EH¥ N TP S 4 5 RUCTESE b 1 ey - WA L
TR A ARG R R

A Local Code Analyzer and Pattern-Based Peephole Optimizer in
Java JIT Compilers for Embedded Systems

o3 4 % p* 4 Student @ Shuai-Wei Huang

th¥Rx o & £ L Advisor : Dr. Wuu Yang

E R =
LR

A Thesis
Submitted to Institute of Networking Engineering
College of Computer Science and Information Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in
Institution of Network Engineering
July 2008

Hsinchu, Taiwan, Republic of China

PERARA L £

%%“%%%%%ﬁﬁﬁﬁﬁ%aﬁﬁﬁb
AP BERN R RSB E
g2 5 hERE I A EL

Rz i~ B i oL

&

By FF SR o~ R kS ¥ d 2hdg £ B JF f (Instruction Set
Architecture » ISA)in% o » & Su 2 I * RTeOA T Dandp £ B B E A 4 0%
FRAL DI © BEARS AR FHT I chly £ T g ks ey

WAL FAL S %§§ﬁ$%4@%ﬁ°%*§%ﬁﬁ$,?%@ﬁﬁgg%

?’ﬁﬁéﬁiﬁﬁﬁﬁg’ﬁ%ﬁﬁ%cﬁwaﬁ"mW@ TR 4
peents g o 1 HEAE ~ﬂ°§*§@ﬁ%#ﬁﬁ*§,%%&%ﬁ@,

@@ﬁgﬁjﬁpﬁkﬁﬁ>ﬁpi’ww,&%ﬁﬁwﬁﬁﬁgmﬁﬁ%\ﬁ¢
A 2B/ RFASB AR PRI E T o w B SRIEE R
§ 285 HABRT O APRBETRBERL PRSI Y0 SR F gy £ BB
WP ER7 MG 2 i RRERHLAL AAETFT - H B OpE -
Tt bR ¢ AP SR TR R AL RS 0 R AR AESAS A T
FFOET SIA LG o A B 2 R R e BBkl
17 30 R AP RTA S AT S JE e g e TR E L ch]JCSHRR (Java
Code Select Rule)¢: #2.5¢ & # % (Code emitters) » & 2 Andesf&a® B4y 4 f % H4% 4 0
BEF LSRR o0 D R LR T TR A PR
1o R R % ICVMLE TR E R BT 5 s bkt B R

s o B E B R BTE L S B i o

MAET @ TREHTE RGBS BN pS R RE R R

Local Code Analyzer and Pattern-Based
Peephole Optimizer in Java JIT Compilers
for Embedded Systems

Student: Shuai-Wei Huang Advisor: Dr. Wuu Yang
Institute of Network Engineering

National Chiao Tung University

Abstract

When a Java JIT compiler is ported to a new hardware platform, it usually cannot
take full advantage of the special features of the new platform unless it undergoes
thorough and massive optimizing. We propose a new approach to improve the code
generator in a ported Java JIT compiler. A static code analyzer is used to automatically
discover frequently-occurring patterns in the generated code that are suitable for peephole
optimizations. Then the patterns are incorporated in the JIT compiler by modifying
instruction selection rules and code emitters. The approach of automatically discovering
patterns is feasible because (1) there does exist patterns in the code generated by most
compilers and (2) a peephole optimizer requires only quite simple patterns, which can be
discovered easily. Our target platform is the Andes architecture, which features several
novel hardware facilities. The result of our experiment shows the approach is quite

promising.

Keywords: JIT compiler, peephole optimization, pattern matching, embedded system,

peephole optimize

3

g S-OR NSt R
gk

AL RN PR E RGP AT o EL A E D
dar g PRIl RA G T LR SRS AT 2 A
AT A G TR ek AT T] ehe AN R s mip%
¥ oW EFHE 4 hate B T LR A RGP
EEF e ”‘*ﬁ{%é«iﬁ, Lidin 4 T B A gy
i&’“mﬁ%éﬁ?fé— :

£ pEen 4 F AR
LR
rprsts RRUHEAF & TRl RPRAriE R LA TR
Eiko 5 AT RALY kF
P R

%F g e

[l ~ < LIEIR- B
L AR T T,
TR AR A i R kB i 5 R
oob s AR R B ‘-r};iﬁ%ﬁmfﬁfl’gmmﬂ‘frrﬁi—\ﬂf" Bk
A s A
syt

AR Ay 2
FeR (5 ehimds > d 303

P

- ,
SLTR %EEJ L’I‘Ji
m%}};ﬁ’) W

= W !

st B £ i
imenig gk o A gL~
BEGERPER R A > WRIFT NGy - 1
"g"

»—jl
F"Dp
, v

PR

E }A’L\}T’}ﬂféi

PFo 3P AN G TR gk
@1 'gi\.f '1“'9?&4—_ },E,Fg‘f"‘i'_’};"43+ i_@m%‘fﬁ\pﬁé‘ffpé‘f%’d—g«
Bofs 0 BRI A o Jo e 4e bRk
VLR SRR B RE o

:"}; Dol
A R g Rl A

Table of Contents

BB s i
N 0] 1 (o ST RO PRR ii
U p T iv
TaDIE OF CONTENTS ...ttt es %
I TS 0 T U SRS vii
LIST OF TABIES ... et eneas viii
Chapter 1 INtrOAUCTION.......cciiiiccece et sre e 1
111 CVM OVEIVIBW.......cooiiieiieiie sttt ee sttt sta e ssee e ae e snaenseenee e 1

112 ANAES ISA FRATUIES.......oiiieiiee et 3

1.2 Y[A7 1 o] o SRS 5

1.3 CONTIIDULION ..ottt sneene s 8

1.4 TheSiS OrganiZatiOn .c..c.cieceeoerieiiainie et 8
Chapter 2 Related WOTKSoiieeeeiei ittt 9
2.1 Common Optimization Technology............cccccoceiieiieiieiicie e 9

2.2 Peephole Optimizer TeChNOIOQYcccccvevieiieiiiieiee e 10

2.3 CVM - Code Generation SYStEMc..ccviveiieiiiie e 10
Chapter 3 OpPtiMIZAtiONSccviieiierie e es 12
3.1 Framework of OPtiMIZEr ... s 12
3.11 OptiMIZEr IN CVM ... 13

3.1.2 g (0] ¢ 11T | SRR 13

3.2 Local Code ANAIYZEN........ccooiiiiiiiiceeee e 15
3.21 Dead Code ElMINAtion..........ccocviieiieniiie e 15

3.2.2 Redundant Load/Store ElIMIinationcccceevvviveniiiesiienennnns 17

3.2.3 Load Copy Optimization............ccccveeierenenisesieeeeesee e 18

3.24 Common Sub-expression Replacement............ccoceovveienneninnns 18

3.25 CopY Propagationccccoeiiiiiieieie e 19

3.2.6 Constant Propagation and Constant Folding............cccccceevvvennene 20

3.3 Pattern-based Peephole OptimIzZer.......c.cccooiiiiiiiniiieiceeee e 22
331 Pattern MatCher ... 23

3.3.2 Pattern-Matcher GENErator..........ccccvevveieiiieie e 24

3.3.3 COSE FUNCLION ... 25

3.34 Recurrence Peephole Optimizer..........cccvviiiiiciiieicccc e 25

3.4 SUMIMAIY ...ttt e b e e st e e e st e e nnb e e s nsbeeenbneeeneee s 26

Chapter 4 ResUItS @and ANAIYSES........coveieiieieeesiess e 27
4.1 Experimental FrameworK ..o 27

4.2 Local Code ANAIYZEN........ccooiiiiiiiieeee e 27

4.3 Patterns and ModifiCatioNS...........ccovveviiniieere e 29
43.1 PALEINS ... 30

4.3.2 REWIITE EMITIEIS ..o 33

4.3.3 MOdiTy JCS RUIES ...t 34

4.3.4 BeNCHMAIKSoeiieiieiiee e 37
Chapter5 Conclusion and FULUIe WOFKccooeiiiiiiieniiie e 42
RETEIEINCES ...ttt b bbbt 43

Vi

List of Figures

Figure 1 Java platform, micro edition (Java ME).ccccoveviiiiiiieie e 2
Figure 2 Overview of Java system architecture in CVM.........ccccceoviiievveie i, 3
Figure 3 Framework of code generation SYStemM..........ccceevvverieeresiie e e e 11
Figure 4 Framework of local code analyzer and pattern-based peephole optimizer....12
Figure 5 Optimizer oVerview in CVM.........ccoviiiiiiie et 13
Figure 6 Framework of pattern-based peephole optimizer.c.ccccoocevvvviveincincnne, 23
Figure 7 Total reductions by LCA N 4 Phases.cccovveveiiieiieeiiiie e e 29
Figure 8 The improvement of CVM by revising emitter.ccccoovvveveiieciiesneiene 38
Figure 9 shows the improvement by running benchmark in CVM.c.cccevvenenee. 40
Figure 10 The improvement of CVM by revising BCOND rule node. 40
Figure 11 The improvement of CVM by revising the semantic action........................ 41
Figure 12 The improvement of CVM with combine three patterns...........cccccceveenee. 41

vii

List of Tables

Table 1Andes General PUrPOSE REJISLEISccveveiierierie e ceesie e 4
Table 2 Emitted instructions by JIT compiler on Andes platform.ccccccevvvvrieenene. 6
Table 3 The IR Node iNfOrMatioNc.cooiiiiiiiiieee e 14
Table 4 Dead code elimination with redefine register value.............cccocceevvevviieiiennnns 16
Table 5 Dead code elimination with link iNStruction.ccccvvvieienene i, 16
Table 6 Dead code elimination with null SEQUENCE.cceveereiieiiere e 17
Table 7 The redundant load/store elimination example.ccccoovveviiieiinnieeie s, 17
Table 8 The load copy optimization eXample.ccoevevriieiieere e 18
Table 9 The common Sub-expression example.cccooeiveiieie i 19
Table 10 The target register and source register were CONSISteNnt..........cccocvevververivennns 19
Table 11 The copy propagation example With DCE.ccccccevviiiiieveiiecece e 20
Table 12 The applicable instructions for constant propagation and constant folding..21
Table 13 The constant propagation eXample............ccecvereiieiieeieere e 22
Table 14 The algorithm of recurrence peephole Optimizer.c.ccccovvvevevieveeieccieennn, 26
Table 15 Benchmark and itS Programs.........cccicieeoeeieenecieeseese e se e sae e eee s 27
Table 16 Dead code elimination and redundant load store elimination results. 27
Table 17 Remove by DCE and RLSE.......cc.ccco oot 28
Table 18 Supporting type process and its effeteness with DCE and RLSE................. 28
Table 19 Reduce testing in 3 phases and 4 Phases.cccccvvvivereriieieere e seese e 29
Table 20 Pattern of pre-decrement offset with load instruction immediately. 30
Table 21 Pattern of conditional branch.ccccoeiiiiiii 31
Table 22 Pattern of common sub-expression elimination.c.cccccvevevieeriesiesieennns 32
Table 23 Some sample patterns used on Andes code and their respective gain. 32
Table 24 BCOND _INT FUIE FEWIITE.....ccoveiiiiiiie ettt nree 34
Table 25 STRING_ICELL_CONST node and its semantic action................cccccveenie. 35
Table 26 Compare the code size with original CVM..........cccccoveviiii i 37
Table 27 Number of instructions which replace with LMW.............ccccccovvviiviiniennen, 37

Table 28 Number of instructions which replace by revising BCOND rule node. 39
Table 29 Performance improvement and instruction reduction of all benchmark.......41

viii

Chapter 1 Introduction

Many existing compilers for embedded systems generate low-quality code since
the compilers, which are usually ported from different platforms, cannot take full
advantage of the special features of the new platforms [9]. There is a need for further
optimizations for the code generated by the compiler.

In this paper, we describe a new approach for optimizing ported compilers. We
ported the CDCHI Java virtual machine [1][5] (which includes a Java JIT compiler) to
the Andes platform [6][7]. For improving the code generator in a Java JIT compiler,
we propose a new method. We implemented a local code analyzer and a pattern-based
peephole optimizer that can automatically analyze the code generated by the ported
JIT compiler for the Andes platform and help identify patterns of instruction that can
be reduced to more efficient ones. The patterns are then implemented as JCS (Java
Code Select, a code generator generator) rules or are incorporated into the code
emitter in the ported Java JIT compiler.

Because of the similarity of Andes and MIPS ISA, we start porting with the
MIPS version of CVM. After finish porting work, we observed that the quality of the
code generated by the ported JIT compiler can be improved. It did not make use of the
special features provided by Andes ISA. On the other hand, since the Andes platform
is still in the development stage, Andes people are eager for our feedback concerning
the Andes ISA. These reasons motivate us to develop a tool to analyze code generated
by the ported JIT compiler and identify patterns in the generated code that can be

optimized.

1.1.1 CVM Overview

The Connected Device Configuration HotSpot Implementation (CDCHI) is

designed for the resource-constraints devices, such as consumer products and
embedded devices, including smart phones, high-end personal digital assistants(PDA)
and global positioning system(GPS)[1][2].

J2ME application environment includes both a configuration like CDC and a
profile like the personal profile. A configuration provides the most basic set of
libraries and virtual-machine features that must be present in each implementation of
java ME environment. When coupled with one or more profiles, the CDC gives
developers a solid java platform for creating applications for consumer products and

embedded devices. Figure 1 shows J2ME family and its supporting products.

Personal
Profile
-

Java 2 RMI
Enterprise Profile | TV | Auto
Edition Java 2 Foundation [Profile||Profile ng:gfmzld PMIfI.Dl
Standard Profile rotiie

Edition

Smart
‘ J2ME
Card
GLbe Profile
‘ HotSpot KVM

Figure 1 Java platform, micro edition (Java ME).

We use CDCHI virtual machine as our system platform. CVM is a micro edition
of java virtual machine. The Figure 2 shows that how java program works in CVM. A
java program is compiled to the bytecodes by java compiler at static time. The
bytecodes is then executed by the CVM. The class loader is responsible for loading
classes. Because the existence of class loader, the java virtual machine does not need
to know anything about files and file systems when running java programs.

After loading classes into java memory heap, we check the compilation threshold

of the method. If the threshold is higher enough to compile, the CVM will compile the
method and execute it in native code. Otherwise, the CVM will interpret bytecodes
and execution the method directly without compile. Inside the JIT compiler, the
bytecodes will cover to IR(or DAG). Then the JIT compiler will parse the IR(or DAG)

and call the code generator to emit instructions.

Java source code

|
|
i Class Loader JIT Compiler i
| |
l | /—L\ IR generator |
e

| Mermory |
Java Compiler I Heap @ }
I Zode generator I
| Is hot |ves |
| method? |
Java bytecodes — | Mo }
| |
| Interpreter i

|
| |

Figure 2 Overview of Java system architecture in CVM.

The CDC-HI-Dynamic Compiler dynamically translates java bytecodes into
native code. The compilation process is per-method, meaning that only single method

in class is compiled at a time.

1.1.2 Andes ISA Features
We use Andes processor as our hardware platform. For Andes processor, In
order to support optimal system performance, Andes processor provides a set of
mixed-length (16/32 bits) instructions. The mixed-length instructions can be freely
used in program and without penalty in execution times. The Andes ISA is a
RISC-style and register based instructions. Andes support various data types, such as

bit, byte, half word, word and double word. The Andes use 5-bir register index for

3

32-bit instruction format. The Andes instructions can use thirty-two 32-bit general
purpose registers (GPR) and four 32-bit user special registers (USR). The four 32-bit
USR can be combined into two 64-bit register and used to store 32-bit multiplication

results. The following table status the name and usage of general purpose registers

[6].

Table 1Andes General Purpose Registers

Reqgister 32/16-bit(5) Comments
r0 a0 Used for passing arguments to functions
r1 al Used for passing arguments to functions
r2 a2 Used for passing arguments to functions
r3 a3 Used for passing arguments to functions
rd ad Used for passing arguments to functions
r5 a5 Used for passing arguments to functions
6 s0 Saved by callee
r7 sl Saved by callee
r8 52 Saved by callee
r9 s3 Saved by callee
ri0 s4 Saved by callee
ril s5 Saved by callee
r12 s6 Saved by callee
ri3 s7 Saved by callee
ri4 s8 Saved by callee
r15 ta Temporary register used by assembler
r16 t0 Saved by caller
r17 t1 Saved bv caller
ri8 t2 Saved by caller
r19 t3 Saved bv caller
r20 t4 Saved by caller
r21 t5 Saved bv caller
r22 t6 Saved by caller
r23 t7 Saved bv caller
r24 t8 Saved by caller
r25 t9 Saved bv caller
r26 00 Reserved for privileaed-mode use
r27 pl Reserved for privileged-mode use
r28 s9/fp Frame pointer / Saved by callee

Reqister 32/16-bit(5) Comments

r29 ap Global nointer
r30 Ip Link pointer
r3l sp Stack pointer

The register set of $a0-$a5 is used for passing argument to functions. The
values of them are not preserved across function calls. $a5 is used to save return
value if it is a fundamental data type and its size is 4-byte long or less. If any
register of the register set of $s0-$s8 is modified within the called function, it must
saved it in the stack frame before use and restore from the stack frame before
returning from the function. The $ta register is a temporary register and used by
assembler. The register set of $t0-t9 is temporary register and used for expression
evaluations. The values of the register set are not preserved across the function calls.
The register $p0 and $pl are used by OS only. The register $fp is used to save
frame pointer. The register $gp register is used as global pointer and context pointer.
The register $lp is used to save return address of caller function and the register $sp
is used as stack pointer. If the $Ip or $sp is modified within the function call, it must
saved in the stack frame before use and restore from the stack frame before

returning from the function.[7]

1.2 Motivation

Because of the similarity of Andes and MIPS, we choose the MIPS version as
our base platform while porting the Andes onto CDC-HI virtual machine. After the
porting work, we observe that the utilization of Andes ISA is quite poor. For Andes,
the processor is in development stage and hope to feedback useful information

about the ISA. Those reasons impel us to develop the tools to analyzer code and

find out the patterns which can be optimized. The following table lists gather
statistics of emission of the JIT compiler on Andes platform.

From the table, we can observe that Andes support various types for load/store
instruction. The “.bi” form means “before increase”, so the base register will be
update after the memory operation [6]. The instruction type of before increment
doesn’t emit very frequently since the MIPS port doesn’t support this type of

instructions.

Table 2 Emitted instructions by JIT compiler on Andes platform.

Types Generated instructions None-generated

instructions

ALU ADDI, SUBRI, ANDI, ORI, NOR, XORI, SLTI, SVA, SVS,

Instruction SLTSI, MOVI, SETHI, ADD, ZEB, WSBH

SUB, AND, OR, XOR, SLT,

SLTS, SEB, SEH, ZEH

Shifter SLLI, SRLI, SRAI, SLL, SRL ROTRI, SRA, ROTR

Instruction

Multiply MUL, MULTS64, MULT64, MADDS64, MADDG64,
Instruction MFUSR MSUBS64, MSUB64, MULT32,

MADD32, MSUB32, MTUSR

Load/Store LWI, LHI, LHSI, LBSI, SWI, LBI
Instruction SHI, SBI,
SWI.bi LWI1.bi, LHI.bi, LHSI.bi, LBI.bi,

LBSI.bi, SWI.bi, SHI.bi, SBI.bi,

LW, SB LH, LHS, LB, LBS, SW, SH, SB

Types

Generated instructions

None-generated

instructions

NONE

LW.bi, LH.bi, LHS.bi, LB.bi,

LBS.bi, SW.bi, SH.hi, SB.bi,

Jump Instruction

J,JAL, JR, RET, JRAL

NONE

Branch Instruction

BEQ, BNE, BEQZ, BNEZ,

BGEZ, BLTZ, BLEZ, BGTZ

Load/Store multiple NONE LWM, SMW

word Instruction

Branch with link NONE BGEZAL, BLTZAL,
Instruction

Conditional Move NONE CMOVZ, CMOVN,

Instruction

Another low utility instruction type is branch instruction. The JIT compiler only
generates the equal or not equal format. Since Andes ISA supports more types of
conditional branch instructions, so there should be the opportunities to improve the
compilation systems.

Many processors support specific purpose instructions which equivalent to a
sequence of more general instructions. Specific purpose instructions are often smaller
or faster then the general ones. In Andes processor, the JIT compilers never emit the
load/store multiple word instructions, branch with link instructions and conditional
move instruction. Those instructions can divide into two or more instructions. That

means, we have further chance to find such patterns and transfer them into the

simplified ones.

1.3 Contribution

In this thesis, we collect numerous patterns in assembly code level by using local
code analyzer and pattern-based peephole optimizer. We provide a new method to
extension patterns and solve resource conflict problem by recursive way. We also
present an experimental framework and design a number of experiments to discuss the
effectiveness of each optimization process. We list the patterns we found and
categorize them as the types of modified JCS or rewriting code emitters. We also

demonstrate how to revise JCS and emitters to improve performance.

1.4 Thesis Organization

The rest of this paper is organized as follows. In Section 2, we briefly introduce
the CDCHI virtual machine and the Andes architecture and review related work for
peephole optimization. We describe, in Section 3, the optimization framework, the
implementation details of the local code analyzer, and the pattern-based peephole
optimizer. In Section 4, we discuss the effective patterns in the generated code and the

results for the reduction of code sizes. Finally, we conclude the work in Section 5.

Chapter 2 Related Works

Reducing redundant code in RISC architecture has been a thoroughly studied
issue. As reducing redundant code for the specific compilation system on embedded
systems becomes more and more important, several optimizations in assembly code
level has been proposed to achieve the goal of reduce code size and evaluate
performance. In our research, we adopt Andes as our target processor and CVM as
our compilation system. The impacts of ISA and code generation systems are
discussed.

This chapter describes three major portions of optimization related work. The
first one is the common optimization technology which is used in local code analyzer.
The second one is peephole optimization which is used to find the continuous
instructions and help us to improve the compilation system. The last one is the
compilation systems which would be modified after finding the patterns from local

code analyzer and pattern-based peephole analyzer.

2.1 Common Optimization Technology

An instruction is dead if it produces values that are never used on any executable
path leading from the instruction [8]. Kennedy provides dead-code detection
algorithm [17] . The algorithm crossed between those basic blocks and identified as
dead code by using work list for it. Latter, Knoop presented a new aggressive
algorithm for the optimal elimination of partially dead code [18].

Copy propagation is a transformation that, given an assignment between two
variables, replace later as long as intervening instructions have not changed the value
of both [8]. Constant folding refers to the evaluation at compile time of expression

whose operands ate known to be constant [8].

2.2 Peephole Optimizer Technology

Peephole optimization has been studied since 1965 [10]. The success of a
peephole optimizer depends on the time and space for recognizing redundant
sequences of instructions. Davison and Fraser [12][13][13] introduced a
machine-independent and retargetable peephole optimizer, which replaces adjacent
instructions with an equivalent single instruction.

Peephole optimization introduced by Kessler [15] was, instead of hand-written,
automatically generated from an architectural description and allowed optimizations
across basic blocks. Using patterns matching for code optimization is still one of the
most popular approaches [9][16]. Spinellis used string-pattern matching to find out
patterns. A pattern is a regular expression. Recently, Kumar defined numerous finite
automata to recognize patterns [9]. The finite automaton is good for recognizing
patterns that are not adjacent. Kumar also provided a replacement algorithm for
resolving optimization conflicts. In our research, we find patterns and resolve

optimization conflicts in a recursive way.

2.3 CVM - Code Generation System

The JIT compilers have two phases to generate code. The first one is front end
which translate the java bytecodes into intermediate representation (IR). The IR takes
the form of DAG. In front end, it also handles other issues, such as verifier and
security check and numerous optimizations on the IR. The other part is back end
which handles IR parsing, generates code by semantic actions and work with register
manager and emitter. The main task of back end processing is covering the IR into
native instructions.

In order to translate, we parse the IR tree to assure the correctness of IR at first.

10

The parser is generated by JCS which is constructing at build time. Most JCS rules
have semantic actions, and this is what code generator takes place. The code generator
sets some details or constraints before emit the instructions. Then, the code generator
will call the emit functions and the instructions are actually emitted at this time. The
code emitter exists at lowest layer of JIT compilers and responds to generate the

instructions for the specific processor.[1][4]

Fegister | [Constant Pool Stack
Manager Manager Manager

Figure 3 Framework of code generation system

The other key components are register manager, constant pool manager and stack
manager. The register manager is used to track the location of evaluated value. The
locations can be either in the compiled frame, in the constant pools, or in a register.
Each evaluated value is mapped to a resource managed by the register manager. The
constant pool manager is used to manager 32 bits and 64 bits constants that are
referenced by generated code. Although many constants can encode within the
instruction, but large constant usually need to store in memory and load into register
before use. The stack manager is used to manager method parameters pushed onto the

java evaluation stack in compilation time [1][4].

11

Chapter 3 Optimizations

A series of peephole optimizations technique in assembly code level were
presented in [9][10][11][12][13][14][15][16]. In the first section, we introduce
function of optimizer in the CVM, followed by the detail of the optimizations in
different purpose in section 3.2-3.3. Finally, the summary of the optimizations is

given in the last section.

3.1 Framework of Optimizer

In this paper, we provide two tools to help evaluate performance and to identify
patterns which can be optimized. According to optimizations operating on local code
or adjacent instructions, we divide optimizations into two parts, as shown in Figure 4.

The first one, called local code analyzer (LCA), is implemented by some
common compiler optimization technique within basic block. The second one, called
pattern-based peephole optimizer, is based on recursive call to exhaustively finding

patterns on adjacent instructions.

Local Code Analyzer
1.Dead Code Elimination

2 Redundant Load/Store Elimination
. 3 Load Copy Optimization
Wi Cogte 4 Common Sub-expression Replacement
5 Copy Propagation

6. Constant Propagation

Pattern-based PO Optimizer
1 Pattern-tatcher Generator Optimized
2 Pattern Matcher Mative Code

3 Cost function
4 Recurrence Peephole Optimizer

Figure 4 Framework of local code analyzer and pattern-based peephole optimizer.

12

The input of local code analyzer and pattern-based peephole optimizer were
native code (i.e. jitted code). We translate the native code into IR which is constructed
of double linked list. Then we implement program optimization techniques and do

manipulation on the IR.

3.1.1 Optimizer in CVM
In order to evaluate the benefit of implementing online peephole optimizer, we
use local code analyzer to assist in the analyzing work. Also, the local code analyzer
would return contiguous instructions as base patterns in the pattern-based peephole
optimizer. The pattern-based peephole optimizer returns the proportion and numbers
of various patterns. According to the information, we could modify the JCS rules and
revise the emitter functions so as to generate efficient code sequences. The overall

optimizer flowchart is shown as Figure 5.

Modify rule] [Revise emitter]
JCS rules Lok » Emitters » Emitted code
Zenerator
* &
| |
| |
| |
I__ Pattern-based | I | Local Code
Feephole Optimizer Analyzer
i f

Figure 5 Optimizer overview in CVM

3.1.2 IR format
The IR we used is constructed of double linked list. Each IR node keeps a record

of instruction information as shown in Table 3. The OP column is recorded of opcode

13

according to Andes ISA. Beside that, we also define “BBB” as basic block barrier to

separate from basic block.

Table 3 The IR node information

Name Type Description

PC_ADDRESS String Program counter address.

OP String Opcode (Operation code)

TARGET_ADDRESS | String Target address for branch
instruction.

SV Integer Shift value

INS_NUM Integer The number of instruction in
the method

IMM Integer Immediate value

IS REDUCIBLE Boolean To judge the node is
reducible or not

IS_MODIDIED Boolean To distinguish the node has
been modifying or not

Rt RG_NUM Target register

Ra RG_NUM The first source register

Rb RG_NUM The second source register

Rd RG_NUM Destination register

next_Node INS_NODE pointer | Pointer of the next node

prev_Node INS_NODE pointer | Pointer of the previous node

14

3.2 Local Code Analyzer

Before discussing the local code analyzer, we define two terms first. If the value
of a register will be updated after executing an instruction, we called the register a
“producer register”. On the other hand, if the value of a register is used but not
updated, we called the register a “consumer register”.

The optimization techniques which implemented in the local code analyzer will
separate into three categories. The first one is the elimination of redundant
instructions. Such optimization technology will reduce the code size. This type of
technology will be introduced in 3.2.1-3.2.2. The second category is replaced with the
more efficient instructions, such optimization technology will not reduce the code
space, but will make improve on the computational speed, and such optimization
technology will be introduced in 3.2.3. The last category is the supporting type
optimization technology, which is used to help increase the opportunity to eliminating

redundant code. This type of technology will be introduced in 3.2.4-3.2.6.

3.2.1 Dead Code Elimination

Dead code elimination is a common compiler optimization. It is used to reduce
code size by removing instructions which does not affect the program. In the
low-level optimization, we eliminated the instructions which define useless register
value.

For the example (Table 4), we found that gp register is loaded a value from
memory address of “s1+0”, and then redefine its value at the 4th instruction. The gp
register didn’t used between 2nd and 3rd instructions. So, we can remove the first

instruction.

15

Table 4 Dead code elimination with redefine register value.

Before Dead Code Elimination

Oxf77626f8 152: Iwi $ap, [$s1+0]
0xf77626fc 156:sethi $a0, 33623
0xf7762700 160: ori $a0, $a0, 484

0xf7762704 164: lwi $gp, [$a0+0]

After Dead Code Elimination

Oxf77626f8 152 lwi $gp, [$s1+0]
0xf77626fc 156: sethi $a0, 33623
0Oxf7762700 160: ori $a0, $a0, 484

0xf7762704 164: lwi $gp, [$a0+0]

Because the “jal” and “jral” opcode could update Ip register value, so when
implementing the dead code elimination algorithm, we should consider such situation.

The Table 5 demonstrates the status.

Table 5 Dead code elimination with link instruction.

Before Dead Code Elimination

Oxf778c770 184: ori $lp, $lp, 2232
Oxf778c774 188: seth $a2, 33442
Oxf778c778 192: ori $a2, $a2, 2464

Oxf778c77c 196: jal Oxf777800c

After Dead Code Elimination

Oxf778c774 188: sethi $a2, 33442
Oxf778c778 192: ori $a2, $a2, 2464

Oxf778c77c 196: jal Oxf777800c

16

Beside the situations of redefining register, we also regard the null operation
instructions as dead code. Table 6 shows that the target register and the source register
are both the same and the opcode is the moving instruction or adding a zero

immediate, we can remove such instructions.

Table 6 Dead code elimination with null sequence.

Before Dead Code Elimination

Oxf77634ec 1060: addi $a0, $a0, 0

After Dead Code Elimination

DELETE

3.2.2 Redundant Load/Store Elimination

The redundant load/store elimination is tried to find out useless load or store
instruction. We record the target register, base register and the offset value as a node.
Once the target register or base register has been modified, we remove the instruction
from our table. If we match the other instruction which is equal to the target register,
base register and immediate value in our table, we could consider that the instruction

is a redundant instruction. The Table 7 is a redundant load/store elimination example.

Table 7 The redundant load/store elimination example.

Oxf7762008 48: swi $s1, [$fp-8]

0xf77620bc 52: lwi $s1, [$fp-8]

In the above example, we could obverse that the first instruction and the second
instruction have the same target register, base register and offset, so we can remove

the second instruction safely.

17

3.2.3 Load Copy Optimization
The optimization stage is combining with redundant load/store elimination
process. The optimization only considers the base register and offset value. If the base
register and offset value are the same between two instructions, we could revise the
second one as a move instruction. Table 8 shows an example of load copy

optimization.

Table 8 The load copy optimization example.

Before Load Copy Optimization

Oxf7789124 156: swi $s6, [$fp-4]

Oxf7789128 160: lwi $s7, [$fp-4]

After Load Copy Optimization

Oxf7789124 156: swi $s6, [$fp-4]

0xf7789128 160: addi $s7, $s6, 0

3.2.4 Common Sub-expression Replacement

Using common sub-expression could reduce the number of consumer register,
and improve the opportunity of dead code elimination. When we encountered the
opcode “addi”, we firstly judge whether the target register and source register are
consistent. If they were inconsistent, we would record the target register, source
register and immediate value.

As shown in Table 9, we could observe that the fp register is equal to sum of sO
register and immediate value ‘4’. In the second instruction, the fp register could
replace as “sO+4”, and together with the offset 12, we can use “s0+16”. The
replacement would reduce consumer register number, and indirectly enhance the

opportunities of dead code elimination.

18

Table 9 The common Sub-expression example.

Before Common Sub-expression

Oxf7762220 24: addi $fp, $s0, 4

Oxf7762224 28: swi $a0, [$fp+12]

After Common Sub-expression

Oxf7762220 24: addi $fp, $s0, 4

0xf7762224 28: swi $a0, [$s0+16]

If the target register and source register were consistent, we would abandon the

node since it may cause errors as the following example shown in Table 10.

Table 10 The target register and source register were consistent.

Before Common Sub-expression

Oxf7762350 136: addi $s0, $s0, -4

0xf7762354 140: Iwi $gp, [$s0+0]

After Common Sub-expression

0xf7762350 136: addi $s0, $s0, -4

0xf7762354 140: lwi $gp, [$s0-4] (error)

3.2.5 Copy Propagation

Using copy propagation could reduce the number of consumer register, but it’s
different from common sub-expression since it only record the target register and
source register and could apply to more cases. When we encountered the opcode
“addi” and its immediate value was zero, we could record it into the table. Such
instructions represent a moving action actually. Therefore, in a reasonable live range,

when we encountered an instruction which its source register is the same as target

19

register in our table, we could replace it.

The following example (Table 11) demonstrates that the copy propagation could
reduce the usage of consumer register and improve elimination chance. In the first
instruction, we record the sl and s8 as target and source register. And then, in the
second register, we could replace sl as s8. In the third instruction, we found it was

redefining sl register value and the first instruction could be eliminated safely.

Table 11 The copy propagation example with DCE.

Before copy propagation

Oxf77c73c8 1288: addi $s1, $s8, 0
Oxf77c73cc 1292: swi $si, [$fp+40]

Oxf77¢73d0 1296: Iwi $s1, [$fp-16]

After copy propagation

Oxf77¢c73c8 1288: addi $s1, $s8, 0
0xf77c73cc 1292: swi $s8, [$fp+40]

Oxf77¢73d0 1296: lwi $s1, [$Fp-16]

After dead code elimination

Oxf77c73cc 1292: swi $s8, [$fp+40]

Oxf77¢73d0 1296: Iwi $s1, [$fp-16]

3.2.6 Constant Propagation and Constant Folding
Constant Propagation process recorded the register which its value was known. If
the opcode is “movi”, we push the target register and its value into table. And then
apply it to the following instruction shown in Table 12.
The first column is the type of ALU instruction with an immediate value. If we

match the set of opcode, we will check if the source register is the same as target

20

register in our table. If the same, we could counting its real value and revise it as
“movi” instruction.

The second column is the type of ALU instruction without an immediate value.
If the second source code was the same as target register in the table, we could replace
it with the type of supporting immediate format.

The last column is a set of memory access instruction which offset was register
type. If the offset register was the same as target register in recorder, we could replace

it as corresponding type which is supporting immediate offset.

Table 12 The applicable instructions for constant propagation and constant folding.

Constant Folding Arithmetic Propagation | Memory Address Propagation
Before | After Before After Before After
ADDI MOVI ADD ADDI LB LBI
SUBRI MOVI | SUB SUBRI LBS LBSI
XORI MOVI XOR XORI LH LHI
ORI MOVI | OR ORI LHS LHSI
ANDI MOVI AND ANDI LW LWI
SLL SLLI SB SBI
SRL SRLI SH SHI
SW Swi

All of three types above could reduce one consumer register, therefore increment
the opportunity of redundant code indirectly. The following example (Table 13)
demonstrated how constant propagation work. According to the first instruction, we
could record the gp register as ‘0’. In the fourth instruction, we could replace gp
register as ‘0’, and replace the opcode “addi” to “movi”.

21

Table 13 The constant propagation example.

Before Constant Propagation

0xf77f38cc 76: movi $gp, 0
Oxf77f38d0 80: swi $gp, [JFP_$fp-44]
Oxf77f38d4 84: Iwi $s1, [JFP_$fp+36]

Oxf77f38d8 88: addi $s4, $gp, 0

After Constant Propagation

0xf77f38cc 76: movi $gp, O
Oxf77f38d0 80: swi $gp, [JFP_S$fp-44]
Oxf77f38d4 84: Ilwi $s1, [JFP_$fp+36]

Oxf77f38d8 88: movi $s4,0

3.3 Pattern-based Peephole Optimizer

The basic patterns for pattern-based peephole optimizer are collecting from local
code analyzer. As result to recursive way, the pattern-based peephole optimizer can
cover all optimization cases. This can be an efficient solution for resource conflict
situations and need not extra phase to deal with resource conflict. In addition, in the
matching process, we can check the modification flag of the IR node to distinguish
the node is modified or not. If the node is modified and matched, we can regard it as a
new extended pattern. The pattern extends as far as possible will help us to observe
the JCS rules widely or the function call applied by the emitters. Using patterns to
describe the pattern and matching with recursive way can reduce time to write similar
patterns.

Pattern-based peephole optimizer framework can be divided into four parts for

22

discussion (as shown in Figure 6). The first one is pattern matcher, which is generated
by the pattern-matcher generator. The internal functions of pattern matcher will be
called by pattern-based peephole optimizer and determine whether the instruction
sequences is replaceable or not. The pattern matcher is introduced in 3.3.1.

The second part is pattern-matcher generator which is used to generate pattern
matcher automatically. This part is introduced in 3.3.2. The third part cost function is
implicit in the pattern matcher, which can be used to valuation the benefits of
optimizing patterns and to obtain the best optimization steps. This part is introduced
in 3.3.3. The latest one is recurrence peephole optimizer which is the main program in
pattern-base peephole optimizer. Through the recursive way to finding extended

pattern and return to the developers. This part is introduced in 3.3.4.

Input Code Sequences

(IR}
Jl
Peephole Optimizer
Basic Pattern P P
{from LCA)
Pattern 0 Fattern-Matcher [[FPattern-Matcher
Pattern 1 Generator
' Peephole
} Optimizer
| !
L

Might generate
new extended
patterns!!

Output Optimized
Code Sequences
(IR}

Figure 6 Framework of pattern-based peephole optimizer.

3.3.1 Pattern Matcher
Pattern matcher is generated by the pattern-matcher generator automatically.

Each pattern has its correspondent function in pattern matcher. And the functions will

23

be called by recurrence peephole optimizer. Pattern matcher has three major tasks.
First, match patterns. If we find the matched pattern, we would record it into
modification flag. Second, replacement instruction sequences. Once we match the
pattern, we would replace instructions with efficient ones. If the instruction has been
replaced before, that means, we find new extended pattern in the program. Finally,
return the optimization gains. In the end of the function would calculate the benefits
of optimization and return the gains. If no matching process invoke, the function

would return zero.

3.3.2 Pattern-Matcher Generator

The input of pattern-matcher generator is instruction descriptor which is base on
the canonical form [19]. We support three type of description. They are registers
descriptor, immediate descriptor and address descriptor. Those descriptors have its
own ID with the order of increment number. The immediate descriptor not only
supports the constant type (ex.c0, ¢1), but also the real immediate values (ex. 0, 1).
In the process of generating pattern matcher, if the descriptor position has been
defined, we must check the correctness between the current descriptor and defined
descriptor. If not, record current position into table.

The first line of pattern descriptor should be total pattern number T, and with T

continuous patterns. The format of each pattern is shown below.

® Pattern ID number

® Number of reduced instructions

® Number of replaced instructions

® Input/Output instruction length

® Input instruction sequences

® Output instruction sequences

24

The function name format is the name of the first opcode with a pattern ID
number (ex. Iwi_0). The position number is the number of each instruction position
from zero. If the operand is the register descriptor, we would check the register is
defined or not in the table. If defined, we should comparison current node register
with defined register and output the comparison code into pattern matcher. If not
defined, we would record current position and register type(Rt, Ra or Rb) into table. If
the operand is the address descriptor, we check the definition of position in the
address table. If defined, we generate the comparison instruction into pattern matcher.
If not defined, we record current position into the address table. If the operand is the
constant descriptor, it has the same action as above. In addition, we support the
summation function for the constant descriptor.

3.3.3 Cost Function

The concept of the cost function is implicit in the internal pattern matcher.
Calculating the benefits of pattern replacement through the definition of reduce gain
and replace gain each time. The calculating value would be used to find the best
solution in the recurrence optimizer.

3.3.4 Recurrence Peephole Optimizer

The optimization of recurrence peephole optimizer is based on continuous
sequences. We would make a copy before doing optimization so that facilitate to
compare the benefit of applying different patterns. Every time matching successfully,
we would call recurrence function again till no pattern bas been matched. When the
recurrence optimization process has been done, we should record the max gain and
return it. The way of using recursive call could achieve the objective of exhaustive

matching. The algorithm of recurrence peephole optimizer is shown in Table 14.

25

Table 14 The algorithm of recurrence peephole optimizer.

Function RPO
Backup Instructions
Max_Gain = 0;
Local_Gain =0;
While Current_Node not equal to End_Node
For each patterns i
Local_Gain = Pattern_function[i] (Current_Node)

if(L_Gain '=0)
L Gain=L_Gain + RPO

End if
Max_Gain = Local_Gain > Max_Gain ? Local_Gain : Max_Gain
Local_Gain =0;

End for

Current_Node = Current_Node ->next_Node;

End while

Restore Instructions
return Max_Gain;
End Function

3.4 Summary

The local code analyzer is helpful to evaluating the benefits of all kinds of local
optimization technique. The local code analyzer is also good for us to find adjacent
sequences as basic pattern in the pattern-based peephole optimizer. We combine the
process of mating patterns, replace pattern and finding the optimize solution into one
stage. The recurrence peephole optimizer reduces the phase of solving resource

conflicts. It’s quite helpful to reduce the space overhead in traditional way.

26

Chapter 4 Results and Analyses

4.1 Experimental Framework

For benchmarking, we selected fifteen programs from CLDC evaluation Kit,
Embedded Caffeine Mark [21] and Grinder Bench [20] (see Table 15). We ran all
programs on Linux 2.6 on an Andes development board AG101. The clock rate of the
on-board processor is 400 MHz.

The local code analyzer gathers statistics of the number of eliminated
instructions and examines the patterns found in the benchmarks. Then these patterns

are incorporated into our ported JIT compiler. Performance improvement is then

measured.
Table 15 Benchmark and its programs.
Benchmark Programs
CLDC evaluation kit Richards, DeltaBlue, ImageProc, Queen

Embedded Caffeine Mark | Sieve, Loop, Logic, String, Method, Float

Grinder Bench Chess, Crypto, KXML, Parallel, PNG

4.2 Local Code Analyzer

The main reduction from local code analyzer is dead code elimination (DCE) and

redundant load/store elimination (RLSE). So we test it separately at first.

Table 16 Dead code elimination and redundant load store elimination results.

Optimization Process Reduce number | Reduce percentage
Dead Code Elimination 634 0.55%
Redundant Load/Store Elimination | 366 0.31%
DCE+RLSE 976 0.84%

27

In one phase testing, the total reduce instruction is 1000 instructions. Then we
combine those two optimization process and totally reduce 976 instructions, not 1000
instructions. This is because that redundant load/store instruction sometimes can

regard as dead code. The following table demonstrates this situation.

Table 17 Remove by DCE and RLSE
Iwi $s8, [$gp+20]

Iwi $s5, [$fp-44]

Iwi $s8, [$gp+20]

Then we consider the supporting type process, and observe the effeteness with
DCE and RLSE. For dead code elimination, copy propagation given the most
improvement, and for redundant load/store, common sub-expression improves the

most.

Table 18 Supporting type process and its effeteness with DCE and RLSE.

First phase / Second Phase DCE RLSE
Ordinals 634 366
Copy Propagation 664 372
Constant Propagation 650 366
Common Sub-expression 657 383

Then we test our optimization process by brute force in three phases and four
phases. Although it did really improve the number of reductive instructions, but in
five phases, the optimization did not improve too much. So we did not consider the

further optimization phases.

28

Table 19 Reduce testing in 3 phases and 4 phases.

Phase Order Reduce instructions Reduce Percentage

1. RLSE 1008 0.87%
2. Copy propagation

3. DCE

1. RLSE 1123 0.97%
2. DCE
3. Copy propagation

4. DCE

The follow figure show the total reduction for each bench mark. The overall
improvement is 0.98 % in four phases. The chess program improves the most. It

total reduces 1.6% instructions.

Reduce %

! T]

Figure 7 Total reductions by LCA in 4 phases.

4.3 Patterns and Modifications

In our research, we discover some patterns are emitted very frequently and
can reduce to the efficient ones. They are common sub-expressions, conditional
branches and instructions which can place with “Imw/smw”. Those patterns can

improve our code generator by modifying JCS rules, rewriting emitters and

29

implementing delay emitting.

Modify JCS could cover most cases occurring in our patterns with lower
penalty. We define new JCS rules with lower cost and JCS tool will select the
lowest ones and generate efficient code generator. Generally, we need rewrite our
emitter so that can cooperate with new code generator. Another way to improve
our JIT compiler is implementing delay emitting. This approach is easy to
implement and can cover all patterns, but go with higher penalty. Most of the time,
the high frequency pattern is generated within semantic action or emitter function.
So we can make pattern implemented as a JCS rule by providing new rule and
rewriting emitter. The pattern with lower frequency often generated from different
rules and emitter. Although we can implement it by using delay emitting, but it’s

not cost efficient and is not worth enough to implement.

4.3.1 Patterns

The most frequent pattern is pre-decrement offset and load instruction type.
The pattern occurs when the function is going to return and load its return value
from stack frame. CVM emit such instruction to do manual pre-decrement. This
instruction pair can rewrite as “Imw” instruction format. The following figure

demonstrates such situation.

Table 20 Pattern of pre-decrement offset with load instruction immediately.

Oringinal pattern

addi $s0, $s0, -4

Iwi $gp, [$s0+0]

Revise pattern

Imw.adm $lp, [$s0], $lp, 4

30

The other common patterns are conditional branch instructions. Those
patterns can replace “slt/slts” instruction with “slti/sltsi” instruction. This pattern is
emitted according to the “BCOND _INT” rules. The rule node is binary type. It
forces its left child node must be register and compare with its right child node.
Hence, in the follow example, we can see that the $ta is assigned by a constant 6
and compare with s6 register. We can exchange the child node order of the rule
and provide a swap condition as a new semantic action. Then, rewrite the related

emitter to support new code generator.

Table 21 Pattern of conditional branch.

Oringinal pattern

movi $ta, 6
slt $ta, $ta, $s6

bnez $ta, 0xf77aba74

Revise pattern

slti $ta, $s6, 7

beqz $ta, Oxf77aba74

The third pattern is a special case of setting register as address of icell. A
CVMONbijectlCell is a construct for holding a pointer to an object [3]. In Table 22, the
value of $s8 register in revise pattern is different from the original pattern. From our
observation, the $s8 register here is used as a pointer which point to a string object
and the value won’t be reference in the future. Hence, we can rewrite it as the new

one without considering the correctness of the register value.

31

Table 22 Pattern of common sub-expression elimination.

The following table shows some of the patterns for Andes native code which

collected from local code analyzer and recurrence peephole optimizer. We include

Oringinal pattern

sethi $s8, 33748
ori $s8, $s8, 2704
Iwi $gp, [$s8+0]

Revise pattern

sethi $s8, 33748

Iwi $gp, [$s8+2704]

here results for improvement in instruction number.

Table 23 Some sample patterns used on Andes code and their respective gain.

Original Patterns | New Patterns Gain in number | Frequency

of instructions (total 114835
instructions)

addi r0, r0, -4 Imw.adm r1, [r0], r1, 1 1793

Iwi r, [r0+0] DELETE

movi r0, c0 DELETE 1 1069

sltrd, r0, r2 sltirl, r2,c0+1

bnez rl, a0 beqgz rl, a0

movi r0, c0 DELETE 1 83

slts r1, r0, r2 sltsirl, r2,c0+1

beqgz rl, a0 bnez rl, a0

movi r0, c0 DELETE 1 59

slts r1, r0, r2 sltsirl, r2,c0+1

bnez rl, a0 beqgz rl, a0

movi r0, 0 j a0 1 17

begz r0, a0 DELETE

movi r0, 0 DELETE 2 8

32

bnez r0, a0 DELETE

movi r0, 1 j a0 1

bnez r0, a0 DELETE

sethi r0, cO DELETE 313
orir0, cl sethi r0, cO

Iwi rl, [r0+0] Iwi rl, [rO+c1]

Iwi r0, r1, c0 DELETE 178
Iwi r0, r2, cl1 Iwi r0, r2, cl1

addi r0, r1, c0 DELETE 74
addi r0, r2, c1 addi, r0, r2, c1

swi r0, r1, cO swi r0, r1, cO 55
Iwi r0, r1, cO DELETE

addi r0, r0, 0 DELETE 53
Iwi r0, r1, cO Iwi r0, r1, cO 11
swi r0, r1, c0 DELETE

Iwi r0, r1, cO Iwi r0, r1, c0 6

Iwi r0, r1, cO DELETE

swi r0, r1, cO swi r0, rl, c0 2

swi r0, r1, c0 DELETE

movi r0, 0 movi r0, 0 5

movirl, 0 DELETE

swi r0, [r2+c0] swi r0, [r2+c0]

swi rl, [r2+cl] swi r0, [r2+cl]

movi r0, 0 DELETE

movirl, 0 DELETE

swi r0, [r2+c2] swi r0, [r2+c2]

swi rl, [r2+c3] swi r0, [r2+c3]

movi r0, 0 DELETE

swi r0, [r2+c4] swi r0, [r2+c4]

Iwi rl, [r0+0] Iwi.bi r1, [r0], cO 24
addi r0, r0, c0 DELETE

4.3.2 Rewrite Emitters

The emitter function which emits pre-decrement and load instructions can be
replaced with an “Imw” instruction. We modify the emitter to generate “Imw”
instruction. The “Imw” instruction allows before/after and increment/decrement form.

33

We also can determine to modify the base register or not. In the pre-decrement case,
the instruction subtracts 4 from the value of base register and followed a load
instruction with zero offset. We revise it to generate a “lwm” instruction whose target
register and source registers are the same and use “adm” form. The “adm” means after,
decrement and modify. The base register will decrement first and regard as a base

register. Finally, the base register will be update after execution.

4.3.3 Modify JCS Rules

BCOND_INT

The following JCS rule generates conditional branch instructions. Its left child
node is register type so that the emitter always generates unnecessary move
instructions. Hence, we rewrite it as the new one. The new rule allows its left child
node as constant type. Beside that, we also need to reverse its conditional flag by
providing a “swapcompare32cc” function. This function helps to reverse conditional
flag when the BCOND rule node tends to emit “less equal”, “great equal”, “less then”

or “great then” instructions.

Table 24 BCOND_INT rule rewrite.

Original rule
root: BCOND _INT reg32 aluRhs : 20 :: ::
compare32cc(con, $$, CVMCPU_CMP_OPCODE);
Revise rule
root: BCOND_INT ConstOperand reg32 : 20 :: ::
swapcompare32cc(con, $$, CVMCPU_CMP_OPCODE);

STRING_ICELL_CONST

The following JCS rule is a special case of common sub-expression. The

STRING_ICELL_CONST node is a leaf node which will get string pointer from the

34

structure of icell and load string object from the pointer. The original rule set string
pointer directly by emitting “sethi” and “ori” instructions. Then the semantic action of
the rule calls memory related emitter to emit “lwi” instruction. We revise this rule to
emit “sethi” and “lwi” instructions. The low part of address is combined with load

instruction offset. Hence, we can reduce one instruction when the rule was applied.

Table 25 STRING_ICELL_CONST node and its semantic action.
Original rule

reg32: STRING _ICELL_CONST:20::::{

CVMRMResource™ stringlCellResource;

CVMUInt32 stringlCellReg;

CVMRMResource™* stringObjectResource =

CVMRMgetResource(CVMRM_INT_REGS(con), GET_REGISTER_GOALS, 1);

CVMUint32 stringObjectReg =
CVMRMgetRegisterNumber(stringObjectResource);

CVMStringlCell* stringlCell = CVMJITirnodeGetConstantAddr($$)->stringlCell;

CVMJITsetSymbolName((con, "StringlCell™));

stringlCellResource =
CVMRMgetResourceForConstant32(CVMRM_INT_REGS(con),

CVMRM_ANY_SET, CVMRM_EMPTY_SET, (CVMUint32)stringlCell);

stringlCellReg = CVMRMgetRegisterNumber(stringlCellIResource);

CVMJITaddCodegenComment((con, "StringObject from StringlCell™));

CVMCPUemitMemoryReferencelmmediate(con,CVMCPU_LDR32_OPCODE,

stringObjectReg,stringlCellReg, 0);

CVMRMoccupyAndUnpinResource(CVMRM_INT_REGS(con),

stringObjectResource, $$);

35

pushResource(con, stringObjectResource);

CVMRMrelinquishResource(CVMRM_INT_REGS(con), stringlCellResource);};

Revise rule

reg32: STRING_ICELL_CONST :15::::{
CVMRMResource™ stringlCellBaseResource;
CVMUInt32 stringlCellBaseReg;
CVMRMResource™* stringObjectResource =
CVMRMgetResource(CVMRM_INT_REGS(con), GET_REGISTER_GOALS, 1);
CVMUIint32 stringObjectReg =
CVMRMgetRegisterNumber(stringObjectResource);
CVMStringICell* stringlCell = CVMJITirnodeGetConstantAddr($$)->stringlCell;
CVMJITaddCodegenComment((con, "Set high 20bit of StringlCell™));
stringlCellBaseResource =
CVMRMgetResource(CVMRM _INT_REGS(con),CVMRM_ANY _SET,
CVMRM_EMPTY_SET,1);
stringlCellBaseReg = CVMRMgetRegisterNumber(stringlCellBaseResource);
CVMNDSemitSETHI(con, stringlCellBaseReg, ((CVMUint32)stringlCell));
CVMJITaddCodegenComment((con, "StringObject from StringlCell™));
CVMCPUemitMemoryReferencelmmediate(con, CVMCPU_LDR32_OPCODE,
stringObjectReg, stringlCellBaseReg, ((CVMUIint32)stringlCell) &0xfff);
CVMRMoccupyAndUnpinResource(CVMRM_INT_REGS(con),
stringObjectResource, $$);
pushResource(con, stringObjectResource);
CVMRMrelinquishResource(CVMRM_INT_REGS(con),

stringlCellBaseResource);

j3

36

4.3.4 Benchmarks

We run all programs with modified emitter and JCS rules separately. The

complied CDCHI virtual machine is listed below with its code size (in Table 26). The

code size of CVM doesn’t increase too much after revising.

Table 26 Compare the code size with original CVM.

Name Program Size
CVM Original version 4173071
Revise emitter 4173103
Revise JCS(1) - BCOND 4173394
Revise JCS(2) — STRING_ICELL | 4173099
CVM All 4173484

For the

“Imw” patters, we gather statistics for the number of replaceable

instructions as shown in Table 27. For overall program, after applying this pattern, it

reduces 1793 instructions which occupy 1.56% of all programs.

Table 27 Number of instructions which replace with LMW.

Program Name Instructions | Reduce Instructions Percentage
Richards 22524 492 218
DeltaBlue 11828 205 1.73
ImageProc 1723 16 0.92
Queen 691 4 0.58

Sieve 330 8 2.42

Loop 346 8 231
Logic 357 0 0

37

String 1424 41 2.88
Method 2791 55 1.97
Float 348 0 0

Chess 18321 218 1.19
Crypto 16516 194 1.17
kXML 24264 435 1.79
Parallel 5420 47 0.86
PNG 7952 70 0.88
Total 114835 1793 1.56

We implement the pattern by revising emitter. Then we run all programs in the
revise version. Figure 8 shows the improvement by running benchmark in CVM. We
see an average performance improvement of 0.76 %. The kXML program improves
the most. This is because that kXML program runs with the longest time, so it
improves its performance obviously. We can improve the performance of most of all

programs. This is because that we don’t cause many penalties from revising emitter.

Figure 8 The improvement of CVM by revising emitter.

For conditional branch instruction, we totally reduce 1237 instructions of 114835

38

instructions. The reduced instructions occupy 1.08% of all programs.

Table 28 Number of instructions which replace by revising BCOND rule node.

Program Name Instructions | Reduce Instructions Percentage
Richards 22524 57 0.25
DeltaBlue 11828 28 0.24
ImageProc 1723 22 1.28
Queen 691 17 2.46
Sieve 330 3 0.90
Loop 346 2 0.58
Logic 357 0 0.00
String 1424 1 0.07
Method 2791 0 0.00
Float 348 15 4.31
Chess 18321 512 2.79
Crypto 16516 212 1.28
kXML 24264 130 0.54
Parallel 5420 23 0.42
PNG 7952 215 2.70
Total 114835 1237 1.08

We implement this pattern by revising BCOND rule node and emit function also.

39

o= e 0O I e

&

& N 2 c
F & F S
Y

Figure 9 shows the improvement by running benchmark in CVM.

We see an average performance improvement of 0.57 %. The kXML program
improves the most. The float program is worse then the original CVM even thought it
reduces 4.31% instructions after revising JCS rule and emitter. This is because that
there has some penalties of revised emitter. In this pattern, we provide a swap
condition function. This will cause some penalties for the patterns. The float program
doesn’t run and spend a lot of time. So, for such program, we didn’t get any benefits

after revising the code generation system.

?:l:. = Y H ‘ HD

& & & & <& & S s 5 N4
& ¥ F ¢ & ¢ ¥ o & S

Figure 10 The improvement of CVM by revising BCOND rule node.

For the common sub-expression pattern, we revise the semantic action of
STRING_ICELL_CONST rule node. The STRING program and kXML program
improve the most. This is because those program process a lot of string object and

need to access string icell very frequently.

40

Figure 11 The improvement of CVM by revising the semantic action.

Finally, we combine all optimizable pattern together. The improvement of all

programs is 0.89%. We reduce 2.91% instructions on average of all programs.

oW

¥

S

Figure 12 The improverﬁéht‘BT'CVM with combine three patterns.

Table 29 Performance improvement and instruction reduction of all benchmark.

Benchmark

Performance (%)

Reduce Instruction (%)

CLDC evaluation kit

1.10

247

Average

Embedded Caffeine Mark 0.42 2.54
Grinder Bench 1.17 3.16
0.89 2.91

41

Chapter 5 Conclusion and Future work

Rewriting JCS rules and the emitters could improve our system performance if
the optimized method is hot enough. The added overhead in the emitter and the
frequency of the patterns are the key points for improving performance. If a method
does not run for a long time, the overhead will lower the performance.

In the process of identifying patterns, we observe that some instructions are
difficult to use. Providing new instructions or revising the original ones may help
reduce code size and improve performance. For example, the “conditional branch and
link” instruction is never emitted by the JIT compiler since the type of instruction
only supports the greater-or-equal and less-then condition. But for all programs, we
see that the “bnez” and “beqz” instructions are emited the most often and are
frequently followed with a “jal” instruction. If we can support “begzal” and “bnezal”
instructions, we can reduce the code size even more (estimated at 2.52% reduction in
code size). We will gather statistics of the frequencies of instruction pairs to evaluate

the benefits of the new instructions in the future.

42

References

[1]. Sun Microsystems. Java ME CDC, http://java.sun.com/javame/technology/cdc,
2008

[2]. Sun Microsystems. Java ME, http://java.sun.com/javame , 2008

[3]. Sun Microsystems. CDC HotSpot Implementation Dynamic Compiler
Architecture Guide, 2005.

[4]. Sun Microsystems. CDC Porting Guide, 2005.

[5]. Sun Microsystems. The CDC application management system, 2005.

[6]. Andes Technology. Andes Instruction Set Architecture Specification, 2007.

[7]. Andes Technology. Andes Programming Guide, June, 2007.

[8]. S. Muchnick, Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers Inc, August 1997.

[9]. Rajeev Kumar, Amit Gupta, BS Pankaj, Mrinmoy Ghosh, and PP Chakrabarti.
Post-compilation optimization for multiple gains with pattern matching. ACM
SIGPLAN Notices 40 (12): 14 - 23, December 2005. ACM Press.

[10].W. M. mcKeeman, Peephole optimization, Comm. ACM 8,7 (July 1965) ,
443-444.

[11].J. W. Davidson and C. W. Fraser. Automatic generation of peephole
optimizations (with retrospective). In Proceedings of Best of PLDI'1984.
104-111.

[12].J. W. Davidson and C. W. Fraser. Eliminating redundant object code. In Ninth
Annual ACM Symposium on Principles of Programming Languages, 128-32,

1982.

43

[13].J. W. Davidson and C. W. Fraser. Code selection through object code
optimization. ACM Trans. Programming Languages and Systems, 6(4):505 - 526,
October 1984.

[14].A. S. Tanenbaum, H. V. Staveren, and J. W. Stevenson. Using peephole
optimization on intermediate code. ACM Trans. Programming Languages and
Systems, 4(1): 21 - 36, January 1982.

[15].P. B. Kessler. Discovering machine-specific code improvements. In Proc. Symp.
Compiler Construction. ACM SIGPLAN Notices, 21(7): 249 - 254, July 1986.

[16].Diomidis Spinellis. Declarative peephole optimization using string pattern
matching. ACM SIGPLAN Notices, 34(2):47-51, February 1999.

[17].K. Kennedy. A Survey of Data Flow Analysis Techniques. Program Flow
Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

[18].Jens Knoop, Oliver Ruithing, and Bernhard Steffen, Partial dead code
elimination, In Proceedings of the ACM SIGPLAN 1994 Conference on
Programming Language Design and Implementation, 147-158, Orlando, Florida,
United States, June 20-24, 1994.

[19].Sorav, Bansal, and Alex Aiken. “Automatic Generation of Peephole
Superoptimizers,” In Proceedings of the Conference on Architectural Support for
Programming Languages and Operating Systems, October, 2006

[20].EEMBC. GrinderBench, http://www.grinderbench.com

[21].Pendragon Software Corporation, Embedded CaffeineMark 3.0 benchmark,

http://www.webfayre.com, 1997

44

