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Abstract

Abstract—Memory is an jimportant shared resourcesin a multi-core real-time embedded
system. The memory cententions between cores will lengthen.the total execution time due to
waiting for memory requests-being served. In this thesis, we focus on the tasks partition
scheduling problem while considering memory contentions'in multi-core real-time embedded
systems. We propose an energy efficient scheduling mechanism with consideration to the
memory workload of tasks, called WAS-DVS (workload-aware scheduling-dynamic voltage
scaling), which. is'. an‘ ‘improvement of = an existingr method, LTF-MES
(Largest-Task-First-Minimize-Energy-Scheduling). The main difference between ours and
LTF-MES is that we consider the.execution order.of tasks that may reduce the frequency of
memory contentions. Simulation results show that by reducing memory contentions between
tasks, the slack time will increase and the proposed WAS-DVS can use it to lower total
execution time and total energy consumption on a variety of workloads in multi-core systems.
The proposed WAS-DVS can lower the total execution time from 2% to 10.3% before
applying DVS and improve the total energy consumption from 3.85% to 19% compared to

LTF-MES, under various numbers of tasks and 2 to 16 cores after applying DVS.

Keywords: DVS, multi-core, real-time embedded system, workload-aware.
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Chapter 1
Introduction

Due to high computation performance and low energy consumption demands, the

multi-core architecture which is the same as the chip-multiprocessor (CMP) has been
proposed. With a slight increasing on the die size, multiple cores are mounted on a single die
but with only comparatively low ‘Wire delay" [13]. There are two categories of CMP
architecture. The coressin a given chip package are symmetric, called a homogeneous
CMP [1] [3] [4] [8]; etherwise, it is called & heterogeneous' CMP for asymmetric processors in
a chip package [10]. In this thesis,-our focus is,0n heamogeneous multi-core systems.
In multi-core (CMP) processor packages, each chip package contains,two or more cores, and
each core has its own resources (registers,- execution units, some.or all levels of caches,
etc.) [1]. Designginnovations of CMP architectures mainly span:the area of shared resources
(caches, power management, etc.) between cores; topologies(number of cores in a package,
relationship between cores, etc.) [8]. To exploit optimal performance, the process scheduler
needs to be aware of shared resources and task ‘characteristics. Recent researches on
multi-core (CMP) scheduling [10] [12] [13] seldom consider the shared memory behavior.
However, accesses to the shared memory may take a significant fraction of the execution
cycles, as well as of the total energy consumption.

DVS (dynamic voltage scaling) is the main technique to conserve power by scaling
down the processor voltage and frequency when some unused idle periods exist in the
schedule at run time. The voltage scheduler determines which voltage to be used by analyzing
the state of the system [15]. That is, the voltage scheduler of the real-time system suggests the

lowest possible level voltage without affecting the system performance (no deadline miss for
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periodic tasks). A real-time task scheduling algorithm over multi-core with the capability of
DVS is proposed in this thesis.

The rest of this thesis is organized as follows. Chapter 2 presents related work on
energy-efficient scheduling. In Chapter 3, we formally define the problem, system model,
assumptions, and notations. Our proposed energy efficient scheduling is presented in Chapter
4 and simulation results are discussed in Chapter 5. Finally, concluding remarks and future

work are given in Chapter 6.




Chapter 2
Related work

Recently, as the multi-core processor [1] becomes popular, more and more people study
the energy efficient scheduling problem on the multi-core (CMP) architecture. This problem
is similar to the one on multiprocessors. Carpenter et al. [5] classified scheduling approaches
on multiprocessors into partitioning’and global: In. partitioned scheduling algorithms, tasks
are partitioned into many disjoint subsets, and each subset is associated with a unique
processor. Aydin et al.[6] showed that balance workload of each processor has lower energy
consumption. In global scheduling algorithms, all tasks are stored in.a single priority-ordered
queue and the scheduler selects the highest priority task for execution from this queue. Chen
et al. [7] considered the task migration: property and proposed a lil3-approximation ratio
scheduling algorithm on multiprecessors. In_multi-core systems, Siddha et al. [7] showed
some challenges on shared resources, task scheduling, etc. In task scheduling, Anderson et
al. [4] proposed an algorithm-that satisfies the real-time constraint. Miao et al. [12] used the
TCSP (tri-dimensional coding ‘based self-adaptive parallel) genetic algorithm to solve this
NP-hard problem that each core can execute at a different frequency at the same time. And
Yang et al. [13] also proposed an LTF (largest task first) algorithm with DVS to solve the
partition scheduling problem that will achieve 2.371-approximation to the optimal solution.
Unlike the above researches focusing on homogeneous CMP architecture, Leontyev et al. [10]
proposed a mechanism which can be used for scheduling sporadic soft real-time task systems
on asymmetric multi-core (heterogeneous) platforms with cores of different speeds. For task
characteristics consideration, Yaldiz et al. [3] proposed an algorithm that considers the task

co-relationship on homogeneous multi-core systems with soft real time tasks. Although this
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mechanism will increase a little deadline miss rate, it will improve energy consumption.
While discussing about shared resources, Ozturk et al. [14] proposed a two-step approach: (1)
determining the amount of data that are shared by cores and the amount of data that are
private to each core and (2) allocating memory space across private and shared data and over
all cores, to improve the utilization of shared memory.

Table 1 shows the comparison of several existing energy efficient scheduling algorithms
on multi-core systems and the proposed algorithm WAS-DVS. The metric of multi-core type
describes that if the multi-core architecture is homogeneous or heterogeneous. The metric of
real-time indicates that which real-time environment the algorithm could apply. There are two
categories of real-time systems:-hard and soft. In hard real-time system all the task need to be
finished before its deadline constraint-but in soft ones we could tolerate a little deadline miss.
The metric of memory contentionindicates that if the algorithm will consider or reduce the
memory contentions. The metric of core or chip indicates that if the cores need to execute at
the same frequency. In chip level all the'cores need to execute at the same frequency but it is
not necessary in core level.

In this thesis, we explore real-time energy-efficient scheduling:on a multi core system with
dynamic voltage scaling, which is based on LTF [13] and consider the workload
characteristics of tasks. By reducing the shared memory access contentions, we can lower
total execution time or execute all tasks with lower frequency than LTF-MEM [13] with the

same deadline due to that ours has more slack time than compared.



Algorithm Multi-core | Real-time | memory Core or Chip
type contention level
Anderson et | Homogeneous Hard None None
al. [4]
TCSP [12] Homogeneous Hard N/A Core
LTF-MES [13] | Homogeneous Hard N/A Chip
Leontyev et | Heterogeneous Soft N/A Core
al. [10]
Yaldiz et Homogeneous Soft N/A Chip
al. [3]
Ozturk et Homogeneous N/A Yes N/A
al. [14]
WAS-DVS | Homogeneous Hard Yes Chip
(Proposed)

Table 1. Comparison of related works




Chapter 3

Problem Statement and System Model

3.1Problem Statement

Most energy efficient scheduling schemes for CPUs simply ignore the memory behavior
and assume that the execution time and energy consumption of the system are only
determined by the CPUs. For real cases, the memory does contribute both execution time and
energy consumption. In. multi-corersystems, each core shares with limited buses, shared
caches and external memory [1][8]. A recent research shows'that the proportion of total
execution time “will vary with shared memery.access and contention [8]. Besides, tasks
execution order will, affect the energy.consumption, system performance (deadline miss, and
total execution time etc.) and memary access coptentions. For an example in Fig. 1, the two
processors, core 1 and core 2, have their own tasks T; and T, respectively. If T, and T, send
memory access requests to the memory controller.at time 5 and each request needs 5 time
units. Then the controller schedules the requests with a larger core index first policy and the
scheduling result is (T, T1). The request of T, needs to wait for the one of T, being complete
at time 10. The contention in this situation increases 5 time units delay for T, and core 1 just

does nothing and waits for the request being severed during this time interval.



cote 1

cotre 2

Fig 1 An example of memory contention with 2-core.

To resolve this problemgour proposed mechanism,schedules tasks with consideration of
its workload characteristics to reduce the total execution time, the memory access contentions,

and energy consumption using-DVS.

3.2SystemModel, Assumptions;-and Notations

We have agtarget m homogeneous.cores [C; C; ..., Cn] which, share with an external
memory [1] [13]xa common timer t, and \have their own job.queue [Q1 Qz..., Qm]. These
cores can change their_supply voltage (V) and clock speed (Scik) (or frequency) continuously
within their operational ranges, [Vemin,Vcmax], @nd-[Semin,Semax]. 1N addition, all the cores must
operate at the same supply voltage ‘(frequency) and could go to idle state
immediately [1] [8] [13] [15]. And each core has two variables TW¢j and TWy;, where TW(;
and TWy; are the total CPU and memory workloads of assigned tasks, respectively, where j is
the index of a core from 1 to m. A set of n periodic tasks [T] = {Ty, T>...... T,} are ready at time
0 [13].

A periodic task can be specified as T; (Pi, Wi, W), where P; is the period, W; is the
WCET (worst case execution time), and Wy, is the memory workload. Based on [2] [3] [9], the

arrival time, period, WCET, and memory access times of periodic tasks are known in advance.
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The relative deadline (D;) of each periodic task instance i is assumed equal to a common
deadline D and all tasks are mutually independent [13]. And the well known energy
consumption E of a CMOS circuit we used is dominated by its dynamic supply voltage and is

proportional to the square of its supply voltage, which is defined as E=C, -VZ -C, where
Ce IS the effective switched capacitance, V4, is the supply voltage, and C is the number of

execution cycles. Degrading the supply voltage also drops the operating frequency

proportionally (v, « f). Thus E could be approximated as being proportional to the operating

frequency squared (E « £2) [15].




Chapter 4
Proposed Energy Efficient Workload

Aware DVS Scheduling Mechanism

Memory contentions vary.with the tasks execution order during the same period of all
cores. We take Fig 2 asan.example to illustrate the situation.in Fig 2, core 1 and core 2 have
their own tasks [T1T3] @and [T, T4, respectively, which all start at:time 0. The execution time
of T1, Ty, T3, andsT4 are W, (50-cycles)®W; (60 cycles), W5 (30 cyeles), and W, (30 cycles)
while Ty, T, Ts,;and T, have the numbers of memory requests m; (10 times), m, (12 times), m3
(3 times), and my4 (3 times), respectively. The probability p; of memory access request sent by
T1 is my / W in each cycle while p; is#mg/-Warps-is-mg/-Ws, and ps 1S my / W,. In Fig 2 (), the
expected value of memory contention is 0.2*0.2*50 + 0.1*0,1*10 +0.1*0.1*20 = 2.4 (times).
However, in Fig 2 (b), if we exchange the task execution order of the job queue of core 1, the
expected value of memory contention Is 0.1*0.2*30:+ 0.2*0.2*20 + 0.2*0.1*20 = 1.8 (times).

The variance of the task execution order will change the contention probability during
the same period of all cores. We want to reduce memory contentions by reordering the
execution order of tasks in the job queue of each core. However, the main challenges before
proceeding scheduling are to identify and predict the resource needs of each task, and to
schedule them with an aim to reduce shared resource contention and minimize energy
consumption.

To achieve this, we propose a WAS (workload aware scheduling) algorithm which is



shown in Fig 3. At the beginning of the algorithm we need to sort the tasks by the information
Ti (Pi, Wi, wp), where P;j has the highest weight, wy, has the smallest. Our proposed WAS
algorithm includes two parts. The first part is based on LTF [13]. LTF (largest task first) is an
algorithm that partition [T] into M disjoint sets and each disjoint set corresponds to a job
queue. According to the sorting result we find the task with the largest CPU workload and
assign it to the core with the smallest load. And we then sort the cores by a non-increasing
order with TW,.. To reduce memory access contentions we reorder the task execution order in
each job queue. If index j of C is odd, reorder the task execution order in an increasing order
with wy,. If an index is even, reerder by ‘a non-increasing order. Our proposed WAS algorithm
expects to avoid two tasks.with-high wy, executed at the same period. The complexity of LTF

is O[n (log n + log.m) + m] and ours;is O[n (log n + log.m) +m] +O[n log (n/m)].

faein = | | T1 [ 1= |
0 W W
e 2 | T= [ T4 |
e
faein = | | T3 | T1 |
2 W W
e 2 [ Tz [ T4 |
i

Fig 2. A motivation example: (a) original task execution order (b) new task execution order.
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WAS :
Input : (T, C, D, Q) [* T: the task sets
Output : A feasible scheduling result Q /* C: the core sets
/* D: the common deadline
/* Q: the queue sets

1. sort T in a non-increasing order of T;( W;);

2. fori=1to[T]do /* assign each task to
find the core C; with the smallest load /* each core by LTF
TWe;j = TWe; + Ti(Wi)

TWMJ' = TWMJ‘ + Ti(Wm)
Qi €Qi+T,

3. sort C by a non-increasing order with TWy;

4. forj=1toM [* resort the order of each
if j is even I* core by Wi
reorder:the tasks in Q; of Cjin
increasing order with w,
else
reorder the tasks in Q; of C;in
non-increasing order with Wy,

Fig 3. Algorithm of WAS.

In order to-reduce the'total energy_consumption, we propose an energy efficient
scheduling algorithm WAS-DVS, which is based on WAS .and use DVS. Because each core
needs to execute at thessame.supply voltage [1], the-WAS-DVS needs to find the lowest
frequency that satisfies all the deadline constraints. ‘In DVS, due to the use of the online
adjustment mechanism that dynamic collection of slack time for DVS using, we need to
define two events: one is that all cores start to run at time O and the other is any task is
finished. When any of the two events occurs, it will trigger the WAS-DVS algorithm to
reassign the frequency to each core. An example is shown in Fig 4. In this example t; is the
finished time of task 1; ...; ts is the finished time of task 5. At starting time O we assign a
frequency, which satisfies the deadline constraint of core 2 with the largest workload, if
deadline miss of the remaining TWc; of each core after time t; will not arise due to this change.

When task 1 is finished at t;, we will reassign the frequency to each core while satisfying

11



deadline constraints of the core which has the largest remaining TWc;. The WAS-DVS

algorithm is shown in Fig 5.

core 1 tach 1 tachs  [tashs
3] tz 13
Core 2 tack2 tachd | tachs
tz L

Fig 4. Astask execution example of a dual core.

WAS-DVS:
Inputan(D, C, 1) /* D: the common deadline
I* CI the core sets
[* t > the current time
Output: A feasible Q-based schedule R with.the minimum energy
consumption

5. fori=1to[T]do [* estimate the remaining
temp[TWc;] = TWe; /* workload of each core
temp[TW;] = temp[TW;] - t

6. find the C; with maximum temp[TWg;]

7. assigntheS = temp[TWc;j] / (D - t) to each C; /* estimate the frequency
/* and assign to each core

Fig 5. Algorithm of WAS-DVS.
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Chapter 5
Simulation Results and Discussion

The purpose of this chapter is to provide performance comparison of algorithm WAS and
WAS-DVS against with LTF and LTF-MEM (LTF-DVS). To evaluate our proposed
algorithms, we use the real-time_benchmark information, obtained from [11], which is shown
in Table 2, where each.row of Table 2 represents a category of tasks. Assume that all the
arrival times of tasks-are at time zero and all tasks. share with_a common deadline [13].
Processors can adjust their frequency continuously within [Smin , Smax] and share with an
external memory with 20 cycles of access latency [11] [13]. In order te avoid the situation that
the numbers of task is fewer than the numbers of cores, we randomlyyselect the number (p x
m +1) of tasks from all categories; where p is a rational positive integer and m is the numbers
of cores. The p value stands'for ar:average ‘anticipant number of tasks in each job queue. In
our simulation, all the'simulation results of WAS and WAS-DLVS are normalized to those of
LTF and LTF-MEM (LTF-DVYS).

In order to observe the influence of different numbers of tasks on each environment with
a different number of processors (cores), we vary the p value from 2 to 7. Simulation results
in Fig 6 show that the execution time improvement of our proposed WAS-DVS is 2% to

10.3% better than that of LTF [13] under varies numbers of cores.
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Task WCET M (memory access times)
(cycles)
Fibcall 9536 114
Qsort 13309 97
Matmul 13985 26
IDCT 16131 193
FIR 33983 133
CRC 42907 99
FFT2 60234 2820
LUD 255998 102
LUD?2 255998 1364
LMS 365893 123
LMS2 365893 14741
FFT 515771 38404
FIR2 557589 405
ADRCM 2486633 4053

Table 2. Offline information of tasks [11].

0.08
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Fig 6. Total execution time improvement of WAS over LTF.
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Q
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core numbers

Fig 7. Total energy consumption improvement of WAS-DVS over LTF-DVS.

Note that the performance (in terms of total execution;time) of our proposed WAS-DVS
is close to that of LTF when p is small. This is because that there are few tasks in the job
queue to be reordered using our-propased mechanism. On the contrary, the total execution
time improvement percentage increases as p increases. But the increasing degree is fewer and
fewer due to that'the proportion of the amount of memory contention‘delay to total execution
time decreases when the number-of tasks.increases-Furthermore; Fig 7 shows that in terms of
total energy consumption, our proposed WAS-DVS can save 3.85 % to 19 % more than
LTF-DVS under varies number. of cores. Note that the.total energy consumption improvement
percentages are a little bit lower than the total execution time improvement percentages
squared in Fig 6. This is due to the constraint that each core needs to execute at the same

frequency level.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we have presented anenergy efficient scheduling algorithm, called
WAS-DVS, for multi-core real-time embedded systems. The WAS-DVS not only considers
the CPU workload of tasks-but also the'memory workload: The basic idea of WAS-DVS is to
balance the load Of each core and to reorder the execution order ineach job queue to reduce
memory contentions., By reducing memory contentions, our proposed mechanism can lower
the total execution time from 2% to 10.3% before applying DVS and.improve the total energy
consumption from 3.85% to 19% after-applying DVS, Compared to-LTF-DVS under different

CMP environmentsiwith.2 to/16 cores.

6.2 Future work

For the future work, we will explore energy-efficient scheduling for threads with

arbitrary deadlines, thread dependency, and arrival times on multi-core real time systems.
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