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解碼端影像誤差估測用於分散式視訊編碼法校正優先

權的設計 

 

研究生 : 連曉玉        指導教授: 蔡淳仁 

 

 

國  立  交  通  大  學 

多  媒  體  工  程  所 

 

摘要摘要摘要摘要    

             本篇論文提出了一種使用於分散式視訊編碼的技術，對於 W-Z frame 提供了

有優先順序的 channel coding。在我們所提出的架構中，基於預估的 side 

information 誤差程度，W-Z frame 的 macro-block 會被分類為幾個不同的群組。

分類的資訊經由一個上傳 channel 傳回編碼端，所以誤差程度相似的

macro-block 會被聚集在一起以進行 channel coding。使用這種方法，解碼端可

以為side information品質比較不好的macro-block要求多一點的parity bits

以更正這些部分的錯誤。而對於 side information 誤差較小的 macro-block 則

要求比較少的 parity bits。比起目前最好的 DISCOVER DVC codec，對於 QCIF 

sequences，在較低的 bitrate 範圍裡(低於 200 kbps)我們所提出的 DVC 架構可

以使 R-D performance 增加 0.3 至 0.5 dB。因為低複雜度的編碼器對於像是

sensor network 之類的低 bitrate 監視應用系統是很重要的，所以我們所提出

的架構可望應用到實際系統上。
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Abstract 

In this thesis, a distributed video coding technique with prioritized channel 

coding of W-Z frames is presented. In the proposed framework, W-Z frame 

macro-blocks are classified into different groups based on the estimated errors of the 

side information. The information is transmitted via uplink channel back to the 

encoder so that macroblocks with similar error statistics can be grouped tighter in 

same coding blocks for channel coding. With this approach, decoder can request more 

parity bits to correct macroblocks whose side information quality is worse and request 

less or no parity bits for macroblocks with small side information errors. The 

proposed DVC scheme can increase R-D performance about 0.3 to 0.5 dB over the 

state-of-the-art DISCOVER DVC codec for low bitrate (less than 200 kbps) 

applications for QCIF sequences. Since low-complexity encoder is important for low 

bitrate surveillance applications such as those for sensor networks, the proposed 

scheme is very promising for practical applications. 

 



 

 IV

 



 

 V 

謝誌謝誌謝誌謝誌 

首先我要感謝我的指導教授蔡淳仁老師這兩年半的教導，他總是很細心地對

我的研究提出建議與方向，也不厭其煩地解答我們學生學術上的疑惑。再來我要

感謝 MMES 實驗室的所有同學，大家互相關心、討論生活與課業上的問題，和你

們在一起的時光令人感到開心。特別要感謝域晨學長，在這段時間裡跟我討論有

關 DVC 的研究，讓我獲益良多。 

    我也要感謝我的男友順宇在這段期間的支持，以及我的家人，總是不給我帶

來壓力，讓我可以放心地去學習、研究。最後要謝謝我的朋友依婷與孜穎，無論

何時想到你們就讓我很溫暖。



 

 VI

Table of Contents 
摘要................................................................................................................................ I 

Abstract ........................................................................................................................ III 

謝誌............................................................................................................................... V 

Table of Contents ......................................................................................................... VI 

List of Figures ............................................................................................................ VII 

List of Tables ................................................................................................................ IX 

Chapter 1: Introduction .................................................................................................. 1 

Chapter 2: Previous Work .............................................................................................. 4 

2.1 Stanford’s DVC Frameworks ........................................................................... 6 

2.2 Side Information Generation............................................................................ 8 

2.2.1 Interpolation and Symmetric Motion Model ................................ 9 

2.2.2 Hash Information as Motion Cue ................................................ 11 

2.3 Channel Coding for Side Information Correction ................................. 13 

2.3.1 Virtual Channel Model ................................................................ 13 

2.3.2 Channel Code .............................................................................. 15 

Chapter 3: Analysis on DVC Virtual Channel Error Characteristics ........................... 17 

3.1 Study on Virtual Channel Models .................................................................. 17 

3.1.1 Types of Channel Models ................................................................... 17 

3.1.2 Adaptive Laplace Channel Model for Each Bit-planes ....................... 22 

3.2 LDPCA Decoding .......................................................................................... 24 

3.2.1 LLR (Log Likely-hood Ratio) Values ................................................. 24 

3.2.2 Over-Corrected Pixels ......................................................................... 28 

3.2.3 Prioritized Decoding of Side Information Pixels ................................ 31 

Chapter 4: System Architecture ................................................................................... 32 

4.1 System Block Diagram .................................................................................. 32 

4.2 Side Information Generation.......................................................................... 34 

4.3 Macroblock Classification and Grouping ...................................................... 37 

4.4 Transform and Quantize ................................................................................. 42 

4.5 LDPCA Encoding .......................................................................................... 45 

4.6 LDPCA Decoding and Reconstruction .......................................................... 45 

4.7 Pixel Domain DVC Codec ............................................................................. 48 

Chapter 5: Experimental Results ................................................................................. 50 

Chapter 6: Conclusion and Future Work ...................................................................... 54 



 

 VII

List of Figures 
Figure 1. Performance of the cue-based DVC scheme in [22] .............................. 6 

Figure 2. R-D performance of the DVC scheme in [18] ..................................... 11 

Figure 3. Compression ratio when different error models are used .................... 14 

Figure 4. Decoding graph of LDPC codes and LDPCA codes ........................... 16 

Figure 5. Rate required by turbo codes and SLDPCA codes .............................. 16 

Figure 6. Histograms of Laplace parameters (mean and scale) .......................... 19 

Figure 7. R-D curve of ‘Foreman’ and ‘Mother and Daughter’ .......................... 21 

Figure 8. Error distributions when 1st ~ 4th bit-planes are decoded .................. 23 

Figure 9. R-D curve of ‘Foreman’ when different Laplace models are used for 

each bit-plane 24 

Figure 10. P(x = 0) and corresponding LLR values .............................................. 25 

Figure 11. Absolute values of LLR when decoding 1st bit-plane of ‘Foreman’ 2nd 

frame 25 

Figure 12. Absolute value of LLR and pixel value of side information when 

decoding 1st bit-plane of ‘Foreman’ 2nd frame ............................................................. 26 

Figure 13. Absolute value of LLR and pixel value of side information when 

decoding 2nd bit-plane of ‘Foreman’ 2nd frame ............................................................ 27 

Figure 14. Absolute value of LLR and pixel value of side information when 

decoding 2nd bit-plane of ‘Foreman’ 2nd frame ............................................................ 27 

Figure 15. R-D performance when ignoring pixels with side information near 

‘crossing threshold’ and small residual ........................................................................ 30 

Figure 16. R-D performance when decoder ignore pixels with side information 

values near ‘crossing threshold’ ................................................................................... 30 

Figure 17. System flow of our transform domain DVC codec ............................. 33 

Figure 18. Motion estimation for neighboring key frames ................................... 34 

Figure 19. Bi-directional motion adjustment ........................................................ 34 

Figure 20. Macroblock rearrange .......................................................................... 39 

Figure 21. R-D performance when different cues are used by the decoder to pick 

up worse macroblocks.................................................................................................. 42 

Figure 22. Quantization matrices .......................................................................... 43 

Figure 23. The relationship between AC coefficients and quantized values ......... 45 

Figure 24. Probability calculation of second significant bit when most significant 

bit is decoded as 1 ........................................................................................................ 46 

Figure 25. Side information is reconstructed to the stripe pattern area when the 

decoded value is 0 ........................................................................................................ 47 

Figure 26. System flow of our pixel domain DVC codec ..................................... 48 



 

 VIII

Figure 27. R-D performance of our frequency domain DVC codec ..................... 53 



 

 IX

List of Tables 
Table 1. PSNR of side information using different prediction tools ................. 20 

Table 2. Percentage of over-corrected pixels and under-corrected pixels of 

foreman 2nd frame ........................................................................................................ 28 

Table 3. QP Values for encoding key frames ..................................................... 43 

Table 4. DISCOVER DVC codec testing setting .............................................. 51 

Table 5. Side information quality ...................................................................... 53 



 

 1

Chapter 1: Introduction 
Distributed video coding (DVC) is a new video coding paradigm which allows 

more flexible coding complexity distribution between encoder and decoder. 

Traditional video codecs, for example, H.264, is designed for the situation where 

video is encoded once and decoded many times. The coding efficiency is mainly 

determined by the computational power of the encoder. But now there are many new 

applications, such as sensor networks and security camera systems, where the 

computational power of the encoder (sensors or cameras) is weaker than the decoder 

(central receiver of recorded videos). For these applications, a reversed paradigm is 

needed, and distributed video coding is suitable for this situation. 

In traditional closed-loop video coding systems, motion estimation at the encoder 

side is used to eliminate temporal correlation of video data and the information of 

correlation is transmitted to decoders as motion vectors. The main idea of DVC is to 

estimate-and-construct the inter-frame correlation at the decoder side with little help 

from the encoder; therefore, the computation burden of motion estimation is shifted to 

the decoder [1]. For a typical DVC system, the video source would be divided into 

two interleaving sub-sequences: key frame subsequences and Wyner-Ziv (W-Z) frame 

subsequences. Key frames would be encoded using traditional encoder (such as the 

motion JPEG encoder or any video encoder). 

For W-Z frames, the encoder takes the original video frame as input and applies 

a low-complexity algorithm to predict and generate some data (refer to as W-Z bits) 

that can help the decoder correct any errors in generation of the target frames (refer to 

as the side information). On the decoder side, the side information (SI) would be 

generated first using any information reconstruction technologies based on temporal 

correlation of neighboring key frames. And then, a W-Z decoder uses the W-Z bits 
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from the encoder to correct any potential errors in the SI such that the resulting W-Z 

frames would be close to the original frames at the encoder side. The key components 

in a DVC framework are the W-Z bits generator and the SI generator. 

The main complexity of encoder in traditional video codec architecture is due to 

motion estimation. For distributed video coding, we want a simple, low power 

encoder and a powerful decoder. So the encoder cannot perform motion estimation 

anymore; the job of predictive coding should be shifted to the decoder side. Whether 

this new paradigm can achieve the same coding performance as traditional video 

codec is an important research topic. According to previous information theory 

research results, the compression efficiency of distributed video coding should match 

that of traditional video coding techniques. Two of the most fundamental results 

related to the concept of distributed video coding from information theory are 

Slepian-Wolf theorem [2] and Wyner-Ziv theorem [3]. The latter is a lossy version of 

the former theorem. 

Consider when we want to encode two statistically dependent variables, X and Y. 

According to information theory, fewer bits (H(X, Y)) are needed to describe the two 

variables if we jointly encode them. For video coding, two successive frames can be 

coded more efficiently if we consider their predictable relationship by motion 

estimation, and then encode the unpredictable residuals. But if the two variables X 

and Y are separately encoded, how many bits are required to describe them? For 

video coding, what bitrate will be required if frames are intra coded instead of inter 

coded? 

The Slepian-Wolf theorem tell us that even if two variables X and Y are separately 

encoded, once they are jointly decoded, only H(X, Y) bits are required to decode them. 

For video coding, when frames are intra coded, if the decoder can jointly decoded 

them, the same coding efficiency can be reached. So, theoretically, in distributed 
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video coding, if the decoder can jointly decode frames, that is, the decoder know the 

relationship between the frames and use the information to decode the frames, then 

only H(X, Y) bits will be sent to the decoder even if the encoder encodes the frames 

in intra mode. The theorem tells us that the performance of distributed video coding 

should as good as that of traditional video coding in theory. But until today, there is 

no technique based on distributed video coding principle whose performance can be 

close to that of traditional video coding. 

In this thesis, a macroblock rearranging method is proposed to enhance R-D 

performance of distributed video coding. Existing distributed video coding methods 

performs particularly worse at low bit-rate end of the R-D curve. For QCIF sequence 

with frame rate 15 Hz, the proposed techniques can improve the performance of 

existing method by about 0.5 dB in PSNR measure when bit-rate below 200 kbps. 

This bit-rate range is reasonable for QCIF sequence. The proposed technique uses 

some cues to detect at the decoder side which part of the predicted side information 

has potentially high prediction errors and provide the encoder with this information. 

The encoder then rearranges the macroblocks so that the channel code-based W-Z bits 

generation process can be more efficient. As a result, the decoder can request W-Z 

bits to correct the hard-to-predict macroblocks first. Experimental results show that 

this technique outperforms current distributed video coding techniques, particularly at 

low bit-rate ends. 

The organization of this thesis is as follows. Chapter 2 presents a literature 

survey on previous work of distributed video coding. In chapter 3, some analyses are 

conducted to identify the weakness of current techniques. In chapter 4, the proposed 

block rearranging method and system architecture will be described. And the 

experimental results will be presented in chapter 5. Finally discussions and future 

work are given in chapter 6. 
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Chapter 2: Previous Work 
The key components of distributed video coding are generation of side 

information (predicted target frame at the decoder, using only key frames as the 

hypotheses) and coding of W-Z bits (data used to correct prediction error at the 

decoder side). Currently, there are two major approaches on side information 

generation: projection-based motion compensation and cue-based motion 

compensation. The first method performs moving block trajectory projection based on 

motion smoothness assumption. The projection-based compensation has several 

variations such as multi-frame reference projection [20] or sub-pixel motion 

projection [5]. 

An alternative approach on SI generation is the cue-based motion estimation 

scheme. In this method, the encoder sends not only W-Z correction bits but also some 

image cues for side information generation. The decoder can thus do more accurate 

inter-frame correlation discovery using cue bits. Several techniques have been 

proposed for cue generating functions, such as CRC codes [6], high pass filters in the 

DCT domain [40], and low pass filters in the DCT domain [13]. Although 

projection-based methods do not require the encoder to send extra cue bits, comparing 

to cue-based estimation, projection-based methods only performs well with ideal 

motion behavior. On the other hand, cue-based estimation could provide more robust 

and accurate side information but consumes extra bandwidth. 

As in traditional close-loop codecs, it is not efficient to use only one coding tool 

to handle coding of all video signals. For DVC, the motion projection-based tool and 

the cue-based tool are suitable for constructing SI for different types of video signals. 

Therefore, low-complexity mode decision at the encoder side is crucial for improving 

the performance of DVC codecs. Some DVC frameworks use the differences of 
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co-located blocks to distinguish the background from the foreground and to determine 

the cue bits [13]; however, this approach is limited to stable background patterns. 

Kang and Lu proposed a wavelet-based DVC framework [26]. They use 

Structural Digital Signature (SDS) [30] to determine which wavelet coefficients are 

important, and only these coefficients are sent. For a wavelet tree structure, SDS 

records magnitude relation of every node and its child node. If the SDS of wavelet 

coefficients is different between two frames, then the two frames are perceptually 

different. 

SDS of each frame are calculated and compared with the previous frame. 

Wavelet coefficients with SDS different from their co-located blocks in previous 

frame are marked as important coefficients. Only important coefficients are sent to the 

decoder. For non-important coefficients, the decoder copies coefficients from 

previous frame. If there are too many important coefficients, then H.264 intra coder 

will be used instead. This is a framework that both the complexity of the encoder and 

the decoder are low at the same time. 

Figure 1 is the RD performance of this method. The plot above in this figure is 

R-D curve of Hall sequence, and the plot below is R-D curve of Foreman sequence. 

Most part of the Hall sequence is the background without motion, so the number of 

important coefficients is small. The performance is near other DVC methods, but 

comparing to a traditional video codec such as H.264, there is still a gap. For the 

Foreman sequence, most part of the frames is composed of the moving face, the 

PSNR of current frame and previous frame is small, so the number of important 

coefficients is large. Most blocks are coded using H.264 intra coder, so the 

performance is near the H.264 intra case. We can see, this method is only suitable for 

sequences with little foreground moving objects, such as in some security camera 

applications. 
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Figure 1. Performance of the cue-based DVC scheme in [22] 

2.1 Stanford’s DVC Frameworks 

One of the most adopted DVC framework is proposed by Aaron et al. 

[1][7][8][11][12][13][14]. In this work, the encoder consists of a quantizer, a channel 

encoder, a buffer, and a traditional intra encoder. The decoder consists of a channel 

decoder, a side information generator, a frame reconstructor, and a traditional intra 

decoder. 

At the encoder side, frames in a video sequence are first divided into even frames 

and odd frames. The odd frames are intra coded using traditional video codec such as 

H.264, and these frames are called ‘key frames.’ The even frames are like B-frames in 
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traditional video codecs, and these frames are called ‘W-Z frames.’ But in DVC the 

encoder does not perform motion estimation and encode the residual. Instead, it treats 

these W-Z frames like I frames and encodes them independently by a channel encoder. 

The systematic channel encoder produces systematic message bits (the original pixel 

values) and parity bits (refer to as the W-Z bits), but only W-Z bits are stored in the 

buffer. The systematic bits are all discarded. 

At the decoder side, for the ‘key frames,’ the decoder use traditional intra 

decoder to decode them. For the ‘W-Z frames,’ the decoder use key frames 

neighboring the W-Z frame to generate “side information” of this W-Z frame. The 

side information is like predictor in traditional video codec but is only known by the 

decoder. The decoder can use any information it has to generate (predict) side 

information. For example, the key frames already received can be used as the motion 

compensation hypotheses. 

After generating the side information, the decoder needs additional bits for 

correcting the errors in the side information and reconstructing the original frames. 

This is like receiving residuals from encoder in traditional video codec. But the 

encoder does not know side information; it only generates W-Z bits of frame. The 

decoder requests for W-Z bits and use channel decoder to decode frames. The 

systematic bits are discarded at encoder side, so the decoder uses side information as 

the systematic bits. By the theory of channel coding, if the channel condition is good 

(that is, the decoder prediction error is small), the cross probability is small, and then 

fewer bits are needed for recovering the original signal. To be more specific, for DVC, 

if the side information of the target frame predicted by the decoder is almost the same 

as the W-Z frame we want to decode, then fewer W-Z bits are requested, coding 

efficiency is better. 

The first version of DVC framework from Stanford does not perform coding in 
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DCT domain, and spatial redundancy within a frame is not explored. In [14], DCT 

domain coding is added to the framework because the performance is better. 

In traditional video codecs, when GOP size increases, the coding efficiency will 

increase too. That is because there will be more P frames and B frames. In the first 

version of the Stanford DVC framework, GOP size is 2. That is, for every two frames, 

there is only one W-Z frame. Aaron et al. [11] try to use larger GOP size but the 

performance decreases as the GOP size increases. This is very different from 

traditional video codec. This is because when GOP size increases, the distance 

between W-Z frame and available key frames used to generate side information also 

increases, hence, the quality of the side information decreases. 

To further improve the coding efficiency, Brites er al. from the DISCOVER 

DVC team [16] proposed a variable step size quantization which can make DCT 

coefficients less distorted when the dynamic range of coefficient band is smaller. That 

is, for a fixed number of quantization levels, if we know the dynamic range, then a 

sufficient and small step size can be used, and the distortion can be smaller. But 

additional bits are required for representing the value of dynamic range. This method 

may be inspired from H.264. 

2.2 Side Information Generation 

Side information quality directly affects coding efficiency in a DVC codec, 

therefore, a lot of research efforts in DVC are devoted to side information generation 

algorithms. In [17], some experiments are conducted to show the relation between 

PSNR of side information (compared with the original W-Z frame), and number of 

W-Z bits requested. In summary, when PSNR of side information is higher, fewer 

W-Z bits are needed and the compression ratio is higher. 
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2.2.1 Interpolation and Symmetric Motion Model 

Side information can be interpolated or extrapolated from key frames and 

previously reconstructed WZ-frames. This is similar to motion-compensated frame 

interpolation which is used to increase frame rate at decoder side. There are many 

models being proposed for motion-compensated interpolation. For example, Liu et al. 

[29] assume that every frame has same motion field. This model of course is too 

simple so that the side information generated are not good. The symmetric motion 

model is a simple model but its performance is acceptable for some cases. Many 

researchers adopt symmetric motion model and use processing to enhance its 

performance [7][18]. 

The algorithm of the symmetric motion model is explained as follows. If the 

W-Z frame is frame Y, and its previous key frame is frame X, next key frame is frame 

Z. Symmetric motion model assumes that the object moves at a constant speed. So if 

the position of object O is (x1, y1) in frame X and (x1+mvx, y1+mvy) in frame Z, then 

the position of object O should be (x1+mvx/2, y1+mvy/2). When the decoder wants to 

generate side information of frame Y, it has already received frame X and Z. So it can 

perform traditional motion estimation on frame X and Z. For macroblock M at (x1, y1) 

in frame Z, there is a best matched macroblock N at (x1+mvx, y1+mvy) in frame X. 

Then the decoder will project the average of M and N to (x1+mvx/2, y1+mvy/2) onto 

frame Y along the motion path of M and N. 

Of course there are many problems when using this model to implement side 

information generator. First of all, there may be some macroblocks which do not 

satisfy this single-object constant motion model. A macroblock may contain two or 

more objects, or objects which do not move at a constant speed. Secondly, when the 

decoder projects every matched macroblock pair to W-Z frame, there may be some 
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pixels which have no projection, or twice or more projections. For pixels that are 

projected twice or more, it is not trivial to choose the best projection pair without 

knowledge of the original W-Z frame. For pixels that have no projections, the decoder 

must use some algorithms to interpolate their values as well. 

Klomp et al. [5] believe that using motion estimation with more accuracy may 

increase side information quality. However, due to motion model mismatch, the actual 

improvements could be very little. Li and Delp [20] conducted some experiments on 

the amount of macroblocks in key frames used to generate side information. They 

discovered that the more macroblocks used, the better side information is generated, 

especially when these macroblocks come from different key frames. 

In the above two proposals, decoders must do more computations to either 

increase motion estimation accuracy or to increase the number of reference 

macroblocks used. Ascenso et al. in DISCOVER team [18] adopt a different approach 

and develop a pixel domain DVC codec IST-PDWZ and a transform domain DVC 

codec IST-TDWZ. Their proposed technique is also based on the framework from 

Stanford with symmetric motion model. But before performing motion estimation on 

key frames, a low pass filter is used to make the estimated motion vectors less noisy. 

After obtaining motion vectors, if macroblock Y would be the average of macroblock 

X and Z. Bi-directional motion estimation is then used to fine-tune the motion vectors. 

After that, a smoothing filter is applied to the motion vectors because the motion field 

should be smooth. We can see the R-D performance in 0, this adjustment indeed 

makes performance better. 
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Figure 2. R-D performance of the DVC scheme in [18] 

 

2.2.2 Hash Information as Motion Cue 

In previous section we see how to use symmetric motion model to utilize key 

frames to generate good side information. We know symmetric motion model is 

limited. To further increase the quality of side information, it is possible for the 

encoder to compute and transmit some extra information to assist the decoder to 

generate better side information. Some researchers refer to this information as hash 

[13]. When decoder wants to generate side information, it does not perform motion 

estimation on neighboring key frames. Instead, it can obtain motion vector by directly 

comparing hashes of macroblocks. When hashes of two macroblocks are similar, the 

content of these two macroblocks are expected to be similar too. 

Traditional hashes, for example, CRC and MD5, are very sensitive to content 

changing. But hashes used to compare image similarity should only be sensitive to 

perceptual changes in the pixel data. This kind of hash is called media hash, robust 

hash, soft hash, and image fingerprinting. Distance between hashes can be used as a 

measure of content similarity. If the hash is good enough, that is, a decent 
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representation of macroblocks, motion estimation by comparing hash shall give us a 

good result. 

Media hash design is an active research topic, and many papers have already 

been published. But most of these papers design media hash for content-based 

retrieval, watermarking, image authentication, and image database management. 

Media hash can be implemented by calculating the histogram of image [34], or the 

position of edges [35] or feature points [36]. DCT sign information is also useful [37]. 

The researchers hope that the media hash can be robust to geometric transformation 

and compression. So calculations of some media hashes are sometimes too 

complicated, and they are not suitable for DVC. Furthermore, these applications do 

not concern about the size of hashes, but for DVC, hash size affects bitrate. 

For DVC, simple and small hashes are considered. In [13], using hash to help 

decoder to generate side information is first mentioned. The authors use sub-sampled 

and coarsely quantized version of macroblock in W-Z frame as their hash. To 

decrease overhead of hash, when co-located macroblock in previous key frame is 

similar to macroblock in current W-Z frame, no-hash bit is sent instead.  

Girod et al. [8] also mentioned that the possibility of using high frequency 

portion of a macroblock as a distinct feature of the block. For an 8-by-8 block, 54 

most high frequency coefficients (most of them may be zeros) with run-length and 

Huffman compression are sent to decoder as hashes. The remaining 10 low frequency 

coefficients are channel encoded and decoded. Although this idea seems reasonable, 

but in practice, it is not trivial for decoder to perform motion estimation based on high 

frequency coefficients. 
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2.3 Channel Coding for Side Information Correction 

The key concept in DVC is that the side information predicted at the decoder 

side can be regarded as a video frame corrupted during the transmission over a 

(hypothetical) noisy channel. In DVC, the communication channel between the 

encoder and the decoder is a virtual noisy channel and side information is the noisy 

version of the original frame transmitted from the encoder across the channel to the 

decoder. Since the encoder has knowledge of the original frames, it can generate 

systematic channel codes to correct any potential errors of the side information at the 

decoder side. In practice, only the W-Z bits of the channel codes have to be 

transmitted to the decoder. There are many factors of channel coding that affect the 

coding efficiency of the DVC framework. Two of the most significant factors are the 

model of the virtual noisy channel and the channel code used. 

2.3.1 Virtual Channel Model 

For channel decoding, fewer W-Z bits will be requested if we know more about 

the nosie characteristics of the channel. But in DVC the noise is strongly related to 

side information quality which is not stationary. In early days, only one single 

statistics model (usually Laplace distribution), is used to describe the noise 

distribution for the whole sequence or the whole frame. This is not practical, because 

actual noise distribution is far more complicated and cannot be modeled by a single 

Laplace distribution. Borchert et al. [21] propose that if each frame is partitioned into 

two types of regions, occluded regions and non-occluded regions, and two different 

statistics models are used to model the errors for different types of regions, the 

performance will be better than using one statistics model for the whole frame. 

Since decoder does not have the original frames, it can not get the exact 
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parameters of the error distribution. The decoder need to estimate the parameters. 

However, one may not need exact parameters since the decoding algorithm allows 

some tolerance on the exactness of the statistics model. The tolerance range of the 

parameters is different from frame to frame. A distribution which is not sensitive to 

errors in parameter estimates and achieves high compression ratio such that decoder 

only needs few W-Z bits from the encoder to correct SI prediction errors is desired. 

Westerlaken et al. [22] have shown that when a single distribution is used to describe 

channel noise, two-sided Gamma and generalized Gaussian distribution have better 

decoding performance than Laplace and Gaussian distributions when LDPC codes are 

used. The compression ratio when using different error models is in Figure 3. They 

also discovered that for generalized Gaussian, there is a small range of shape 

parameter that makes LDPC performance less sensitive to the choice of the variance 

parameter. But they do not mention how to find this small range. 

 

Figure 3. Compression ratio when different error models are used 
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2.3.2 Channel Code 

In DVC, the virtual channel noise is not stationary, so rate-adaptive channel 

codes are needed in distributed video coding schemes. Channel codes near theoretical 

bound and rate-adaptive are suitable for DVC. Punctured turbo codes are well known 

for their burst error correcting capability and their performance is very close to 

Slepian-Wolf bound [23], so at the beginning, many DVC papers use turbo codes as 

their channel codes. 

Low Density Parity Check (LDPC) codes are also channel codes near 

Slepian-Wolf bound. They have been used effectively in fixed-rate distributed source 

coding [25]. But in rate-adaptive cases, syndromes are punctured before they are sent, 

when compression ratio is high, the performance will be poor because in the decoding 

graph there are many single-connected or isolated nodes. The Stanford team presents 

two kinds of LDPC-based rate-adaptive codes: LDPC Accumulate codes (LDPCA) 

and Sum LDPC Accumulate codes (SLDPCA) [15]. The syndrome bits of LDPCA 

and SLDPCA codes contain more redundant information because of accumulation, so 

when a subset of syndrome bits are truncated, the performance will not be affected as 

much as the original LDPC codes. In Figure 4, circles are source bits and squares are 

parity bits after encoding. Left picture is the decoding graph of LDPCA code when all 

parity bits are not discarded. The center picture is the decoding graph of LDPCA code 

and the right picture is decoding graph of LDPC when half of parity bits are discarded. 

All nodes in the LDPCA decoding graph are neither isolated nor single-connected, so 

when compression ratio is high, LDPCA codes still have good performance. 
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Figure 4. Decoding graph of LDPC codes and LDPCA codes 

 

Figure 5. Rate required by turbo codes and SLDPCA codes 

 

In 0, we can see that when conditional entropy H(X|Y) is larger than 0.5, the rate 

required for turbo codes increases faster and becomes bigger than LDPC codes, 

especially when H(X|Y) is larger than 0.8. Furthermore, LDPCA has one advantage 

over turbo codes, that is, syndrome bits can be used to test the correctness after 

decoding. When the error position can be detected after decoding, we can do 

something to enhance the regions where errors are serious. In [28], the authors decode 

the first 3 bit-planes and then perform full searches for side information which 

significantly reduces decoding errors. After adjusting the side information, the 

decoder keeps decoding remaining bit-planes, and the performance is better. 
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Chapter 3: Analysis on DVC Virtual Channel 

Error Characteristics 
In this chapter, we have conducted some investigations on the performance of 

DVC-based coding mechanisms. In addition to examine the impact of error 

distribution models on coding efficiency, we also study the validity of the common 

DVC assumption of using log likelihood ratio as an indication of the reliability of the 

side information values. All experiments we describe here are tested using our 

pixel-domain DVC framework with lossless key frames. The frame rate is 30 fps. 

 

3.1 Study on Virtual Channel Models 

3.1.1 Types of Channel Models 

In DVC coding schemes, a Laplace distribution L (µ, b) is in general used to model 

the prediction error of side information. The parameter µ is the mean parameter and 

often set to 0. The parameter b is the scale parameter. So, the probability density 

function of errors is µ−−= xbe
b

xf
2

)( . This definition is often adopted in DVC papers, 

which is slightly different from the traditional Laplacian probability density function 

b

x

e
b

xf
µ−

−
=

2
1

)( . We use the definition former, so when the errors are more 

concentrated, the value of scale parameter will be larger. The two parameters may be 

estimated using some sample video sequences offline or estimated by the decoder 

adaptively while decoding a sequence. However, our initial experiments show that 

when a single distribution model with few parameters is used, the coding efficiency of 

the DVC schemes is relatively insensitive to the distribution being used to model the 

“channel-imposed” error of side information. In other words, correctly choosing 

parameters of distribution does not affect number of LDPC correction bits very much. 
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The reason is that the side-information prediction error model is quite different from 

the communication channel error model. In side-information prediction, large errors 

may also occur when energy of original signals are high due to errors in motion 

compensation models. That is, even when pixel values in original frames are big, it is 

still possible that the side-information errors are serious. 

In order to test the relation between the accuracy of channel error model 

parameters and the error-correction efficiency on the prediction errors of the side 

information, we use three different distributions: Laplace, Gaussian, and uniform 

distributions to model channel errors. The parameters of Laplace distribution and 

Gaussian distribution are calculated offline. The uniform distribution is used to 

simulate the situation where we do not know error distributions at all. 

In addition, an adaptive channel error model is also used in which, the 

distribution parameters are estimated not for the whole sequence, but adaptively for 

every 44×48 region of pixels. Therefore, the adaptive error model should fit the true 

error distribution mush better than the non-adaptive ones. The histograms of the 

estimated Laplace parameters of the side-information prediction error models for the 

‘Foreman’ and the ‘Mother-and-Daughter’ sequences are shown in Figure 6. One can 

see that when the ‘scale’ parameter of Laplace distribution is larger, the error 

distribution is more concentrated around the mean. Many areas in the 

‘Mother-and-Daughter’ sequence have very small residuals, so when using a Laplace 

model to fit it, the scale parameters are larger than that of the ‘Foreman’ sequence. 
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Figure 6. Histograms of Laplace parameters (mean and scale) 

 

In this experiment, the sequences we use are of QCIF resolution, and only the 

first 101 frames are tested. Key frames are not compressed, in other words, they are 

lossless. The motion compensated interpolation procedure similar to that proposed in 

IST-PDWZ [38] with key frame smoothing and fine-tuning of bi-directional motion 

vectors is used to increase side information quality. The side information PSNR 

values using different tool combinations are listed in Table 1. Based on Table 1, tool 

set (d) is used in the following experiments. We calculate the R-D curves for W-Z 

frames and see how channel noise model chosen affects coding performance of side 

information prediction errors. 
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Table 1. PSNR of side information using different prediction tools 

 a b c d e f G h 

Foreman 30.94 30.111 34.3677 34.515 32.7166 35.2435 35.7557 35.1935 

Mother 

And 

Daughter 

36.817 36.9148 39.43 39.6368 40.9836 41.5151 41.4215 44.7172 

Coastguard 33.8926 33.9785 35.866 36 36.2894 34.3556 33.5139 33.8707 
(a) Our Method 

(b) Our Method + nearest mv for hole 

(c) Our Method + Bi-directional mv adjust 

(d) Our Method + nearst mv for hole +Bi-directional mv adjust 

(e) Our Method + nearest mv for hole +Bi-directional mv adjust + low-passed key frame 

(f) Our Method + nearest mv for hole +Bi-directional mv adjust + low-passed key frame 

+ median mv 

(g) Our Method + nearest mv for hole +Bi-directional mv adjust + median mv 

(h) Our Method + nearest mv for hole +Bi-directional mv adjust + low-passed key frame 

+ median mv (using non-low-passed key frame) 

 

One can see in Figure 7, for both sequences, at low bit-rate, the differences 

between the best and the worst performance is less than 0.1 dB. At higher bit-rate, the 

difference is usually less than 1dB. Also note that, for a QCIF sequence, 1dB gain of 

PSNR above 40dB is virtually not perceptible by human observer under normal 

viewing conditions. It means that for most significant bit-plane, choosing Laplace or 

Gaussian model dose not affect performance much in practical sense. 
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Figure 7. R-D curve of ‘Foreman’ and ‘Mother and Daughter’ 

 

The results from IST-PDWZ are also projected in Figure 7. Although the final 

PSNR of our corrected side information is worse than those published in [38] for 

about 2.5 dB, the slopes of our R-D curves are the same or even larger than the slopes 

of the curves of IST-PDWZ. The difference in PSNR is largely due to the initial 

quality of side information before error correction. The differences in slopes may be 

due to different channel coding techniques (LDPCA in our experiments, and turbo 
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coder in IST-PDWZ) and it shows that the channel coding efficiency of LDPCA may 

be better than that of turbo code for DVC. 

 

3.1.2 Adaptive Laplace Channel Model for Each Bit-planes 

In previous section we see that the channel behavior-based error model only has 

marginal influence on DVC coding efficiency. One of the possible reasons is due to 

the fact that side information errors are not spatially invariant. Therefore, single error 

channel model is not sufficient for modeling the entire sequence. But in previous 

graph, we can see that even by choosing different parameters for each small area 

adaptively, the performance increase is not obviously. Other possible reasons are that 

single error model is used for every bit-plane decoding, or that the channel decoding 

method used in many DVC papers is not suitable for DVC. 
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Figure 8. Error distributions when 1st ~ 4th bit-planes are decoded 

 

We can see how the error distribution changes as more bit-planes are decoded in 

Figure 8. When more bit-planes are decoded, errors are more concentrated and their 

means are more closed to 0. Now we try to use different Laplace models for each 

bit-plane. The R-D curve is shown in Figure 9. We can see that the performance is 

worse than using one distribution parameter value for all bit-plane. It is even worse 

than using a single Gaussian model for all bit-planes when bitrate exceeds 350 kbps. 

It may be because that when using different Laplace models for each bit-plane, the 

Laplace model for less significant bit-plane will be more concentrated because the 

error distribution of SI when decoding less significant bit-plane is more concentrated. 

However, actually when decoding less significant bit-plane, the probability of bit 

error is larger. So, the error model does not fit the actual error distribution, and it 

decreases the performance. 
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Figure 9. R-D curve of ‘Foreman’ when different Laplace models are used for 

each bit-plane 

 

3.2 LDPCA Decoding 

3.2.1 LLR (Log Likely-hood Ratio) Values 

The LDPC decoding of each bit x in a bitplane of the W-Z frame is based on the 

LLR (log likely-hood ratio). The relationship of P(x=0) and the corresponding LLR 

values are shown in Figure 10. When the channel error is small, P(x=0) will not be 

closed to 0.5, and absolute value of LLR will be far from 0. In this situation, fewer 

W-Z bits will be necessary to correct the errors in side information. So, in this section, 

we investigate the LLR values of every pixel in the Foreman sequence to estimate the 

number of W-Z bits required for error correction. 
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Figure 10. P(x = 0) and corresponding LLR values 
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Figure 11. Absolute values of LLR when decoding 1st bit-plane of ‘Foreman’ 

2nd frame 

We plot the histogram of absolute values of LLR when decoding 1st bit-plane of 

the 2nd frame of the ‘Foreman’ sequence in Figure 11. Most of the values are around 



 

 26

3.89 and 6.91. We want to see the amount of pixels with small absolute values of LLR, 

because when the absolute values of LLR are small, it means these pixels are 

considered noisy. We discover that these pixels are all with side information pixel 

values near 127 (from 124 to 133). 127 is the threshold between 0 and 1 in the 1st 

bit-plane. We show the scatter plot of side information value and absolute value of 

LLR when decoding 1st bit-plane of ‘Foreman’ 2nd frame in Figure 12. The scatter 

plots for 2nd and 3rd bit-planes are in Figure 13 and Figure 14. We can see that pixels 

with small LLR values are all with side information values near the threshold of 

particular bit is ‘0’ and ‘1’. We call this threshold ‘crossing threshold.’ 

 

 
Figure 12. Absolute value of LLR and pixel value of side information when 

decoding 1st bit-plane of ‘Foreman’ 2nd frame 
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Figure 13. Absolute value of LLR and pixel value of side information when 

decoding 2nd bit-plane of ‘Foreman’ 2nd frame 

 
Figure 14. Absolute value of LLR and pixel value of side information when 

decoding 2nd bit-plane of ‘Foreman’ 2nd frame 

 

Larger absolute values of LLR means less correction bits are needed, but actually 

it is not certain that their errors are small. Bitrate may be wasted for these pixels. 
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Those pixels with large absolute LLR but large errors are called under-corrected 

pixels, and pixels with small absolute LLR but small errors are called over-corrected 

pixels. 

For 2nd frame of foreman sequence, we set the threshold of side information error 

at 5 and 25. So when side information is large than 25, we call it “Large error”, while 

side information is smaller than 5, we call it “Small error.” We also set the threshold 

of |LLR| at 3.89. These thresholds are decided based on the distribution of side 

informaion and LLR values of this particular frame. After the thresholds are decided, 

we can calculate the percentage of over-corrected pixels and under-corrected pixels 

and the result is in Table 2. When more bitplanes are decoded, the percentage of 

over-corrected pixels is also increased. Although there is only 10% of pixels are 

over-corrected, we want to see how these pixels affect the performance.  

 

Table 2. Percentage of over-corrected pixels and under-corrected pixels of 

foreman 2nd frame 

 Over-corrected Under-corrected 

1st bitplane 5.56% 0.6% 

2nd bitplane 6.03% 0.68% 

3rd bitplane 10.3% 2.13% 

 

 

3.2.2 Over-Corrected Pixels 

An experiment is conducted to see how these over-corrected pixels affect bitrate. 

To achieve this, we peek at pixel values of the original WZ frames. For pixels whose 

side information is near ‘crossing threshold’ and error smaller than 5, we assign side 

information pixel values to the original frame pixels and do LDPCA encoding and 
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decoding. Here we change LLR of these pixels to 3.89 or -3.89. In this experiment, 

the key frames are encoded using H.264 intra encoder with QP 25. The two R-D 

curves are shown in Figure 15. One of them is the original R-D curve. Another one is 

the R-D curve when we ignore pixels with side information near crossing threshold 

and small residuals. It represents the ideal situation where for all pixels with small 

residual, the side information values are not near crossing threshold. From the 

experimental results, we can see that the value of side information is impartment and 

affects bitrate much although there is only about 10% of pixels are modified. As 

bitrate increases, the R-D performance difference increases. 

But this experiment could not happen in real world because the encoder cannot 

detect which pixels need to be modified. A practical solution is for the decoder to 

ignore pixels near ‘crossing threshold’ when it performs LDPCA decoding. So the 

encoder does not have to detect and modify these pixels and re-encode them. In this 

experiment, the decoder set LLR values of these pixels to 3.89 or -3.89. These pixels 

are not modified after each bit-plane is decoded, and when the LDPCA decoder tests 

convergence or checks syndromes, these pixels are ignored. Here we use ‘Carphone’ 

sequence to test, and the R-D curve is in Figure 16. 
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Figure 15. R-D performance when ignoring pixels with side information near 

‘crossing threshold’ and small residual 

 

 

Figure 16. R-D performance when decoder ignore pixels with side 

information values near ‘crossing threshold’ 

 

We can see that the performance is worse when decoder ignore pixels with side 

information values near ‘crossing threshold.’ This is because there are too many 

syndromes not checked because they contain information of ignored pixels. So, when 
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LDPCA iterative termination condition is reached, it finishes decoding with errors, 

and more syndrome bits are requested. 

 

3.2.3 Prioritized Decoding of Side Information Pixels 

Based on the previous experiments, we propose a way to perform prioritized 

correction of side information. We can divide pixels into two groups, and the two 

groups are in different LDPCA coding blocks so we can deal with them separately. In 

order to implement this approach, there are some key issues which need to be 

resolved. First, how can the DVC codec classify the side information into pixels into 

two groups? Secondly, how to encode syndrome bits of different groups of pixels 

separately at the encoder? 

The decoder can see the side information; it can partition pixels into two groups 

and send the group information back to the encoder. If the group information is at 

pixel level, then the amount of bits used to describe group information would be too 

high. Therefore, we compute the group information at macroblock level. For each 

macroblock in a frame, it will be classified into one of two groups. 

When the encoder receives group information, it will rearrange macroblocks in a 

frame. The macroblocks belong to the same group will be channel-coded together, so 

they will be LDPCA encoded within a block. This way, the LDPCA syndrome bits 

can be spent on the area where the residual values are large, and errors are corrected 

more efficiently. In chapter 4 we will describe the proposed method of classifying and 

re-ordering macroblocks in detail. The experimental results will be given in chapter 5. 
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Chapter 4: System Architecture 
In this chapter, the proposed DVC codec will be described in details. Our DVC 

codec is implemented in C. Macroblocks in a frame will be classified into different 

groups according to their side information quality. Each group of macroblocks will be 

LDPCA-coded in the same coding block. So we can encode and decode each group of 

macroblocks according to their significance (priority) in R-D improvement. The 

prioritized channel decoding will enhance the performance because WZ bits are 

requested more efficiently. 

We have implemented both pixel domain and frequency domain DVC systems. 

In the following sections, we will use frequency domain DVC codec to explain the 

proposed scheme, and then the difference between pixel and frequency domain 

approach will be described. 

 

4.1 System Block Diagram 
The system block diagram of the proposed frequency domain DVC codec is 

shown in Figure 17. First, a sequence will be divided into key frames and WZ frames. 

Odd frames are key frames and even frames are WZ frames. Key frames are encoded 

and decoded using H.264 main profile intra coder. The version of H.264 codec we use 

is JM 9.0. The QP values are determined based on quantization matrices used for WZ 

frames. 

The decoder uses key frames it has received to generate side information of WZ 

frame. Then it will classify macroblocks into two groups, SA and SB, based on side 

information quality. SA contains 25% macroblocks with worse side information 

quality and SB contains 75% macroblocks with less side information error. The 

decoder does not see the original WZ frame, so it can only classify macroblocks based 
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on some cues available. The classifying result will be sent to the encoder. And then 

the encoder will group macroblocks in WZ frame while the decoder will group 

macroblocks in side information according to the classifying result. Macroblocks in 

same group will be gathered together. 

Macroblocks in WZ frame and side information are then transformed and 

quantized by encoder and decoder. The encoder will calculate quantization interval 

for each band and send the values to the decoder. So the encoder and decoder use the 

same quantization interval to quantize coefficients. 

 The quantized coefficients of WZ frame and side information are then split into 

bit-planes. Each bit-plane of a WZ frame will be LDPCA encoded by the encoder. 

The WZ bits are stored in a buffer and they will be requested by the decoder. 

 
Figure 17. System flow of our transform domain DVC codec 

The decoder will request for WZ bits in the buffer and perform LDPCA 

decoding, and the detail will be described later. Only macroblocks in SA are decoded. 

After every bitplanes of every coefficient bands are decoded, these decoded 

coefficients will be inverse transformed and macroblocks will be rearranged to 

original order. The following sections will describe the details in each step of the 
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proposed algorithm. 

4.2 Side Information Generation 

As we describe above, key frames are coded by H.264 intra coder and sent to the 

decoder. The decoder uses neighboring key frames to interpolate side information of 

center WZ frame. 

 Steps of side information generation are described in this section. 

 
Figure 18. Motion estimation for neighboring key frames 

 

 
Figure 19. Bi-directional motion adjustment 

In step one, motion estimation is performed for two neighboring key frames, as 

shown in Figure 18. Size of macroblock is 16 by 16, search range is ±32, and motion 

vector accuracy is at is full pixel precision. The search range is larger than traditional 

video codec because the time distance between key frames is 2. In this step, we only 

use forward motion estimation to guess the motion field of WZ frame. There are 

many works we can do in order to make the motion field more closed to true motion. 

 In step two, refer to DISCOVER’s DVC codec[18], a bi-directional motion 

adjustment is performed, and the search range is ±10 with half pixel precision. The 

half pixel values are calculated using H.264 six-tap filter. The search range is smaller 

so the adjusted motion vector will not be very far away from original motion vector. 
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As in Figure 19, if the motion vector obtained in step one motion estimation is (X1, Y1) 

and the center of macroblock in WZ frame is (Px, Py), then when performing 

bi-directional motion adjustment, the center is fixed and motion vectors (X1+dx, 

Y1+dy) with dx and dy within range ±10 are searched. The new motion vector (X’, Y’) 

will make SAD (sum of absolute difference) value of macroblock pair in neighboring 

key frames smallest. Every motion vectors obtained in step one will be modified in 

this step. 

In step three, median filter is applied in order to smooth the estimated motion 

field. This step is also suggested by the DISCOVER DVC codec [16]. After motion 

estimation for neighboring key frames and bi-directional motion adjustment, for each 

macroblock, its motion vector and the motion vectors of eight-connected macroblock 

neighbors are listed. Then a median motion vector is obtained among these motion 

vectors. When deciding which one of them is the median, a weight for each motion 

vector is used. 

There are eight neighbors with motion vectors m1 to m8, and motion vector of the 

center macroblock is m0. For the center macroblock, the motion vector m0 will point 

to two macroblocks in neighboring key frames, and SAD of these two macroblocks is 

s0. When m0 is replaced by m1 to m8, the SAD of neighboring two macroblocks will 

be s1 to s8. The weight value wi of the neighbor motion vector mi is defined as s0/si. So, 

if mi makes neighboring macroblocks similar, then its weight is larger. After median 

motion vector is obtained, the motion vector will be replaced with this median motion 

vector. Now the motion field of WZ frame is obtained and side information will be 

interpolated based on this motion field. 

Average of macroblocks in neighboring frames is interpolated to generate side 

information. The SAD values of macroblock in neighboring key frames are recorded 

for macroblock classification later. Now, there are some pixels which have more than 
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one projections from neighboring key frames. For such pixels, the average of 

interpolated values of all projections is used as the side information. Some pixels do 

not have projections at all, and these pixels remain unfilled as holes in the side 

information.. 

Two hole-filling procedures are applied to complete the side information. For the 

first procedure, if the Manhattan distance between the hole and nearest filled pixel is 

within 25 pixels, then the motion vector of this filled pixel is used by the hole for 

motion compensation from neighboring key frames. Otherwise, another hole-filling 

procedure is applied. Distance upper bound is chosen as 25 pixels because we do not 

want to use motion vectors of pixels too far away. 

The remaining holes will be filled by the second hole-filling procedure. Now for 

each macroblock in side information, calculate the percentage of holes. If the 

percentage of holes is less than 40 percent, then motion estimation for this 

macroblock and previous key frame in display order will be performed. Only filled 

pixels are used to calculate SAD, and we achieve this by using a mask to ignore 

difference values at holes when calculating SAD. The macroblock size is 16 by 16 

and the search range is ±32. The macroblock with smallest SAD in previous key 

frame is located and the corresponding pixels in this macroblock will be used to fill 

the holes in side information. 

If the percentage of hole is larger than 40 percent, then the size of macroblock 

will be enlarged by 2 each time until it reaches 32 by 32. The percentage of holes is 

40 percent at most because when there are too many holes in one macroblock, then 

the valid pixels used to find motion will be minority. Thus an incorrect motion vector 

will be obtained. The size of macroblock used to find motion vector for holes can not 

be too large, too. When the macroblock size is too large, the results of motion 

estimation will be bad because pixels within one macroblock in practice have 
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different motions. 

4.3 Macroblock Classification and Grouping 

Given the generated side information, the decoder will classify macroblocks into 

groups SA and SB. SA contains 25% macroblocks with worse side information quality 

and SB contains 75% macroblocks with less side information error. For QCIF 

resolution sequences, there are 24 macroblocks in group SA and there are total 99 

macroblocks. And this makes each bit-plane of each coefficient band of group SA 

contains 384 bits (24 macroblocks are equal to 384 4 by 4 blocks,) and the LDPCA 

block size we use when only group SA is decoded is 396. If we pick up 25 

macroblocks for group SA, then each bit-plane of each coefficient band of group SA 

will contain 400 bits and this is larger than 396. 

Because the decoder does not have the original WZ frames, therefore it must 

estimate the quality of side information in order to classify macroblocks. Many 

features of the side information image, such as the motion field variance, the number 

of edges or corner points, and the SAD values of macroblocks in neighboring key 

frames, can be used as estimates for classification. 

To obtain motion field variance, we need dense motion field. When generating 

side information, motion vectors of macroblock size 16 by 16 is generated. And then a 

16 by 16 macroblocks is divided to four 8 by 8 blocks. Start from motion field already 

obtained, motion estimation similar to bi-direction adjustment above is performed and 

the search range is ±10. So, for each macroblock, there will be four motion vectors, 

and we get a dense motion field. We can further divide each 8 by 8 macroblock to 

four 4 by 4 macroblocks and get a more dense motion field. After dense motion field 

is obtained, motion vector length variance of every macroblock is calculated and this 

variance is used to classify macroblocks. When the variance is larger, we think the 
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side information quality of this macroblock is worse. 

To obtain number of edges and corner points, we use Sobel filter to get edges 

and use Harris corner detector to get corner points. The Sobel filter size is 3 by 3, and 

the setting of Harris corner detector is radius 3, sigma 1, and threshold 10 for all test 

sequences. The values of radius and sigma are recommended by the author of Harris 

corner detector and the threshold is set as 10 so there will not be too many annoying 

corner points. When there are more corner points or edges in a macroblock, we think 

the side information quality is worse. We use these features as cues because we have 

observed that for Foreman sequence, macroblocks containing these features have 

worse side information quality. 

To obtain SAD of macroblocks in neighboring key frames, we do not do 

additional works because we obtain these values when generating side information. 

When SAD of macroblocks in neighboring key is larger, we think the quality of side 

information is worse. And this is because side information quality is proportioned to 

SAD of macroblocks for many pixels statistically, especially when motion is well 

guessed. 

After trying these cues, we have discovered empirically that SAD of 

macroblocks in neighboring key frames is a good cue for the decoder to pick up worse 

macroblocks, as shown in Figure 21. Several sequences are tested in pixel domain 

with lossless key frames, and the optimal R-D curve is the case where we take a peek 

at the original WZ frame and choose macroblocks that have the worst side 

information. 

The decoder will use 99 bits to descript classifying result and the result will be 

sent to the encoder. Bit ‘0’ represents group SA and bit ‘1’ represents group SB. The 

decoder will rearrange macroblocks in the side information and macroblocks of same 

group will be gathered together. The encoder will also rearrange macroblocks in WZ 
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frame in the same way.  

 

 
Figure 20. Macroblock rearrange 

The macroblocks of group SA are placed at top of the frame, and macroblocks of 

group SB are placed at bottom of the frame, as shown in Figure 20. The order of 

macroblocks of same group is maintained in scan-line order. So if there are 2 

macroblocks of group SA, m1 and m2, and m1 precedes m2 before the rearrangement. 

Then m1 will precede m2 after the rearrangement. After macroblock reordering and 

grouping, macroblocks of the same group will be packed in the same LDPCA block 

for W-Z frame coding. 
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Figure 21. R-D performance when different cues are used by the decoder to 

pick up worse macroblocks 
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coefficients, b1 to b16. B1 is the DC band and b2 to b16 are AC bands. 

The coefficients of each band will then be quantized. There are 8 quantization 

matrices, Q1 to Q8, which are proposed by the Stanford DVC team except Q7 by 

DISCOVER. These 8 quantization matrices are listed in Figure 22. Numbers in these 

matrices represent the number of quantization levels for coefficients of corresponding 

band. Matrix Qk with larger k will introduce less quantization error because more bits 

are used to represent coefficient values. QP values for encoding key frames are 

chosen according to quantization matrices used. The DISCOVER team has proposed a 

set of QP values which make the decoded WZ frames and key frames have almost 

same quality. The QP values for Foreman, Hall, Coastguard, and Soccer sequences 

are listed in Table 3. 

 

Figure 22. Quantization matrices 

 
Table 3. QP Values for encoding key frames 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

Foreman 40 39 38 34 34 32 29 25 

Hall Monitor 37 36 36 33 33 31 29 24 

Coastguard 38 37 37 34 33 31 30 26 

Soccer 44 43 41 36 36 34 31 25 
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The quantization we use is uniform quantization. The number of quantization 

levels is already determined by quantization matrices. But the quantization interval of 

each band is determined according to the range of coefficients. Before applying 

quantization, the quantization interval I2 to I16 will be calculated by the encoder. If the 

coefficients of band bk is within range ±Rk and number of quantization level is Nk, 

then the quantization interval for this band will be 2Rk/Nk. The range of DC band is 

fixed as 0 to 1024, so the quantization interval of DC band is also fixed. So, fixing 

number of quantization interval, when the range is smaller, the quantization interval 

will be smaller too, and this will reduce quantization error. The calculated 

quantization interval for each band will be sent to the decoder. The decoder will 

transform and quantize side information using the same quantization interval. 

After quantization, the coefficients will be split into bit-planes. The DC 

coefficients are all positive while AC coefficients may be positive or negative. When 

AC coefficients are split into bit-planes, the most significant bit is a sign bit. ’0’ 

represents positive and ‘1’ represents negative. The remaining bits are magnitude bits. 

The relationship between AC coefficients and quantized values are shown in Figure 

23. A double dead zone quantization is used. That is, coefficients with small absolute 

values are quantized to positive zero whether they are positive or negative. From 

experimental result, we discover that double dead zone will make R-D performance 

better. This is because for coefficients with small absolute values, the error of sign 

does not reduce PSNR a lot but it cost many correction bits to recover. 
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Figure 23. The relationship between AC coefficients and quantized values 

4.5 LDPCA Encoding 

Each coefficient band is represented in different number of bits as defined by the 

quantization matrices, so each band will be split into different number of bit-planes. 

Regular LDPCA codes with degree 3 will be used for encoding and decoding these 

bit-planes. For a QCIF resolution frame, each bit-plane contains 1584 bits, and this is 

the longest length of channel coding block we can choose. So we use length 1584 

LDPCA code to encode and decode these bit-planes if all macroblocks are encoded 

and decoded. If only chosen macroblocks are encoded and decoded, then length 396 

LDPCA code is used. The LDPCA encoding and decoding procedure of our DVC 

codec is rewritten from Stanford’s MATLAB implementation. After encoding, the 

WZ bits are stored in a buffer. 

 

4.6 LDPCA Decoding and Reconstruction 

The model used to describe the error of side information is the Laplace 

distribution with scale parameter and zero mean. The scale parameter for each 

coefficient band is estimated offline for the entire sequence. So, there will be 16 scale 

parameters for 16 coefficient bands. 
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Figure 24. Probability calculation of second significant bit when most 

significant bit is decoded as 1 

After side information is transformed and quantized. The quantized coefficients 

are split into bit-planes and then LDPCA decoded. For each bit-plane, LLR values of 

each bit are calculated according to error model and bit-planes decoded. To calculate 

LLR value of each bit bi of one coefficient, probability P (bi = 1) and P (bi = 0) must 

be calculated first. Taking DC band for example, in Figure 24, the coefficient value of 

side information is c. When calculating LLR of most significant bit of c, the 

probabilities are calculated within the range 0 to 1024. But when calculating LLR of 

second significant bit of c, the probabilities are calculated within the range with stripe 

pattern if the most significant bit is decoded as 1. 

When decoder performs LDPCA decoding, the rate will increase as more W-Z 

bits are requested by the decoder if the corrected side information still has errors. The 

rate can be from 2/66 to 66/66, and when rate equal to 66/66, all bits will be decoded 

without error. Each time W-Z bits are requested, iterative belief propagation with at 

most 1000 iterations is performed in order to decode bits. We choose 1000 iterations 

as upper bound because for most test sequences, 1000 iterations are close enough to 

convergence. For each iteration, the decoded bits are syndrome-checked. If 

syndrome-check is not satisfied, next iteration continues. When the belief propagation 

iterations converge, the values decoded must be checked. The decoder checks 

correctness of decoded values by peeking at the original values of WZ frame. If any 
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of decoded values is wrong, then higher rate will be tried by requesting more W-Z bits, 

otherwise the LDPCA decoding procedure ends. 

For coefficient c of side information, after one bit is decoded, if the bit is correct, 

then the value of c does not needs to be changed. But if the bit is wrong, then value of 

c will be reconstructed. As Figure 25 shows, when the bit is wrong, the value of c will 

not be in the correct range. So, the value of c will be reconstructed to the nearest value 

which is in the correct range. For example, when decoding most significant bit of 

coefficients in DC band, if the decoded value is 0, then the correct range will be from 

0 to 511. If coefficient of the side information is outside the range, then it will be 

reconstructed to 511. 

 

 

 

Figure 25. Side information is reconstructed to the stripe pattern area when 

the decoded value is 0 

Because the macroblocks of group SA are all in one LDPCA block, so we can 

only request WZ bits for these macroblocks and only decode them. For macroblocks 

of group SB, no WZ bits are requested. So, prioritized channel decoding is achieved. 

After LDPCA decoding, the macroblocks will be inverse transformed and 

rearranged to original order. Then WZ frame decoding is finished. 
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Figure 26. System flow of our pixel domain DVC codec 

4.7 Pixel Domain DVC Codec 

The block diagram of pixel domain DVC codec is shown in Figure 26. The 

differences between pixel domain DVC codec and frequency domain DVC codec are 

described as follows. 

The pixel domain DVC codec works at pixel domain, so there is no 

transformation. The quantization is achieved while splitting pixels into bit-planes. At 

the encoder side, each WZ frame is split into 8 bit-planes. Discarding less significant 

bit-planes is equal to quantization. We discard 4 less significant bit-planes. At the 

decoder side, side information is generated using same method used in frequency 

domain DVC codec. The side information is also split into 8 bit-planes and 4 

bit-planes are discarded. 

For the frequency domain DVC codec, there are Laplace parameters for each 

coefficient band. For pixel domain DVC codec, one Laplace parameter for all pixels 

is estimated offline for entire sequence. 

Each bit-plane is LDPCA encoded and decoded. For a QCIF sequence, each 
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bit-plane contains 25344 bits. We use LDPCA codes with block length 6336, so each 

bit-plane will be packed into 4 LDPCA blocks. When only chosen macroblocks are 

encoded and decoded, each bit-plane will be packed into 1 LDPCA block. When the 

decoder performing LDPCA decoding, LLR values are calculated in the same way we 

have described in frequency domain DVC codec. Reconstruction is the same, too. 

 



 

 50

Chapter 5: Experimental Results 
In this chapter, experimental results and performance of our frequency domain 

DVC with macroblock rearrangement are presented. The performance of DISCOVER 

frequency domain DVC codec is used for comparison because the DISCOVER codec 

has the best performance among published DVC codecs today. The testing conditions 

used in these experiments is the same as those used in DISCOVER, as shown in Table 

4. The QP values for encoding key frames are listed in Table 3. 

In Figure 27 there are R-D curves of our frequency domain DVC codec and 

DISCOVER DVC codec. For our DVC codec, we decode all macroblocks within a 

frame and plot one R-D curve. This curve represents original performance of our 

DVC codec. And then we apply our prioritized channel decoding method and plot 

another R-D curve. The two R-D curves of DISCOVER codec are plotted according 

to the performance data they present in their website and the data obtained by 

executing their released program. 

Without prioritized channel decoding, performance of the proposed DVC codec 

is worse than DISCOVER. And it is mainly because the DISCOVER codec generates 

much better side information. In particular, when less significant bits of coefficient 

bands are LDPCA decoded, the simple frequency-domain DVC codec without 

prioritized coding requests more bits than the DISCOVER codec and the R-D 

performance is worse. The side information quality of our implementation when 

quantization matrices are Q4 and Q8 is listed in Table 5. The side information quality 

of DISCOVER’s is not listed because they do not release the side information quality 

data. 

For Foreman, Hall Monitor, and Coast Guard sequences, when prioritized 

channel decoding is applied, the R-D performance will increase at most 0.5 dB when 
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bit-rate is smaller than 200 kbps, which is a reasonable bit-rate range for QCIF 

sequences. However, for the Soccer sequence, the performance is worse when 

macroblock rearrangement and partial decoding is applied. This is because we choose 

SAD of macroblocks in neighboring key frames as a measure for deciding which 

macroblocks are worst and need more parity bits. The motion field of Soccer 

sequence is not regular and motion field prediction error affects side information 

quality a lot. The really worst macroblocks are not detected and parity bits are wasted 

on macroblocks not really bad and PSNR of side information increase a little. 

Although the proposed prioritized channel decoding DVC codec is not obviously 

better than the DISCOVER DVC codec, it is most likely due to worse side 

information quality. And side information quality improvement is not the key points 

in this thesis. If the side information quality of the proposed scheme is improved, the 

R-D performance of the proposed scheme should be better than that of the 

DISCOVER codec. 

 

Table 4. DISCOVER DVC codec testing setting 

DISCOVER DVC Codec Testing Setting 

Test Sequence Foreman, Hall Monitor, Coast Guard, and Soccer 

Test Frames All frames 

Spatial Resolution QCIF 

Temporal Resolution 15 Hz, so when GOP length is 2, WZ frames are 7.5 Hz 

Key Frames H.264 intra (main profile) 

GOP Length 2 

Channel Code LDPCA 
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Figure 27. R-D performance of our frequency domain DVC codec 

 
Table 5. Side information quality 

 Key Frame QP = Q4 Key Frame QP = Q8 

Foreman 27.9104 29.3168 

Hall Monitor 32.7581 35.5093 

Coast Guard 29.3375 31.0476 

Soccer 22.1290 22.4782 
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Chapter 6: Conclusion and Future Work 
In this thesis we present a prioritized channel decoding DVC scheme to improve 

the coding efficiency. After side information is generated, the decoder classifies 

macroblocks according to side information quality. And more WZ bits can be used to 

correct macroblocks whose side information quality is worse while less WZ bits are 

requested for macroblocks with less side information error. The WZ bits can be 

requested more efficiently. 

From experimental results, we tried several cues and discover that SAD value of 

motion-matching macroblocks in neighboring key frames is a good cue to estimate the 

errors in side infromation. When the SAD value is larger, the macroblock is 

considered worse. Although the classification is not very accurate, for some test 

sequences, the R-D performance will increase especially for lower bit-rate. Compare 

to DISCOVER’s DVC codec, our improvement is little. But it is because our side 

information quality is not as good as that of the DISCOVER codec. Our prioritized 

channel decoding DVC codec should be better than DISCOVER’s if our side 

information quality is improved. Although side information quality improvement is 

not a key point in this thesis, it is one of the future work items. 

In this thesis we try to use motion field variance, number of edges and corner 

points, and SAD of motion-matching macroblocks in neighboring key frames as cues 

for classifying macroblocks. In the end, only SAD of motion-matching macroblocks 

in neighboring key frames is used to classify macroblocks. But this cue is bad when 

motion is irregular and the performance will become very poor because macroblocks 

with really worse side information are not recognized. So, in the future we can 

combine several different cues for the decoder to classify macroblocks more correctly. 

For example, we can use motion field variance to decide whether we should use SAD 
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or other cues to classify macroblocks. Only when motion field variance is not small, 

SAD can be used to classify macroblocks. If motion field variance is large, we will try 

to use other cues to classify macroblocks. 

The decoder classifies macroblocks and sends the classifying result to the 

encoder. The encoder waits for the decoder’s instruction before coding of a W-Z 

frame and delay occurs. If the macroblock classification is done by the encoder or the 

classification result can be guessed by the encoder, it will not be delayed. However, 

after observing classification result, we discover the classification is not regular 

enough for encoder to guess. And the classification at decoder side is not very good 

even the decoder has the side information. The encoder can not do better than decoder 

so we can not let encoder do this job. 

In this experiment, we classify macroblocks to two groups A and SB and 

prioritized channel decode them. In the future we can increase the number of groups 

and rate distribution can be more flexible. For example, we can classify macroblocks 

to three groups SA, SB and SC. SA is group with worse side information quality and SC 

is group with best side information quality. The quantization matrix for group SA, SB 

and SC will be Q8, Q4 and Q1. So more bits are requested for this SA and fewer bits are 

requested for group SC. The percentage of SA, SB and SC can also adaptive for 

different test sequences. 
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