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摘 要       

 
 

在嵌入式系統中，NOR 快閃記憶體主要用來儲存二進制的可執行

碼。因為實際情況或價格的限制，許多裝置依然使用 NOR 快閃記憶體

來儲存動態資料。一個在 NOR 快閃記憶體上的有效索引結構不僅減少

中央處理器週期也延長裝置的使用壽命。然而，現有的索引結構因為

NOR 快閃記憶體的物理限制是很難應用在 NOR 快閃記憶體上。所以我

們提出軟串列，一種 NOR 快閃記憶體的原生索引結構。軟串列透過實

體指標組織資料，所以不需要位置轉換和開機掃描。基本的想法是一

個指標能夠指到多個資料。該機制在搜尋上提供了快速跳躍的機會。

當資料量大的時候，軟串列能夠擴增成多層的架構。軟串列最吸引人

的是他簡單的資料結構，且在實驗中證實他的效率。 

 
 
 
 
 
 

 
關鍵字：快閃記憶體﹙Flash memory﹚，儲存系統﹙storage systems﹚，

嵌入式系統﹙embedded systems﹚，索引結構﹙index 
structure﹚。 
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Abstract 

 
 

In embedded devices, NOR flash primarily serves as storage for 
binary executables. Due to limitations on form factor or cost, many 
devices also consider NOR flash as storage of dynamic data. The 
significance of efficient indexing over NOR flash are not only reduced 
CPU cycles but also prolonged operating periods. However, existing 
index structures are hardly applicable because of the physical constraints 
of NOR flash. Soft lists, a native index structure for NOR flash, are 
proposed. Soft lists organize data in terms of pointers of physical 
addresses, so address translation and initialization scan are not required. 
The basic idea is to allow a number of probes for de-referencing a data 
pointer. Interestingly, the probes provide opportunities for fast forward 
skips on search. Soft lists are then extended to be multilevel for 
scalability. The most attractive property of soft lists is its simplicity, and 
its efficiency has been verified by our experiments. 
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1 Introduction

Flash memory offers non-volatile storage at very approachable price. It is now an
essential component in embedded devices. Currently two types of flash memory
are widely used, namely NOR flash and NAND flash. NOR flash can be mapped
to the processor’s address space, so it is mainly for storing executable images.
NAND flash offers very high information density with page-oriented operations,
and it is a good choice for mass storage. However, due to considerations of form
factor or cost, it may not be affordable to support both in a tiny embedded
device. Many deeply embedded devices, such as network routers, solely use a
piece of NOR flash for storage of executable images and dynamic data. In such
cases, the NOR flash is divided into a readonly partition for executables and a
read-write partition for dynamic data.

Efficient access of dynamic data has its significance to embedded devices,
because both CPU cycles and energy are very precious resources. Various index
structures have been developed for indexing data over byte-addressable RAM
and block-oriented storage [2]. However, because of the physical constraints of
NOR flash, they are not directly applicable. On NOR flash, a piece of data
can not be overwritten unless it is erased. Erasure on NOR flash is carried
out in terms of a block, which is typically 128 KB [3]. To avoid erasing a
large block on every update, data are updated out of place. It invalidates all
the pointers referring to the updated data. Invalid pointers can be revised by
out-place updates, but it may in turn invalidate many other pointers. Even
worse, activities for free-space reclaiming (i.e., garbage collection) involve data
movements, but data movements themselves require extra free space for revising
involved pointers. In the worst case, the system can be deadlocked.

Realizing efficient index structures over flash memory is very challenging,
as illustrated above. The problem is addressed in past work [6, 5] by using
logical addresses. In the rest of this paper, let a data object (sometimes simply
an object) refers to a piece of data managed by index structures. Let a log-
ical pointer be a pointer referring to logical addresses, and a physical pointer
is defined accordingly. Every data object is assigned to a logical address, and
logical pointers are used instead of physical pointers. With logical pointers,
even if a data object changes its physical residence, its logical address remains
unchanged. So data-objet updates are de-coupled from pointer updates. How-
ever, this approach has two major drawbacks. First, the logical-to-physical
mapping information must be kept in RAM (which is capable of in-place up-
dates) to avoid the chicken-and-egg problem. Such a RAM-space requirement is
no doubt a burden for embedded devices. Second, the mapping information is
unknown unless the entire flash memory is scanned. Even worse, it is in volatile
memory. It contradicts that most embedded devices are required to be instantly
operational after power is on.

Soft lists, a native index structure over NOR flash, is proposed. The major
difference from existing approaches is the use of soft pointers. Soft lists are
basically linear ordered lists, in which data objects are organized in terms of
soft pointers. Unlike an ordinary physical pointer, a soft pointer simultaneously
refers to many physical addresses. The key idea of using soft pointers is to
allow a number of probes when de-referencing a soft pointer. The meanings are
twofold: First, it is possible to move data objects around without invalidating
any soft pointers. It greatly simplified the procedure of free-space reclaiming.
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Second, on search of keys, it is possible to skip over a large amount of data
objects if a random object is probed. It is referred to as random forward skips
in the rest of this paper. Random forward skips are taken by just following any
valid object found at the first probe. Interestingly, in most of the cases, it is
even not important to know which object is intended to be referred to by a soft
pointer.

Because soft pointers are based on physical addresses, the needs for address
translation and initialization scan are completely eliminated. Although search
with a soft list is surprisingly fast, after all it emulates a linearly ordered list.
It is not guaranteed to scale well as the total number of keys is very large. To
deal with this problem, a soft list is extended to be multilevel. A multilevel soft
list is of a number of parallel independent soft lists, very similar to a skip list
[10]. In a multilevel soft list, a data object has multiple soft pointers, one for
each different level. Every data object hooks on the lowest-level soft list. The
higher the level a soft list is, the lower the probability a data object hooks on
it. Note that random forward skips are still taken for soft lists at any level. On
search, high-level soft lists provide long-distance skips, and low-level soft lists
are visited when the searched key is being closely approached. A multilevel soft
list provides very good scalability, and its implementation is extremely simple.
Even better, it is very friendly to flash memory because no expensive writes
are required for self-reorganizing. We have conduct a series of experiments and
comparison, for which we found that soft lists are much faster than linearly
ordered lists and even skip lists.

The rest of this paper is organized as follows: Section 2 summarizes prior
work related to implementing index structures over flash memory. Section 3
presents the design and implementation of soft lists. Section 4 includes our
experimental results, and Section 5 concludes this paper.
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2 Motivation

2.1 Characteristics of NOR Flash

Geometry Timing

Word size 2 Bytes Word read 110 ns

Capacity 32M words Word write 80 us

Block size 64K words Block erase 0.6 s

Block endurance 100K cycles

Table 1: The specification of a typical NOR flash [3].

NOR flash memory, as a kind of non-volatile memory, is write-once and
bulk-erase. Initially NOR flash is entirely of free space. Data on NOR flash are
byte-addressable, and a byte can be read for infinite times. NOR flash can be
repeatedly written, provided that each write goes to different byte. However,
successive writes to the same byte must be interleaved by block erasure. A
NOR-flash block is typically 128 KB [3]. To avoid erasing a block on every
update, data are updated out of place. The old versions of the updated data
are considered as invalid. As writes keep arriving, the amount of free space on
NOR flash would become low. Space occupied by invalid data is reclaimed by
means of block erasure. Before a block is erased, all valid data on the block
must be moved away. Activities for space reclaiming are referred to as garbage
collection.

Each NOR-flash block individually tolerate a number of erasure operations.
The limit is typically 100 K cycles under the current technology [3]. Any block
exceeding the limit may suffer from unreliable data access, so it is desirable to
evenly erase every block to postpone the appearance of the first worn-out block.
Wear leveling is to manipulate data placement so that erasure can be directed
to infrequently erased blocks [12, 13, 14]. The specification of a typical NOR
flash is shown in Table 1.

A B C D

D'

A B C D

D'C'

A B C D

D'C'A' B'

D is updated out of place as D'. The 
physical pointer referring to D 
becomes  invalid

C is updated as C' to revise the 
physical pointer referring to D'

The update recursively propagates 
to physical pointers all the way to 
the beginning of the list

(a)

(b)

(c)

Figure 1: Propagation of Physical-Pointer Updates.
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2.2 Physical Pointers vs. Logical Pointers

This section addresses the issues of using physical pointers over flash memory,
as well that of using logical pointers.

For RAM, it is taken for granted to refer to data in terms of physical ad-
dresses, because RAM is capable of in-place updates. For flash memory, each
update to a piece of data may invalidate all the physical pointers referring to
it, because new data must be written to a new physical location on update.
Consider the example shown in Figure 1: A list of four data items are organized
with physical pointers. On the update of D, the new data D’ are written to
some available space on flash memory. However, it is not possible to rewrite the
physical pointer of C to correctly refer to D’, so C must also be updated out of
place. As a result, physical pointers (data objects as well) all the way to the
beginning of the list must in turn be updated. This problem is referred to as
pointer-update propagation.

Flash-memory management activities is also a cause of moving data objects.
Before a block is erased for garbage collection, all valid data must be moved away
from the block. The data movements invalidate all physical pointers referring
to the moved data, and all the physical pointers must be updated out of place.
Activities for reclaiming free space as such, may introduce the needs for more
free space. Potentially the system can be deadlocked. This problem is referred
to as garbage-collection deadlocks.

To deal with the problems of using physical pointers over flash memory,
one can choose to use logical pointers. In this approach, each piece of data is
assigned to a logical address. Data are referred to by logical addresses instead
of physical locations. To implement logical pointers, a translation table must be
maintained in RAM, which is capable of in-place updates. The table is indexed
by logical addresses, and each table entry is of a physical address. On out-place
updates of a data object, its new physical address is revised in the table. So
data-object updates are completely detached from pointer updates.

Even though the use of logical pointers eliminates the problems caused
by physical pointers, they introduce scalability issues. Specifically, the RAM-
resident translation table is a burden for small embedded devices in terms of not
only hardware cost but also energy budget. Even worse, to bind all the logical
addresses to physical addresses, it is necessary to scan the entire flash memory.
The scanning procedure imposes lengthy delay on system initialization, which is
intolerable in many embedded devices. The scalability problem is exaggerated
especially when the flash memory is large.

2.3 Related Work

There have been many excellent index structures developed for byte-addressable
RAM or block-based storage [2]. However, they are not directly applicable to
flash memory. Prior work on indexing over flash memory are mainly based on
the use of logical addresses. Wu et al. [6] and Xiang et al. [7] propose to
implement B-tree over flash memory, and a node translation table is used to
map B-tree nodes to flash-memory pages. Lin et al. [5] propose a new design
of hash tables for flash memory, for which a bucket is mapped to a collection
of related flash-memory pages. Actually, maintaining the mapping of logical
addresses to physical addresses is not an issue specific to index structures. For
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flash-based disk emulation [1, 11, 16], the mapping is from disk-sector numbers
to flash-memory locations. A native flash file system [17, 18] should map an
i-node number with a byte offset to flash-memory addresses.

The use of logical addresses introduces two technical issues. The first prob-
lem is that a RAM-resident translation table is required. The translation table
costs precious RAM space and energy. For reducing the RAM-space require-
ments, Chang et al. [11] developed a variable-granularity scheme for address
translation. Kim et al. [15] and Lee et al. [16] propose to reduce the table
size by adopting block-level translation instead of page-level translation. As
to energy consumption, although it is not formally addressed in past work, its
significance can be verified by the following observations: A typical SDRAM
[4] needs 70 mA in operating mode, 20 mA in standby mode, and 160 mA for
refresh every other 64 milli-seconds. A typical NOR flash [3] needs 30 mA in
operating mode, 30 mA for read/write/erase, and 10 µA in standby mode.

Besides the costs of space and energy, the other problem of using logical ad-
dresses is that the mapping is unknown until the entire flash memory is scanned.
Wu et al. [8] propose to incrementally commit summary information onto flash
memory to help to speed up the scanning procedure. Yim et al. [9] propose to
compress the entire mapping information and put it in some handy locations.

Regardless which techniques are taken for reducing RAM footprint and for
shortening scanning time, these overheads are inevitable. Different from prior
work, this work considers organizing data in terms of physical addresses. We
aim at completely removing the needs for address translation and initialization
scan.
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3 Design and Implementation
of Soft Lists

This section proposes soft lists. We shall first present simple soft lists, which
emulate linearly ordered lists. Simple soft lists are then extended to multilevel
soft lists for better scalability.

3.1 Simple Soft Lists

3.1.1 Index Objects and Soft Pointers

An index object is the smallest unit for indexing with soft lists. It is of a key, a
value, and a soft pointer referring to another index object. Basically the length
of the keys can be arbitrary, so there can be infinitely many other keys between
any two keys. For simplicity, we use fixed-length slots for storing keys. A value
is as large as a key in size. We assume that each update to the value rewrites
the entire index object. Note that the value can also be a soft pointer referring
to a data page. For the ease of presentation, index objects, objects, and keys
are interchangeably used to refer to the same thing in the rest of this paper.

A B C
a

b
d

c

D

A B C
a

b
d

c

D

A B C

D

A block to erase

A  spare block for GC Copy valid data

(a) (b)

?

?

?

?

Figure 2: A problem caused by garbage collection. (a) A block has valid data
A, B, C, and D. (b) Before the block can be erased, all valid data are copied to a
spare block. Four data objects are forcibly moved, and all the physical pointers
referring to them become invalid.

As mentioned in Section 2.2, the physical residence of index objects may
involuntarily be changed because of the needs for garbage collection. Figure
2(a) shows an scenario, in which a block has valid objects A, B, C, and D. To
erase the block for garbage collection, beforehand all the valid objects must
be moved to a spare block. However it invalidates all the physical pointers
previously referring to the objects, as shown in Figure 2(b). To revise the
physical pointers, objects a, b, c, and d can be rewritten out of place. However,
recursively another batch of object rewrites could be triggered. Because free
space is consumed before free space can be reclaimed, the system might be
deadlocked.

Soft pointers are proposed to approach the problem. The basic idea is to
allow a number of “probes” when referring to an index object. In other words,
if an index object is involuntarily moved, it is moved to some pre-determined
locations. On access, a soft pointer may not immediately refer to the desired
index object, but the correct one can always be found after some probes. The
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A Ap ? ?
Ap ? ?

Copy The spare block The new spare block
1 2
3 4

1 2
3 4

Erase

(a) (b)
Figure 3: Index object “p” refers to index object “A” by means of a soft pointer.
A turnstile is of four blocks including a spare block. (a) Object A is shifted to
the spare block and then block 1 can be erased for garbage collection. (b) The
soft pointer does not lose object A after erasing block 1, because it refers to all
the index objects having the same block offset in a turnstile.

use of soft pointers removes pointer updates from garbage-collection activities,
and therefore deadlocks are avoided.

Soft pointers are realized by means of turnstiles. A turnstile is a group of
NOR-flash blocks, and the entire NOR flash is partitioned into turnstiles. Every
turnstile is allocated to some spare block for garbage collection, and garbage
collection is confined to each individual turnstile. Figure 3(a) shows a turnstile,
in which there are four blocks and block 2 is a spare block. Consider that object
“p” outside the turnstile refers to object “A” inside the turnstile by means of
a soft pointer. It is called an inter-turnstile reference. Now suppose that block
1 is chosen for erasure. Object A is “shifted” to block 2, and block 1 is then
erased into a new spare block, as shown in Figure 3(b). Logically the turnstile
is “rotated” counterclockwise for garbage collection. A valid object is always
shifted to a spare block with the same block offset, and a soft pointer refers to
all the index objects having the same block offset. As turnstile rotates, the soft
pointer never loses object A, if up to four probes are allowed. Other than object
A, the referred objects in blocks 3 and 4 are random objects.

If an object refers to another object in the same turnstile, then it is called
an intra-turnstile reference. For intra-turnstile reference, a soft pointer is the
relative distance between an object to the referred object. In this case, the
maximum number of probes needed is the number of spare blocks in a turnstile.
Because the worst case is that all the spare blocks are in-between the two objects.
For example, in Figure 3, up to 1 extra probe is needed. Besides that fewer
probes are needed by intra-turnstile references, the rationale to rotate a turnstile
on garbage collection is to consider wear leveling. As a turnstile rotates, every
block is in turn erased so wear leveling is perfect. However, readers may notice
that if the block to erase is far from the spare block(s), then the overheads
of object copy and block erasure is high. We shall again address this issue in
Section 3.3.

For the ease of presentation, some terms are defined here: Let the degree
of soft pointers be how many blocks a turnstile has. Including the intended
object, a soft pointer refers to many objects. Let the intended object be the
target object (e.g., object A in Figure 3), and all the others be the buddy objects
of the soft pointers.
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Figure 4: (a) A linearly ordered list. (b) A soft list with soft pointers. The
degree of the soft pointers is two.

3.1.2 Search with Simple Soft Lists

This section introduces simple soft lists, which organize index objects with soft
pointers. We are particularly interested in how search is carried out with soft
lists and how soft pointers benefit search.

Let us first be focused on search with a linearly ordered list. A linearly
ordered list is based on physical pointers. With the example shown in Figure
4(a), to locate a key, starting from the first index object, iteratively we move
forward until the current key is no smaller than the key to find. The desired
key is found if the current key equals to it, otherwise it does not exists. So to
locate key 200, we need to visit 7 objects.

A soft list, which emulates a linearly ordered list, organizes index objects
with soft pointers. Figure 4(b) shows an example on soft lists, in which the
degree of soft pointers is two. Different from search with a linearly ordered list,
we move forward until the keys of all the probed objects are no smaller than
the key to find. Note that, on de-referencing a soft pointer for search, it is not
required to distinguish its target object from the buddy objects.

For example, in Figure 4(b), suppose that we are to find key 200. In the
beginning we start from key 10, and the next keys may be 70 and then 200.
Surprisingly, it takes only three steps. On search, it is possible that we skip too
far and must fall back to try again. For example, to search key 55, starting from
10, for the first trial we go to 70, which is larger than 55, so we fall back to 10
and try again. For the second trial we get 15, which is smaller than 55, and the
search continues. From key 15, we go straight to 55 and report the key is found.
The search takes three steps only. Another case on search is that the desired
key does not exist. If we are to search 16 for example, from key 10, key 15 is
visited. From key 15, for the first trial we have key 40, which is larger than 16.
For the second trial, we have key 55, which is also larger than 16. After trying
all the possibilities, it is reported that key 16 can not be found.

Because buddy objects are random objects, on search with soft lists it is
possible to skip over a large amount of index objects. However, by this way
backward moves are also possible. For example, suppose that we are to search
key 41 and currently we are at key 40. From key 40 it is possible to move
backward to key 10. In this case, we shall fall back to key 40 and try again, and
this time we shall find key 41. Backward moves are of course overheads of using
soft lists, and we shall address this issue again in Section 3.2.2. Algorithm 1
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Algorithm 1 Search with a simple soft list
Require: curr: the first (leftmost) index object,

key: the key to locate
Define: curr→next: a soft pointer,

curr→next[i]: the i-th probe of the soft pointer.
1: while curr→key != key do
2: for each curr→next[i] do
3: if curr→next[i]→key ¡ curr→key then
4: continue; {avoid backward moves}
5: end if
6: if curr→next[i]→key ≤ key then
7: curr = curr→next[i];
8: break;
9: end if

10: end for
11: if curr→next[i]→key ¿ key then
12: return NOT FOUND; {all probes have been tried}
13: end if
14: end while
15: return FOUND;

shows the procedure of searching with a simple soft list.

3.1.3 Insertion/Deletion and Spare Pointers

Different from search, insertion/deletion involve modifications to soft lists. Let
us first be focused on insertion. Because soft lists emulate linearly ordered lists,
a new object is always inserted right after the object which’s key is immediately
smaller than the new key. Let the object be the immediate predecessor of the new
object. If the new object is always written as a buddy object of the immediate
predecessor, then the predecessor’s soft pointer needs not change. However, it
is infeasible because the total number of buddy objects a soft pointer can have
is limited. Instead, any free space is eligible for storing the new object. To refer
to the newly inserted object, the predecessor’s soft pointer must be revised.

As mentioned previously in Section 2.2, updates to pointers inevitably pose
the propagation problem. To address this, for each index object, we propose to
reserve some empty slots as spare pointers. In the rest of this paper, the terms
spare pointer and spare slots are interchangeably used. Initially a soft pointer
occupies the first spare slot. As the soft pointer is revised, updates are in turn
logged in empty spare slots. Figure 5 shows that an index object has four spare
pointers, and initially the first is a soft pointer referring to object A. Suppose
that the soft pointer is to be revised to refer to a newly inserted object B. A
new soft pointer is written to the second slot, and then that in the first slot
becomes invalid. The third spare pointer is in turn used for referring to another
object C. By this way, until all the spare pointers are used up, an index object
may revise its soft pointer for many times. The idea of spare pointers is feasible
thanks to that NOR flash is byte-addressable.

When an index object runs out all its spare pointers, to refresh its spare slots,
we may choose to rotate the turnstile it belongs to until the object is shifted
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Figure 5: An index object, in which there are four spare slots. The object’s soft
pointer is in turn revised to refer to objects A, B, and C. The fourth slot is not
yet used.

to a spare block. However, it might be too costly, if garbage collection is not
necessary at that time. Instead, we propose to rewrite the index object out of
place. As readers may notice, to rewrite an object may in turn triggers pointer
updates. But the use of spare pointer can largely slow down the propagation
of pointer updates. For example, if one object has eight spare pointers, then
pointer updates won’t be propagated to three other objects until an object is
updated out of place for 83 = 512 times. Whenever necessary, turnstiles can
be rotated to completely stop any propagation. The use of spare pointers of
course has its drawbacks. Specifically, the spare pointers must be scanned to
identify which one is the valid pointer. However, in contrast to rewriting index
objects, the cost of pointer scan is acceptable, because NOR flash reads much
faster than writes, as shown in Table 1. We shall provide evaluation on this in
our experiments.

With spare pointers, before a new object is inserted, its immediate prede-
cessor must be located. To locate the location for insertion and the immediate
predecessor, starting from the first object in a soft list, repeatedly we move
forward to the next object via soft pointers until all the referred objects’ key
are larger than the key to be inserted. At this point, the current object is the
immediate predecessor.

For example, to insert key 16 to the soft list in Figure 4(b), starting from
key 10, the next key can be 200. Because 200 is larger than 16, we fall back
to 10, and for the second probe we have 15, which is smaller than 16. So we
move forward to 15, and then get the next key 40. Key 40 is larger than key
16, so we fall back and try again to de-reference the soft pointer of key 15,
and this time we have 55. Because both 40 and 55 are larger than 16, we stop
here and report that the immediate predecessor of 16 is 15. The procedure
to find immediate predecessors is very similar to that in Algorithm 1, except
that, when the algorithm reports “NOT FOUND” (i.e., Step 12), “curr” is the
immediate predecessor. A new object is then inserted right after the immediate
predecessor, and then the inserted object refers to the predecessor’s prior target
object.

Deletion is carried out with a similar procedure. The immediate predecessor
of the deleted object is first located, and then the predecessor’s soft pointer is
revised to refer to the target object of the deleted object.
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Figure 6: A multilevel soft list, which is of four simple soft list. Index objects
hook on soft lists by means of soft pointers with degree=2. References for
random forward skips are not drawn.

3.2 Multilevel Soft Lists

This section shows how simple soft lists are extended to multilevel soft lists.
The design of multilevel soft lists is extremely simple, while they are expected
to have good scalability when the total number of keys is large.

3.2.1 Structure of Multilevel Soft Lists

With random forward skips, data access over simple soft lists can be much faster
than over linearly ordered lists. However its scalability is not guanranteed. One
choice is to extend soft lists to balanced trees (such as red-black trees), since
essentially these index structures are organized by lists. However, these trees
require a large number of pointer updates for balancing activities, which in turn
trigger many rewrites of index objects.

Instead of balanced trees, we propose to extend simple soft lists to multilevel
soft lists. A multilevel soft list is composed by parallel independent simple soft
lists, each of which is at different levels. Level 0 is the lowest level. An index
object has n+1 soft pointers, one for each level. The connectivity between index
objects and lists at different levels is controlled by a parameter 0 < p < 1. Let
q1, q2, ..., and qn be n randomly generated numbers which are between 0 and
1. Let q0=0. An index object hooks on the i-th level soft list only if (q0 ≤ p)
∧ (q1 ≤ p) ∧ (q2 ≤ p) ∧ ... ∧ (qi ≤ p). In other words, the probability that an
object hooks on the level-n soft list is pn.

Figure 6 shows a four-level soft list, extended from the simple soft list in
Figure 4. Readers may notice that a multilevel soft list is structurally similar to
a skip list [10]. Each index object hooks on soft lists by means of soft pointers.
Note that references for random forward skips of soft pointers are not drawn.
Search with a multilevel soft list is very similar to search with a simple soft list,
since conceptually we can treat all the soft pointers at different levels as one
single soft pointer with a large degree.

Suppose that we are to locate 41. For the ease of discussion, let’s first ignore
buddy objects when de-referencing soft pointers. Starting from the highest level
of key 10, the next key is 200, which is larger than 41. So we fall back to 10 and
move downward to level two. This time we get 40, which is smaller than 55, so
we move forward to it. From the second level of key 40, the next key is 200, so
again we fall back and move downward to level one, and finally 41 is found.

Algorithm 1 can be slightly revised to support search with multilevel soft
lists: One variable is needed to remember at which level currently we are, and
search always starts from the highest level. Step 12 of Algorithm 1 is revised as
moving downward to the next level. But if we are already at the bottom level,
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then NOT FOUND is reported. Note that, since now an object in multilevel
soft lists has multiple soft pointers, the spare slots should be shared by all its
soft pointers. There are simple and effective methods for reducing the overheads
of scanning spare pointers, which are omitted here.

Different from search, insertion/deletion involve soft-pointer updates. For
example, consider that we are to delete key 40 from the multilevel soft list in
Figure 6. Key 10’s soft pointers at level 2 and level 1 should be revised to refer
to key 200 and 41, respectively. Key 15’s soft pointer at level 0 should be revised
to refer to key 41. In other words, at every level, the immediate predecessor of
the deleted object inherits the deleted object’s soft pointer. For the algorithm
revised for search with multilevel soft lists, right before we move downward, the
current object (i.e., “curr” in Algorithm 6) is an immediate predecessor of the
object to be deleted. The total number of soft pointers to revise equals to the
height of the deleted object.

3.2.2 Analysis on Multilevel Soft Lists

In a multilevel soft list, a high-level soft list intends to skip with far distances,
because the total number of index object hooking on a high-level soft list is
expected to be small. For example, in Figure 6 the second-level soft pointer of
key 40 straight goes to the last key. However, with soft lists, it is not guaranteed
that we can skip that far, because a soft pointer is sometimes de-referenced to
buddy objects.

Consider a multilevel soft list with total N index objects and the probability
parameter p. Suppose that we are to de-reference a level-i soft pointer. The
expected number of index objects hooking on the level-i soft list is N ·pi objects,
so in average the skip distance between the index object and its target object is

N/(N · pi) = p−i

. Now consider that a soft pointer which’s degree is five. Besides its target
object, the four buddy objects are expected to be randomly distributed. When
de-referencing the soft pointer for forward skip, there might be several cases, as
shown in 7: The first is a backward skip. In this case, we fall back and try to
de-reference the soft pointer again. The second case is a short skip, for which
we move to a buddy object which has a key smaller than the target object’s key.
For third case, we happen to move to the target object. For the fourth case, we
move to a buddy object, which has a key larger than the target object’s key.

It is an important question how frequent short skips would be experienced.
Not only short skips slow down search, but also it’s costly to identify short
skips. Note that simple soft lists never suffer from short skips because there
are no other objects between an object and its target object. Consider the gray
section in Figure 7, which is the expected distance between an level-i object and
its target object, i.e., p−i. Let the degree of a soft pointer be d+1. Since buddy
objects are randomly distributed, the expected distance between two adjacent
buddy objects is N/d objects. The probability of having short skips is

p−i

N/d

. Now consider a multilevel soft list with n levels, and we are to search the key
of the rightmost object. Let Ni be the total distance traveled at the level-i soft
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Figure 7: Possible results of de-referencing a high-level soft pointer with de-
gree=5. The gray section stands for the distance of skipping to the target
object. The keys of the four buddy objects are randomly distributed.

list. Before moving downward to the level-(i− 1) soft list, the expected number
of objects visited at level i is Nip

i. Therefore, the expected number of short
skips at all levels is

n−1∑

i=0

(
p−i

N/d
·Nip

i

)

. Because
∑n−1

i=0 Ni = N , it becomes

1
N/d

·N = d

. Interestingly, it is independent of N , i, and p. If we take d = 5, then no matter
how many objects are there, the expected total number of short skips remains
4. Furthermore, as short skips are compensated by long skips, the net effect of
short skips could be negligible, especially when the number of objects is large.
We shall provide evaluation on this in our experiments.

3.3 Space Allocation and Wear Leveling

Index objects should be randomly distributed over the entire NOR flash because
the buddy objects of a soft pointer are expected to be random objects. As
readers may notice while reading on, the design of multilevel soft lists highly
relies on randomness. The rationales behind are 1) to benefit search by random
forward skips and 2) to properly estimate the costs of short skips.

For this purpose, we choose to allocate free space from a randomly selected
block. Free space is allocated to an index object when 1) the object is newly
inserted, 2) the object is rewritten to change its value, and 3) the object is
rewritten to refresh all its spare pointers. As free space in blocks keep being
consumed, block erasure is then needed to reclaim space occupied by invalid
objects. Suppose that a block has been chosen as a victim for erasure (how
it is chosen is discussed later). Before the victim block is erased, the turnstile
it belongs to is rotated until all the valid objects in the block are shifted to a
spare block, as mentioned in Section 3.1.1. However, as readers may notice, if
the spare block is far behind the victim block, then all the blocks in-between
are involved, and a lot of block erasure and valid-object copy are needed.

Alternatively, we can choose to directly shift all the valid objects from the
victim block to the spare block. The victim block is then erased. The benefit of
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this approach is that it does not involve the blocks between the victim block and
the spare block. The drawback of this approach is that the maximum number of
probes needed by intra-turnstile reference and inter-turnstile reference to locate
a target object become the same. However, as mentioned in 3.1.2, most of
the time, it is not even necessary to tell the target object from buddy objects.
Besides, NOR flash reads much faster than writes, so the extra reads can be
compensated by reduced data write and block erasure. Comparing to rotating
turnstiles, wear leveling with this method needs more discussions.

Wear leveling is to evenly erase all the blocks so that the appearance of the
first bad block is postponed as late as possible. The cause of uneven lifetime of
blocks is closely related to free-space allocation. If frequently updated objects
are clustered together in blocks, blocks will not be evenly erased because garbage
collection favors blocks having many invalid objects. Our free-space allocation
policy favors not only to distribute (buddy) objects over blocks randomly but
also to direct block erasure to all the blocks evenly. It is to write new objects
to free space allocated from randomly chosen blocks. By this way localities
in access pattern are largely weakened, and invalid objects could be evenly
distributed over blocks. Therefore, the overheads of erasing different blocks
would be close. On space allocation, if a random block is chosen but there is no
free space left, then the block becomes a victim block. Because the selection is
completely random, even if a block is of a lot of immutable objects, eventually
it will be chosen for erasure in favor of wear leveling.
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4 Experimental Results

4.1 Experimental Setup

The proposed soft lists are evaluated by means of a simulator. The simulator
considers the geometry of a real-life NOR flash [3]. Ignoring the boot blocks,
in our experiments the NOR flash has 128 64K-word blocks. For each run of
experiments, unless explicitly specified, the following basic settings are adopted:
Each block is of 256 256-words slots for storing index objects. Besides soft
pointers, an object has 6 extra spare slots for logging pointer updates. The
128 blocks are organized as 32 turnstiles, so each turnstile is of four block. One
among the four is a spare block. Before each run of experiments, 12,000 different
keys are sequentially inserted, and then the keys are randomly updated until
each key is updated at least two times. It intends to trigger garbage collection so
that every turnstile is rotated several times. Without this, the advantages of soft
lists will be largely limited because many soft pointers would directly reach its
target object with the first probe. On the completion of this setup procedure, all
the experimental statistics (e.g., the accumulated numbers of reads and writes)
are reset.

The proposed soft lists are evaluated against a scheme that is based on logical
addresses, which is commonly taken in past work for organizing data over flash
memory [6, 7, 17]. In this approach, each valid object is associated with a unique
logical address (i.e., the key). A RAM-resident translation table is required for
address translation. As an object changes its physical residence due to out-place
update or garbage-collection activities, its logical address remains, so no pointer
updates are required. By this way blocks need not to be organized as turnstiles.
Note that pointer update is still needed when an object refers to another new
object. To avoid rewriting an entire object on every pointer update, like an
object in soft lists, each object reserves some spare slots for logging pointer
updates. As logical pointers are not affected by out-place updates, this scheme
is to serve as a trivial low bound of write traffic in our experiments.

The performance metrics are straightforward: the total number of word
reads, word writes, and block erasure. Note that the numbers of reads and
writes do not include those for garbage-collection activities. Garbage collection
overheads are measured in terms of the total number of blocks erased. For wear
leveling, it is indexed in terms of the distribution of erasure-cycle counts of all
the blocks.

4.2 Simple Soft Lists

In this section, simple soft lists are evaluated against linearly ordered lists. A
linearly ordered list is a singly-linked list ordered by keys, and it is based on
logical pointers, as mentioned in the last section. In the rest of this paper, let
SSL refer to a simple soft list, and LOL be a linearly ordered list.

4.2.1 Read-Only Queries

In the first part of experiments, we are concerned with the usefulness of random
forward skips. It is evaluated by performing read-only queries. For each run of
experiments, all the keys are queried with three different patterns. In the first
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Figure 8: The total number of word reads of SSL and LOL with respect to
different total numbers of keys. All the keys are queried with (a) a sequential
pattern, (b) a random pattern, and (c) a normal distribution of query frequencies
over keys.
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Figure 9: The total numbers of reads, writes, and block erasure of SSL and LOL
with respect to different total numbers of keys and different access patterns.
Note that the Y-axes are of logarithmic scales.

pattern, all the keys are sequentially queried. The second pattern randomly
queries all the keys. The third access pattern is a normal distribution of query
frequencies over keys. The mean of the distribution is the median of all the keys,
and the variance is one-sixth the total number of the keys. The total number
of keys varies from 2,000 to 16,000.

Figure 8 shows the total number of word reads with difference access pat-
terns. Read overheads comes from traversing SSL or LOL for locating a key and
scanning spare pointers to find the valid pointer. LOL’s total number of reads
increases linearly with the total number of keys, as it performs linear search.
Because of random forward skips, the total numbers of reads of SSL are sig-
nificantly smaller than that of LOL in all the cases. Interestingly, SSL’s total
number of reads gradually decrease as the total number of keys is large. The
rationale is that, when the total number of keys is small, the possibility is high
that a soft pointer’s buddy object is an invalid object. If an invalid object is
probed, probing is carried on until an valid object is found. Very likely that the
target object is found as the first valid object, and in this case random forward
skips are not taken. If the total number of (valid) objects is large, then ran-
dom forward skips are taken with high frequencies. It can be verified by results
in Table 2, which show the average skip distance of SSL and LOL. The skip
distances of SSL are much longer than that of LOL.

Another observation on Figure 8 is that SSL’s performance is not much
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affected by different access patterns. It is a characteristic of using soft pointers.
Since the key of buddy objects are random objects, the total numbers of objects
visited for finding different keys are close. On the other hand, LOL is very slow
on sequential access because it uses linear search.

total # of keys 3,000 6,000 9,000 12,000
LOL 1.0 1.0 1.0 1.0
SSL 6.0 16.3 29.5 42.9

Table 2: The average skip distances of LOL and SSL with respect to different
total numbers of keys. The access pattern is a normal distribution.

4.2.2 Insertions and Deletions

This part of experiments examine SSL’s performance with updates. Each run
of experiments still uses the same setup procedure. After setup, all the keys
are updated with the three access patterns. For updating a key, the key is
first deleted and then re-inserted. It intends to introduce the needs for pointer
updates.

Figure 9 shows the total numbers of reads, writes, and block erasure of SSL
and LOL with respect to different total numbers of keys and different access
patterns. Note that the Y-axes are of logarithmic scales. For reads, SSL still
win its edge over LOL. Although it can not easily be seen in the figures, the
advantage is not that significant as in read-only queries. That is because SSL
spends extra reads to locate the immediate predecessor of a deleted/inserted
object, as mentioned in Section 3.1.3. Nevertheless, SSL still reads a much
smaller amount of words than LOL.

For writes, SSL writes slightly more words than LOL. Note that the over-
heads of writes do not include those for garbage collection. In average SSL
requires 20% more word writes than LOL. That is because logical pointers of
LOL are not affected by out-place updates. We must emphasize that, since
logical addresses are used, LOL serves as a trivial low bound for the total num-
ber of writes. As to SSL, because objects are referred to by physical addresses,
when objects are updated out of place, related soft pointers are revised by log-
ging changes in spare slots. Necessary object rewrites to refresh spare slots are
performed accordingly.

For garbage-collection overheads, it can be seen that SSL and LOL erase
nearly the same number of blocks. It can also be noted that how many blocks
erased by SSL is not much affected by using different access patterns. That
is because free space is allocated from randomly selected blocks. As a result,
invalid objects are evenly distributed over blocks, regardless the patterns of
object updates. Also, both SSL and LOL erase a large number of blocks when
the total number of keys is large. That is because erasing a block would involve
a large number of valid objects, and the objects must be copied to before block
erasure. The net amount of free space reclaimed every block erasure is relatively
low, and many block erasure are needed to reclaim a specified amount of free
space.
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Figure 10: The total numbers of reads, writes, and block erasure of SSL with
(a) different turnstile sizes and (b) different numbers of spare pointers in an
object. The access pattern is update with a normal distribution.

4.2.3 Turnstile Sizes and Spare-Pointer Numbers

This part of experiments aim at evaluating different organizations of simple soft
lists. The setup procedure for experiments is the same as in prior sections. The
access pattern is to update keys with a normal distribution.

First we vary the turnstile size (i.e., the total number of blocks in each turn-
stile). As the results in Figure 10(a) show, the total number of reads increases
with the turnstile size. That is because the finding of the predecessor of an
object requires probing all the buddy objects. The larger the turnstiles are, the
more number of probes are needed. Another source of the extra reads is invalid
objects. Because each turnstile has one spare block, with large turnstiles the
total number of non-spare blocks would be large. As a result, the total number
of invalid objects is large too. In this case, when de-referencing a soft pointer, it
is very possible that an invalid object is found as a buddy object. Since invalid
object is of no use, extra reads are needed to probe until a valid objects is found.

As to writes (except those for garbage collection), they are irrelevant to
turnstile sizes, so it can be seen that the total numbers of writes are all the
same in experiments. For garbage collection, it is shown that, when turnstiles
are small, the costs of block erasure become very high. As mentioned previously,
the smaller the turnstiles are, the smaller the total numbers of non-spare blocks
are. In this case, block erasure involves a large number of valid objects, and
therefore the reclaiming of free space becomes very slow. It can be seen that
the setting of the turnstile size is a trade off between read costs and garbage-
collection overheads. As NOR flash erases much slower than it reads (see Table
1), one possible approach is to trade space for performance. That is, use larger
NOR flash with small turnstiles.

Figure 10(b) shows the results of varying the total number of spare slots of
an object. Note that the object size is not affected by the total number of spare
slots in an object. Let us first consider the write costs. If there are many spare
pointers in each object, then to rewrite an object to refresh all its spare pointers
is not frequently needed. By this way then write overheads can be significantly
reduced. However, as the results show, the total numbers of writes are not much
affected by the numbers of spare pointers. It is an evidence on that an object
is re-written before it runs out of spare pointers. In other words, the number of
spare pointers in an object needs not be large.
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Figure 11: (a) The total number of words that MSL and SKL read with respect
to different total numbers of levels. The access pattern is to query with a normal
distribution. (b) The average skip distances at different levels of MSL and SKL.
The total number of levels is five. The Y-axes are of logarithmic scales.
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respect to different total numbers of levels. The access pattern is to update with
a normal distribution. (b) The average skip distances at different levels of MSL
and SKL. The total number of levels is five. The Y-axes are of logarithmic
scales.

4.3 Multilevel Soft Lists

In this section, multilevel soft lists are evaluated and compared against skip
lists [10]. We are particularly interested in whether multilevel soft lists provide
good scalability as skip lists do. In our experiments, skip lists are implemented
based on pointers of logical addresses, as is LOL. In the rest of this paper, let
multilevel soft lists be denoted as MSL, and SKL refer to skip lists.

We shall first confine our attention to read-only queries. The same setup
procedure for SSL/LOL is used. The total number of keys inserted is 12,000,
and the access pattern is a normal distribution of query frequencies over keys.
The probability parameter p is 0.25, as suggested in [10]. The total number of
levels that MSL and SKL have vary from 1 to 6. Figure 11(a) shows the read
overheads of MSL and SKL with respect to different total numbers of levels.
MSL uses much fewer word reads than SKL when the total number of level is
small. As the total number of levels increases, as expected, the read overheads of
SKL dramatically decrease. The read overheads of MSL also drop exponentially
as the total number of levels increases. But MSL’s read overheads do not drop
as fast as that of SKL, because MSL’s read overheads are already very low
when there is only one level. For MSL, let the average skip distance be defined
as the average number of objects in MSL skipped over when de-referencing a
soft pointer. The average skip distance of SKL is defined accordingly. Figure
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Figure 13: The distributions of erasure-cycle counts with random allocation (for
MSL) and greedy allocation (for MSL). The access pattern is to update with a
normal distribution.

11(b) shows the average skip distances with respect to different levels. The total
number of levels is five. We can see that, even with the presence of short skips
(as mentioned in 3.2.2), MSL still skips further than SKL at every level.

The next part of experiments are on update operations. Experimental setup
is the same as that of SSL/LOL. Figure 12(a) shows the overheads of MSL
and SKL with respect to different total numbers of levels. As Figure 12(a)
shows, MSL still read much fewer words than SKL in all cases. Even with the
extra cost of finding immediate predecessors for updates, the results in Figure
12(a) are close to that in Figure 11(a). It means that the overheads of finding
predecessors are insignificant. Like the experiments for read-only queries, both
MSL and SKL greatly reduce the read overheads as the total number of levels
is large. MSL still outperforms SKL in terms of the average skip distances at
every level, as shown in Figure 12(b). And, as expected, MSL writes slightly
more words than SKL, but their erasure overheads are close.

Note that our results on MSL/SKL should not be interpreted as showing
the benefits of using high-level SKL. After all, they are fundamentally different
approaches. Not to mention that SKL requires RAM-resident translation tables
and initialization scan.

4.4 Wear Leveling

This section is to verify whether the proposed MSL with random allocation
evenly erase every NOR-flash blocks. In our approach, the key to achieve wear
leveling is writing new objects to randomly allocated free space. If a block is
chosen for space allocation but it does not have any, then the block becomes a
victim for erasure. The policy is referred to as “random allocation”. For com-
parison, we evaluated MSL with another policy that always allocate free space
from one block until the block runs out of free space. On garbage collection, a
block having the largest number of invalid objects is chosen for erasure. This
policy is referred to as “greedy allocation”. The access pattern is to update
with a normal distribution.

Figure 13 compares the distribution of blocks’ erasure-cycle counts of the two
policies. As expected, our approach achieve a fairly even distribution of erasure-
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cycle counts. On the other hand, greedy allocation results in very large variances
among erasure-cycle counts. That is because, under normal distribution, some
particular objects are frequently updated. As a result, with greedy allocation,
invalid objects would possibly be clustered in some particular blocks. These
blocks are preferred by garbage collection and thus are repeatedly erased.
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5 Conclusions

To embedded devices, efficient data organization means not only reduced CPU
cycles but also prolonged operating periods. Index structures for byte-addressable
RAM or block-oriented storage are not applicable to NOR flash memory, because
in-place updates are prohibited. On NOR flash, the problem is that data up-
dates and pointer updates may recursively trigger each other. Past work tackle
this problem by using logical addresses to detach the two from each other. The
price paid to is an extra RAM-resident translation table and a lengthy scan-
ning procedure on initialization. This work considers a native index structure
for NOR flash. Our approach is based on physical addresses, and therefore the
needs for logical addresses are completely removed. It is achieved by allowing
a number of probes when de-referencing a data pointer. It prevents our in-
dex structure from being affected by garbage-collection activities. Surprisingly,
its nature of randomness greatly benefits data-access performance. We have
conducted a series of experiments and comparisons, for which we have very
encouraging results.
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