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在多核心即時嵌入式系統下考量系統負載之高能源

效率動態電壓調整排程演算法 
 

學生：林明翰     指導教授：王國禎 博士 

 

國立交通大學  資訊學院  網路工程研究所 

 

摘 要 

 在多核心即時嵌入式系統中，記憶體是一個重要的共享資源。因為需要

等待記憶體的需求被服務，核心之間互相競爭記憶體會使得總執行時間增

長。在本篇論文中，我們研究在考量記憶體競爭下之多核心即時嵌入式系

統的任務分割排班問題。在考慮各任務的記憶體工作量特性下，我們提出

一個改善現有基於最大工作量任務優先方法(LTF-MES)之高能源效率排程

演算法，叫做考量系統負載之高能源效率動態電壓調整排程演算法。而我

們提出的演算法和最大工作量任務優先之演算法最大的不同在於，我們考

慮任務的執行順序，可因此減少核心之間相互競爭記憶體的頻率。實驗結

果顯示，藉由減少任務與任務之間互相競爭記憶體，可以增加寬裕時間。
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而且，我們的演算法可以利用這些寬裕時間來減少在擁有不同任務數量的

多核心系統中所需的總執行時間和總能源消耗。在變動的工作數量以及核

心數目在 2 到 16 個之間的環境中，使用本演算法相對於 LTF，可以在沒有

使用動態調整電壓的情況下，降低 2 %到 10.3 %的總執行時間，並且可以

在有支援動態調整電壓的情況下，相對於 LTF-MES，改善 3.85%到 19% 的

總能源消耗。 

關鍵詞：動態電壓調整，多核心，嵌入式即時系統，考量系統負載。 
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Energy Efficient Workload-Aware DVS Scheduling for 
Multi-core Real-time Embedded Systems  

Student：Ming-Ham Lin u     Advisor：Dr. Kuochen Wang 

Department of Computer Science 
National Chiao Tung University 

Abstract 

 Abstract—Memory is an important shared resource in a multi-core real-time embedded 

system. The memory contentions between cores will lengthen the total execution time due to 

waiting for memory requests being served. In this thesis, we focus on the tasks partition 

scheduling problem while considering memory contentions in multi-core real-time embedded 

systems. We propose an energy efficient scheduling mechanism with consideration to the 

memory workload of tasks, called WAS-DVS (workload-aware scheduling-dynamic voltage 

scaling), which is an improvement of an existing method, LTF-MES 

(Largest-Task-First-Minimize-Energy-Scheduling). The main difference between ours and 

LTF-MES is that we consider the execution order of tasks that may reduce the frequency of 

memory contentions. Simulation results show that by reducing memory contentions between 

tasks, the slack time will increase and the proposed WAS-DVS can use it to lower total 

execution time and total energy consumption on a variety of workloads in multi-core systems. 

The proposed WAS-DVS can lower the total execution time from 2% to 10.3% before 

applying DVS and improve the total energy consumption from 3.85% to 19% compared to 

LTF-MES, under various numbers of tasks and 2 to 16 cores after applying DVS. 

 

Keywords: DVS, multi-core, real-time embedded system, workload-aware. 
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Chapter 1  

Introduction 

Due to high computation performance and low energy consumption demands, the 

multi-core architecture which is the same as the chip-multiprocessor (CMP) has been 

proposed. With a slight increasing on the die size, multiple cores are mounted on a single die 

but with only comparatively low wire delay [13]. There are two categories of CMP 

architecture. The cores in a given chip package are symmetric, called a homogeneous 

CMP [1] [3] [4] [8]; otherwise, it is called a heterogeneous CMP for asymmetric processors in 

a chip package [10]. In this thesis, our focus is on homogeneous multi-core systems. 

In multi-core (CMP) processor packages, each chip package contains two or more cores, and 

each core has its own resources (registers, execution units, some or all levels of caches, 

etc.) [1]. Design innovations of CMP architectures mainly span the area of shared resources 

(caches, power management, etc.) between cores, topologies (number of cores in a package, 

relationship between cores, etc.) [8]. To exploit optimal performance, the process scheduler 

needs to be aware of shared resources and task characteristics. Recent researches on 

multi-core (CMP) scheduling [10] [12] [13] seldom consider the shared memory behavior. 

However, accesses to the shared memory may take a significant fraction of the execution 

cycles, as well as of the total energy consumption. 

DVS (dynamic voltage scaling) is the main technique to conserve power by scaling 

down the processor voltage and frequency when some unused idle periods exist in the 

schedule at run time. The voltage scheduler determines which voltage to be used by analyzing 

the state of the system [15]. That is, the voltage scheduler of the real-time system suggests the 

lowest possible level voltage without affecting the system performance (no deadline miss for 
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periodic tasks).  A real-time task scheduling algorithm over multi-core with the capability of 

DVS is proposed in this thesis. 

 The rest of this thesis is organized as follows. Chapter 2 presents related work on 

energy-efficient scheduling. In Chapter 3, we formally define the problem, system model, 

assumptions, and notations. Our proposed energy efficient scheduling is presented in Chapter 

4 and simulation results are discussed in Chapter 5. Finally, concluding remarks and future 

work are given in Chapter 6. 
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Chapter 2  

Related work 

 Recently, as the multi-core processor [1] becomes popular, more and more people study 

the energy efficient scheduling problem on the multi-core (CMP) architecture. This problem 

is similar to the one on multiprocessors. Carpenter et al. [5] classified scheduling approaches 

on multiprocessors into partitioning and global. In partitioned scheduling algorithms, tasks 

are partitioned into many disjoint subsets, and each subset is associated with a unique 

processor. Aydin et al. [6] showed that balance workload of each processor has lower energy 

consumption. In global scheduling algorithms, all tasks are stored in a single priority-ordered 

queue and the scheduler selects the highest priority task for execution from this queue. Chen 

et al. [7] considered the task migration property and proposed a 1.13-approximation ratio 

scheduling algorithm on multiprocessors. In multi-core systems, Siddha et al. [7] showed 

some challenges on shared resources, task scheduling, etc. In task scheduling, Anderson et 

al. [4] proposed an algorithm that satisfies the real-time constraint. Miao et al. [12] used the 

TCSP (tri-dimensional coding based self-adaptive parallel) genetic algorithm to solve this 

NP-hard problem that each core can execute at a different frequency at the same time. And 

Yang et al. [13] also proposed an LTF (largest task first) algorithm with DVS to solve the 

partition scheduling problem that will achieve 2.371-approximation to the optimal solution. 

Unlike the above researches focusing on homogeneous CMP architecture, Leontyev et al. [10] 

proposed a mechanism which can be used for scheduling sporadic soft real-time task systems 

on asymmetric multi-core (heterogeneous) platforms with cores of different speeds. For task 

characteristics consideration, Yaldiz et al. [3] proposed an algorithm that considers the task 

co-relationship on homogeneous multi-core systems with soft real time tasks. Although this 
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mechanism will increase a little deadline miss rate, it will improve energy consumption. 

While discussing about shared resources, Ozturk et al. [14] proposed a two-step approach: (1) 

determining the amount of data that are shared by cores and the amount of data that are 

private to each core and (2) allocating memory space across private and shared data and over 

all cores, to improve the utilization of shared memory.  

Table 1 shows the comparison of several existing energy efficient scheduling algorithms 

on multi-core systems and the proposed algorithm WAS-DVS. The metric of multi-core type 

describes that if the multi-core architecture is homogeneous or heterogeneous. The metric of 

real-time indicates that which real-time environment the algorithm could apply. There are two 

categories of real-time systems: hard and soft. In hard real-time system all the task need to be 

finished before its deadline constraint but in soft ones we could tolerate a little deadline miss. 

The metric of memory contention indicates that if the algorithm will consider or reduce the 

memory contentions. The metric of core or chip indicates that if the cores need to execute at 

the same frequency. In chip level all the cores need to execute at the same frequency but it is 

not necessary in core level.  

In this thesis, we explore real-time energy-efficient scheduling on a multi core system with 

dynamic voltage scaling, which is based on LTF [13] and consider the workload 

characteristics of tasks. By reducing the shared memory access contentions, we can lower 

total execution time or execute all tasks with lower frequency than LTF-MEM [13] with the 

same deadline due to that ours has more slack time than compared. 
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Algorithm Multi-core  
type 

Real-time memory 
contention

Core or Chip 
level 

Anderson et 
al. [4] 

Homogeneous Hard None None 

TCSP [12] Homogeneous Hard N/A Core 
LT ] F-MES [13 Homogeneous Hard N/A Chip 

Leontyev et 
 

Heterogeneous Soft N/A Core 
al. [10]

Yaldiz et 
 

Homogeneous Soft N/A Chip 
al. [3]

Ozturk et 
 

Homogeneous N/A Yes N/A 
al. [14]

WA S Homogeneous Hard Yes Chip S-DV
(Proposed) 

Table 1. Comparison of related works 
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Chapter 3  

Problem Statement and System Model 

3.1 Problem Statement 
 
 Most energy efficient scheduling schemes for CPUs simply ignore the memory behavior 

and assume that the execution time and energy consumption of the system are only 

determined by the CPUs. For real cases, the memory does contribute both execution time and 

energy consumption. In multi-core systems, each core shares with limited buses, shared 

caches and external memory [1][8]. A recent research shows that the proportion of total 

execution time will vary with shared memory access and contention [8]. Besides, tasks 

execution order will affect the energy consumption, system performance (deadline miss, and 

total execution time etc.) and memory access contentions. For an example in Fig. 1, the two 

processors, core 1 and core 2, have their own tasks T1 and T2, respectively. If T1 and T2 send 

memory access requests to the memory controller at time 5 and each request needs 5 time 

units. Then the controller schedules the requests with a larger core index first policy and the 

scheduling result is (T2, T1). The request of T1 needs to wait for the one of T2 being complete 

at time 10. The contention in this situation increases 5 time units delay for T1 and core 1 just 

does nothing and waits for the request being severed during this time interval. 
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Fig 1 An example of memory contention with 2-core. 

 To resolve this problem, our proposed mechanism schedules tasks with consideration of 

its workload characteristics to reduce the total execution time, the memory access contentions, 

and energy consumption using DVS.  

 

3.2 System Model, Assumptions, and Notations 
 
 We have a target m homogeneous cores [C1, C2,…, Cm] which share with an external 

memory [1] [13], a common timer t, and have their own job queue [Q1, Q2,…, Qm]. These 

cores can change their supply voltage (V) and clock speed (Sclk) (or frequency) continuously 

within their operational ranges, [Vcmin,Vcmax], and [Scmin,Scmax]. In addition, all the cores must 

operate at the same supply voltage (frequency) and could go to idle state 

immediately [1] [8] [13] [15]. And each core has two variables TWCj and TWMj, where TWCj 

and TWMj are the total CPU and memory workloads of assigned tasks, respectively, where j is 

the index of a core from 1 to m. A set of n periodic tasks [T] = {T1, T2……Tn} are ready at time 

0 [13].  

 A periodic task can be specified as Ti (Pi, Wi, wm), where Pi is the period, Wi is the 

WCET (worst case execution time), and wm is the memory workload. Based on [2] [3] [9], the 

arrival time, period, WCET, and memory access times of periodic tasks are known in advance. 
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The relative deadline (Di) of each periodic task instance i is assumed equal to a common 

deadline D and all tasks are mutually independent [13]. And the well known energy 

consumption E of a CMOS circuit we used is dominated by its dynamic s e and is 

portional to the square of its supply voltage, which is defined as CVE ddeff ⋅⋅= 2 , where 

effC is the effective switched capacitance, ddV  is the supply voltage, and C is the number of 

execution cycles. Degrading the supply voltage also drops the operating frequency 

proportionally (Vdd

upply voltag

pro C

f∝ )

E ∝

. T uld be ximated as be

frequency squared ( ) [15].  

hus E co appro ing proportional to the operating 

2f
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Chapter 4  

Proposed Energy Efficient Workload 

Aware DVS Scheduling Mechanism 

 Memory contentions vary with the tasks execution order during the same period of all 

cores. We take Fig 2 as an example to illustrate the situation. In Fig 2, core 1 and core 2 have 

their own tasks [T1, T3] and [T2, T4], respectively, which all start at time 0. The execution time 

of T1, T2, T3, and T4 are W1 (50 cycles), W2 (60 cycles), W3 (30 cycles), and W4 (30 cycles) 

while T1, T2, T3, and T4 have the numbers of memory requests m1 (10 times), m2 (12 times), m3 

(3 times), and m4 (3 times), respectively. The probability p1 of memory access request sent by 

T1 is m1 / W1 in each cycle while p2 is m2 / W2, p3 is m3 / W3, and p4 is m4 / W4. In Fig 2 (a), the 

expected value of memory contention is 0.2*0.2*50 + 0.1*0.1*10 +0.1*0.1*20 = 2.4 (times). 

However, in Fig 2 (b), if we exchange the task execution order of the job queue of core 1, the 

expected value of memory contention is 0.1*0.2*30 + 0.2*0.2*20 + 0.2*0.1*20 = 1.8 (times).  

 The variance of the task execution order will change the contention probability during 

the same period of all cores. We want to reduce memory contentions by reordering the 

execution order of tasks in the job queue of each core. However, the main challenges before 

proceeding scheduling are to identify and predict the resource needs of each task, and to 

schedule them with an aim to reduce shared resource contention and minimize energy 

consumption. 

To achieve this, we propose a WAS (workload aware scheduling) algorithm which is 
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shown in Fig 3. At the beginning of the algorithm we need to sort the tasks by the information 

Ti (Pi, Wi, wm), where Pi has the highest weight, wm has the smallest. Our proposed WAS 

algorithm includes two parts. The first part is based on LTF [13]. LTF (largest task first) is an 

algorithm that partition [T] into M disjoint sets and each disjoint set corresponds to a job 

queue.  According to the sorting result we find the task with the largest CPU workload and 

assign it to the core with the smallest load. And we then sort the cores by a non-increasing 

order with TWc. To reduce memory access contentions we reorder the task execution order in 

each job queue. If index j of C is odd, reorder the task execution order in an increasing order 

with wm. If an index is even, reorder by a non-increasing order. Our proposed WAS algorithm 

expects to avoid two tasks with high wm executed at the same period. The complexity of LTF 

is O[n (log n + log m) + m] and ours is O[n (log n + log m) + m] + O[n log (n/m)]. 

 

Fig 2. A motivation example: (a) original task execution order (b) new task execution order. 
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WAS : 
Input : (T, C, D, Q)                     /* T: the task sets 
Output : A feasible scheduling result Q     /* C: the core sets 
                                    /* D: the common deadline 
                                    /* Q: the queue sets 

1. sort T in a non-increasing order of Ti( Wi); 
 
2. for i = 1 to [T] do                  /* assign each task to  

find the core Cj with the smallest load  /*  each core by LTF 
TWCj = TWCj + Ti(Wi)  
TWMj = TWMj + Ti(wm) 
Qi  Qi + Ti 
 

3. sort C by a non-increasing order with TWMj 
 

4. for j = 1 to M                  /* resort the order of each  
if j is even                    /* core by w\m                      

          reorder the tasks in Qj of Cj in 
          increasing order with wm 
       else  
          reorder the tasks in Qj of Cj in 
          non-increasing order with wm 

Fig 3. Algorithm of WAS. 

 In order to reduce the total energy consumption, we propose an energy efficient 

scheduling algorithm WAS-DVS, which is based on WAS and use DVS. Because each core 

needs to execute at the same supply voltage [1], the WAS-DVS needs to find the lowest 

frequency that satisfies all the deadline constraints. In DVS, due to the use of the online 

adjustment mechanism that dynamic collection of slack time for DVS using, we need to 

define two events: one is that all cores start to run at time 0 and the other is any task is 

finished. When any of the two events occurs, it will trigger the WAS-DVS algorithm to 

reassign the frequency to each core. An example is shown in Fig 4. In this example t1 is the 

finished time of task 1; …; t5 is the finished time of task 5. At starting time 0 we assign a 

frequency, which satisfies the deadline constraint of core 2 with the largest workload, if 

deadline miss of the remaining TWCj of each core after time t1 will not arise due to this change. 

When task 1 is finished at t1, we will reassign the frequency to each core while satisfying 
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deadline constraints of the core which has the largest remaining TWCj. The WAS-DVS 

algorithm is shown in Fig 5.  

 

 

Fig 4. A task execution example of a dual core. 

 
 
 

WAS-DVS : 
Input : (D, C, t)                        /* D: the common deadline 
                                     /* C: the core sets 
                                     /* t : the current time 

   Output: A feasible Q-based schedule R with the minimum energy    
           consumption 

 
5. for i = 1 to [T] do             /* estimate the remaining  

temp[TWCj] = TWCj           /* workload of each core 
temp[TWCj] = temp[TWCj] - t 
 

6. find the Ci with maximum temp[TWCj] 
 

7. assign the S ≧ temp[TWCj] / (D - t) to each Cj  /* estimate the frequency   
                                        /* and assign to each core 
  

Fig 5. Algorithm of WAS-DVS. 
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Chapter 5  

Simulation Results and Discussion 

 The purpose of this chapter is to provide performance comparison of algorithm WAS and 

WAS-DVS against with LTF and LTF-MEM (LTF-DVS). To evaluate our proposed 

algorithms, we use the real-time benchmark information, obtained from [11], which is shown 

in Table 2, where each row of Table 2 represents a category of tasks. Assume that all the 

arrival times of tasks are at time zero and all tasks share with a common deadline [13]. 

Processors can adjust their frequency continuously within [Smin , Smax] and share with an 

external memory with 20 cycles of access latency [11] [13]. In order to avoid the situation that 

the numbers of task is fewer than the numbers of cores, we randomly select the number (p × 

m +1) of tasks from all categories, where p is a rational positive integer and m is the numbers 

of cores. The p value stands for an average anticipant number of tasks in each job queue. In 

our simulation, all the simulation results of WAS and WAS-DLVS are normalized to those of 

LTF and LTF-MEM (LTF-DVS).  

 In order to observe the influence of different numbers of tasks on each environment with 

a different number of processors (cores), we vary the p value from 2 to 7. Simulation results 

in Fig 6 show that the execution time improvement of our proposed WAS-DVS is 2% to 

10.3% better than that of LTF [13] under varies numbers of cores. 
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Task WCET 
(cycles) 

M (memory access times) 

Fibcall 9536 114 
Qsort 13309 97 

Matmul 13985 26 
IDCT 16131 193 
FIR 33983 133 
CRC 42907 99 
FFT2 60234 2820 
LUD 255998 102 

LUD2 255998 1364 
LMS 365893 123 

LMS2 365893 14741 
FFT 515771 38404 
FIR2 557589 405 

ADPCM 2486633 4053 

Table 2. Offline information of tasks [11]. 

  

 

Fig 6. Total execution time improvement of WAS over LTF. 
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Fig 7. Total energy consumption improvement of WAS-DVS over LTF-DVS. 

 Note that the performance (in terms of total execution time) of our proposed WAS-DVS 

is close to that of LTF when p is small. This is because that there are few tasks in the job 

queue to be reordered using our proposed mechanism. On the contrary, the total execution 

time improvement percentage increases as p increases. But the increasing degree is fewer and 

fewer due to that the proportion of the amount of memory contention delay to total execution 

time decreases when the number of tasks increases. Furthermore, Fig 7 shows that in terms of 

total energy consumption, our proposed WAS-DVS can save 3.85 % to 19 % more than 

LTF-DVS under varies number of cores. Note that the total energy consumption improvement 

percentages are a little bit lower than the total execution time improvement percentages 

squared in Fig 6. This is due to the constraint that each core needs to execute at the same 

frequency level. 
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Chapter 6  

Conclusion and Future Work 

6.1  Conclusion 

In this thesis, we have presented an energy efficient scheduling algorithm, called 

WAS-DVS, for multi-core real-time embedded systems. The WAS-DVS not only considers 

the CPU workload of tasks but also the memory workload. The basic idea of WAS-DVS is to 

balance the load of each core and to reorder the execution order in each job queue to reduce 

memory contentions. By reducing memory contentions, our proposed mechanism can lower 

the total execution time from 2% to 10.3% before applying DVS and improve the total energy 

consumption from 3.85% to 19% after applying DVS, compared to LTF-DVS under different 

CMP environments with 2 to 16 cores.  

 

 

6.2  Future work 

 For the future work, we will explore energy-efficient scheduling for threads with 

arbitrary deadlines, thread dependency, and arrival times on multi-core real time systems. 
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