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I 

 

在疊蓋式網路中的匿名且容錯的路由協定 

 

研 究 生：吳佳貞     指導教授：謝續平 博士 

 

國 立 交 通 大 學 

網 路 工 程 研 究 所 

 

摘要 

在疊蓋式網路中，匿名對於資料要求者與資料提供者是非常重要的。如何達

到匿名通訊最主要取決於路由協定是如何傳遞訊息。在疊蓋式網路中提供匿名路

由的挑戰在於找尋資料的時候會洩漏識別碼(identity)。我們提供使用者可抵擋攻

擊的匿名通訊並且能容忍網路中節點錯誤。我們隨機選取中繼節點來轉送訊息，

並利用層層加密(layered encryption)方式隱藏資料要求者的身分，不被其他中繼

節點發現。我們利用Fuzzy Identity-Based Encryption (Fuzzy-IBE)的方法來達到容

忍在路由路徑中的節點發生錯誤。利用Fuzzy-IBE，在兩個使用者的識別碼在一

定的距離內，使用者可自己的私鑰去解密被另外一個使用者的公開金鑰所加密的

密文。因此，當網路中的有一節點發生錯誤或離開，則其識別碼相近的鄰居可幫

忙做訊息傳遞。在此篇論文的最後，我們會分析與評估所提之路由協定的匿名性

和容錯能力。 
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Abstract 

Anonymity is important for both data request or response in overlay networks. 

Overlay routing reveals information since it requires identity to locate data. We 

proposed an Anonymous and FAult-TOlerant Routing protocol (AFATOR), which 

provides anonymity against adversaries, and tolerance of node failures. We randomly 

select intermediate nodes to forward the messages and use layered encryptions to hide 

the originator from the intermediate nodes. We also apply Fuzzy Identity-Based 

Encryption (Fuzzy-IBE) scheme for tolerance of node failures in the routing path. 

Leveraging Fuzzy-IBE, a user can decrypt a ciphertext encrypted with other's public 

key if and only if the two users are within a certain distance. Thus, a node can easily 

take over message forwarding if its neighbor node fails.  Analysis of anonymity and 

failure tolerance of the proposed protocol is also given. 
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Chapter 1 

Introduction 

 

1.1 Motivation 

Overlay networks [1] have become tremendously popular over the last few years. 

Users distribute lots of information which can be easily observed by others through 

overlay networks. They may want to request or provide some secret file, such as 

gossip, movie, or music, without revealing identities or eavesdropping by other 

adversaries. It is important to develop a secure protocol for anonymity protection. 

 

Figure 1.1 Communications trough overlays 

There are several kinds of anonymity [2] including initiator anonymity, responder 

anonymity, and relationship anonymity (i.e. unlinkability). Initiator anonymity means 

the identity of the initiator is hidden to all other peers during communications. 

Responder anonymity hides the responder from all other peers including the initiator. 

But it is against the basic DHT lookup scheme: identifying a node mapping to an 

object with the closest identifier. Mutual anonymity provides both initiator anonymity 

and responder anonymity. Relationship anonymity, also called initiator-responder 
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unlinkability, means that even if the initiator and the responder are identified as 

participating in some communication, they cannot be identified as communicating 

with each other. 

Most anonymity related systems, such as Onion routing [3], make all the 

anonymous connections go through a fixed set of trusted nodes, like onion routers, 

which are not preferred in decentralized overlays. By monitoring the traffic of either a 

colluding entry or exit, adversaries may easily identify initiator or responder. Failure 

of any onion router in the routing path fails to deliver the message. That results data 

loss and jitter before the forwarding path is recovered or a new one is constructed. 

Now many systems have been designed to exploit peer-to-peer overlays in 

anonymous communication, including Agyaat [12], Tarzan [13], EDR [16], and 

NEBLO [18] [39] [40]. They use a sequence of random nodes as anonymous paths or 

tunnels. If any node along the route fails, or misbehaves, then the message is never 

delivered to the destination (See Figure 1.2). It is difficult for the initiator to figure out 

which node has failed. 

 

Figure 1.2 Node failures in the routing path 

Therefore, we design a protocol to provide an anonymous and fault-tolerant 

routing protocol named AFATOR. 
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1.2 Contribution 

At first, we provide anonymous routing without proxies. We use layered 

encryption and random intermediaries to achieve anonymity. Secondly, we achieve 

unlinkability between initiator and responder without being identify from adversaries. 

Every node in the path knows only the previous hop and the next hop. An 

intermediate node cannot tell the initiator or responder. Thirdly, it is easy to recover 

the routing path without request re-transmission. By using Fuzzy Identity-Based 

Encryption (Fuzzy IBE) [4], a user can decrypt a cipher-text encrypted with other's 

public key if and only if the two users are within a certain distance. Thus, any node 

can easily take over message forwarding if its neighbor node fails. At last, AFATOR 

uses smallest key storage and leaks less information about the responder.  

1.3 Synopsis 

The rest of this thesis is organized as follows. In Chapter 2, background is 

surveyed. Chapter 3 reviews other relevant research in anonymous systems. In 

Chapter 4, we proposed a scheme to provide anonymity against adversaries and 

tolerance of node failures. In Chapter 5, we compare AFATOR with other existing 

researches in performance level and security level. We give a detailed analysis of the 

security of AFATOR in Chapter 6. Finally, the conclusions and further work are 

given in Chapter 7 and Chapter 8. 
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Chapter 2 

Background 

 

We give a brief overview of overlay networks and ID-based cryptosystems. 

2.1 Overlay Networks 

Overlay networks [1] are on top of other networks (See Figure 2.1). The 

important feature for privacy and mobility is that they decouple network address from 

physical placements of peers. There are two kinds of existing overlay systems: 

unstructured overlays and structured overlays. 

 

Figure 2.1 Overlay networks 

An unstructured overlay network system [30] [34] [36] [37] [38] is composed of 

peers joining the network without any prior knowledge of the topology. The peers 

send queries by flooding across the overlay within a limited scope. When a peer 

receives the query, it replies a list of content matching the query to the originating 

peer. It is effective to locate the highly replicated data with flooding, and resilient to 

join or leave the network. But they are unsuited to locating rare data in the large size 

network. 
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The disadvantages of unstructured overlay system are there’s no guaranteed 

lookup of a data and a large resource is needed due to the broadcast of queries. The 

advantage is easy to achieve mutual anonymity. 

Structured overlay networks like Chord [5], Tapestry [6], Kademlia [35], and 

Pastry [7] provide scalable and guaranteed lookup of data, a feature especially 

missing in unstructured overlay networks. They are receiving more attention due to 

the performance of routing.  

Structured overlay is composed of a set of nodes, where nodes are assigned 

identifiers uniformly at random from a large identifier space. Keys are assigned to 

data items and nodes are organized into a graph that maps each key to a node.  

Most structured overlays support Key-Based Routing (KBR) [8], enabling 

applications to route a message to any specified key selected from the identifier space. 

Applications are allowed to locate data in a probabilistically bounded and small 

number of hop counts while every node contains only a small number of information 

in its routing table. 

The advantage is more efficient than unstructured overlays. But the basic DHT 

lookup scheme (i.e. to identify a node mapping to an object with closest identifier) 

against the responder anonymity. 

2.2 Identity-Based Cryptosystem 

ID-Based Cryptosystem [9] was introduced by Shamir in 1984. The main idea is 

that the public key of a user can be derived from public information that uniquely 

identifies the user, such as an email address or IP address. The traditional approach is 

to use the public key infrastructures, in which a certification authority (CA) issues a 

certificate which binds a user's identity with his/her public key. The need to make 
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available authentic copies of entities' public keys is a major drawback to the use of 

public-key cryptography. By using ID-Based Cryptosystem, all the participants need 

not to access public key directory. The major advantage is that it simplifies the key 

management process which is a heavy burden in the traditional certificate based 

cryptosystems. 

Identity-Based Encryption 

In 2001, Boneh and Franklin presented an efficient Identity-Based Encryption 

(IBE) scheme [10]. They performed encryption and decryption operation by using a 

bilinear map (the Weil pairing) over elliptic curves.  

The bilinear map transforms a pair of elements in group G1 and sends it to an 

element in group G2 in a way that satisfies some properties. The most important 

property is the bi-linearity that it should be linear in each entry of the pair. Weil 

pairing on elliptic curves is selected as the bilinear map. That is, they use the elliptic 

curve group as G1 and the multiplicative group of a finite field as G2. 

Their ID-based encryption scheme works as follows. A trusted third party called 

the private key generator (PKG) initially chooses a secretive master key s and 

announces the public information including elliptic curve equation, the base point P, 

the public key sP of the system, and other needed hash functions. 

Each user has the public key KU = QID that is a point on elliptic curve 

corresponding to his ID and is known to all other users. The private key is generated 

by KR = sQID, which is obtained from the PKG. 

To encrypt a message M, the sender randomly chooses an integer r and sends (U, 

V) = (rP,M⊕h(e(QID, sP)r)) to the receiver, where h is a hash function announced by 

PKG in the public information and e is the Weil pairing function to be elaborated in 

Section II-D. To decrypt the received cipher text (U, V), the receiver uses the private 
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key sQID to compute M= V⊕h(e(sQID, U)). This decryption procedure yields the 

correct message due to the bilinearity of the Weil pairing (i.e., e(sQID, U) = e(sQID, 

rP) = e(QID, sP)r). 

Fuzzy Identity-Based Encryption 

In 2005, Sahai and Waters proposed Fuzzy Identity-Based Encryption (Fuzzy 

IBE) [4], where a user can decrypt a cipher-text encrypted with other's public key if 

and only if the two users are within a certain distance judged by some metric. 

Fuzzy-IBE gives rise to two interesting new applications. The first is an 

Identity-Based Encryption system that uses biometric identities. That is we can view a 

user’s biometric, for example an iris scan, as that user’s identity described by several 

attributes and then encrypt to the user using their biometric identity. Since biometric 

measurements are noisy, we cannot use existing IBE systems. However, the 

error-tolerance property of Fuzzy-IBE allows for a private key (derived from a 

measurement of a biometric) to decrypt a cipher-text encrypted with a slightly 

different measurement of the same biometric. 

Secondly, Fuzzy IBE can be used for an application that we call “attribute-based 

encryption”. In this application a party will wish to encrypt a document to all users 

that have a certain set of attributes. For example, in a computer science department, 

the chairperson might want to encrypt a document to all of its systems faculty on a 

hiring committee. In this case it would encrypt to the identity {“hiring-committee”, 

“faculty”, “systems”}. Any user who has an identity that contains all of these 

attributes could decrypt the document. The advantage to using Fuzzy IBE is that the 

document can be stored on an simple untrusted storage server instead of relying on 

trusted server to perform authentication checks before delivering a document. 

Setup(d): Providing some security parameter as input, the Private Key Generator 
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(PKG) runs this algorithm to generate its master key mk and public parameters 

params which contains an error tolerance parameter d. Note that params is given to all 

interested parties while mk is kept secret. 

Extract(mk, ID): PKG runs this algorithm to generate a private key associated 

with ID, denoted by DID by providing the master key mk and an identity ID as input. 

User’s identity, ID, as a set of strings representing a user’s attributes. 

Encrypt(M, ID’, params): Providing the public parameters params, an target 

identity ID’, and a plaintext M as input, a sender runs this algorithm to generate a 

cipher-text C’.  

Decrypt(C’, ID, params): Providing the public parameters params, a private key 

DID associated with the identity ID and a cipher-text C’ encrypted with an identity ID’ 

such that∣ID’∩ID∣≧ d as input, a receiver runs this algorithm to get a decryption, 

which is either a plaintext or a “Reject” message. If the set overlap |ID ∩ ID’| is 

greater than or equal to d the algorithm will output the decrypted message M. 

When PKG is creating a private key for a user, he will associate a random d − 1 

degree polynomial, q(x), with each user with the restriction that each polynomial have 

the same valuation at point 0, that is q(0) = y. 

If the user is able to “match” at least d components of the cipher-text with their 

private key components, then they will be able to perform decryption. However, since 

the private key components are tied to random polynomials, multiple users’ are unable 

to combine them in any way that allows for collusion attacks. 

2.3 Summary 

 In Chapter 2, we give a brief introduction and backgrounds of overlay networks 

and ID-based cryptosystems. 
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Chapter 3 

Related Work 

 

There are many research on anonymous systems such as Crowds, Onion Routing, 

TOR, Tarzan, Cashmere, Agyaat, and Surepath. We give a brief introduction about 

their features, advantages and disadvantages. 

3.1 Corwds 

Crowds [14] simply uses no public-key encryption, so any node on a circuit can 

read users’ traffic. It provides anonymity by having messages route through 

anonymous paths involving a randomly chosen sequence of nodes. The initiator sends 

the message to a randomly-chosen node called “jondo.” Upon the message, each 

jondo randomly decides to either send the message to the responder or to forward it to 

another jondo.(see Figure 3.1) 

 

Figure 3.1 Crowds network 

In such systems, each node is a mix and an anonymous path can follow any 

possible path through the system. However, the resulting anonymous paths are 

vulnerable to node failures: If a node on a tunnel is down, the request/reply message is 
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not able to route through the tunnel to the destination. Consequently, node failures 

pose a functionality problem for anonymous paths.  

3.2 Onion/ Tor 

Onion Routing [3] uses a static set of dedicated onion routers to redirect network 

traffic. Before sending a message, the sender selects a set of currently active routers to 

forward through. Session keys are distributed to the chosen routers during the setup 

phase. The sender creates an onion by encrypting the message with the public key for 

every router in the routing path. 

To transfer a message, each onion router decrypts the outside layer by its private 

key. After that, it discovers the next hop and forwards the message. Every relay node 

knows only its previous and next hops. 

Node churns, frequent node arrivals, departures, and failures, limit the scalability 

of Onion Routing.  

Tor [17], the second generation of Onion Routing, is one of the most popular 

privacy enhancing systems. Its goal is to provide initiator anonymity and responder 

anonymity against non-global adversaries by using rendezvous points. 

Tor proposes using a directory server to maintain router information but this 

approach is also limited in scalability. It has also been shown that if the first or last 

router is compromised in an Onion Routing network (see Figure 3.2), the source or 

destination is revealed [31]. 
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Figure 3.2 Onion network 

In their current implementations, all of the approaches do not allow client 

applications to choose routes that adhere to application-specific criteria. Routes are 

chosen using pre-defined immutable heuristics. 

Recent work has shown that the Tor anonymity network is vulnerable to an 

attack in which eavesdroppers exploit this homogeneous routing policy by falsely 

advertising high bandwidth links, drawing traffic towards mixes under its control 

[32]. 

3.3 Tarzan 

Tarzan [13] provides anonymity with high resistance against traffic analysis by 

using layered encryption, multi-hop routing, cover traffic and a special mix selection 

protocol.  

The source chooses a set of relays to act as a path and iteratively establishes a 

tunnel through these relays with symmetric keys between them. The creation of a 

tunnel incurs both significant computation overhead and delay. The source wraps the 

packets in several layers of encryption and sends it through relay nodes. The relay 

node strip off one layer and sends it to next relay node. The exit point of the tunnel, 
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pseudonymous network address translator (PNAT), decrypts the last layer to extract 

the original packet, and operates as a network address translator (NAT). After 

translating the private address to one of PNAT’s real addresses, PNAT forwards the 

message to the Internet (See Figure 3.3). The response repeats the process in reverse. 

 

Figure 3.3 Tarzan network 

Since none of the peers on a tunnel know the whole path, an adversary cannot 

figure out communicating peers. But this design is still vulnerable if an adversary can 

observe traffic throughout the Internet. 

Another vulnerability of Tarzan is the resilience of node failures. The message 

cannot reach the destination if any node on a tunnel fails. Consequently, node failures 

pose a functionality problem for anonymous paths. The tunnels are static and any 

relay failure requires formation of a new tunnel. 

Although Tarzan provides a high level of sender and recipient anonymity, the 

sender still has to know the address of the recipient in order to communicate.  

3.4 Agyaat 

Agyaat [12] provides a compromise between anonymity and efficiency by means 

of a two-level hybrid organization in which the Chord structured overlay works 

together with the Gnutella unstructured system, Gnutella-like “clouds” are connected 
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with one another by means of a Chord ring. 

As shown in Figure 3.4, initiator S can flood its request to every peer in its cloud 

A. One of those peers takes the request out of the cloud, onto the main DHT ring. A 

normal DHT lookup takes over to locate the cloud to which the responding peer D 

belongs. At the responder’s end, some peers in the cloud of the responder get the 

request and then broadcast it in its cloud. After receiving the request, the responder 

peer replies by following a similar path back to the initiator’s cloud.  

 

 

Figure 3.4 Agyaat network 

 

Normal DHT maps a key onto a peer, but Agyaat makes a key mapping onto a 

cloud which links to the appropriate peer. 

3.5 Cashmere 

Cashmere [11], a resilient anonymous routing on structured overlay networks, 

provides both source anonymity and unlinkabality of source and destination. 

Cashmere is designed to use a prefix-routing based on structured overlay network, 

such as Tapestry and Pastry. The routing path used in Cashmere is a set of distributed 
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relay groups rather than a single node. There are k unique prefixes and public/private 

key pairs for each k-bit nodeID. Each relay group has a m-bit GID, where 1≦m≦k. 

Layered encryption is applied on the routing path encryption by the 

public/private key pair shared with all members of each relay group. Except all the 

members of the relay group in the routing path fail, the routing path is remained valid. 

The source node can randomly orders the relay groups to hide the destination relay 

group containing the destination node. All nodes in a relay group are capable of 

decrypting a message (only the forwarding path information) which was addressed to 

that relay group. While a node receives and decrypts the message, it sends the result 

to the next relay group and broadcasts the result to all the other members in its relay 

group. 

The key benefit of Cashmere over traditional approaches is that it provides an 

increased resilience to node failures and node churns which generally degrades the 

performance of traditional anonymous routing protocols based on Chaum-Mixes. 

Traditionally Chaum-Mixes based routing protocols achieve anonymity by relaying 

the traffic through a sequence of nodes, such that any two nodes, which are not 

adjacent to each other along the path, are unable to identify each other. Thus, if the 

relayed path contains more than two nodes, then there is no way the destination can 

identify the source. More specifically, no downstream node can identify the upstream 

nodes. 
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Figure 3.5 Cashmere network 

3.6 SurePath 

In SurePath [2], a node seeking initiator anonymity generates a small number of 

RSAs containing session keys, deploys the RSAs into the DHT overlay, forms an 

anonymous path using a subset of the deployed RSAs, and sends messages through 

the resulting anonymous path. Like a normal file, a RSA is stored on k nodes whose 

nodeIds are numerically closest to its associated rsetId. These k nodes are the replica 

set for the RSA and k is the replication factor. Leveraging the DHT routing 

infrastructure and data replication mechanism, SurePath is fault-tolerant to node 

failures. A malicious node can disclose the RSAs stored in its local storage to other 

colluding nodes such that the malicious nodes can pool their RSAs to break 

anonymity of other users. 
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Figure 3.6 SurePath network 

 

The following are the advantages: 

a) To improve resilience of anonymous routing in overlay networks 

b) Leveraging the DHT routing infrastructure and data replication mechanism, 

SurePath is fault-tolerant to node failures. 

c) By carefully choosing the replication factor and tunnel length, SurePath can 

strike a balance between functionality and anonymity.  

d) SurePath’s performance optimized tunnelling mechanism can greatly 

improve routing performance. 

e) Users seeking anonymity must reform their tunnels periodically against 

colluding malicious nodes in dynamic P2P networks to reduce the risk of 

having their anonymity compromised. 

And the disadvantages list as follows. 

a) SurePath lacks the ability to control future hops along a tunnel. It trades this 

ability for functionality. 

b) The admission control problem in SurePath has not been addressed. In 

securing routing, the certified nodeIds could control the admission of peers, 
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and we believe trust management could be used to control the admission and 

exclude malicious peers from the system. In addition, other incentive 

mechanisms could possibly be introduced to encourage nodes to protect 

others’ anonymity. 

c) SurePath does not have a mechanism to detect compromised tunnels. It 

requires users to reformtheir tunnels periodically against colluding malicious 

nodes. 

3.7 Summary 

 In Chapter 3, we describe several related works of anonymous network system. It 

includes Crowds, Onion/TOR, Agyaat, Tarzan, Cashmere and SurePath. 
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Chapter 4 

Proposed Scheme: AFATOR 

 

There are three main phases in AFATOR: 

• Phase1: Node Registration 

In the first phase, Private Key Generator (PKG) would do the Setup 

operation. Every node must do registration from PKG to get some system 

parameters and its private key while joining the network. 

• Phase2: Topology Formation 

Chord-like protocol is used to setup network topology including route 

discover and routing table maintenance. It can route bi-direction by using 

routing table with several predecessors and successors.  

• Phase3: Content Request 

For content request phase, we use layered encryption and random 

intermediaries to achieve anonymity. Every node in the path knows only the 

previous hop and the next hop.  

We also apply Fuzzy Identity-Based Encryption (Fuzzy-IBE) scheme for 

tolerance of node failures in the routing path. By using Fuzzy-IBE, a user can 

decrypt a cipher-text encrypted with other's public key if and only if the two 

users are within a certain distance. Thus, any node can easily take over 

message forwarding if its neighbor node fails.  

We have investigated the use of the different constructions [23] [41] for 

Fuzzy IBE scheme. The new construction we used [23] is more efficient in 

both extract and encryption operations. 
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4.1 Notation 

 At first, we shall introduce the notations used in this protocol. The notations and 

their interpretations are listed in Table 4.1. 

Symbol Description 

S  Initiator  

Ri  The intermediaries chosen from the initiator S  

Ri’  The real existing node whose id is close to Ri  

F  The file which initiator requests  

D  The destination which stores the file F  

IDX  Identities of X  

SK  Secret key produced by S 

PuKX, PrKX  Public key and private key for X  

TB  Return path specified by S  

Q  Query  

Table 4.1 Notation 
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4.2 Primitives 

 We give a brief review of admissible bilinear pairing [10]. Let G1 and G2 be 

groups of the same prime order p. An admissible bilinear map, denoted by ê, has the 

following properties: 

ê: G1G1
 
 G2 :

 
 

1. Non-degenerate: 

g is a generator of G1  ê (g,g) generates G2  

2. Bilinear:     

ê (g
a
, g

b
) = ê (g,g)

ab  
,  a,bZ, gG1  

3. Efficiently computable:  

A efficient algorithm to compute ê (g,g) exists for any g  G1 

Recall that we apply Fuzzy IBE scheme for allowing a cipher text created by 

identity w can be decrypted with a private key of identity w’ where | w∩w’ | ≧ d. Let 

G1 be a bilinear group of prime order p and make g a generator of G1. And let the 

bilinear map ê: G1G1
 
 G2. 

The definition of university U is {0*2
0
, 1*2

0
, …, 0*2

n-1
, 1*2

n-1
}. For each 

identity is viewed as a set of attributes or bits, w = {wn, wn-1, …, w2, w1}. The 

identities of nodes will be element subsets in the universe U. Each element would be 

associated with a unique integer in U.  

The Lagrange coefficient Δi,S(X) for iZp and a set, S, of elements in Zp: 


 




ijSj ji

jx
xSi

,

)(,  

 Identities will be element subset of some universe. And we will associate each 

element with a unique integer in Zp*. 
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4.3 Node Registration 

Private Key Generator (PKG) first generates a group G1 of prime order q. and 

constructs a bilinear map ê: G1G1  G2, where G2 is a group of the same order q. 

PKG picks a generator g of the group G1. 

Second, PKG randomly picks g1 G1, s Z*q and compute g2=g
s
. Then, PKG 

chooses a hash function H: Z*q  G1
 
and selects an error tolerance factor d. After that, 

PKG generates its master key: <G1, G2, ê, g, q, H, g1, g2, s> and keeps it secret. PKG 

also generates system parameters which contain an error tolerant factor d and 

publishes them to other registered nodes: <G1, G2, ê, g, q, H, g1, g2, d>. 

Third, for any node provides its ID: (μ1,…, μn) to PKG, PKG picks a random 

polynomial p(．) of degree d-1 over Zq such that p(0) is equal to s. Then, PKG 

computes each private key component Dμi for i=1, …,n:  

Dμi = ( γ μi, δ μi ) = ( (g1 H(μi))
p(μi)

, g
p(μi)

 ).  

As result, the private key of identity ID is composed of n components as follows: 

PrKID=< Dμ, …, Dμn >=<((g1 H(μ1))
p(μ1)

, g
p(μ1)

), …, ( (g1 H(μn))
p(μn)

, g
p(μn)

 )> 

After finishing computation, PKG returns private key PrKID = (Dμ, …, Dμn). 

 

Figure 4.1 Procedure of key extraction 

For example, node A can get its private key PrKA from PKG by providing its IDA. 
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The procedure of key extraction is shown in Figure 4.1. 

As you can see in Figure 4.2, for each of the attributes or bits associated with a 

user’s identity, PKG will issue a private key component that is tied to the user’s 

random polynomial p(x). Each identity with the same restriction that the value at point 

0 for each polynomial are the same, that is p(0) = s.  

The private keys of different users are generated from different random 

polynomials. No group of users should be able to combine their keys in such a way 

that they can decrypt a cipher that none of them could. That is the adversaries cannot 

combine their keys to form a new one for decrypting some other cipher text. 

 

Figure 4.2 Private key components 
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4.4 Topology Formation 

AFATOR can be built over a structured overlay network, which provides a 

scalable routing substrate for building resilient, large-scale decentralized systems. The 

routing protocol used in such overlay substrate is similar to Chord [5], where every 

node is assigned a unique identifier from a large key space, and the routing between 

any two nodes typically contains O(logN) hops, where N is the total number of nodes.  

Chord-like protocol is used to setup network topology, including route discovery 

and routing table maintenance.  

Each node, acting as a proxy and router, stores information about only a small 

amount of its neighbors. But the information generally is not enough to determine the 

node where data located. The information can be used by attackers to compromise the 

anonymity of storage nodes, i.e. recipient anonymity. The data maps onto a node by 

using identity. The data is assigned to the first node whose identifier is equal to or 

follows the identifier of the data. The distance between data and node is within d.  

When a node joins the overlay network, it first finds a neighbor node and 

initializes its routing table. The new joined node exchanges some information with 

neighbors and updates the routing table. Each node maintains a neighbor set of m 

nodes (m/2 neighbors clockwise and m/2 neighbors counter clockwise). Whenever a 

node wants to lookup data, it can choose clockwise way or counter clockwise way to 

route the message. 

We give an example to show how to route a message through the CHORD ring 

network. As you can see in Figure 4.3, N8 wants to route the request to the node 

which stores data 50 by checking its neighbor list. After finding the closest neighbor 

to data 50, N32, N8 routes the request through N32. Upon N32 receiving the request, 
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it checks its neighbor, finds the neighbor that close to data 50, and routes the message 

to the neighbor.  

 

Figure 4.3 Network topology 

If a node cannot find an active neighbor which acts as proxy to join the network, 

it creates a new ring after a timeout. The network can contain multiple rings. 

The correctness of Chord-like routing protocol relies on every node knows the 

previous hop and the next hop. The nodes which is compromised or failed will lead to 

incorrect lookups. In order to increase the robustness, it is important to pick a suitable 

m. The problem is dependent with Chord and I’m not going to discuss it in this thesis. 

It’s easier to detect path failure by using soft state than hard state. Each node 

periodically broadcast hello message to see if its neighbors are active or not. Without 

any response from the neighbor node, it can mark the neighbor as failed node in the 

routing table. The node can remove the failed neighbor node from the routing table 

after a period without any messages. A hello message also indicates that sender is 

active. 



 

25 

 

 

Figure 4.4 Failure detection in Chord-like protocol 

As shown in Figure 4.4, N8 originally routes to N50 through N60. While N8 

detects that N60 is not active, N8 chooses another neighbor N1 to send lookup 

message and marks N60 as faulty node in the neighbor set. If N60 is still not active 

after a period, N8 removes N60 from the neighbor set. Otherwise, N8 clears the faulty 

mark of N60. 
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4.5 Content Request 

 We use layered encryption and random intermediaries to achieve anonymity. 

Every node in the path knows only the previous hop and the next hop. 

We separate it into two parts as the routing path formation and the routing path 

stripping process. Initiator can randomly choose the intermediate nodes and create a 

message onion by encrypting with the intermediate nodes’ public keys. The paths 

between initiator and intermediate nodes may pass through some other nodes in 

network. When the intermediaries get the packets, they strip off the outside layer and 

then forward the message to the next hop. After receiving the request, Responder 

would reply it using the return path specified by initiator. 

For any node S wants to request file F in the network, it can perform the 

following procedures, return path formation and return path formation.  

Figure 4.5 illustrate the flow diagram of return path formation. Followed the 

flow diagram, S firstly generates fakeOnion and decides the length of the return path. 

After generating L random intermediate nodes (R1, …, RL), S does the encryption 

with fakeOnion, system parameters, and L random intermediate nodes: R1, …, RL. 

Finally, the result is TB which indicates the return path that the responder can follow. 

While S finishes the return path formation, S would use the result TB, Query Q, 

and session key SK to do the forward path formation. Since the data is stored on the 

node which identity is the most closest to the data identity, S use the hash value of the 

data identity as public key to encrypt the message: <Q, TB, SK>. Therefore, the node 

who stores the data can decrypt the cipher text due to the Fuzzy IBE scheme. After 

that, S decides the path length, generates node identities and encrypts the routing 

message (See Figure 4.6). 
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Figure 4.5 Return path formation   

 

Figure 4.6 Forward path formation 

The following equation presents the generation of the intermediate nodes’ 

identifies in a formal way. 

IDRj = hash(t, IDF, IDS) 

A uniform collision-resistant hash function such as SHA-1 can be used. Time t 

and the identifier of file are added to avoid collision. 
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S encrypts the message M in a layered manner from the last hop to the first hop 

in the routing path by their public keys which are the hash value of their identities.  

To do encryption operation with IDRi: (μ1, …, μn), S choose a random value r  

Zp. Recall that the publish parameters <G1, G2, ê, g, q, H, g1, g2, d> are given during 

the node registration. S generates CRi: 

< IDRi, U, Vμ1, …, Vμn, W > = < IDRi, g
r
, H(μ1)

r
, …, H(μn)

r
, ê(g1, g2)

 r
M >. 

While any intermediate node (Ri’) receives the encrypted message, it can 

perform the routing path stripping process in Figure 4.7. 

 

Figure 4.7 Routing path stripping process 

Due to︱IDRi∩IDRi’︱≧d, Ri’ does the following steps to decrypt CRi which is 

encrypted with IDRi (Recall that IDRi = (μ1, …, μn)). Ri’ chooses a d-element arbitrary set, S, 

of IDRi∩IDRi’ and runs the decryption algorithm: 
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 (Notice that μj =μ’j if μ’j  S)  

The above decryption algorithm is correct as 
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The fakeOnion added in the return path makes S like an intermediate node and it 

can also confuse the adversaries observing the network traffic. The return path TB is 

specified by using the same manner. The routing information from S to R1 can be 

shown as follows:  

< IDR1, [IDR2, …, [IDRi, [IDF, [Q, SK, TB]PuKF ]PuKRi ]PuKRi-1… ]PuKR1 >, where  

TB = < IDRi+1, [IDRi+2, …[IDRm, [IDS, fakeOnion]PuKRm]…]PuKRi+1 > 

 Since the identifier of intermediate node IDRj is randomly generated from S, it 

probably does not exist in the network. But the routing protocol will routes IDRj to 

IDRj’ which is really close to IDRj. Rj’ and Rj are in a certain distance d, so that Rj’ can 

decrypt the cipher-text encrypted with Rj’s public key PuKRj. 

If the user is able to “match” at least d components of the cipher text with their 

private key components, then they will be able to perform decryption. However, since 

the private key components are tied to random polynomials, multiple users’ are unable 

to combine them in any way that allows for collusion attacks. 

An intermediate node determines the next hop and forwards the message to it 

according to the identifier in the header after removing one layer of encryption using 

its private key. The message onion has been stripped off one layer:  

< IDR2, […, [IDRi, [IDF, [Q, SK, TB]PuKF ]PuKRi ]PuKRi-1…]PuKR2 > 
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This process is continued until the encrypted message arrived at the destination 

node D, responder, whose identifier is closest to the file IDF. The responder can use its 

private key PrKD to decrypt the encrypted query due to the distance between IDF and 

IDD are larger than d.  

Responder D retrieves the file f from its local storage and encrypts it with a 

symmetric key K extracted from the receiving message and the public key of the next 

hop. Then Responder sends the reply message to the next hop specified by the return 

path: 

< IDRi+1, [F]SK, [IDRi+2, …[IDRm, [IDS, fakeOnion]PuKRm]…]PuKRi+1 > 

 The intermediate nodes in the return path would do the same procedure like the 

nodes in forward path, such as strip off a layer and send it to the next hop. 

It is hard for adversaries to correlate a request with a response because the 

forward path is different from the return path. Messages passed along the anonymous 

connection appear different to each node, so they cannot be tracked en route and 

compromised nodes cannot cooperate. 

4.6 Example 

In this subsection, we would like to demonstrate the way how to apply AFATOR. 

For example, the network N contains a private key generator (PKG), and many nodes 

including initiator S, responder D, intermediate nodes Ri, Ri’s neighbor Ri’, and some 

other nodes where i =1, …, 4. (See Figure 4.8) 

The definition of university U is {0*2
0
, 1*2

0
, …, 0*2

n-1
, 1*2

n-1
}. For each 

identity is viewed as a set of attributes or bits, w = {wn, wn-1, …, w2, w1}. The 

identities of nodes will be element subsets in the universe U. Each element would be 

associated with a unique integer in U.  
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PKG randomly picks g1 G1, s Z*q and compute g2=g
s
. Then, PKG chooses a 

hash function H: Z*q  G1
 
and selects an error tolerance factor d. After that, PKG 

generates its master key: <G1, G2, ê, g, q, H, g1, g2, s> and keeps it secret. PKG also 

generates system parameters which contain an error tolerant factor d and publishes 

them to other registered nodes: <G1, G2, ê, g, q, H, g1, g2, d>. 

In order to generate a private key for a node with identity ID: (μ1,…, μn), PKG 

needs to randomly choose a d-1 degree polynomial p such that p(0)=s. Then, PKG 

computes each private key component Dμi for i=1, …,n:  

Dμi = ( γ μi, δ μi ) = ( (g1H(μi))
p(μi)

, g
p(μi)

 ).  

As result, the private key of identity ID is composed of n components as follows: 

PrKID=< Dμ, …, Dμn >=<((g1H(μ1))
p(μ1)

, g
p(μ1)

), …, ( (g1H(μn))
p(μn)

, g
p(μn)

 )> 

To do encryption operation with IDRi: (μ1, …, μn), the initiator chooses a random 

value r  Zp. Recall that the publish parameters <G1, G2, ê, g, q, H, g1, g2, d> are 

given during the registration. The initiator generates CRi:  

CRi = < IDRi, U, Vμ1, …, Vμn, W > = < IDRi, g
r
, H(μ1)

r
, …, H(μn)

r
, ê(g1, g2)

 r
M >. 

Due to︱IDRi∩IDRi’︱≧d, Ri’ does the following steps to decrypt CRi which is 

encrypted with IDRi (Recall that IDRi = (μ1, …, μn) and IDRi’ = (μ1’, …, μn’)). Ri’ 

chooses a d-element arbitrary set, S, of IDRi∩IDRi’ and runs the decryption algorithm 

mentioned in previous subsection. 
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Figure 4.8 Transitions of request and response 

 

Figure 4.8 shows an example of how initiator S looks up and gets back the file F. 

In order to lookup a file F, initiator S randomly chooses the intermediaries R1, R2, R3, 

R4 and then forms the forward path and the return path. The forward path consists of 

R1and R2. R3 and R4 are in the return path. To confuse other nodes knowing the real 

destination of the message, a fakeOnion is generated. S uses the public keys of R3 and 

R4, the hash value of IDR3 and IDR4, to encrypt the message M’ including the identity 

of initiator IDS, a fakeOnion and the return path TB.  

M’ = < IDs, fakeOnion> 

S picks a random r and encrypts the message M with R4’s public key PuKR4 and 

then obtains cipher text CR4: < IDR4, UR4, V R4μ1, …, VR4μn, WR4 > where IDR4 consists 

of n attributes and WR4 = ê(g1, g2)
 r
M’. 

By the similar way, S also uses R3’s public key PuKR3 to encrypt the result CR4 
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and then obtains cipher text CR3: < IDR3, UR3, V R3μ1, …, VR3μn, WR3 >, where WR3 = 

ê(g1, g2)
 r’

CR4. The result CR3 acts as the return path TB. 

The request message M containing the query Q, the return path TB, and a session 

key SK is encrypted by the public keys of R2 and R1. The session key, SK, is used to 

protect the reply message. 

M = < Q, TB, SK> 

S uses F’s public key PuKF to encrypt the message M and then obtains cipher text 

CF: < IDF, UF, V Fμ1, …, VFμn, WF >, where WF = ê(g1, g2)
 r’’

M. 

By the similar way, S uses R2’s public key PuKR2 and R1’s public key PuKR1 to 

encrypt the message EF. Finally, S obtains the layered encrypted routing message CR1: 

< IDR1, UR1, V R1μ1, …, VR1μn, WR1 >, where WR1 = ê(g1, g2)
 r’’

CR2. 

S routes the request message ER1 to R1. If R1 fails or does not exist, then its 

neighbor node R1’ can take over the message forwarding since the overlap between 

R1 and R1’is larger than or equal to error tolerant factor d. Upon receiving message, 

R1’uses its private key PrKR1’ to decrypt the message. At first, R1’ chooses an 

arbitrary d-element subset S of { IDRi∩IDRi’} and then does the decryption operation. 

U = {u0, u1, …,ud-1 } 
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After computation, the result CR2: < IDR2, UR2, VR2μ1, …, VR2μn, WR2 >, can be 

extracted. At last, R1’ discovers the next hop R2 and then routes the message to R2. If 

R2 exists, R2 can strip off one layer of the message and then forwards the result to the 

destination D which stores the file F.  

The file F maps onto the destination D whose identifier is closest to IDF. Due to 

the intersection between IDD and IDF exceeds the error tolerant value d, D decrypts 

the request with its private key PrKD. Upon obtaining the query Q, D retrieves the file 

F from its storage, uses the session key K to protect the responding file F and replies 

the message through the return path.  

The reply message can be transferred through the return path which is specified 

by initiator by similar way. We can also see the detailed message flow in Table 4.2 

SoureDest. Message 

SR1’:  < IDR1, [IDR2, [IDF, [Q, SK, TB]PuKF ]PuKR2 ]PuKR1 >,  

where TB =< IDR3, [IDR4, [IDs, fakeOnion]PuKR4 ]PuKR3 >  

R1’R2:  < IDR2, [IDF, [Q, Key, TB]PuKF ]PuKR2 >  

R2D:  < IDF, [Q, Key, TB]PuKF >  

DR3:  < IDR3, [F]SK, [IDR4, [IDs, fakeOnion]PuKR4 ]PuKR3 >  

R3R4’:  < IDR4, [F]SK, [IDs, fakeOnion]PuKR4 >  
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R4’S:  < IDs, [F]SK, fakeOnion >  

Table 4.2 Messages flow 

4.7 Summary 

 In Chapter 4, we describe the whole scheme of AFATOR including three phases. 

AFATOR protects anonymity for initiator and responder and provides tolerance for 

node failures by using Fuzzy Identity-Based Encryption (Fuzzy IBE). 
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Chapter 5 

Evaluation 

 

 This chapter focuses on evaluation of AFATOR in performance and security level. 

By comparing with other anonymous systems, we discuss benefits and drawbacks of 

AFATOR. 

5.1 Performance 

 Table 5.1 presents a performance comparison of AFATOR and other research, 

SurePath, Agyaat, Tarzan, and Onion/TOR. 

 SurePath Cashmere Tarzan Onion/ 

TOR 

AFATOR 

Send requests without 

setting tunnels & 

sym. Key first 

N Y N N Y 

Get public key 

without CA 

N N N N Y 

Tolerate node failures Y Y N N Y 

Tolerate attackers in 

routing path 

Y Y Y N Y 

Message transmission Tunnel +relay 

group 

relay group Tunnel Onion 

routers 

Ring DHT 

Storage costs 1pub&pri key 

N-1 pairwise 

key 

logN 

pub&pri key 

  1pub&pri key 

sys. params 

Table 5.1 Performance comparison 

Public key from CA 

Tarzan and Onion need to establish tunnels or circuits and distribute session keys 

before sending message. Cashmere and SurePath use a set of relay groups to instead a 

single relay node. Every node with the same prefix of its identifier in a Cashmere 

relay group shares the common public/private key pair. SurePath randomly generates 



 

37 

 

the relay groups and distributes and the symmetric keys associated with the relay 

groups. All of them need a third party Certificate Authority (CA) to get public key 

and private key pairs. But AFATOR need not to do so. With only system parameters 

and the target node identity, every node can easily generate the public key of the 

target node. The private keys of all nodes in AFATOR are obtained from Private Key 

Generator (PKG). 

Resilient to node failures 

In Tarzan, Onion and Tor, the message may not reach the destination if any node 

in the routing path fails. Cashmere, SurePath and AFATOR can achieve resiliency for 

node churns. The routing path of Cashmere is formed with a set of relay groups with 

the same prefix of identifiers. Each relay group shares the common public/private key 

pair due to the same prefix. SurePath uses relay sets with k candidates to help 

message forwarding. We apply Fuzzy IBE scheme to ensure that even if a node fails, 

its neighbors can take over message forwarding. 

Compare AFATOR with SurePath and Cashmere, neither key distribution nor 

key discovery is need for AFATOR. Lots of churns in AFATOR and Cashmere do not 

affected the other existing nodes which need not do extra operation because the 

identities of nodes are used as public keys. But in SurePath, adding or deleting a node 

results extra key distribution or index information change. The performance of 

SurePath decrease with increasing churns in overlay networks. 

Computation cost 

In AFATOR, the initiator must do most of the encryption operations to form the 

routing message including the forward path and return path. For each intermediate 

node, the operation is decrypting one layer of the message. The responder does two 

operations: decrypts the message to get the query and encrypts the reply by symmetric 
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key from the receiving message. 

In SurePath, before sending a query, the initiator needs to setup tunnels, discover 

the public key of destination and distribute symmetric keys encrypted by the public 

key of relay nodes. And then the initiator route the messages encrypted by symmetric 

keys from every relay sets. Every relay node decrypts the message using the pre-share 

key. After decrypting the message by the private key of the responder, the responder 

obtains the symmetric key to encrypt the reply message. 

The initiator in Cashmere first generates symmetric keys for each relay groups to 

encrypt the payload. Secondly, the initiator encrypts the routing information: the next 

forward path, the identity of the next relay group, and the symmetric key by using the 

public keys of each relay groups from the last relay group to the first one. Not only 

forward path but also return path will the initiator create. Any node in the relay group 

receiving the message becomes the root of its group. The root decrypts the path with 

public key and the message with symmetric key, and then forwards the result to the 

next relay groups and broadcast the result to all members in the same relay group. The 

responder decrypts the message with its public key and then encrypts the reply by 

symmetric key extracted from the receiving message. 

 An ECC benchmark shows that an instruction set extensions of a typical 

embedded processor for ECC that can efficiently replace a coprocessor that is 

typically used for improving performance of ECC [42]. 

Key storage cost 

Nowadays, Elliptic Curve Cryptography (ECC) is becoming more and more used 

to alternate traditional public key methods. The reason is that ECC can use shorter 

key, faster computation time and less memory to achieve the same security level with 

traditional public key methods. For example, RSA encryption with 1024-bit key is at 
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the same security level as the use of 163-bit key in the case of ECC over GF (2m). As 

a result, ECC offers higher throughput on the server side and smaller implementations 

on the client side. [44] 

The cost depends on the keys stored at each node. The key size of AFATOR 

based on Elliptic Curve Cryptography is much smaller than the key size of Cashmere 

and SurePath based on traditional public key methods. 

In AFATOR, every node stores its private key and public parameters. Whoever 

wants to query the data, it needs to generate a symmetric key attached in routing 

message so that the responder can encrypt the reply message by the symmetric key 

without knowing the initiator. 

 All members having m-bit identifier in Cashmere own m public/private key pairs 

corresponding with each prefix of identifiers. The initiator would also create each 

symmetric key for each relay group in order to encrypt the payload. In SurePath, each 

node stores lots of keys, including its private key, the public keys of other nodes and 

the corresponding symmetric keys for each relay set. The initiator also needs to 

generate a symmetric key for the responder to reply the message. 
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Figure 5.1 Number of the public and private key pairs’ comparison 

 In Figure 5.1, the number of keys in AFATOR is the least than others. And 

AFATOR only needs the least key storage shown in Figure 5.2. 

 

Figure 5.2 Key storage comparison 

5.2 Security 

 The comparison about security issue is shown in Table 5.2. 

 SurePath Cashmere Tarzan Onion/TOR AFATOR 

Initiator anonymity Y Y Y Y Y 

Responder anonymity  Y N N N Y 

Use different paths to do 

request & response  

Y Y N N Y 

Information leaking Receiver id 

& public 

key 

Receiver id 

& public 

key 

Receiver id 

& public 

key 

Receiver id 

& public 

key 

Data id & 

data public 

key 

Table 5.2 Security comparison 

Tarzan, Onion, SurePath, Cashmere and AFATOR use layered encryption and 

multi-hop routing to achieve anonymity. Except AFATOR, all the others use Public 
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Key Infrastructure (PKI) and symmetric key to protect data secrecy. Moreover, the 

third party they trusted is Certificate Authority (CA). Onion routing also trusts onion 

routers to route through the message. 

AFATOR use Fuzzy Identity-Based Encryption (Fuzzy IBE) to do public & 

private key generation and data encryption & decryption. Instead of CA, AFATOR 

use PKG. 

All the systems we mentioned can achieve initiator anonymity by random 

routing path. Some of them, like SurePath and AFATOR, do the message forwarding 

and returning by different routing path. The advantage of different routing path is to 

avoid traffic analysis. 

Information leaking 

The initiator in AFATOR knows only the desired data name but nothing about 

where the data located. So the initiator uses the public key, the hash value of data 

identifier, to encrypt the request. SurePath and Cashmere know not only the data 

name but also the public key of the node which stores the data. For responder 

anonymity, the information leaking of AFATOR is less than SurePath and Cashmere. 

In Cashmere, if one node with m-bit identifier is compromised, then the attacker 

would obtain m public and private key pairs associated with each prefix. When the 

same case occurs in SurePath, the attacker can control N-1 share keys where network 

size is N. However, only one private key is revealed to the attacker during the same 

situation in AFATOR. Compared AFATOR with other systems, the attacker knows 

less information about secret keys. 

Souvik et al. [26] proposed an information theoretic framework for analyzing 

leak of privacy in DHT. With the same routing complexity, the analytical result shows 

that ring-based DHT (CHORD) has the minimum information leak than the other 
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DHTs, such as tree-based, hypercube-based, and hybrid-based DHT.  

CHORD-like routing protocol with ring-based DHT is used in AFATOR; 

however, both Cashmere and SurePath apply Pastry, a routing protocol with 

hybrid-based DHT. As a result, AFATOR leaks less information than Cashmere and 

SurePath. 

To provide sender and receiver anonymity, these systems like Tarzan [13] and 

Cashmere [11] require the overlay nodes to have public-private keys obtained through 

a trusted authority; i.e., they require a public key infrastructure (PKI). A few systems 

(e.g., Crowds [14]) do not require PKI, but they expose the receiver and message 

content. 

5.3 Summary 

 It is commonly held that there is a tradeoff between performance and anonymity. 

The routing protocol that provided best anonymity usually came with associated 

performance costs. 
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Chapter 6 

Analysis 

6.1 Threat Model 

The adversaries can do the following things: 

a. compromise the existing node 

b. observe packets destined to itself or its local network  

c. collude and share information with others 

d. follow the protocol and forwards all the messages pass through it  

For each compromised node, the attacker will obtain the private key of itself and 

the error tolerant distance d. Therefore, the attacker may read the cipher text 

encrypted with its neighbor’s public key if they are within a certain distance d. We 

apply Byzantine failure model to allow compromised node behave arbitrarily. 

Eavesdropper 

There are two kinds of eavesdropper. The first one is global eavesdropper who 

can observe all the traffic of the network. Even the message is encrypted, he still can 

use timing attacks or statistic attacks to break anonymity: identifying the route from 

the initiator to the responder. But it is not realistic in overlay network with thousands 

of nodes. It is impossible to know the information of the whole network at any time 

due to lots of churn in overlays. The other one is local eavesdropper who can only 

observe packets destined to itself or its local network. He cannot get enough 

information to identify real destination. 
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6.2 Anonymity Analysis 

We analyze anonymity using three parameters: N (number of nodes in the 

network), f (fraction of malicious nodes in the network), and L (number of 

intermediate nodes in the routing path). 

The routing path is generated by the initiator, a non-malicious node. When the 

initiator decides the path, it passes the message to the first intermediate node. Due to 

layered encryption, every intermediate node knows only the previous hop and the next 

hop. The attackers in the routing path act as intermediate nodes and try to guess which 

node is the initiator or the responder. Since the messages are encrypted, the attackers 

would suspect the previous node which passes the message to itself is the initiator. We 

distinguish the two cases to analyze the probability that the intermediate previous 

node is in fact the initiator. Notation f means the probability of choosing an attacker to 

be an intermediate node. In contrast, the probability of choosing a non-attacker as 

intermediate node is 1- f. 

Case I: 1st intermediate node is attacker  

The attacker can guess its previous node is the initiator with probability of 1. The 

probability of case I is   iL
L

i

i fif
L

p




  1
1

1

.  

Case II: 1st intermediate node is not attacker  

The attacker suspects its previous node with probability of 
 fN 1

1
, where 

N(1- f) represents the number of non-malicious nodes in the network. The probability 

of case II is   iL
L

i

i fif
L

p




  1
1

11
1

. 

Thus, the probability that node x is the initiator shows as follows. 
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Figure 6.1 displays the results for the probability of guessing a node to be the 

initiator from the attacker with different path length and fraction of attackers. As f 

(fraction of attackers) increases, the probability a node to be the initiator increases. 

The length of routing path L influences the variation of the initiator probability of a 

node. The more intermediate nodes pass by, the less probability to guess right. 

 

Figure 6.1 Probability to be Initiator 

By the similar way, we can also analyze the probability that the intermediate next 

node is in fact the responder. 

6.3 Resilient to Node Failure 

We use probability to analyze the resilience and fault tolerance. The parameters 

list as follows. 

 2
m

: id space; 

 N: number of nodes in the network, network size; 

 L: number of intermediate nodes in the path, the length of routing path; 

 d: error tolerant factor 



 

46 

 

Since the probability that each ID maps onto a node is 
m

N

2
, a node maps onto a 

non-existing node with the probability of 
m

N

2
1 . The number of nodes Z can help 

forwarding the message if any of them exists. The restriction is that the overlap of 

identities is larger than or equal to the error tolerant factor d. The estimation of Z lists 

as follows. 

  0)1(

1 21...22 m

m

dmdmm

d

dmm

d CCCZ




   

It is clear that Z is influenced by the value of error tolerant factor d. If all the Z 

nodes that can help forwarding do not exist, then the message would be failed to 

transfer. Hence, when at least one node to help forwarding exists, the probability to 

forward the message successfully is
Z

m

N










2
11 . The routing path has L intermediate 

nodes to route through. If every intermediate node has at least one node that can help 

forwarding, then the message can be transferred successfully through the routing path.  

Therefore, the probability of path success can be shown as: 

L
Z

m

N






















2
11 , where L 

means the length of routing path. 

The probability that each ID maps onto non-existing node decreases with 

increasing N. For every node, the successful forward probability increases while Z is 

getting larger. However, the path length L grows inversely proportional to the 

forwarding probability. Therefore, the level of anonymity provided by AFATOR is 

inversely proportional to the successful forwarding probability of the routing path. 

This is a tradeoff between efficiency and the level of anonymity.  

Figure 6.2 presents the result of the forward probability with different error 

tolerant factors and network size. According to the system requirements, 

fault-tolerance can be tuned by error tolerant factor and the length of routing path.  



 

47 

 

 

Figure 6.2 Forward probability with various error tolerant factors 

If the routing path fails with high probability, then the routing path should 

reconstruct frequently. After a large number of reconstructions, to identify the initiator 

participating in the path is much easier.  

In AFATOR, the probability of routing path failure is very low because of the 

tunable error tolerant factor d. Therefore, we not only improve performance by 

reducing the path reconstruction time but also strengthen our robustness to the 

degradation attacks [43]. 

6.4 Against traffic Analysis 

Since all the packets are encrypted in a layered manner from the last hop to the 

first hop by their public keys, the incoming packets and the outgoing packets for 

every intermediate node are different in packet headers, size, and patterns. The 

encryption makes the packets indistinguishable from data flows. Cover traffic, which 

means fake messages would be send from every node per random time period, 
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prevents a global observation from using traffic analysis to identify the initiator. 

But the adversary can find some relationships between those incoming and 

outgoing packets for the node by using timing analysis. 

6.5 Summery 

The initiator can select the number of the intermediate nodes in the path and the 

value of the error tolerant factor to control tradeoffs between churn resilience, 

anonymity and overhead. 
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Chapter 7 

Conclusion 

 

Our routing protocol, AFATOR, provides anonymity against adversaries without 

proxies. We use layered encryption and random intermediaries to achieve anonymity. 

We also achieve unlinkability between initiator and responder without being identify 

from adversaries. Every node in the path knows only the previous hop and the next 

hop. It is easy to recover the routing path without request re-transmission. By using 

Fuzzy Identity-Based Encryption (Fuzzy IBE) [4], a user can decrypt a cipher-text 

encrypted with other's public key if and only if the two users are within a certain 

distance. Thus, any node can easily take over message forwarding if its neighbor node 

fails. At last, AFATOR uses smallest key storage and leaks less information about the 

responder.  
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