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摘 要 

近年來，同儕網路上的影音串流應用已愈來愈普及。然而，此類網路高

度不穩定的節點狀況仍舊存在，此乃是導至傳輸率下降與接收端影音串流

品質不穩定的重要因素。本論文中，我們提出一個在同儕網路上以多串流

來傳送封包的機制，稱為 ConStream，以改善這個問題。在這個機制中，整

個待傳的內容將被看成由多個 multi-stripe 所組成，並且每個

multi-stripe 將被配給多棵群播樹來同時傳送串流封包。在這些串流中，

我們會加入校驗封包（parity packets），以使得接收端能夠回復傳送過程

所遺失的封包。除此之外，在我們所提出的 ConStream 方法，每個串流的

傳輸速度(delivery rate)相對於其它方法的單一串流將能有效的減半，每
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個節點對於串流傳送的負擔也將因此降低。模擬結果顯示，我們的方法相

較於 Scribe-PRM 與 SplitStream，在不同程度的節點斷線率（MTTFs, mean 

time to failures）下，皆具有較高的傳輸率（delivery ratio）。 
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Abstract 

Streaming applications in P2P networks are more and more popular recently. However, 

high degree of churning in peer populations is a common problem, and it would result in a 

low delivery ratio and instable quality of received multimedia. In this thesis, we propose a 

P2P multi-streaming scheme, called ConStream, to improve this problem. In our scheme, the 

whole content is composed of multi-stripes, and each of the multi-stripes will be distributed to 

multiple multicast trees and be forwarded concurrently. Also, we insert parity packets into 

streams so that clients can recover lost data. Furthermore, the delivery rate of each stream in 

our ConStream is only half of the original single streaming. That is, the burden of each node 

is lower than those nodes using single streaming to forward. Simulation results show that the 

proposed ConStream has a higher delivery ratio than Scribe-PRM and SplitStream under 

various MTTFs (mean time to failures).  
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Chapter 1  

Introduction 

File sharing in peer-to-peer (P2P) today is well known, and several applications 

such as eMule, BT, etc., are using P2P technology. Multimedia streaming using P2P 

software like PPStream is targeted for P2P applications where contents must be 

delivered in a real-time manner. Real-time P2P applications, such as P2P live-media, 

have higher constraints than P2P file sharing applications, because the content 

requested by clients must be delivered and played simultaneously. There are several 

typical algorithms used in multimedia streaming for real time delivering, and we will 

introduce them in Chapter 2. 

Multicast is an efficient mechanism to support group communication 

applications. It decouples the size of the receiver set from the amount of states kept at 

any single node and potentially avoids redundant communications in the network. 

Multicast mechanisms can be classified into network-layer multicast and 

application-layer multicast. One of the most important challenges of application layer 

multicast is its ability to handle high degree of transiency inherent to their 

environments. A good indication of transiency is the peers’ median session time, 

where session time is defined as the time between when a peer joins and leaves the 
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network [23].  

In this thesis we will propose a multi-streaming scheme based on the structure of 

SplitStream [13], a typical DHT-based cooperative multicast system. In the 

DHT-based system, we can distribute the forwarding load among all participants and 

have low system dependency on any particular node.  

The rest of this thesis is structured as follows. In Chapter 2, we will introduce the 

background infrastructure and some related work. In Chapter 3, the design approach 

will be illustrated and in Chapter 4, simulation results will be discussed.  
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Chapter 2  

Background & Related Work 

In order to set the stage for the following discussion, this section provides an 

overview of the underlying protocols upon which our approach builds and some 

streaming algorithms that have addressed related topics on application level multicast. 

 

2.1 Distributed Hash Tables (DHTs) 

DHT-based decentralized distributed systems provide lookup service that the 

idea is similar to a hash table: pairs in the form of (name, value) are stored in a DHT, 

and any participating node can efficiently retrieve the value associated with a given 

name. The workload of maintaining these tables is distributed among the nodes, so 

that a change in the set of participants causes a minimal amount of disruption. Now 

some known P2P tools, like BT and eMule, have successfully added DHTs as one of 

their connect modes. The basic idea of using DHTs is to equally share indexes stored 

in the server originally among peers, and each peer has a unique ID associated to a 

local address to its managing data. When a query arrives, the local peer will check its 

index to find out the mapped data or the address closest to data to forward. Although 

the DHT successfully solves the drawback of load in centralized systems, it has some 

http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Node_%28networking%29
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troubles for a user to query the data he/she needs. Frequently, a user sends a query 

only with partial information but the hash key is unique mapped to the original data; 

thus it is hard to find out what he/she needs. Therefore, in [2],[3],[4], the authors 

introduced some methods to improve the DHT and have some saving grace for us. 

Pastry: Every peer in Pastry [10], a sample of DHT, is assigned a random unique 

128-bit node identifier (nodeId). NodeIds are uniformly distributed in the circular 

identifier space formed by all possible identifiers. Pastry routes messages to the node 

with the numerically closest nodeId. In order to route messages, each node maintains 

a routing table including entries that some nodeIds associate with. A message is routed 

to a node whose nodeId matches at least one digit longer than the current node’s 

nodeId with the message key in the prefix. If no such node exists, the message is 

routed to a node whose nodeId matches as long as the current node’s nodeId with the 

message key in the prefix, but the node is numerically closer to the key. Therefore, 

each node maintains a leaf set and a neighborhood set. The leaf set contains n nodes 

which are numerically closest to the local node’s nodeId, and the neighborhood set 

consists of nodes which are closest to the local node’s nodeId based on a proximity 

metric. During routing, Pastry takes a consistent mapping from keys to overlay nodes 

by persistently searching intermediate nodes for successful message delivery. 
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2.2 IP Multicast and Application Level Multicast 

IP multicast is implemented in the IP layer and it’s not so far widely deployed 

because of its drawbacks. Firstly, it needs routers to maintain the members of each 

multicast group. Secondly, its reliability and security cannot be guaranteed. Thirdly, 

IP multicast calls for changes at the infrastructural level instead of pure software, 

which slows down the pace of deployment, and it is extremely difficult to work 

efficiently by a large scale [6].  

In contract to IP multicast, application level multicast uses only end hosts to 

construct an overlay network that offers multicast functionalities. Thus, two of the 

main disadvantages in IP multicast can be improved in application level multicast. 

Firstly, it does not need to maintain routers. Secondly, it is flexible for all interfaces of 

the network to be used in the application layer. Although application level multicast 

seems better than IP multicast, it still has some drawbacks. For example, the mapping 

of the overlay to the network topology may be suboptimal. Some ideas of application 

level multicast were proposed in [5], [6], [7], in which each efficient multicast method 

suitable to general internet has its own feature. 

Scribe: The Scribe [11] relies on the underlying DHT substrate routing table for 
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data forwarding and builds upon Pastry to support applications that demand a large 

number of multicast groups. Any multicast group may consist of a subset of all nodes 

in the Pastry network and is assigned a random ID (topicId). The multicast tree for a 

group is formed by those forwarding nodes that Pastry routes from each group 

member to the root, identified by the topicId. Messages are then multicast from the 

root using reverse path forwarding [16]. Additionally, Scribe also enables higher level 

protocols to specify policies, for example, to assign the outdegree (forwarding 

capacity) parameter value [13], [17]. 

 

2.3 Streaming Algorithms 

Existing streaming work on P2P networks can be classified into categories 

according to how the content is disseminated: tree-based, mesh-based, and 

forest-based [1]. Firstly, the tree-based algorithm is that the source and interior nodes 

will offer extensive bandwidth for leaves, but the leaves just receiving data. Due to 

this character, such an infrastructure may be not suitable for P2P streaming because 

only partial interior nodes carry large load of forwarding multicast messages. 

Secondly, the mesh-based algorithm is that each client maintains the partnership and 

periodically exchanges data availability information with a set of partners. 
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CoolStream [14], a representation of mesh-based streaming, provides a buffer map to 

check what a peer is lack and then request from other peers.  Finally, the forest-based 

algorithm strips the content across a forest of interior-node-disjoint multicast trees on 

its overlay network. SplitStream, a representation of forest-based streaming, is 

introduced as follows. 

SplitStream: Considering tree-based protocols are unsuitable to cooperative 

environments, in [13], the authors proposed to split the multicast content into k stripes 

and each stripe is multicast by a separate multicast tree, where an interior node in one 

tree is a leaf node in all others. By those disjoint trees, the forwarding load will be 

distributed among participating peers, and the system will be more robust to node 

failures by reducing the dependency on any node. In order to ensure the system being 

feasible, inbound bandwidth consumption is controlled; a peer joins at most as many 

stripes as its bandwidth capacity permits. The SplitStream implemented relies on 

Scribe [11], an application level group communication protocol built on Pastry [10], a 

DHT based, structured peer-to-peer routing protocol. 

CoopNet: Like SplitStream, CoopNet [20] splits the multicast content across 

different trees for improving load sharing and resilience. In addition, CoopNet relies 

on a centralized organization protocol and adopts MDC (Multiple Description Coding) 
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to provide redundancy in data. 

AMSS: In [18], the authors proposed a model named asynchronous multi-source 

streaming (AMSS). In AMSS, each of the source peers is responsible to transmit 

different packets to each of the requesting leaf peers. Also, it attaches some parity 

packets in each stream, so as to improve tolerance of faulty source peers and packets 

lost. Additionally, contents peers must exchange control packets to each other to 

detect whether every other contents peer is active or dormant. 

PRM: Probabilistic Resilient Multicast (PRM) [22] is a data recovery scheme 

which can be applied to any application layer multicast for improving data delivery 

ratios. It used two techniques to recover data. Firstly, it utilizes randomized 

forwarding; each overlay node chooses a certain amount of other overlay nodes at 

random, and forwards data to each of them with a low probability. Secondly, it adopts 

a reactive mechanism called triggered NAKs to handle data losses due to link errors 

and network congestion. In order to compare it with our approach, we apply PRM to 

the Scribe application layer multicast protocol and name it as Scribe-PRM. 

Additionally, in the research of overlay multicast, some protocols have also been 

proposed aiming at reliability and resilience [8], [9], [12]. Table 1 shows the 

comparison of the existing methods described above and the proposed ConStream. 



 

Table 1. Comparison of related P2P streaming algorithms 

 

 
Approach Architecture Data delivery Recovery 

mechanism
Bandwidth 
overhead 

Streaming 
mode 

SplitStream
 [13] 

Multiple 
trees 

Application 
level multicast

None Low Single 
streaming

CoopNet [2
0] 

Multiple 
trees 

Application 
level multicast

MDC Low Single 
streaming

CoolStream
 [14] 

Overlay 
mesh 

Data-driven 
overlay 

None Medium Buffer 
map 

AMSS  [1
8] 

Multi- 
source 

Asynchronous 
overlay 

streaming 

Parity 
packet 

High Multi- 
source 

streaming

Scribe- 
PRM [22] 

Single   
tree 

Application 
level multicast

Proactive 
randomized 
forwarding 

Low Single 
streaming

ConStream 
(proposed) 

Multiple 
trees 

Application 
level multicast

Parity 
packet 

Medium Multi- 
streaming
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Figure 1. Architecture of P2P multimedia streaming based on DHT. 

 

Figure 1 shows the architecture of P2P multimedia streaming based on DHTs. The 

steaming layer is the focus of our approach. In general, a stream is composed of 

segments. And the streaming layer is responsible to make the peers able to set some 

sorts of priority to the segments and to their partners. The application level multicast 

acting on the DHT layer is responsible to construct a multicast overlay network, like 

Scribe [11]. Finally, we used Pasty [10] as our DHT layer to implement our basic 

structure. 

 
 
 

10 
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Chapter 3  

Design Approach 

In [15], it shows that the delivery ratio decreases when the transient condition 

becomes serious in P2P networks. We propose a multi-streaming scheme on the 

streaming layer, called ConStream, to resist this condition. The basic architecture of 

our proposed approach is like SplitStream, striping the content across a forest of 

interior-node-disjoint multicast trees that distributes the forwarding load among all 

participating peers. In SplitStream, a content source forwards the content via different 

stripes in a proper sequence, and the content length to forward a stripe each time is 

fixed. However, in our ConStream, we merge three stripes as a unit named 

multi-stripe and the total stripes in SplitStream can be viewed as several multi-stripes. 

The content in a multi-stripe will be divided into small pieces, and they will be 

forwarded by three multicast trees concurrently. Also we insert parity packets [18] 

into streams for error recovery.  

There are some problems when several streams work concurrently. Firstly, if 

streams deliver contents via the same tree architecture, the forwarding capacity that 

senders (interior nodes) can offer will be shared by those streams. In addition, several 

streams a client received will be interrupted at the same time if any one of this client’s 



ancestors lefts. Secondly, if streams are delivered via different tree architectures, how 

we can do to prevent generating more load to the source or bigger delay jitter to 

clients. 

 

Figure 2. Concept of stripe and multi-stripe. 

 

In Figure 2, it shows the difference between the traditional stripe and multi-stripe. 

We view the total contents as many fixed time segments, and stripes are used to 

deliver these segments in turn. Traditionally, the source delivers contents via one 

single tree during each stripe delivering, as illustrated in Figure 3. In multi-stripe, 

three stripes are grouped into a unit and contents are delivered by three stripes 

concurrently, as illustrated in Figure 4. During packets delivering in sequence via 

different streams, we insert parity packets into them. A parity packet is generated from 

the two latest transmitted packets. Once any interior node fails in one stream, the 

descendants of this streaming tree can recover the lost data by parity packets from the 

other two living streams during the time of repairing the failed tree. In Figure 4, the 

parity packet (5 6) is generated and inserted into streaming 1 after packet (5) and 
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packet (6) are delivered via streaming 2 and streaming 3, respectively. For a certain 

client, if data packet (5) is lost, this packet can be recovered by packet (6) and parity 

packet (5 6). Additionally, due to the characteristic of the forest of 

interior-node-disjoint [13], one faulty interior client just causes bad effect on one tree. 

Thus, our approach can work robustly unless one client loses more than one stream 

simultaneously, which is a situation that seldom happens. 

 

Figure 3. Deliver the content via stripes. 

 

 

Figure 4. Deliver the content via multi-stripe. 
13 

 



Based on the characteristic of the forest of interior-node-disjoint, these 

concurrent streams will work on different tree structures and the forwarding capacity 

of each client won’t be shared by more than one stream. In the view point of any node 

itself, among the trees, a node is an interior node in only one tree, and it is a leaf node 

in each of the other trees. In this way, one client receives the content via three 

different streams, but it plays as an interior node which is responsible to forward 

contents to no more than one stream. Figure 5 shows that nodes A, B, and C are 

interior nodes in stripe 1; nodes D and E are interior nodes in stripe 2; nodes F and G 

are interior nodes in stripe 3; node H just plays leaves in the multi-stripe. Here we can 

observe that the forwarding capacity of each node is just used for a single stream even 

if this node also receives from other distinct streams. 

 

 

Figure 5. Concurrent streams during the time interval of multi-stripe. 
14 
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The server load and bandwidth needed in our approach will increase due to 

adding parity packets, but the required delivery rate in each stream will be moderated. 

The forwarding load of each interior node in a multi-stripe will be 1.5 times the 

forwarding load in a traditional stripe, because each parity packet generated is 

accompanying with two data packets. However, considering the time interval of 

multi-stripe that increases 3 times, the delivery rate of each stream in multi-stripe is 

only half of the delivery rate of the stripe. The results are that packets in Figure 4 are 

sparser than packets in Figure 3. The delivery rate is defined as the amount of packets 

delivered over a time unit. In this way, the burden on peers will be efficiently reduced 

during delivery time although the total forwarding load increases. Therefore, it’s a 

feasible solution to ease up the burden on those peers with not enough outgoing 

bandwidth. 

According to [13], a node in the overlay network will contribute its bandwidth 

for data forwarding. As shown in Figure 6, the forwarding capacity of a node is 

defined as the number of its receivers, and indegree is defined as the number of 

distinct stripes that a node requests. For the feasibility of forest construction in 

SplitStream, it needs to satisfy the following two conditions. (1) Feasible condition: if 

forest construction is feasible, the sum of the desired indegrees of all nodes cannot 

exceed the sum of the forwarding capacities of all nodes. (2) Sufficient condition: for 



the above feasible condition to hold, each node’s forwarding capacity must exceed its 

desired indegree [13]. 

 

 

Figure 6. Conception of indegree and forwarding capacity. 

 

Following the above conditions, the more forwarding capacity a client 

contributes the more indegree a client can receive. These two conditions emphasize 

fairness and are used to improve performance. And since our proposed architecture is 

based on SplitStream, we can also make our model ideal by satisfying the feasible 

condition and sufficient condition. According to our improved architecture, clients can 

contribute more capacity to promote efficiency in a system and to easily satisfy the 

need of indegree, because their original load is lowered by decreasing the delivery 

rate. 

In our ConStream, we merge three stripes as a multi-stripe and take it as a unit to 

forward the content. But why not merge four, five, or six as a multi-stripe? When 

16 
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streams are delivered concurrently, a client will receive contents from different paths, 

and the delay time of these data will be more variant than that of just from one path. 

For example, in Figure 5, node F receives contents form streaming 1, streaming 2, and 

streaming 3 concurrently, but the hops of stream paths from the source to node F are 4, 

3, and 2, respectively. This situation will result in unsteady quality of media contents 

played in real time. To reduce such a jitter problem, we merge only three stripes and 

we also base on the slowest stream to start the real time multimedia playing during 

multi-stripe delivering. However, in this way, it will cause the client buffer being 

occupied by the data from the other two streams during waiting for the slowest stream. 

So, we increase clients’ buffers to avoid the packet loss problem. 
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Chapter 4  

Simulation Results and Discussion 

Based on the architecture in Figure 1, we used FreePastry (version 2.0_03) [19] 

to implement the DHT layer (Pastry), application layer multicast (Scribe), and 

streaming layer (SplitStream). And then we implement our proposed ConStream 

scheme on this structure. In addition, we implemented Scribe-PRM, which we are 

going to compare with, by applying PRM to Scribe to significantly augment the data 

delivery ratio of Scribe. 

 

4.1 Simulation Scenarios 

Our environment was built on a Pastry overlay with 1000 nodes and built a forest 

structure with all overlay nodes. The delivery ratio is defined as the ratio of packets a 

client received to total delivered packets by the source. Repair time is determined 

primarily by SplitStream’s failure detection period, which triggers a tree repair when 

no heartbeats or data packets have been received for 30 seconds [13]. Besides, the 

randomized forwarding probability p in Scribe-PRM is chosen to be 0.05 [22]. We 

will measure the delivery ratio under transient conditions, and the parameters for the 

degree of transiency include mean time to failure (MTTF) [15] and node failure rate 
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[22]. We assume that the delivery ratio of each peer is 100% under non-transient 

environments. On the other hand, we measure the absolute delay of sequential packets 

on a certain client to examine delay jitter. The absolute delay is defined as the elapsed 

time of a packet from source to destination. In addition, the environment we used to 

measure the absolute delay is established with non-transient condition because the 

transient condition may cause more unstable factors in the measurement. 

 

4.2 Simulation Results 

In Figure 7, we examine the variation of delivery radios under the node failure 

rate between 1% and 30% (which implies 10 to 300 simultaneous failures in the 

overlay with 1000 nodes) with a fixed MTTF of 120 seconds. The result shows that 

the descending rates of the delivery ratio with the increase of the node failure rate for 

ConStream and SplitStream are similar, but Scribe-PRM has a lower descending rate. 

Our ConStream performs better than Scribe-PRM under the node failure rate less than 

20%. And in reality, 20% of the node failure rate is too high in usual Internet 

standards. 

In addition, we examine the distribution of delivery ratios in each algorithm 

under the MTTF of 120 seconds and the node failure rate of 10% (which implies 100 
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simultaneous failures in the overlay with 1000 nodes). And we randomly chose 100 

nodes from this overlay and the result is shown in Figure 8. The delivery ratio in 

SplitStream or Scribe-PRM is about 60% ~ 100%. The delivery ratio in ConStream is 

about 80% ~ 100%, which is denser than the other two. As a result, we observed that 

nodes in ConStream will receive stable contents even under transient condition. 

Assuming that the actual internet environment of node failure rate is 5% (which 

is still high in usual Internet standards) [22], we examined the delivery ratio under 

different MTTFs. From simulation results in Figure 9, ConStream has higher delivery 

ratio than SplitStream and Scribe-PRM under different MTTFs. Additonally, we 

found that the curve of ConStream demostrates more steady trend than the other two 

with respect to different MTTFs. Note that the difference of delivery ratios between 

ConStream and Scribe-PRM (or SplitStream) increases as MTTF decreases. For 

example, when MTTF is between 180 and 60 seconds, the variances of delivery ratios 

for ConStream is about 0.02, while the variances for Scribe-PRM and SplitStream are 

about 0.05 and 0.06, respectively.  
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In ConStream, the absolute delays of packets that a client receives from the same 

sequence may be unstable because these packets are delivered via different paths. 

In Figure 10, it shows packets with wide delay variation received by one client in a 

certain time interval. In addition, we classified these packets according to the streams 

they originally belong to, as shown in Figure 11. The absolute delays in multi-stripe of 

our ConStream is less stable, and we have proposed an improved solution, introduced 

in Chapter 3, for each client, in order to handle this unfavorable condition. 
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Figure 10. Variation of absolute delays among received packets. 
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Chapter 5  

Conclusion 

5.1 Concluding Remarks 

We have presented a P2P multi-streaming scheme, ConStream, which have a 

feature of a high delivery ratio. And in this scheme, with the parity packet and the 

multi-stripe techniques, the lost data caused by transient peers in P2P networks can be 

reduced, and the tree recovery time can be tolerated as well. However, clients’ buffers 

that are used to cache contents temporarily need to be increased to resolve variable 

delay times between streams. Although the bandwidth consumed by each stream will 

increase for parity packets, the load on peers will be efficiently reduced during 

delivery time because of the reduced delivery rate of streams. 

 

5.2 Future Work 

We will implement the proposed ConStream in an actual internet environment, 

and experimental results will be evaluated to justify our simulation results. 
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