ \
\

R3 .
(GID=223)
/7
/ ~
I N
\ \
\ \
S \
D
/
~ ,,
Figure 3.5 Cashmere network
3.6 SurePath
In SurePath [2], a node seew nonymlty generates a small number of
RSAs containing session keys oysthe R ﬁ‘%,,mto the DHT overlay, forms an

\a &

anonymous path using a subset of the d o,_:_ -' ¥2$ﬂs and sends messages through

the resulting anonymous path. L e 'RSA is stored on k nodes whose

nodelds are numerically closest to f‘=-.~.::

'*-' rsetld These k nodes are the replica
set for the RSA and k is the replication factor. Leveraging the DHT routing
infrastructure and data replication mechanism, SurePath is fault-tolerant to node
failures. A malicious node can disclose the RSAs stored in its local storage to other

colluding nodes such that the malicious nodes can pool their RSAs to break

anonymity of other users.

15

D

Figure 3.6 SurePath network

The following are the advantages:

a) To improve resilience of anow outing in overlay networks
A2

b) Leveraging the DHT r

SurePath is fault-tolerant to

c) By carefully choosmg GWH?-‘E‘: and tunnel length, SurePath can
strike a balance between fun%ﬁffgn; anonymity.

d) SurePath’s performance optimized tunnelling mechanism can greatly
improve routing performance.

e) Users seeking anonymity must reform their tunnels periodically against
colluding malicious nodes in dynamic P2P networks to reduce the risk of
having their anonymity compromised.

And the disadvantages list as follows.

a) SurePath lacks the ability to control future hops along a tunnel. It trades this
ability for functionality.

b) The admission control problem in SurePath has not been addressed. In

securing routing, the certified nodelds could control the admission of peers,
16

and we believe trust management could be used to control the admission and
exclude malicious peers from the system. In addition, other incentive
mechanisms could possibly be introduced to encourage nodes to protect
others’ anonymity.

c) SurePath does not have a mechanism to detect compromised tunnels. It
requires users to reformtheir tunnels periodically against colluding malicious

nodes.

3.7 Summary

In Chapter 3, we describe several related works of anonymous network system. It

includes Crowds, Onion/TOR, Agyaat, Tarzan, Cashmere and SurePath.

17

Chapter 4

Proposed Scheme: AFATOR

There are three main phases in AFATOR:
* Phasel: Node Registration

In the first phase, Private Key Generator (PKG) would do the Setup
operation. Every node must do registration from PKG to get some system
parameters and its private key while joining the network.

* Phase2: Topology Formation

Chord-like protocol is used to setup network topology including route
discover and routing table maintepance. It can route bi-direction by using
routing table with several predecessors and successors.

* Phase3: Content Request

For content request phase, we: use layered encryption and random
intermediaries to achieve anonymity. Every node in the path knows only the
previous hop and the next hop.

We also apply Fuzzy Identity-Based Encryption (Fuzzy-1BE) scheme for
tolerance of node failures in the routing path. By using Fuzzy-IBE, a user can
decrypt a cipher-text encrypted with other's public key if and only if the two
users are within a certain distance. Thus, any node can easily take over
message forwarding if its neighbor node fails.

We have investigated the use of the different constructions [23] [41] for
Fuzzy IBE scheme. The new construction we used [23] is more efficient in

both extract and encryption operations.

18

4.1 Notation

At first, we shall introduce the notations used in this protocol. The notations and

their interpretations are listed in Table 4.1.

Symbol Description

S Initiator

Ri The intermediaries chosen from the initiator S
R’ The real existing node whose id is close to Ri
F The file which initiator requests

D The destination which stores the file F

IDx Identities of X

SK Secret key produced.by, S

PuKyx, PrKx Public key and private key for X

Ts Return path specified by'S

Q Query

Table 4.1 Notation

19

4.2 Primitives

We give a brief review of admissible bilinear pairing [10]. Let G; and G; be
groups of the same prime order p. An admissible bilinear map, denoted by €, has the
following properties:
€& G1xG1—> Gy

1. Non-degenerate:

g is a generator of G; = € (g,9) generates G,
2. Bilinear:
&(9" ¢") =€(9.9)" ,VabeZ geG,

3. Efficiently computable:

A efficient algorithm to campute é (g,g) exists for any g € G;

Recall that we apply Fuzzy IBE scheme for aHowing a cipher text created by
identity w can be decrypted with a ptrivate-key-of identity w’ where | wNw’ | = d. Let
G1 be a bilinear group of prime order.p.and-make g a generator of G1. And let the
bilinear map &: G1xG; — G,.

The definition of university U is {0*2°, 1*2°, ..., 0*2"! 1*2"'}. For each
identity is viewed as a set of attributes or bits, w = {w,, Wq.1, ..., w2, Wi}. The
identities of nodes will be element subsets in the universe U. Each element would be
associated with a unique integer in U.

The Lagrange coefficient Ajsx) for ieZ, and a set, S, of elements in Zy:

X—]

ALS() =] —

jes,j=i 171
Identities will be element subset of some universe. And we will associate each

element with a unique integer in Z,*.

20

4.3 Node Registration

Private Key Generator (PKG) first generates a group G1 of prime order g. and
constructs a bilinear map é: G1xG1 — G2, where G2 is a group of the same order g.
PKG picks a generator g of the group G1.

Second, PKG randomly picks g1 €Gs, s €Z*; and compute go=g°. Then, PKG
chooses a hash function H: Z*; — G and selects an error tolerance factor d. After that,
PKG generates its master key: <G, G, €, g, q, H, g1, g2, > and keeps it secret. PKG
also generates system parameters which contain an error tolerant factor d and
publishes them to other registered nodes: <Gi, Gy, €, g, q, H, 01, g2, d>.

Third, for any node provides its ID: (ui,..., un) to PKG, PKG picks a random
polynomial p(-) of degree d-1 over Z, such that p(0) is equal to s. Then, PKG
computes each private key component Dy;for.i=1,...;n:

Dyi= (74 8,a) = (91 HEP % g%,

As result, the private key of identity.1D.is:composed of n components as follows:
PrKip=< Dy ..., Dyn>=<((g1 H(ua))P?, ¢°), ... (g1 H(un))™*", g7)>

After finishing computation, PKG returns private key PrKp = (Dy, ..., Dyn).

PKG Input:
mk, params, 1D,
Dy / Computation
Output:
Prka Private key PrK,
Node A

Figure 4.1 Procedure of key extraction

For example, node A can get its private key PrKa from PKG by providing its IDa.

21

The procedure of key extraction is shown in Figure 4.1.

As you can see in Figure 4.2, for each of the attributes or bits associated with a
user’s identity, PKG will issue a private key component that is tied to the user’s
random polynomial p(x). Each identity with the same restriction that the value at point
0 for each polynomial are the same, that is p(0) =s.

The private keys of different users are generated from different random
polynomials. No group of users should be able to combine their keys in such a way
that they can decrypt a cipher that none of them could. That is the adversaries cannot

combine their keys to form a new one for decrypting some other cipher text.

|D=(|J11 ""”n)

Private Key

(gl H(I»ln))p(""l; gp(lln])

Figure 4.2 Private key components

22

4.4 Topology Formation

AFATOR can be built over a structured overlay network, which provides a
scalable routing substrate for building resilient, large-scale decentralized systems. The
routing protocol used in such overlay substrate is similar to Chord [5], where every
node is assigned a unique identifier from a large key space, and the routing between
any two nodes typically contains O(logN) hops, where N is the total number of nodes.

Chord-like protocol is used to setup network topology, including route discovery
and routing table maintenance.

Each node, acting as a proxy and router, stores information about only a small
amount of its neighbors. But the information generally is not enough to determine the
node where data located. The information can be used by attackers to compromise the
anonymity of storage nodes, i.e. recipient anenymity. The data maps onto a node by
using identity. The data is assigned ito the-first. node whose identifier is equal to or
follows the identifier of the data. The distance hetween data and node is within d.

When a node joins the overlay network, it first finds a neighbor node and
initializes its routing table. The new joined node exchanges some information with
neighbors and updates the routing table. Each node maintains a neighbor set of m
nodes (m/2 neighbors clockwise and m/2 neighbors counter clockwise). Whenever a
node wants to lookup data, it can choose clockwise way or counter clockwise way to
route the message.

We give an example to show how to route a message through the CHORD ring
network. As you can see in Figure 4.3, N8 wants to route the request to the node
which stores data 50 by checking its neighbor list. After finding the closest neighbor

to data 50, N32, N8 routes the request through N32. Upon N32 receiving the request,

23

it checks its neighbor, finds the neighbor that close to data 50, and routes the message

to the neighbor.

N51 | N1
N56 | N4
N57 | N8
N60 | N14
N60 N1 N1 | N21
' N4 N4 | N32
N42 N56 NsﬁNS?
N48 N57 54 — N8
N50 | N60 {——=__Lookup(50)
51 B
% ! N14
NS0, ‘
5 10
50
N48|
N32 | N50 _ O N21
N38 | N51 N42 ™
N42 | N56
38 N32 N14 N42
24 N21 N48

Figure 4.3 Network topology

If a node cannot find an active neighbor which acts as proxy to join the network,
it creates a new ring after a timeout. The network can contain multiple rings.

The correctness of Chord-like routing protocol relies on every node knows the
previous hop and the next hop. The nodes which is compromised or failed will lead to
incorrect lookups. In order to increase the robustness, it is important to pick a suitable
m. The problem is dependent with Chord and I’m not going to discuss it in this thesis.

It’s easier to detect path failure by using soft state than hard state. Each node
periodically broadcast hello message to see if its neighbors are active or not. Without
any response from the neighbor node, it can mark the neighbor as failed node in the
routing table. The node can remove the failed neighbor node from the routing table
after a period without any messages. A hello message also indicates that sender is

active.

24

N56 | N4

N48 | N57 N57 N8
N50 | N60 N60 N14
N51 N1
................ N60 N60 F N14
N1 N1 | N21
N57 N4 N4 N32
{ N56. » I |
i |54/ Ng
*.N51
Ny | N14
Ngbr 1™ 10
50 ‘ 9
N48\
SO N21
N42 < 4
N
N38 .
38 N32

24

Figure 4.4 Failure detection in Chord-like protocol
As shown in Figure 4.4, N8 originally.routes.to N50 through N60. While N8
detects that N60 is not active, N8 choases another neighbor N1 to send lookup
message and marks N60 as faulty.node in-the-neighbor set. If N60 is still not active
after a period, N8 removes N60 from the neighbor set. Otherwise, N8 clears the faulty

mark of N60.

25

4.5 Content Request

We use layered encryption and random intermediaries to achieve anonymity.
Every node in the path knows only the previous hop and the next hop.

We separate it into two parts as the routing path formation and the routing path
stripping process. Initiator can randomly choose the intermediate nodes and create a
message onion by encrypting with the intermediate nodes’ public keys. The paths
between initiator and intermediate nodes may pass through some other nodes in
network. When the intermediaries get the packets, they strip off the outside layer and
then forward the message to the next hop. After receiving the request, Responder
would reply it using the return path specified by initiator.

For any node S wants to request file F in. the network, it can perform the
following procedures, return path formation and return path formation.

Figure 4.5 illustrate the flow diagram-of.return path formation. Followed the
flow diagram, S firstly generates fakeOnion.and decides the length of the return path.
After generating L random intermediate nodes (R, ..., R.), S does the encryption
with fakeOnion, system parameters, and L random intermediate nodes: Ry, ..., R..
Finally, the result is Tg which indicates the return path that the responder can follow.

While S finishes the return path formation, S would use the result Tg, Query Q,
and session key SK to do the forward path formation. Since the data is stored on the
node which identity is the most closest to the data identity, S use the hash value of the
data identity as public key to encrypt the message: <Q, Tg, SK>. Therefore, the node
who stores the data can decrypt the cipher text due to the Fuzzy IBE scheme. After
that, S decides the path length, generates node identities and encrypts the routing

message (See Figure 4.6).

26

START

M = fakeOnion

1, \/

Path length
L

Generaterandom nodeid (L)

node[L-1]
Encryption (M ,params, node[L-1])

Te
FORWARD PATH

Figure 4.5 Return path formation

FORWARD PATH

.-' M= [Q, SK, Ts] ' g
o F—El Y N

Encryption (M ,params, F)
C
U

Path length

Generaterandom node id (L)

node[L-1]
Encryption (C ,params, node[l’-1])

! o
Figure 4.6 Forward path formation
The following equation presents the generation of the intermediate nodes’
identifies in a formal way.
IDg; = hash(t, D, IDs)
A uniform collision-resistant hash function such as SHA-1 can be used. Time t

and the identifier of file are added to avoid collision.

27

S encrypts the message M in a layered manner from the last hop to the first hop
in the routing path by their public keys which are the hash value of their identities.

To do encryption operation with IDgi: (s, ..., in), S choose a random value r €
Zp. Recall that the publish parameters <G, G, &, ¢, 9, H, 01, g2, d> are given during
the node registration. S generates Ck;:

< IDgi, U, Vi, ..y Vi, W> = < IDgi, g7, H(ua)', .., H(un)", 8(01, 92) '™ >.

While any intermediate node (R;’) receives the encrypted message, it can
perform the routing path stripping process in Figure 4.7.

<|D’, Cipherg>
RECEIVE

[IDNID' | = d Drop message

Figure 4.7 Routing path stripping process

Due to | IDriMNIDg;’ | =d, Ry does the following steps to decrypt Cgri which is
encrypted with IDg; (Recall that IDg; = (11, ..., tn)). R’ chooses a d-element arbitrary set, S,

of IDgi M IDgi’ and runs the decryption algorithm:

A A, is(0))
l__ISe(Vﬂj"aﬂj' J
_ Huje .
M =] W (Notice that ;= j if u’j € S)

A A o

ujes

The above decryption algorithm is correct as

28

Ay s(0)
L L
H.qu-S‘ (Vi s Oy,
AP_;‘S‘:DJ

€ L Hﬂ;i S ".f',uj

W= H.u; cs e(H ()" e B8 0)) W
U) e[, <5 (g1 H () P1050510 gr)

crre o Pl)AL s(0)
H,u._;E-S' €[HU‘LJJ I .9")

= W
; , C plua), (0]
f’(n.uj'i.i?LQIHU‘-J'JJplwa_\“}'b‘tjrgﬂ)
oo (i) s(0) e)
H,u._;'ES eLHL,U_Equtj g5 ’I.Q'l) W
- , plp)Ay, s(0) T APRRY 17D FAVARN-1{1) I
€LHHj€SQI T »9") t'r\l_[qu.S‘ HU‘}) TITH S gT)
1

) -
= - ce(gr,g92)" M
plpi)dy; s(0) (91, 92)

e(npj({.‘:}' gl ’ eg'lJ
1 o, 1 o
= ——— e(g1.92)"M = — — - e(g1.g2) "M = M.
elgy,9") elgr, g2)

The fakeOnion added in the return path makes S like an intermediate node and it
can also confuse the adversaries observing the network traffic. The return path Tg is
specified by using the same manner. The routing information from S to R1 can be
shown as follows:

< IDry, [IDR2, ..., [IDri, [IDf, [Q;'SK, Telpikr lrukriJpukri-1. .. Jrukr1 >, Where

Tg = < IDgi+1, [IDri+2, 5. [IDgm, [1Ds; fakeOnion]pukrm]. . - Jpukri+1 >

Since the identifier of intermediate-node IDg; IS randomly generated from S, it
probably does not exist in the network. But the routing protocol will routes IDg; to
IDgj which is really close to IDg;. Rj’ and Rj are in a certain distance d, so that Rj’ can
decrypt the cipher-text encrypted with Rj’s public key PuKg;.

If the user is able to “match” at least d components of the cipher text with their
private key components, then they will be able to perform decryption. However, since
the private key components are tied to random polynomials, multiple users’ are unable
to combine them in any way that allows for collusion attacks.

An intermediate node determines the next hop and forwards the message to it
according to the identifier in the header after removing one layer of encryption using
its private key. The message onion has been stripped off one layer:

< IDgy, [..., [IDri, [IDf, [Q, SK, Tglrukr Jrukri Jpukri-1- - -lpukr2 >

29

This process is continued until the encrypted message arrived at the destination
node D, responder, whose identifier is closest to the file IDg. The responder can use its
private key PrKp to decrypt the encrypted query due to the distance between IDg and
IDp are larger than d.

Responder D retrieves the file f from its local storage and encrypts it with a
symmetric key K extracted from the receiving message and the public key of the next
hop. Then Responder sends the reply message to the next hop specified by the return
path:

< IDRi+1, [Flsk, [IDris2, ...[IDrm, [IDs, fakeOnion]pukrm]. . . Jpukri+1 >

The intermediate nodes in the return path would do the same procedure like the
nodes in forward path, such as strip off a layer and send it to the next hop.

It is hard for adversaries to.correlate a request with a response because the
forward path is different from the return path.-Messages passed along the anonymous
connection appear different to -eachinode,-so-they ‘cannot be tracked en route and

compromised nodes cannot cooperate.

4.6 Example

In this subsection, we would like to demonstrate the way how to apply AFATOR.
For example, the network N contains a private key generator (PKG), and many nodes
including initiator S, responder D, intermediate nodes Ri, Ri’s neighbor Ri’, and some
other nodes where i =1, ..., 4. (See Figure 4.8)

The definition of university U is {0*2°, 1*2° ..., 0*2"! 1*2"'}. For each
identity is viewed as a set of attributes or bits, w = {wy,, Wn.1, ..., wp, Wi}. The
identities of nodes will be element subsets in the universe U. Each element would be

associated with a unique integer in U.

30

PKG randomly picks g; €Gs, s €Z*, and compute g,=g°. Then, PKG chooses a
hash function H: Z*; — Giand selects an error tolerance factor d. After that, PKG
generates its master key: <G, Gy, é, g, q, H, 01, g2, > and keeps it secret. PKG also
generates system parameters which contain an error tolerant factor d and publishes
them to other registered nodes: <Gy, Gy, &, g, g, H, g1, g2, d>.

In order to generate a private key for a node with identity ID: (ug,..., un), PKG
needs to randomly choose a d-1 degree polynomial p such that p(0)=s. Then, PKG
computes each private key component D,; for i=1, ...,n:

Dyi= (i 8i) = ((@H@))™™, g**).

As result, the private key of identity ID is composed of n components as follows:
PrKip=< Dy ... Dy >=<((@H(0)P*, 679, ..., ((GaH(u)", g)>

To do encryption operation with 1Dr;: (u1, .25 pn), the initiator chooses a random
value r € Zp. Recall that the publish parameters.<G,, G, é, g, g, H, g1, g2, d> are
given during the registration. The initiator-generates Cr;:

Cri = < IDgi, U, Vi, ..., Vin, W= < IDgir @ H(ua)', ..., H(n)', 801, 92) '™ >.

Due to | IDgiNIDgi’ | =d, Ry’ does the following steps to decrypt Cr; Which is
encrypted with IDg; (Recall that IDgri = (1, ..., un) and IDgi’ = (11’ ..., w’)). Ry
chooses a d-element arbitrary set, S, of IDgiNIDg;” and runs the decryption algorithm

mentioned in previous subsection.

31

—

IR1ﬁR1’|§df"
[Rlix

7 Query(F))
v

r—/ ’
R4 RV I RanRra | =d
F \ ’

/

—

\.\ /"
\\ ~ ///
> 7
| IDD ﬂ IDF | = d / }/
D X
~

Figure 4.8 Transitions of request and response

Figure 4.8 shows an example of how initiator S looks up and gets back the file F.
In order to lookup a file F, initiator S.randomly chooses the intermediaries R1, R2, R3,
R4 and then forms the forward path and the return path. The forward path consists of
Rland R2. R3 and R4 are in the return path. To confuse other nodes knowing the real
destination of the message, a fakeOnion is generated. S uses the public keys of R3 and
R4, the hash value of IDrzand IDgg, to encrypt the message M’ including the identity
of initiator IDs, a fakeOnion and the return path Tg.

M’ = < IDs, fakeOnion>

S picks a random r and encrypts the message M with R4’s public key PuKg4and
then obtains cipher text Crs: < IDr4, Urs, V raut, ..., VRaun, Wra > Where IDgr4 coONsists
of n attributes and Wr4 = &(g1, g2) 'M".

By the similar way, S also uses R3’s public key PuKgsto encrypt the result Crq

32

and then obtains cipher text Crs: < IDgrs, Urs, VRr3u1, ..., VR3un, Wrz >, where Wgs =
&(g1, 92) " Cra. The result Crsacts as the return path T.

The request message M containing the query Q, the return path Tg, and a session
key SK is encrypted by the public keys of R2 and R1. The session key, SK, is used to
protect the reply message.

M=<Q, Tg, SK>

S uses F’s public key PuKrto encrypt the message M and then obtains cipher text
Cr: < IDg, Uk, VEu, ..., Vi, WE >, where We = &(g1, 92) " M.

By the similar way, S uses R2’s public key PuKgrzand R1’s public key PuKg; to
encrypt the message Er. Finally, S obtains the layered encrypted routing message Crga:
< IDR1, Urt, VRigts ---s VRiun Wri >, Where Wry = (g1, 92) " Cro.

S routes the request message Er; to R1. 1 R1 fails or does not exist, then its
neighbor node R1’ can take over the message forwarding since the overlap between
R1 and R1’is larger than or equal tolertor-tolerant factor d. Upon receiving message,
R1’uses its private key PrKgi- to-deerypt. the ‘message. At first, R1’ chooses an

arbitrary d-element subset S of { IDgi (N IDgi’} and then does the decryption operation.

U ={uo, Uy, ...,Ug1 }

Ay g(0)
(YT HJ.D\ 5
Hlf_r,_;i S €LI K2 rsl"-"'j

QMJ.S':UJ

e(]] 1ye8 Vs
(Here, notice that ,u.; =y if u; € S). Return M.

M= W

] {"Ir }

33

s Apss(0)

H _,-‘E‘LI“L -"-},:-PJ
piES Mg Ty
Ay .s(0)

e L H £ =5 ﬁ‘",uj

W HMES €(H[F'j)F‘-QPWJJAH-"‘S(O)) W
.U) f?(H;;jes(QlH(#‘j))bmj)AMJ-S':W.Q*‘}

crre o aplpi) A s(0)
I1,,cs e(H ()" #2055 gy
T (el A s(0) al
e(HugESLQlHU-UJJ TR gh)
CTT VAL 5(0 -)
l_[lu_; =S €LHL|U'.? JPULJ Ha® Jng) 1%
- , plpg) By, s(0) T Pl Ay s(0)
€LHHJES‘9’1 T »9") f-(HMeg Hp;)y w7 =Ha= gn)

1
, -
= - ce(gy,g9)" M
] pl,uj)ﬂpjlg\‘o) R (91, 92)
E(Huje-ﬁgl ")

1
-) e(gr,g2)’ M = e(gr,g2)' M = M.

e(g7,9") e(g1,92)"

After computation, the result Cgrz: < IDr2, Ur2, VRrout, .-y Vr2un, Wr2 >, Can be
extracted. At last, R1’ discovers the next hop R2 and then routes the message to R2. If
R2 exists, R2 can strip off one layer of the message and then forwards the result to the
destination D which stores the file F.

The file F maps onto the destination D whese identifier is closest to IDg. Due to
the intersection between IDp and 1D exceeds the error tolerant value d, D decrypts
the request with its private key Prkp. Upen obtaining the query Q, D retrieves the file
F from its storage, uses the session key K to protect the responding file F and replies
the message through the return path.

The reply message can be transferred through the return path which is specified

by initiator by similar way. We can also see the detailed message flow in Table 4.2

Soure—>Dest. Message

S>RI1: < IDgy, [IDr2, [IDg, [Q, SK, Tg]pukr Jrukr2 Jpukr1 >,

where Tg =< 1Dgs3, [|DR4, [|D5, fakeOnion]puKR4]puKR3 >

RI’>R2: < IDg2, [IDg, [Q, Key, Tslpukr Jpukr2 >

R2->D: < ID, [Q, Key, Tg]pukr >

D->Ra3: < IDgg, [Flsk, [IDr4, [IDs, fakeOnion]pukra Jpukrs >
R3->R4’: < IDRg, [F]sk, [IDs, fakeOnion]pykra >

34

R4’->S: < ID;, [F]sk, fakeOnion >

Table 4.2 Messages flow

4.7 Summary

In Chapter 4, we describe the whole scheme of AFATOR including three phases.
AFATOR protects anonymity for initiator and responder and provides tolerance for

node failures by using Fuzzy Identity-Based Encryption (Fuzzy IBE).

35

Chapter 5

Evaluation

This chapter focuses on evaluation of AFATOR in performance and security level.
By comparing with other anonymous systems, we discuss benefits and drawbacks of

AFATOR.

5.1 Performance

Table 5.1 presents a performance comparison of AFATOR and other research,
SurePath, Agyaat, Tarzan, and Onion/TOR.

SurePath Cashmere Tarzan Onion/ AFATOR
TOR

Send requests without | N Y N N Y

setting tunnels &

sym. Key first

Get public key | N N N N Y

without CA

Tolerate node failures | Y Y N N Y

Tolerate attackers in | Y Y Y N Y

routing path

Message transmission | Tunnel +relay | relay group | Tunnel Onion Ring DHT
group routers

Storage costs 1pub&pri key | logN 1pub&pri key
N-1 pairwise | pub&pri key Sys. params
key

Table 5.1 Performance comparison
Public key from CA
Tarzan and Onion need to establish tunnels or circuits and distribute session keys
before sending message. Cashmere and SurePath use a set of relay groups to instead a
single relay node. Every node with the same prefix of its identifier in a Cashmere

relay group shares the common public/private key pair. SurePath randomly generates

36

the relay groups and distributes and the symmetric keys associated with the relay
groups. All of them need a third party Certificate Authority (CA) to get public key
and private key pairs. But AFATOR need not to do so. With only system parameters
and the target node identity, every node can easily generate the public key of the
target node. The private keys of all nodes in AFATOR are obtained from Private Key
Generator (PKG).

Resilient to node failures

In Tarzan, Onion and Tor, the message may not reach the destination if any node
in the routing path fails. Cashmere, SurePath and AFATOR can achieve resiliency for
node churns. The routing path of Cashmere is formed with a set of relay groups with
the same prefix of identifiers. Each relay group shares the common public/private key
pair due to the same prefix. SurePath uses relay sets with k candidates to help
message forwarding. We apply-Fuzzy IBE scheme to ensure that even if a node fails,
its neighbors can take over message forwarding:

Compare AFATOR with SurePath.and.Cashmere, neither key distribution nor
key discovery is need for AFATOR. Lots of churns in AFATOR and Cashmere do not
affected the other existing nodes which need not do extra operation because the
identities of nodes are used as public keys. But in SurePath, adding or deleting a node
results extra key distribution or index information change. The performance of
SurePath decrease with increasing churns in overlay networks.

Computation cost

In AFATOR, the initiator must do most of the encryption operations to form the
routing message including the forward path and return path. For each intermediate
node, the operation is decrypting one layer of the message. The responder does two

operations: decrypts the message to get the query and encrypts the reply by symmetric

37

key from the receiving message.

In SurePath, before sending a query, the initiator needs to setup tunnels, discover
the public key of destination and distribute symmetric keys encrypted by the public
key of relay nodes. And then the initiator route the messages encrypted by symmetric
keys from every relay sets. Every relay node decrypts the message using the pre-share
key. After decrypting the message by the private key of the responder, the responder
obtains the symmetric key to encrypt the reply message.

The initiator in Cashmere first generates symmetric keys for each relay groups to
encrypt the payload. Secondly, the initiator encrypts the routing information: the next
forward path, the identity of the next relay group, and the symmetric key by using the
public keys of each relay groups from the last relay group to the first one. Not only
forward path but also return path will'the initiator:create. Any node in the relay group
receiving the message becomes-the.root of its-group- The root decrypts the path with
public key and the message with symmetric-key, and then forwards the result to the
next relay groups and broadcast the result to.all members in the same relay group. The
responder decrypts the message with its public key and then encrypts the reply by
symmetric key extracted from the receiving message.

An ECC benchmark shows that an instruction set extensions of a typical
embedded processor for ECC that can efficiently replace a coprocessor that is
typically used for improving performance of ECC [42].

Key storage cost

Nowadays, Elliptic Curve Cryptography (ECC) is becoming more and more used
to alternate traditional public key methods. The reason is that ECC can use shorter
key, faster computation time and less memory to achieve the same security level with

traditional public key methods. For example, RSA encryption with 1024-bit key is at

38

the same security level as the use of 163-bit key in the case of ECC over GF (2m). As
a result, ECC offers higher throughput on the server side and smaller implementations
on the client side. [44]

The cost depends on the keys stored at each node. The key size of AFATOR
based on Elliptic Curve Cryptography is much smaller than the key size of Cashmere
and SurePath based on traditional public key methods.

In AFATOR, every node stores its private key and public parameters. Whoever
wants to query the data, it needs to generate a symmetric key attached in routing
message so that the responder can encrypt the reply message by the symmetric key
without knowing the initiator.

All members having m-bit identifier in Cashmere own m public/private key pairs
corresponding with each prefix of identifiers. The initiator would also create each
symmetric key for each relay group.in order te encrypt the payload. In SurePath, each
node stores lots of keys, including its private-key, the public keys of other nodes and
the corresponding symmetric keys for.each-relay set. The initiator also needs to

generate a symmetric key for the responder to reply the message.

25

©

w

oo

g 20

2

2

2 15

% 3

= £ =4=—_ashmere
£l 10

gé == SurePath
5 AFATOR
-g 5

= '

2 [I —

£ 0 _

10 100 1000 10000 100000 1000000

network size

39

Figure 5.1 Number of the public and private key pairs’ comparison

In Figure 5.1, the number of keys in AFATOR is the least than others. And

AFATOR only needs the least key storage shown in Figure 5.2.

18[][][] T T T T T T T T T _l-
B Jai i
g
16000 - M*#H%‘*‘ i
=
14000+ 4% .
12000 /‘- .
]
=) . N
= 40000} € -- AFATOR |
=2 —4— Cashmere
e —--l:}-—
S gooof SurePath |
E
=
G000 - .
4000 .
20000-0-Q-0-Q-C-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-9
Ol = or {3- fem B o g o o e e o o S S oy o e g - -

0 1 2 3 4 5 B 7 8 g 10
network size (m = log2{N})) 10"
Figure 5.2 Key storage comparison
5.2 Security
The comparison about security issue is shown in Table 5.2.
SurePath Cashmere Tarzan Onion/TOR | AFATOR
Initiator anonymity Y Y Y Y Y
Responder anonymity Y N N N Y
Use different paths to do | Y Y N N Y
request & response
Information leaking Receiver id | Receiver id | Receiver id | Receiver id | Data id &
& public | & public| & public | & public | data public
key key key key key

Table 5.2 Security comparison

Tarzan, Onion, SurePath, Cashmere and AFATOR use layered encryption and

multi-hop routing to achieve anonymity. Except AFATOR, all the others use Public

40

Key Infrastructure (PKI) and symmetric key to protect data secrecy. Moreover, the
third party they trusted is Certificate Authority (CA). Onion routing also trusts onion
routers to route through the message.

AFATOR use Fuzzy ldentity-Based Encryption (Fuzzy IBE) to do public &
private key generation and data encryption & decryption. Instead of CA, AFATOR
use PKG.

All the systems we mentioned can achieve initiator anonymity by random
routing path. Some of them, like SurePath and AFATOR, do the message forwarding
and returning by different routing path. The advantage of different routing path is to
avoid traffic analysis.

Information leaking

The initiator in AFATOR knows only the desired data name but nothing about
where the data located. So the-initiator uses-the .public key, the hash value of data
identifier, to encrypt the request. SurePath-and Cashmere know not only the data
name but also the public key ofthe.node which stores the data. For responder
anonymity, the information leaking of AFATOR is less than SurePath and Cashmere.

In Cashmere, if one node with m-bit identifier is compromised, then the attacker
would obtain m public and private key pairs associated with each prefix. When the
same case occurs in SurePath, the attacker can control N-1 share keys where network
size is N. However, only one private key is revealed to the attacker during the same
situation in AFATOR. Compared AFATOR with other systems, the attacker knows
less information about secret keys.

Souvik et al. [26] proposed an information theoretic framework for analyzing
leak of privacy in DHT. With the same routing complexity, the analytical result shows

that ring-based DHT (CHORD) has the minimum information leak than the other

41

DHTs, such as tree-based, hypercube-based, and hybrid-based DHT.

CHORD-like routing protocol with ring-based DHT is used in AFATOR;
however, both Cashmere and SurePath apply Pastry, a routing protocol with
hybrid-based DHT. As a result, AFATOR leaks less information than Cashmere and
SurePath.

To provide sender and receiver anonymity, these systems like Tarzan [13] and
Cashmere [11] require the overlay nodes to have public-private keys obtained through
a trusted authority; i.e., they require a public key infrastructure (PKI). A few systems
(e.g., Crowds [14]) do not require PKI, but they expose the receiver and message

content.

5.3 Summary

It is commonly held that there.is a tradeoff between performance and anonymity.
The routing protocol that provided:best-anonymity usually came with associated

performance costs.

42

Chapter 6
Analysis

6.1 Threat Model

The adversaries can do the following things:

a. compromise the existing node

b. observe packets destined to itself or its local network

c. collude and share information with others

d. follow the protocol and forwards all the messages pass through it

For each compromised node, the attacker will obtain the private key of itself and
the error tolerant distance d. Therefore,.the attacker may read the cipher text
encrypted with its neighbor’s public key if they are-within a certain distance d. We
apply Byzantine failure model to.allow compromised node behave arbitrarily.
Eavesdropper

There are two kinds of eavesdropper. The first one is global eavesdropper who
can observe all the traffic of the network. Even the message is encrypted, he still can
use timing attacks or statistic attacks to break anonymity: identifying the route from
the initiator to the responder. But it is not realistic in overlay network with thousands
of nodes. It is impossible to know the information of the whole network at any time
due to lots of churn in overlays. The other one is local eavesdropper who can only
observe packets destined to itself or its local network. He cannot get enough

information to identify real destination.

43

6.2 Anonymity Analysis

We analyze anonymity using three parameters: N (number of nodes in the
network), f (fraction of malicious nodes in the network), and L (number of
intermediate nodes in the routing path).

The routing path is generated by the initiator, a non-malicious node. When the
initiator decides the path, it passes the message to the first intermediate node. Due to
layered encryption, every intermediate node knows only the previous hop and the next
hop. The attackers in the routing path act as intermediate nodes and try to guess which
node is the initiator or the responder. Since the messages are encrypted, the attackers
would suspect the previous node which passes the message to itself is the initiator. We
distinguish the two cases to analyze the probability that the intermediate previous
node is in fact the initiator. Notation.f means the probability of choosing an attacker to
be an intermediate node. In contrast,-the probability of choosing a non-attacker as
intermediate node is 1- f.

Case I: 1st intermediate node is attacker

The attacker can guess its previous node is the initiator with probability of 1. The

L .
probability of case I is p = %Zif -).

i=1

Case Il: 1st intermediate node is not attacker

The attacker suspects its previous node with probability of , Where

1
N(@-f)
N(1- f) represents the number of non-malicious nodes in the network. The probability

L _
of case Il is 1- pzl—%Zif‘(l—).

i=1
Thus, the probability that node x is the initiator shows as follows.

P=£iifi(l—f)|:i+ 1)(1_%iifi(l—f)l‘i}

L5 N(-f =
44

Figure 6.1 displays the results for the probability of guessing a node to be the

initiator from the attacker with different path length and fraction of attackers. As f

(fraction of attackers) increases, the probability a node to be the initiator increases.

The length of routing path L influences the variation of the initiator probability of a

node. The more intermediate nodes pass by, the less probability to guess right.

1

0.9

0.8

0.7

0.6

0.5

04

0.3

the probability a node is the initiator

02

01

+‘+—+ i
l_l_l;l_
m o mnn
- L =

i I I | 1
0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
fraction of attakers

Figure 6.1 Probability to be Initiator

By the similar way, we can also analyze the probability that the intermediate next

node is in fact the responder.

6.3 Resilient to Node Failure

We use probability to analyze the resilience and fault tolerance. The parameters

list as follows.

*

*

*

*

2™ id space;

N: number of nodes in the network, network size;

L: number of intermediate nodes in the path, the length of routing path;

d: error tolerant factor

45

Since the probability that each ID maps onto a node is Zﬁm a node maps onto a

non-existing node with the probability of 1—%. The number of nodes Z can help

forwarding the message if any of them exists. The restriction is that the overlap of
identities is larger than or equal to the error tolerant factor d. The estimation of Z lists

as follows.
Z=Cpr2m_Ccr,2m @ 4 (-1)"cr2°

It is clear that Z is influenced by the value of error tolerant factor d. If all the Z
nodes that can help forwarding do not exist, then the message would be failed to

transfer. Hence, when at least one node to help forwarding exists, the probability to

z
forward the message successfully is1 — [1_ Zﬁm) . The routing path has L intermediate

nodes to route through. If every intermediate .node has at least one node that can help

forwarding, then the message can be transferred successfully through the routing path.

z L
Therefore, the probability of pathsuccess can be shown as: {1_(1_%0] , Where L

means the length of routing path.

The probability that each ID maps onto non-existing node decreases with
increasing N. For every node, the successful forward probability increases while Z is
getting larger. However, the path length L grows inversely proportional to the
forwarding probability. Therefore, the level of anonymity provided by AFATOR is
inversely proportional to the successful forwarding probability of the routing path.
This is a tradeoff between efficiency and the level of anonymity.

Figure 6.2 presents the result of the forward probability with different error
tolerant factors and network size. According to the system requirements,

fault-tolerance can be tuned by error tolerant factor and the length of routing path.
46

o

09} -

08 _|' 4 i
= /
E 07 | 4
o h gty
5 | 4}—{}{}{}{}
= 061 rI {}{y%} B
E |é 20997
£ 08 oo ---EF-- d=33]
% oall ;{}"«}'{}{}{} —+— d=34 i
g |l e o e
@ 03 J[CD &% - _
@) o9 —+— d=37

02 L‘ %‘G{} |

) o
P
01} & .
¥
¥
U ‘s? | | | 1 1 1 1
o 1 2 3 4 5 6 7 8 9 10

network size (ID space: 2™)

Figure 6.2 Forward probability with various error tolerant factors
If the routing path fails with ‘high probability, then the routing path should
reconstruct frequently. After a large.number of reconstructions, to identify the initiator
participating in the path is much-gasier:
In AFATOR, the probability of routing-path failure is very low because of the
tunable error tolerant factor d. Therefore, we not only improve performance by
reducing the path reconstruction time but also strengthen our robustness to the

degradation attacks [43].

6.4 Against traffic Analysis

Since all the packets are encrypted in a layered manner from the last hop to the
first hop by their public keys, the incoming packets and the outgoing packets for
every intermediate node are different in packet headers, size, and patterns. The
encryption makes the packets indistinguishable from data flows. Cover traffic, which

means fake messages would be send from every node per random time period,

47

prevents a global observation from using traffic analysis to identify the initiator.
But the adversary can find some relationships between those incoming and

outgoing packets for the node by using timing analysis.

6.5 Summery

The initiator can select the number of the intermediate nodes in the path and the
value of the error tolerant factor to control tradeoffs between churn resilience,

anonymity and overhead.

48

Chapter 7

Conclusion

Our routing protocol, AFATOR, provides anonymity against adversaries without
proxies. We use layered encryption and random intermediaries to achieve anonymity.
We also achieve unlinkability between initiator and responder without being identify
from adversaries. Every node in the path knows only the previous hop and the next
hop. It is easy to recover the routing path without request re-transmission. By using
Fuzzy Identity-Based Encryption (Fuzzy IBE) [4], a user can decrypt a cipher-text
encrypted with other's public key:if and_only if the two users are within a certain
distance. Thus, any node can easily take over-message forwarding if its neighbor node
fails. At last, AFATOR uses smallest key-storage and leaks less information about the

responder.

49

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Reference

Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma and Steven Lim, “A
Survey and Comparison of Peer-to-Peer Overlay Network Schemes,” IEEE
Communications survey and tutorial, Mar. 2004.

Yingwu Zhu and Yiming Hu, “SurePath: An Approach to Resilient
Anonymous Routing,” International Journal of Network Security (IJNS) Mar.
2008.

Paul F. Syverson, David M. Goldschlag, and Michael G. Reed, “Anonymous
Connections and Onion Routing,” IEEE Journal on Selected Areas in
Communication Special Issue, 1998.

Sahai and B. Waters, “Fuzzy-Identity-Based Encryption,” In Eurocrypt 2005,
LNCS 3494, pp. 457-473, Springer-Verlag; 2005,

lon Stoica, Robert Morris, DavidLiben-Nowell, David R. Karger, M. Frans
Kaashoek, Frank Dabek, ‘and. Hari Balakrishnan, “Chord: A Scalable
Peer-to-peer Lookup Protocol for Internet Applications,” |IEEE/ACM
Transactions on Networking.

Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph, “Tapestry: An
Infrastructure for Fault-tolerant Wide-area Location and Routing,” UC
Berkeley, 2001.

A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems,” In Middleware, November
2001.

Ben Y. Zhao, Ling Huang, Jeremy Stribling, Anthony D. Joseph, and John D.

Kubiatowicz, “Exploiting Routing Redundancy via Structured Peer-to-Peer

50

Overlays,” ICNP, 2003.

[9] Adi Shamir, “ldentity-Based Cryptosystems and Signature Schemes,”
Advances in Cryptology, Lecture Notes in Computer Science, 1984

[10] Dan Boneh, and Matthew Franklin, “Identity-based Encryption from the Weil
pairing,” In J. Kilian, editor, Advances in Cryptology, Springer-Verlag, Lecture
Notes in Computer Science, pp. 213-229, 2001.

[11] Li Zhuang, Feng Zhou, Ben Y. Zhao, and Antony Rowstron, “Cashmere:
Resilient Anonymous Routing,” NSDI, 2005.

[12] Aameek Singh, Bugra Gedik, Ling Liu, “Agyaat: Mutual Anonymity over
Structured P2P Networks,” In Emerald Internet Research Journal (Special
Issue on Privacy and Anonymity in the Digital Era), Volume-16, Issue-2, 2006.

[13] Michael J. Freedman and Robert Morris, “Tarzan: a peer-to-peer anonymizing
network layer,” ACM CCS, Nov. 2002,

[14] Michael K. Reiter and Aviel. D.-Rubin, “Crowds: anonymity for Web
transactions,” ACM Transactions.on Information and System Security, 1998.

[15] Nikita Borisov, and Jason Waddle, “Anonymity in Structured Peer-to-Peer
Overlay Networks,” Technical report, UC Berkeley, May 2005.

[16] Michael Kinateder, Ralf Terdic, and Kurt Rothermel, “Strong pseudonymous
communication for peer-to-peer reputation systems,” ACM symposium on
Applied computing, Mar. 2005.

[17] Roger Dingledine, Nick Mathewson, and Paul Syverson, “Tor: The
Second-Generation Onion Router,” USENIX Security Symposium, Aug. 2004.

[18] Giuseppe Ciaccio, “Recipient Anonymity in a Structured Overlay,”
AICT-ICIW, Feb. 2006.

[19] M. Caesar, M. Castro, E. Nightingale, G. O'Shea and A. Rowstron, “Virtual

51

Ring Routing: Network routing inspired by DHTs,” Sigcomm, Sep. 2006.

[20] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. Wallach, “Secure
routing for structured peer-to-peer overlay networks,” In OSDI, December
2002.

[21] B. Ford, “Unmanaged Internet Protocol: Taming the edge network
management crisis,” In HotNets 11, November 2003.

[22] M. Choudary Gorantla, Raju Gangishetti, and Ashutosh Saxena, “A Survey on
ID-Based Cryptographic Primitives,” Cryptology ePrint Archive: Report

2005/094. http://eprint.iacr.org/2005/094.

[23] J. Baek, W. Susilo and J. Zhou, “New Constructions of Fuzzy Identity-Based
Encryption,” ASIACCS, Mar. 2007.

[24] Khanh V. Nguyen, “Simplifying Peer-to-Peer Device Authentication Using
Identity-Based Cryptography,” ICNS 2006

[25] Charles, “Information Leak in-the-Cherd Lookup Protocol,” Peer-to-Peer
Computing, 2004.

[26] Souvik Ray and Zhao Zhang, “An Information-Theoretic Framework for
Analyzing Leak of Privacy in Distributed Hash Tables,” Peer-to-Peer
Computing, Sept. 2007.

[27] Youn-Ho Lee, Heeyoul Kim, Byungchun Chung, Jaewon Lee and Hyunsoo Yoon,
“On-demand Secure Routing Protocol for Ad Hoc Network using ID based
Cryptosystem,” PDCAT, 2003.

[28] Song Hong, Yang Luming, Wang Weiping, and Duan Guihua, “A Delay
Demand-based Anonymous Communication Mechanism,” Communications
and Networking in China, Oct. 2006.

[29] Wei Ren, Yoohwan Kim, Ju-Yeon Jo, Mei Yang and Yingtao Jiang, “IdSRF:

52

http://eprint.iacr.org/2005/094

ID-based Secure Routing Framework for Wireless Ad-Hoc Networks,” ITNG,
2007.

[30] Gnutella (2002), available at: http://gnutella.wego.com/

[31] Paul Syverson, Gene Tsudik, Michael Reed, and Carl Landwehr, “Towards an
analysis of onion routing security,” In Proc. of PET, July 2001.

[32] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. Sicker, “Low-resource
routing attacks against anonymous systems,” Technical Report
CU-CS-1025-07, University of Colorado at Boulder, Feb 2007.

[33] Geng Yang, Chunming Rong, Christian Veigner, Jiangtao Wang, Hongbing
Cheng, “Identity-Based Key Agreement and Encryption for Wireless Sensor
Networks,” IJCSNS, May 2006.

[34] Napster, available at http://www.napster.com/

[35] P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-Peer Information
System Based on the XOR Metric,>-Proc. IPTPS, Cambridge, MA, USA, Feb.
2002, pp. 53-65.

[36] I. Clarke et al., “Freenet: A Distributed Anonymous Information Storage and
Retrieval System,” available at http://freenetproject.org/ freenet.pdf, 1999.

[37] FastTrack Peer-to-Peer Technology Company, available at
http://www.fasttrack.nu/, 2001.

[38] The Overnet File-sharing Network, available at http://www.overnet.com/, 2002.

[39] G Ciaccio. The NEBLO homepage, available at
http://www.disi.unige.it/project/neblo/.

[40] G. Ciaccio, “Improving sender anonymity in a structured overlay with
imprecise routing,” In Proceedings of the Designing Privacy Enhancing

Technologies: Workshop on Design Issues in Anonymity and Unobservability,

53

http://gnutella.wego.com/

2006.

[41] Matthew Pirretti, Patrick Traynor, Patrick McDaniel and Brent Waters, “Secure
attribute-based systems,” In Proc. of the ACM conference on Computer and
communications security, 2006.

[42] Bartolini, S. and Branovic, I. and Giorgi, R. and Martinelli, E., “A Performance
Evaluation of ARM ISA Extension for Elliptic Curve Cryptography over
Binary Finite Fields,” Computer Architecture and High Performance
Computing, 2004.

[43] Wright, M., Adler, M., Levine, B. N., and Shields, C. “An analysis of the
degradation of anonymous protocols,” In Proc. of NDSS (Feb 2002).

[44] Eberle, H. and Gura, N. and Shantz, S.C. and Gupta, V. and Rarick, L. and
Sundaram, S., “A public-key: cryptographic processor for RSA and ECC,”

Application-Specific Systems, Architectures and-Processors, 2004.

54

