

國 立 交 通 大 學

網路工程研究所

碩 士 論 文

在多核心即時嵌入式系統下考量系統負載之高能源

效率動態電壓調整排程演算法
Energy Efficient Workload-Aware DVS Scheduling for

Multi-core Real-time Embedded Systems

研 究 生：林明翰

指導教授：王國禎 教授

中 華 民 國 九 十 七 年 六 月

 i

在多核心即時嵌入式系統下考量系統負載之高能源效率動態電
壓調整排程演算法

Energy Efficient Workload-Aware DVS Scheduling for Multi-core
Real-time Embedded Systems

研 究 生：林明翰 Student：Ming-Ham Lin

指導教授：王國禎 Advisor：Kuochen Wang

國 立 交 通 大 學
資 訊 學 院

網 路 工 程 研 究 所
碩 士 論 文

A Thesis

Submitted to Institute of Network Engineering

College of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2007

Hsinchu, Taiwan, Republic of China

中華民國九十七年六月

 ii

在多核心即時嵌入式系統下考量系統負載之高能源

效率動態電壓調整排程演算法

學生：林明翰 指導教授：王國禎 博士

國立交通大學 資訊學院 網路工程研究所

摘 要

 在多核心即時嵌入式系統中，記憶體是一個重要的共享資源。因為需要

等待記憶體的需求被服務，核心之間互相競爭記憶體會使得總執行時間增

長。在本篇論文中，我們研究在考量記憶體競爭下之多核心即時嵌入式系

統的任務分割排班問題。在考慮各任務的記憶體工作量特性下，我們提出

一個改善現有基於最大工作量任務優先方法(LTF-MES)之高能源效率排程

演算法，叫做考量系統負載之高能源效率動態電壓調整排程演算法。而我

們提出的演算法和最大工作量任務優先之演算法最大的不同在於，我們考

慮任務的執行順序，可因此減少核心之間相互競爭記憶體的頻率。實驗結

果顯示，藉由減少任務與任務之間互相競爭記憶體，可以增加寬裕時間。

 iii

而且，我們的演算法可以利用這些寬裕時間來減少在擁有不同任務數量的

多核心系統中所需的總執行時間和總能源消耗。在變動的工作數量以及核

心數目在 2 到 16 個之間的環境中，使用本演算法相對於 LTF，可以在沒有

使用動態調整電壓的情況下，降低 2 %到 10.3 %的總執行時間，並且可以

在有支援動態調整電壓的情況下，相對於 LTF-MES，改善 3.85%到 19% 的

總能源消耗。

關鍵詞：動態電壓調整，多核心，嵌入式即時系統，考量系統負載。

 iv

Energy Efficient Workload-Aware DVS Scheduling for
Multi-core Real-time Embedded Systems

Student：Ming-Ham Lin u Advisor：Dr. Kuochen Wang

Department of Computer Science
National Chiao Tung University

Abstract

 Abstract—Memory is an important shared resource in a multi-core real-time embedded

system. The memory contentions between cores will lengthen the total execution time due to

waiting for memory requests being served. In this thesis, we focus on the tasks partition

scheduling problem while considering memory contentions in multi-core real-time embedded

systems. We propose an energy efficient scheduling mechanism with consideration to the

memory workload of tasks, called WAS-DVS (workload-aware scheduling-dynamic voltage

scaling), which is an improvement of an existing method, LTF-MES

(Largest-Task-First-Minimize-Energy-Scheduling). The main difference between ours and

LTF-MES is that we consider the execution order of tasks that may reduce the frequency of

memory contentions. Simulation results show that by reducing memory contentions between

tasks, the slack time will increase and the proposed WAS-DVS can use it to lower total

execution time and total energy consumption on a variety of workloads in multi-core systems.

The proposed WAS-DVS can lower the total execution time from 2% to 10.3% before

applying DVS and improve the total energy consumption from 3.85% to 19% compared to

LTF-MES, under various numbers of tasks and 2 to 16 cores after applying DVS.

Keywords: DVS, multi-core, real-time embedded system, workload-aware.
 v

Acknowledgements

Many people have helped me with this thesis. I deeply appreciate my thesis advisor, Dr.

Kuochen Wang, for his intensive advice and instruction. I would like to thank all the

classmates in Mobile Computing and Broadband Networking Laboratory (MBL) for their

invaluable assistance and suggestions. The support by the NCTU EECS-MediaTek Research

Center under Grant Q583 and the National Science Council under Grants

NSC96-2628-E009-140-MY3 and NSC96-2628-E-002-138-MY3 is also grateful

acknowledged.

Finally, I thank my father and my mother for their endless love and support.

 vi

Contents

Abstract (in Chinese) iii

Abstract v

Acknowledgements xi

Contents xii

List of Figures .. viii

List of Tables .. ix

Chapter 1 Introduction .. 1

Chapter 2 Related work ... 3

Chapter 3 Problem Statement and System Model ... 6

3.1 Problem Statement ... 6

3.2 System Model, Assumptions, and Notations ... 7

Chapter 4 Proposed Energy Efficient Workload Aware DVS Scheduling

 Mechanism .. 9

Chapter 5 Simulation Results and Discussion .. 13

Chapter 6 Conclusion and Future Work .. 16

6.1 Conclusion ... 16

6.2 Future work ... 16

Chapter 7 Bibliography .. 17

 vii

List of Figures

Fig 1. An example of memory contention with 2-core. .. 7

Fig 2. A motivation example: (a) original task execution order (b) new task execution

 order. .. 10

Fig 3. Algorithm of WAS. .. 11

Fig 4. A task execution example of a dual core. ... 12

Fig 5. Algorithm of WAS-DVS. ... 12

Fig 6. Total execution time improvement of WAS over LTF. ... 14

Fig 7. Total energy consumption improvement of WAS-DVS over LTF-DVS. 15

 viii

 ix

List of Tables

Table 1. Comparison of related works ... 5

Table 2. Offline information of tasks 14

Chapter 1

Introduction

Due to high computation performance and low energy consumption demands, the

multi-core architecture which is the same as the chip-multiprocessor (CMP) has been

proposed. With a slight increasing on the die size, multiple cores are mounted on a single die

but with only comparatively low wire delay [13]. There are two categories of CMP

architecture. The cores in a given chip package are symmetric, called a homogeneous

CMP [1] [3] [4] [8]; otherwise, it is called a heterogeneous CMP for asymmetric processors in

a chip package [10]. In this thesis, our focus is on homogeneous multi-core systems.

In multi-core (CMP) processor packages, each chip package contains two or more cores, and

each core has its own resources (registers, execution units, some or all levels of caches,

etc.) [1]. Design innovations of CMP architectures mainly span the area of shared resources

(caches, power management, etc.) between cores, topologies (number of cores in a package,

relationship between cores, etc.) [8]. To exploit optimal performance, the process scheduler

needs to be aware of shared resources and task characteristics. Recent researches on

multi-core (CMP) scheduling [10] [12] [13] seldom consider the shared memory behavior.

However, accesses to the shared memory may take a significant fraction of the execution

cycles, as well as of the total energy consumption.

DVS (dynamic voltage scaling) is the main technique to conserve power by scaling

down the processor voltage and frequency when some unused idle periods exist in the

schedule at run time. The voltage scheduler determines which voltage to be used by analyzing

the state of the system [15]. That is, the voltage scheduler of the real-time system suggests the

lowest possible level voltage without affecting the system performance (no deadline miss for

 1

periodic tasks). A real-time task scheduling algorithm over multi-core with the capability of

DVS is proposed in this thesis.

 The rest of this thesis is organized as follows. Chapter 2 presents related work on

energy-efficient scheduling. In Chapter 3, we formally define the problem, system model,

assumptions, and notations. Our proposed energy efficient scheduling is presented in Chapter

4 and simulation results are discussed in Chapter 5. Finally, concluding remarks and future

work are given in Chapter 6.

 2

Chapter 2

Related work

 Recently, as the multi-core processor [1] becomes popular, more and more people study

the energy efficient scheduling problem on the multi-core (CMP) architecture. This problem

is similar to the one on multiprocessors. Carpenter et al. [5] classified scheduling approaches

on multiprocessors into partitioning and global. In partitioned scheduling algorithms, tasks

are partitioned into many disjoint subsets, and each subset is associated with a unique

processor. Aydin et al. [6] showed that balance workload of each processor has lower energy

consumption. In global scheduling algorithms, all tasks are stored in a single priority-ordered

queue and the scheduler selects the highest priority task for execution from this queue. Chen

et al. [7] considered the task migration property and proposed a 1.13-approximation ratio

scheduling algorithm on multiprocessors. In multi-core systems, Siddha et al. [7] showed

some challenges on shared resources, task scheduling, etc. In task scheduling, Anderson et

al. [4] proposed an algorithm that satisfies the real-time constraint. Miao et al. [12] used the

TCSP (tri-dimensional coding based self-adaptive parallel) genetic algorithm to solve this

NP-hard problem that each core can execute at a different frequency at the same time. And

Yang et al. [13] also proposed an LTF (largest task first) algorithm with DVS to solve the

partition scheduling problem that will achieve 2.371-approximation to the optimal solution.

Unlike the above researches focusing on homogeneous CMP architecture, Leontyev et al. [10]

proposed a mechanism which can be used for scheduling sporadic soft real-time task systems

on asymmetric multi-core (heterogeneous) platforms with cores of different speeds. For task

characteristics consideration, Yaldiz et al. [3] proposed an algorithm that considers the task

co-relationship on homogeneous multi-core systems with soft real time tasks. Although this

 3

mechanism will increase a little deadline miss rate, it will improve energy consumption.

While discussing about shared resources, Ozturk et al. [14] proposed a two-step approach: (1)

determining the amount of data that are shared by cores and the amount of data that are

private to each core and (2) allocating memory space across private and shared data and over

all cores, to improve the utilization of shared memory.

Table 1 shows the comparison of several existing energy efficient scheduling algorithms

on multi-core systems and the proposed algorithm WAS-DVS. The metric of multi-core type

describes that if the multi-core architecture is homogeneous or heterogeneous. The metric of

real-time indicates that which real-time environment the algorithm could apply. There are two

categories of real-time systems: hard and soft. In hard real-time system all the task need to be

finished before its deadline constraint but in soft ones we could tolerate a little deadline miss.

The metric of memory contention indicates that if the algorithm will consider or reduce the

memory contentions. The metric of core or chip indicates that if the cores need to execute at

the same frequency. In chip level all the cores need to execute at the same frequency but it is

not necessary in core level.

In this thesis, we explore real-time energy-efficient scheduling on a multi core system with

dynamic voltage scaling, which is based on LTF [13] and consider the workload

characteristics of tasks. By reducing the shared memory access contentions, we can lower

total execution time or execute all tasks with lower frequency than LTF-MEM [13] with the

same deadline due to that ours has more slack time than compared.

 4

Algorithm Multi-core
type

Real-time memory
contention

Core or Chip
level

Anderson et
al. [4]

Homogeneous Hard None None

TCSP [12] Homogeneous Hard N/A Core
LT] F-MES [13 Homogeneous Hard N/A Chip

Leontyev et

Heterogeneous Soft N/A Core
al. [10]

Yaldiz et

Homogeneous Soft N/A Chip
al. [3]

Ozturk et

Homogeneous N/A Yes N/A
al. [14]

WA S Homogeneous Hard Yes Chip S-DV
(Proposed)

Table 1. Comparison of related works

 5

Chapter 3

Problem Statement and System Model

3.1 Problem Statement

 Most energy efficient scheduling schemes for CPUs simply ignore the memory behavior

and assume that the execution time and energy consumption of the system are only

determined by the CPUs. For real cases, the memory does contribute both execution time and

energy consumption. In multi-core systems, each core shares with limited buses, shared

caches and external memory [1][8]. A recent research shows that the proportion of total

execution time will vary with shared memory access and contention [8]. Besides, tasks

execution order will affect the energy consumption, system performance (deadline miss, and

total execution time etc.) and memory access contentions. For an example in Fig. 1, the two

processors, core 1 and core 2, have their own tasks T1 and T2, respectively. If T1 and T2 send

memory access requests to the memory controller at time 5 and each request needs 5 time

units. Then the controller schedules the requests with a larger core index first policy and the

scheduling result is (T2, T1). The request of T1 needs to wait for the one of T2 being complete

at time 10. The contention in this situation increases 5 time units delay for T1 and core 1 just

does nothing and waits for the request being severed during this time interval.

 6

Fig 1 An example of memory contention with 2-core.

 To resolve this problem, our proposed mechanism schedules tasks with consideration of

its workload characteristics to reduce the total execution time, the memory access contentions,

and energy consumption using DVS.

3.2 System Model, Assumptions, and Notations

 We have a target m homogeneous cores [C1, C2,…, Cm] which share with an external

memory [1] [13], a common timer t, and have their own job queue [Q1, Q2,…, Qm]. These

cores can change their supply voltage (V) and clock speed (Sclk) (or frequency) continuously

within their operational ranges, [Vcmin,Vcmax], and [Scmin,Scmax]. In addition, all the cores must

operate at the same supply voltage (frequency) and could go to idle state

immediately [1] [8] [13] [15]. And each core has two variables TWCj and TWMj, where TWCj

and TWMj are the total CPU and memory workloads of assigned tasks, respectively, where j is

the index of a core from 1 to m. A set of n periodic tasks [T] = {T1, T2……Tn} are ready at time

0 [13].

 A periodic task can be specified as Ti (Pi, Wi, wm), where Pi is the period, Wi is the

WCET (worst case execution time), and wm is the memory workload. Based on [2] [3] [9], the

arrival time, period, WCET, and memory access times of periodic tasks are known in advance.

 7

The relative deadline (Di) of each periodic task instance i is assumed equal to a common

deadline D and all tasks are mutually independent [13]. And the well known energy

consumption E of a CMOS circuit we used is dominated by its dynamic s e and is

portional to the square of its supply voltage, which is defined as CVE ddeff ⋅⋅= 2 , where

effC is the effective switched capacitance, ddV is the supply voltage, and C is the number of

execution cycles. Degrading the supply voltage also drops the operating frequency

proportionally (Vdd

upply voltag

pro C

f∝)

E ∝

. T uld be ximated as be

frequency squared () [15].

hus E co appro ing proportional to the operating

2f

 8

Chapter 4

Proposed Energy Efficient Workload

Aware DVS Scheduling Mechanism

 Memory contentions vary with the tasks execution order during the same period of all

cores. We take Fig 2 as an example to illustrate the situation. In Fig 2, core 1 and core 2 have

their own tasks [T1, T3] and [T2, T4], respectively, which all start at time 0. The execution time

of T1, T2, T3, and T4 are W1 (50 cycles), W2 (60 cycles), W3 (30 cycles), and W4 (30 cycles)

while T1, T2, T3, and T4 have the numbers of memory requests m1 (10 times), m2 (12 times), m3

(3 times), and m4 (3 times), respectively. The probability p1 of memory access request sent by

T1 is m1 / W1 in each cycle while p2 is m2 / W2, p3 is m3 / W3, and p4 is m4 / W4. In Fig 2 (a), the

expected value of memory contention is 0.2*0.2*50 + 0.1*0.1*10 +0.1*0.1*20 = 2.4 (times).

However, in Fig 2 (b), if we exchange the task execution order of the job queue of core 1, the

expected value of memory contention is 0.1*0.2*30 + 0.2*0.2*20 + 0.2*0.1*20 = 1.8 (times).

 The variance of the task execution order will change the contention probability during

the same period of all cores. We want to reduce memory contentions by reordering the

execution order of tasks in the job queue of each core. However, the main challenges before

proceeding scheduling are to identify and predict the resource needs of each task, and to

schedule them with an aim to reduce shared resource contention and minimize energy

consumption.

To achieve this, we propose a WAS (workload aware scheduling) algorithm which is

 9

shown in Fig 3. At the beginning of the algorithm we need to sort the tasks by the information

Ti (Pi, Wi, wm), where Pi has the highest weight, wm has the smallest. Our proposed WAS

algorithm includes two parts. The first part is based on LTF [13]. LTF (largest task first) is an

algorithm that partition [T] into M disjoint sets and each disjoint set corresponds to a job

queue. According to the sorting result we find the task with the largest CPU workload and

assign it to the core with the smallest load. And we then sort the cores by a non-increasing

order with TWc. To reduce memory access contentions we reorder the task execution order in

each job queue. If index j of C is odd, reorder the task execution order in an increasing order

with wm. If an index is even, reorder by a non-increasing order. Our proposed WAS algorithm

expects to avoid two tasks with high wm executed at the same period. The complexity of LTF

is O[n (log n + log m) + m] and ours is O[n (log n + log m) + m] + O[n log (n/m)].

Fig 2. A motivation example: (a) original task execution order (b) new task execution order.

 10

WAS :
Input : (T, C, D, Q) /* T: the task sets
Output : A feasible scheduling result Q /* C: the core sets
 /* D: the common deadline
 /* Q: the queue sets

1. sort T in a non-increasing order of Ti(Wi);

2. for i = 1 to [T] do /* assign each task to

find the core Cj with the smallest load /* each core by LTF
TWCj = TWCj + Ti(Wi)
TWMj = TWMj + Ti(wm)
Qi Qi + Ti

3. sort C by a non-increasing order with TWMj

4. for j = 1 to M /* resort the order of each
if j is even /* core by w\m

 reorder the tasks in Qj of Cj in
 increasing order with wm
 else
 reorder the tasks in Qj of Cj in
 non-increasing order with wm

Fig 3. Algorithm of WAS.

 In order to reduce the total energy consumption, we propose an energy efficient

scheduling algorithm WAS-DVS, which is based on WAS and use DVS. Because each core

needs to execute at the same supply voltage [1], the WAS-DVS needs to find the lowest

frequency that satisfies all the deadline constraints. In DVS, due to the use of the online

adjustment mechanism that dynamic collection of slack time for DVS using, we need to

define two events: one is that all cores start to run at time 0 and the other is any task is

finished. When any of the two events occurs, it will trigger the WAS-DVS algorithm to

reassign the frequency to each core. An example is shown in Fig 4. In this example t1 is the

finished time of task 1; …; t5 is the finished time of task 5. At starting time 0 we assign a

frequency, which satisfies the deadline constraint of core 2 with the largest workload, if

deadline miss of the remaining TWCj of each core after time t1 will not arise due to this change.

When task 1 is finished at t1, we will reassign the frequency to each core while satisfying

 11

deadline constraints of the core which has the largest remaining TWCj. The WAS-DVS

algorithm is shown in Fig 5.

Fig 4. A task execution example of a dual core.

WAS-DVS :
Input : (D, C, t) /* D: the common deadline
 /* C: the core sets
 /* t : the current time

 Output: A feasible Q-based schedule R with the minimum energy
 consumption

5. for i = 1 to [T] do /* estimate the remaining

temp[TWCj] = TWCj /* workload of each core
temp[TWCj] = temp[TWCj] - t

6. find the Ci with maximum temp[TWCj]

7. assign the S ≧ temp[TWCj] / (D - t) to each Cj /* estimate the frequency
 /* and assign to each core

Fig 5. Algorithm of WAS-DVS.

 12

Chapter 5

Simulation Results and Discussion

 The purpose of this chapter is to provide performance comparison of algorithm WAS and

WAS-DVS against with LTF and LTF-MEM (LTF-DVS). To evaluate our proposed

algorithms, we use the real-time benchmark information, obtained from [11], which is shown

in Table 2, where each row of Table 2 represents a category of tasks. Assume that all the

arrival times of tasks are at time zero and all tasks share with a common deadline [13].

Processors can adjust their frequency continuously within [Smin , Smax] and share with an

external memory with 20 cycles of access latency [11] [13]. In order to avoid the situation that

the numbers of task is fewer than the numbers of cores, we randomly select the number (p ×

m +1) of tasks from all categories, where p is a rational positive integer and m is the numbers

of cores. The p value stands for an average anticipant number of tasks in each job queue. In

our simulation, all the simulation results of WAS and WAS-DLVS are normalized to those of

LTF and LTF-MEM (LTF-DVS).

 In order to observe the influence of different numbers of tasks on each environment with

a different number of processors (cores), we vary the p value from 2 to 7. Simulation results

in Fig 6 show that the execution time improvement of our proposed WAS-DVS is 2% to

10.3% better than that of LTF [13] under varies numbers of cores.

 13

Task WCET
(cycles)

M (memory access times)

Fibcall 9536 114
Qsort 13309 97

Matmul 13985 26
IDCT 16131 193
FIR 33983 133
CRC 42907 99
FFT2 60234 2820
LUD 255998 102

LUD2 255998 1364
LMS 365893 123

LMS2 365893 14741
FFT 515771 38404
FIR2 557589 405

ADPCM 2486633 4053

Table 2. Offline information of tasks [11].

Fig 6. Total execution time improvement of WAS over LTF.

 14

Fig 7. Total energy consumption improvement of WAS-DVS over LTF-DVS.

 Note that the performance (in terms of total execution time) of our proposed WAS-DVS

is close to that of LTF when p is small. This is because that there are few tasks in the job

queue to be reordered using our proposed mechanism. On the contrary, the total execution

time improvement percentage increases as p increases. But the increasing degree is fewer and

fewer due to that the proportion of the amount of memory contention delay to total execution

time decreases when the number of tasks increases. Furthermore, Fig 7 shows that in terms of

total energy consumption, our proposed WAS-DVS can save 3.85 % to 19 % more than

LTF-DVS under varies number of cores. Note that the total energy consumption improvement

percentages are a little bit lower than the total execution time improvement percentages

squared in Fig 6. This is due to the constraint that each core needs to execute at the same

frequency level.

 15

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we have presented an energy efficient scheduling algorithm, called

WAS-DVS, for multi-core real-time embedded systems. The WAS-DVS not only considers

the CPU workload of tasks but also the memory workload. The basic idea of WAS-DVS is to

balance the load of each core and to reorder the execution order in each job queue to reduce

memory contentions. By reducing memory contentions, our proposed mechanism can lower

the total execution time from 2% to 10.3% before applying DVS and improve the total energy

consumption from 3.85% to 19% after applying DVS, compared to LTF-DVS under different

CMP environments with 2 to 16 cores.

6.2 Future work

 For the future work, we will explore energy-efficient scheduling for threads with

arbitrary deadlines, thread dependency, and arrival times on multi-core real time systems.

 16

Chapter 7 Bibliography

[1] A. Naveh, E. Rotem, “Power and Thermal Management in the Intel® Core Duo

Processor”, in Proceedings of Intel Technology Journal, Volume 10, Issue 2, 2006 and

Test in Europe, pp. 634 – 639, 2005

[2] L. F. Leung, C. Y. Tsui, Hu, X.S., “Exploiting Dynamic Workload Variation in Low

Energy Preemptive Task Scheduling”, in Proceedings of Design, Automation and Test in

Europe, pp.634 - 639, 2005

[3] S. Yaldiz, A. Demir, S. Tasiran, P. Ienne, Y. Leblebici, “Characterizing and exploiting

task load variability and correlation for energy management in multi core systems”, in

Proceedings of Multimedia 3rd Workshop on Embedded Systems for Real-Time, pp.135 -

140, 2005

[4] J.H. Anderson, J.M. Calandrino, “Parallel Real-Time Task Scheduling on Multicore

Platforms”, in Proceedings of 27thIEEE International Real-Time Systems Symposium,

pp.89 – 100, Dec. 2006.

[5] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, S. Baruah, “A

Categorization of Real-time Multiprocessor Scheduling Problems and Algorithms”, in

Handbook of Scheduling: Algorithms, Models, and Performance Analysis, Joseph Y-T

Leung (ed.), Chapman Hall/CRC Press, 2003

[6] T.A. AlEnawy, H. Aydin, “Energy-aware task allocation for rate monotonic scheduling”,

in Proceedings of 11thIEEE Real Time and Embedded Technology and Applications

Symposium, pp. 213-223, March 2005

[7] J.-J. Chen, K.-H. Chuang, and T.-W. Kuo. “Multiprocessor energy-efficient scheduling

with task migration considerations”, in Proceedings of EuroMicro Conference on

 17

Real-Time Systems, pp. 101–108, July 2004.

[8] S. Siddha, V. Pallipadi, A. Mallick, “Process Scheduling Challenges in the Era of

Multi-core Processors”, in Proceedings of Intel Technology Journal, Volume 11, Issue 4,

Nov. 2007

[9] K. Karuri, C. Huben, R. Leupers ,“Memory Access Micro-Profiling for ASIP Design”, in

Proceedings of the Third IEEE International Workshop on Electronic Design, Test and

Applications, Jan. 2005

[10] H. Leontyev; J.-H. Anderson, “Tardiness Bounds for EDF Scheduling on Multi-Speed

Multicore Platforms”, in Proceedings of 13th IEEE International Conference on

Embedded and Real-Time Computing Systems and Applications, pp. 103 – 110, Aug

2007

[11] H.B. Fradj, C. Belleudy, M. Auguin, ”Scheduler-based Multi-Bank Main Memory

Configuration for Energy Reduction”, in Proceedings of International Symposium on

Industrial Embedded Systems,., pp. 1-7 , Oct. 2006

[12] Lei Miao , Yong Qi , Di Hou, Y. Dai, “Energy-Aware Scheduling Tasks on Chip

Multiprocessor”, in Proceedings of the Third International Conference on Natural

Computation, 2007

[13] C.-Y. Yang, J.-J. Chen, and T.-W. Kuo, ”An Approximation Algorithm for

Energy-Efficient Scheduling on A Chip Multiprocessor”, in Proceedings of the Design,

Automation and Test 2005 in Europe, Vol. 1, pp. 468 – 473, 2005

[14] O. Ozturk and M. Kandemir, “Customized On-Chip Memories for Embedded Chip

Multiprocessors”, in Proceedings of the Design Automation Conference. in Asia and

South Pacific, Volume 2, Jan. 2005

[15] J. M. Chen, K. Wang, and M. H. Lin, “Energy Efficient Scheduling for Real-Time

 18

 19

Systems with Mixed Workload”, in Proceedings of International Federation for

Information Processing, pp. 33–44, 2007

	Chapter 1 Introduction
	Chapter 2 Related work
	Chapter 3 Problem Statement and System Model
	3.1 Problem Statement
	3.2 System Model, Assumptions, and Notations

	Chapter 4 Proposed Energy Efficient Workload Aware DVS Scheduling Mechanism
	Chapter 5 Simulation Results and Discussion
	Chapter 6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future work

	Chapter 7 Bibliography

