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Abstract

In this thesis, a distributed video coding techeiguith prioritized channel
coding of W-Z frames is presented. In'the propdsmuework, W-Z frame
macro-blocks are classified into different groupsdx on the estimated errors of the
side information. The information is transmitted viplink channel back to the
encoder so that macroblocks with similar erroristias can be grouped tighter in
same coding blocks for channel coding. With thigrapch, decoder can request more
parity bits to correct macroblocks whose side imfation quality is worse and request
less or no parity bits for macroblocks with smalesinformation errors. The
proposed DVC scheme can increase R-D performarag a8 to 0.5 dB over the
state-of-the-art DISCOVER DVC codec for low bitréliess than 200 kbps)
applications for QCIF sequences. Since low-compjexticoder is important for low
bitrate surveillance applications such as thosedoisor networks, the proposed

scheme is very promising for practical applications
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Chapter 1: Introduction

Distributed video coding (DVC) is a new video cagliparadigm which allows
more flexible coding complexity distribution betweeencoder and decoder.
Traditional video codecs, for example, H.264, isigeed for the situation where
video is encoded once and decoded many times. ddimg efficiency is mainly
determined by the computational power of the encddigt now there are many new
applications, such as sensor networks and secudtyiera systems, where the
computational power of the encoder (sensors or Eshes weaker than the decoder
(central receiver of recorded videos). For theggiegtions, a reversed paradigm is
needed, and distributed video coding is suitabiéhis situation.

In traditional closed-loop video coding systemstioroestimation at the encoder
side is used to eliminate temporal correlation ioleo data and the information of
correlation is transmitted to decoders as motiactors. The main idea of DVC is to
estimate-and-construct the inter-frame correlaibthe decoder side with little help
from the encoder; therefore, the computation bufenotion estimation is shifted to
the decoder [1]. For a typical DVC system, the gideurce would be divided into
two interleaving sub-sequences: key frame subseggseand Wyner-Ziv (W-Z) frame
subsequences. Key frames would be encoded usidigidreal encoder (such as the
motion JPEG encoder or any video encoder).

For W-Z frames, the encoder takes the original wiftame as input and applies
a low-complexity algorithm to predict and generstene data (refer to as W-Z bits)
that can help the decoder correct any errors ieiggion of the target frames (refer to
as the side information). On the decoder side,sile information (SI) would be
generated first using any information reconstructiechnologies based on temporal

correlation of neighboring key frames. And thenVaZ decoder uses the W-Z bits



from the encoder to correct any potential errorthan S| such that the resulting W-Z
frames would be close to the original frames ateiheoder side. The key components
in a DVC framework are the W-Z bits generator ame $I generator.

The main complexity of encoder in traditional videadec architecture is due to
motion estimation. For distributed video coding, weant a simple, low power
encoder and a powerful decoder. So the encodermtganform motion estimation
anymore; the job of predictive coding should bdtstito the decoder side. Whether
this new paradigm can achieve the same coding peafoice as traditional video
codec is an important research topic. Accordingptevious information theory
research results, the compression efficiency dfibdiged video coding should match
that of traditional video coding techniques. Two tbé most fundamental results
related to the concept of distributed video.codingm information theory are
Slepian-Wolf theorem [2] and Wyner-Ziv theorem [Bhe latter is a lossy version of
the former theorem.

Consider when we want to encode two statisticadyeshdent variables, X and Y.
According to information theory, fewer bits (H(X))Yare needed to describe the two
variables if we jointly encode them. For video caitwo successive frames can be
coded more efficiently if we consider their predlde relationship by motion
estimation, and then encode the unpredictable ualsdBut if the two variables X
and Y are separately encoded, how many bits angirestjto describe them? For
video coding, what bitrate will be required if framare intra coded instead of inter
coded?

The Slepian-Wolf theorem tell us that even if twarigbles X and Y are separately
encoded, once they are jointly decoded, only H(Xbi¥s are required to decode them.
For video coding, when frames are intra codedhéf decoder can jointly decoded

them, the same coding efficiency can be reached.ti&wretically, in distributed
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video coding, if the decoder can jointly decodenfes, that is, the decoder know the
relationship between the frames and use the infiiom#@o decode the frames, then
only H(X, Y) bits will be sent to the decoder eviéthe encoder encodes the frames
in intra mode. The theorem tells us that the pertorce of distributed video coding
should as good as that of traditional video codm¢heory. But until today, there is
no technigue based on distributed video codingcppiae whose performance can be
close to that of traditional video coding.

In this thesis, a macroblock rearranging methogrigposed to enhance R-D
performance of distributed video coding. Existingtobuted video coding methods
performs particularly worse at low bit-rate endtloé R-D curve. For QCIF sequence
with frame rate 15 Hz, the proposed techniques iogrove the performance of
existing method by about 0.5 dB in PSNR measurenwdierate below 200 kbps.
This bit-rate range is reasonable for QCIF sequembe proposed technique uses
some cues to detect at the decoder side.whichopaine predicted side information
has potentially high prediction errors.and provide encoder with this information.
The encoder then rearranges the macroblocks sthinahannel code-based W-Z bits
generation process can be more efficient. As altrebe decoder can request W-Z
bits to correct the hard-to-predict macroblockstfiExperimental results show that
this technique outperforms current distributed gideding techniques, particularly at
low bit-rate ends.

The organization of this thesis is as follows. Gba® presents a literature
survey on previous work of distributed video coditigchapter 3, some analyses are
conducted to identify the weakness of current tephes. In chapter 4, the proposed
block rearranging method and system architecturk e described. And the
experimental results will be presented in chapteFifally discussions and future

work are given in chapter 6.



Chapter 2: Previous Work

The key components of distributed video coding generation of side
information (predicted target frame at the decodming only key frames as the
hypotheses) and coding of W-Z bits (data used twecb prediction error at the
decoder side). Currently, there are two major apgiies on side information
generation: projection-based motion compensationd acue-based motion
compensation. The first method performs moving blkoajectory projection based on
motion smoothness assumption. The projection-baswdpensation has several
variations such as multi-frame reference projecti@®] or sub-pixel motion
projection [5].

An alternative approach on Sl generation is the-msed motion estimation
scheme. In this method, the encoder sends. notMrkycorrection bits but also some
image cues for side information generation. Theodec can thus do more accurate
inter-frame correlation discovery using-cue bitev&al techniques have been
proposed for cue generating functions, such as €i&ies [6], high pass filters in the
DCT domain [40], and low pass filters in the DCTnuon [13]. Although
projection-based methods do not require the endodsgnd extra cue bits, comparing
to cue-based estimation, projection-based methadlg performs well with ideal
motion behavior. On the other hand, cue-based astimcould provide more robust
and accurate side information but consumes extrevoiath.

As in traditional close-loop codecs, it is not effnt to use only one coding tool
to handle coding of all video signals. For DVC, thetion projection-based tool and
the cue-based tool are suitable for constructinfpSdlifferent types of video signals.
Therefore, low-complexity mode decision at the @ecside is crucial for improving

the performance of DVC codecs. Some DVC framewarks the differences of



co-located blocks to distinguish the backgroundnftbe foreground and to determine
the cue bits [13]; however, this approach is linhite stable background patterns.

Kang and Lu proposed a wavelet-based DVC framew@d. They use
Structural Digital Signature (SDS) [30] to determiwhich wavelet coefficients are
important, and only these coefficients are sent. &avavelet tree structure, SDS
records magnitude relation of every node and itkl aiode. If the SDS of wavelet
coefficients is different between two frames, tliea two frames are perceptually
different.

SDS of each frame are calculated and compared thghprevious frame.
Wavelet coefficients with SDS different from thaio-located blocks in previous
frame are marked as important coefficients. Onlgontant coefficients are sent to the
decoder. For non-important coefficients, the decodepies coefficients from
previous frame. If there are too.many importantffacients, then H.264 intra coder
will be used instead. This is a framework-that b complexity of the encoder and
the decoder are low at the same time.

Figure 1 is the RD performance of this method. plod above in this figure is
R-D curve of Hall sequence, and the plot below 4B Rurve of Foreman sequence.
Most part of the Hall sequence is the backgrountiout motion, so the number of
important coefficients is small. The performancenear other DVC methods, but
comparing to a traditional video codec such as #.2B6ere is still a gap. For the
Foreman sequence, most part of the frames is cadpok the moving face, the
PSNR of current frame and previous frame is snwlthe number of important
coefficients is large. Most blocks are coded usiH@64 intra coder, so the
performance is near the H.264 intra case. We cantlsis method is only suitable for
sequences with little foreground moving objectsshsas in some security camera

applications.
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Figure 1.Performance of the cue-based DVC scheme in [22]

2.1 Stanford’'s DVC Frameworks

One of the most adopted DVC framework is proposgd Aaron et al.
[1][71[8][11][12][13][14]. In this work, the encodeconsists of a quantizer, a channel
encoder, a buffer, and a traditional intra encodée decoder consists of a channel
decoder, a side information generator, a framenscoctor, and a traditional intra
decoder.

At the encoder side, frames in a video sequencératelivided into even frames
and odd frames. The odd frames are intra codedj wisaditional video codec such as

H.264, and these frames are called ‘key frames’ &fen frames are like B-frames in
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traditional video codecs, and these frames aredaW-Z frames.” But in DVC the
encoder does not perform motion estimation and dadoe residual. Instead, it treats
these W-Z frames like | frames and encodes thempi@addently by a channel encoder.
The systematic channel encoder produces systemassage bits (the original pixel
values) and parity bits (refer to as the W-Z bitg)t only W-Z bits are stored in the
buffer. The systematic bits are all discarded.

At the decoder side, for the ‘key frames,’” the dkmouse traditional intra
decoder to decode them. For the ‘W-Z frames,’” tlezoder use key frames
neighboring the W-Z frame to generate “side infaiior@ of this W-Z frame. The
side information is like predictor in traditionaldeo codec but is only known by the
decoder. The decoder can use any information it tbagenerate (predict) side
information. For example, the key frames alreadeireed can be used as the motion
compensation hypotheses.

After generating the side information; the decodeeds additional bits for
correcting the errors in the side'information’ ardonstructing the original frames.
This is like receiving residuals from encoder iaditional video codec. But the
encoder does not know side information; it only eyates W-Z bits of frame. The
decoder requests for W-Z bits and use channel @ectml decode frames. The
systematic bits are discarded at encoder siddhesddgcoder uses side information as
the systematic bits. By the theory of channel cgdihthe channel condition is good
(that is, the decoder prediction error is smallg tross probability is small, and then
fewer bits are needed for recovering the originghal. To be more specific, for DVC,
if the side information of the target frame predatby the decoder is almost the same
as the W-Z frame we want to decode, then fewer \MtZ are requested, coding
efficiency is better.

The first version of DVC framework from Stanfordedonot perform coding in
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DCT domain, and spatial redundancy within a frasi@ot explored. In [14], DCT
domain coding is added to the framework becauspdhfermance is better.

In traditional video codecs, when GOP size increadee coding efficiency will
increase too. That is because there will be mofafes and B frames. In the first
version of the Stanford DVC framework, GOP siz&.i3 hat is, for every two frames,
there is only one W-Z frame. Aaron et al. [11] toyuse larger GOP size but the
performance decreases as the GOP size increases.isTlvery different from
traditional video codec. This is because when G@e &creases, the distance
between W-Z frame and available key frames usagktwrate side information also
increases, hence, the quality of the side inforomadiecreases.

To further improve the coding efficiency, Brites &t from the DISCOVER
DVC team [16] proposed a variable step size quatiiz which can make DCT
coefficients less distorted when.the dynamic resigeoefficient band is smaller. That
is, for a fixed number of quantization-levels, i€ Wwnow the dynamic range, then a
sufficient and small step size can be used, anddistertion can be smaller. But
additional bits are required for representing thkig of dynamic range. This method

may be inspired from H.264.

2.2 Side Information Generation

Side information quality directly affects codingfieflency in a DVC codec,
therefore, a lot of research efforts in DVC areated to side information generation
algorithms. In [17], some experiments are condut¢tedhow the relation between
PSNR of side information (compared with the origi#&Z frame), and number of
W-Z bits requested. In summary, when PSNR of siderination is higher, fewer

W-Z bits are needed and the compression ratiagiseni



2.2.1 Interpolation and Symmetric Motion Model

Side information can be interpolated or extrapalateom key frames and
previously reconstructed WZ-frames. This is simi@rmotion-compensated frame
interpolation which is used to increase frame mitelecoder side. There are many
models being proposed for motion-compensated iokatipn. For example, Liu et al.
[29] assume that every frame has same motion fifis model of course is too
simple so that the side information generated ategnod. The symmetric motion
model is a simple model but its performance is piad#e for some cases. Many
researchers adopt symmetric motion model and useegsing to enhance its
performance [7][18].

The algorithm of the symmetric motion model is ewpéd as follows. If the
W-Z frame is frame Y, and its previous key framé&ane X, next key frame is frame
Z. Symmetric motion model assumes.that-the objenta® at a constant speed. So if
the position of object O is {xyi) in frame X-and (xrmvy, y1+mv) in frame Z, then
the position of object O should betxmw/2, yi1+mwv/2). When the decoder wants to
generate side information of frame Y, it has alyesteived frame X and Z. So it can
perform traditional motion estimation on frame Xdafh For macroblock M at (xyi)
in frame Z, there is a best matched macroblock Kkatmvy, yi+mwy) in frame X.
Then the decoder will project the average of M Antb (x,+mv,/2, yi+mv,/2) onto
frame Y along the motion path of M and N.

Of course there are many problems when using tlideito implement side
information generator. First of all, there may lmme macroblocks which do not
satisfy this single-object constant motion modelmacroblock may contain two or
more objects, or objects which do not move at astzom speed. Secondly, when the

decoder projects every matched macroblock pair td ¥kame, there may be some
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pixels which have no projection, or twice or mom®jections. For pixels that are
projected twice or more, it is not trivial to cheothe best projection pair without
knowledge of the original W-Z frame. For pixelstthave no projections, the decoder
must use some algorithms to interpolate their \saahgewell.

Klomp et al. [5] believe that using motion estimatiwith more accuracy may
increase side information quality. However, duentmtion model mismatch, the actual
improvements could be very little. Li and Delp [2@Jnducted some experiments on
the amount of macroblocks in key frames used teegda side information. They
discovered that the more macroblocks used, therbgtle information is generated,
especially when these macroblocks come from difitekey frames.

In the above two proposals, decoders must do monepatations to either
increase motion estimation accuracy or to increds® number of reference
macroblocks used. Ascenso et al. in DISCOVER tet8hddopt a different approach
and develop a pixel domain DVC codec IST-PDWZ arnttaasform domain DVC
codec IST-TDWZ. Their proposed technique is alssedaon the framework from
Stanford with symmetric motion model. But beforefpeming motion estimation on
key frames, a low pass filter is used to make #ienated motion vectors less noisy.
After obtaining motion vectors, if macroblock Y wdibe the average of macroblock
X and Z. Bi-directional motion estimation is thesed to fine-tune the motion vectors.
After that, a smoothing filter is applied to thetioa vectors because the motion field
should be smooth. We can see the R-D performand® this adjustment indeed

makes performance better.
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Figure 2.R-D performance of the DVC scheme in [18]

2.2.2 Hash Information as Motion Cue

In previous section we see how to use symmetriaamanodel to utilize key
frames to generate good side"information. We kngmrsetric motion model is
limited. To further increase the quality of siddoimation, it is possible for the
encoder to compute and transmit‘'some ‘extra infeomab assist the decoder to
generate better side information. Some researakeées to this information as hash
[13]. When decoder wants to generate side infoonatit does not perform motion
estimation on neighboring key frames. Insteadait abtain motion vector by directly
comparing hashes of macroblocks. When hashes ofrtagyoblocks are similar, the
content of these two macroblocks are expected wrbiar too.

Traditional hashes, for example, CRC and MD5, a®y \sensitive to content
changing. But hashes used to compare image sityilsinould only be sensitive to
perceptual changes in the pixel data. This kinthagh is called media hash, robust
hash, soft hash, and image fingerprinting. Distamegveen hashes can be used as a

measure of content similarity. If the hash is goewdough, that is, a decent
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representation of macroblocks, motion estimatiorcbmparing hash shall give us a
good result.

Media hash design is an active research topic,aady papers have already
been published. But most of these papers designianmfeash for content-based
retrieval, watermarking, image authentication, anmthge database management.
Media hash can be implemented by calculating tseogram of image [34], or the
position of edges [35] or feature points [36]. DSIgn information is also useful [37].
The researchers hope that the media hash can bstrobgeometric transformation
and compression. So calculations of some media esasire sometimes too
complicated, and they are not suitable for DVC.tlrenmore, these applications do
not concern about the size of hashes, but for DA&Sh size affects bitrate.

For DVC, simple and small hashes are considerefll3h using hash to help
decoder to generate side information is first noeed. The authors use sub-sampled
and coarsely quantized version of -macroblock in Wrame as their hash. To
decrease overhead of hash, when co-located mackobloprevious key frame is
similar to macroblock in current W-Z frame, no-hé&shis sent instead.

Girod et al. [8] also mentioned that the possipilitf using high frequency
portion of a macroblock as a distinct feature af tiock. For an 8-by-8 block, 54
most high frequency coefficients (most of them nbayzeros) with run-length and
Huffman compression are sent to decoder as hashesemaining 10 low frequency
coefficients are channel encoded and decoded. égtnahis idea seems reasonable,
but in practice, it is not trivial for decoder terfiorm motion estimation based on high

frequency coefficients.
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2.3 Channel Coding for Side Information Correction

The key concept in DVC is that the side informatpmedicted at the decoder
side can be regarded as a video frame corrupteshigdtine transmission over a
(hypothetical) noisy channel. In DVC, the commuhma channel between the
encoder and the decoder is a virtual noisy chaanélside information is the noisy
version of the original frame transmitted from #m&coder across the channel to the
decoder. Since the encoder has knowledge of tlgnaliframes, it can generate
systematic channel codes to correct any potentiaisof the side information at the
decoder side. In practice, only the W-Z bits of ttieannel codes have to be
transmitted to the decoder. There are many facbchannel coding that affect the
coding efficiency of the DVC framewaork., Two of theost significant factors are the

model of the virtual noisy channel and the chawodle used.

2.3.1 Virtual Channel Model

For channel decoding, fewer W-Z bits will be regadsf we know more about
the nosie characteristics of the channel. But inCDe noise is strongly related to
side information quality which is not stationaryr early days, only one single
statistics model (usually Laplace distribution), used to describe the noise
distribution for the whole sequence or the whotarfe. This is not practical, because
actual noise distribution is far more complicated @annot be modeled by a single
Laplace distribution. Borchert et al. [21] propdbat if each frame is partitioned into
two types of regions, occluded regions and nonemss regions, and two different
statistics models are used to model the errorsditferent types of regions, the
performance will be better than using one stasstodel for the whole frame.

Since decoder does not have the original framesait not get the exact
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parameters of the error distribution. The decodsdnto estimate the parameters.
However, one may not need exact parameters sircel@boding algorithm allows
some tolerance on the exactness of the statistokeinThe tolerance range of the
parameters is different from frame to frame. A riisttion which is not sensitive to
errors in parameter estimates and achieves higlpmassion ratio such that decoder
only needs few W-Z bits from the encoder to cor®cprediction errors is desired.
Westerlaken et al. [22] have shown that when alsidgtribution is used to describe
channel noise, two-sided Gamma and generalized dizaudistribution have better
decoding performance than Laplace and Gaussiambdisbns when LDPC codes are
used. The compression ratio when using differerdrenodels is in Figure 3. They
also discovered that for generalized Gaussian,ethera small range of shape
parameter that makes LDPC performance less semstithe choice of the variance

parameter. But they do not mention how to find #msll range.
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Figure 3.Compression ratio when different error models are sed
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2.3.2 Channel Code

In DVC, the virtual channel noise is not stationasp rate-adaptive channel
codes are needed in distributed video coding sche@lgannel codes near theoretical
bound and rate-adaptive are suitable for DVC. Ruadtturbo codes are well known
for their burst error correcting capability and ithperformance is very close to
Slepian-Wolf bound [23], so at the beginning, m&WC papers use turbo codes as
their channel codes.

Low Density Parity Check (LDPC) codes are also detncodes near
Slepian-Wolf bound. They have been used effectiirefjxed-rate distributed source
coding [25]. But in rate-adaptive cases, syndroarespunctured before they are sent,
when compression ratio is high, the performancélilpoor because in the decoding
graph there are many single-connected or isolabeids) The Stanford team presents
two kinds of LDPC-based rate-adaptive-codes: LDRCuulate codes (LDPCA)
and Sum LDPC Accumulate codes (SLDPCA) [15]. Thedsgme bits of LDPCA
and SLDPCA codes contain more redundant informdiggause of accumulation, so
when a subset of syndrome bits are truncated, @iferpance will not be affected as
much as the original LDPC codes. In Figure 4, escre source bits and squares are
parity bits after encoding. Left picture is the deing graph of LDPCA code when all
parity bits are not discarded. The center pictariné decoding graph of LDPCA code
and the right picture is decoding graph of LDPC whalf of parity bits are discarded.
All nodes in the LDPCA decoding graph are neitlsetdated nor single-connected, so

when compression ratio is high, LDPCA codes stlldrgood performance.
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Figure 4.Decoding graph of LDPC codes and LDPCA codes
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Figure 5.Rate required by turbo codes and SLDPCA codes

In 0, we can see that when conditional entropy M}Xg larger than 0.5, the rate
required for turbo codes increases faster and besdomgger than LDPC codes,
especially when H(X]|Y) is larger than 0.8. Furtherey LDPCA has one advantage
over turbo codes, that is, syndrome bits can bel tisetest the correctness after
decoding. When the error position can be detectéer @lecoding, we can do
something to enhance the regions where errorseai@us. In [28], the authors decode
the first 3 bit-planes and then perform full seasHor side information which
significantly reduces decoding errors. After adjugtthe side information, the

decoder keeps decoding remaining bit-planes, angeriformance is better.
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Chapter 3: Analysis on DVC Virtual Channel

Error Characteristics

In this chapter, we have conducted some investigaton the performance of
DVC-based coding mechanisms. In addition to examihe impact of error
distribution models on coding efficiency, we altady the validity of the common
DVC assumption of using log likelihood ratio asiadication of the reliability of the
side information values. All experiments we deserifbere are tested using our

pixel-domain DVC framework with lossless key fram€ke frame rate is 30 fps.

3.1 Study on Virtual Channel Models

3.1.1 Types of Channel:Models

In DVC coding schemes, a Laplace distributionul. i§) is in general used to model
the prediction error of side information. The paedenp is the mean parameter and

often set to 0. The parameter b is the 'scale pdemm®o, the probability density
function of errors i (x) =ge_b“’. This definition is often adopted in DVC papers,

which is slightly different from the traditional pkacian probability density function

x4
f(x):z—lbe b . We use the definition former, so when the errare more

concentrated, the value of scale parameter wilakger. The two parameters may be
estimated using some sample video sequences ofitirestimated by the decoder
adaptively while decoding a sequence. However,initial experiments show that
when a single distribution model with few parametsrused, the coding efficiency of
the DVC schemes is relatively insensitive to th&ridbution being used to model the
“channel-imposed” error of side information. In ethwords, correctly choosing

parameters of distribution does not affect numberaPC correction bits very much.
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The reason is that the side-information prediceamor model is quite different from
the communication channel error model. In sidesimfation prediction, large errors
may also occur when energy of original signals leigh due to errors in motion
compensation models. That is, even when pixel galn®@riginal frames are big, it is
still possible that the side-information errors seeous.

In order to test the relation between the accuratychannel error model
parameters and the error-correction efficiency lo@ prediction errors of the side
information, we use three different distributionsaplace, Gaussian, and uniform
distributions to model channel errors. The paramseté Laplace distribution and
Gaussian distribution are calculated offline. Thafarm distribution is used to
simulate the situation where we do not know eristrithutions at all.

In addition, an adaptive .channel error. model isoalsed in which, the
distribution parameters are estimated not for.theles sequence, but adaptively for
every 4448 region of pixels. Therefore,-the adaptive emardel should fit the true
error distribution mush better than.the non-adaptines. The histograms of the
estimated Laplace parameters of the side-informatiediction error models for the
‘Foreman’ and the ‘Mother-and-Daughter’ sequencessaown in Figure 6. One can
see that when the ‘scale’ parameter of Laplaceriliigion is larger, the error
distribution is more concentrated around the me&many areas in the
‘Mother-and-Daughter’ sequence have very smalldiesds, so when using a Laplace

model to fit it, the scale parameters are largenttnat of the ‘Foreman’ sequence.
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Figure 6.Histograms of Laplace parameters (mean and scale)

In this experiment, the sequences we use are of @&Holution, and only the

first 101 frames are tested. Key frames are notpressed, in other words, they are

lossless. The motion compensated interpolationguiaie similar to that proposed in

IST-PDWZ [38] with key frame smoothing and fine-tum of bi-directional motion

vectors is used to increase side information qualithe side information PSNR

values using different tool combinations are listedable 1. Based on Table 1, tool

set (d) is used in the following experiments. W&wate the R-D curves for W-Z

frames and see how channel noise model chosernsatfeding performance of side

information prediction errors.
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Table 1. PSNR of side information using different predictiontools

a b c d e f G h
Foreman 30.94 30.111 34.36[734.515 | 32.7166 35.2435| 35.7557| 35.1935
Mother 36.817 | 36.914839.43 39.6368 40.9836| 41.5151| 41.4215| 44.7172
And
Daughter
Coastguard 33.8926| 33.9785| 35.866 | 36 36.289434.3556| 33.5139| 33.8707

(a) Our Method

(b) Our Method + nearest mv for hole

(c) Our Method + Bi-directional mv adjust

(d) Our Method + nearst mv for hole +Bi-directional amjust

(e) Our Method + nearest mv for hole +Bi-directional adjust + low-passed key frame

() Our Method + nearest mv for hole +Bi-directional adjust + low-passed key frame
+ median mv

(g) Our Method + nearest mv for hole +Bi-directional adjust + median mv

(h) Our Method + nearest mv for hole +Bi-directional adjust + low-passed key frame
+ median mv (using non-low-passed key.frame)

One can see in Figure. 7, for both sequences, atbitwate, the differences
between the best and the worst performance ighess0.1 dB. At higher bit-rate, the
difference is usually less than 1dB. Also note,tfata QCIF sequence, 1dB gain of
PSNR above 40dB is virtually not perceptible by lammobserver under normal
viewing conditions. It means that for most sigrafit bit-plane, choosing Laplace or

Gaussian model dose not affect performance mupleaictical sense.
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Figure 7.R-D curve of ‘Foreman’ and ‘Mother and Daughter’

The results from IST-PDWZ are also projected iruFeg7. Although the final
PSNR of our corrected side information is worsenttiese published in [38] for
about 2.5 dB, the slopes of our R-D curves areséimee or even larger than the slopes
of the curves of IST-PDWZ. The difference in PSRargely due to the initial
guality of side information before error correctidine differences in slopes may be

due to different channel coding techniques (LDP&Aur experiments, and turbo

21



coder in IST-PDWZ) and it shows that the channéeling efficiency of LDPCA may

be better than that of turbo code for DVC.

3.1.2 Adaptive Laplace Channel Model for Each Bit-fanes

In previous section we see that the channel behéased error model only has
marginal influence on DVC coding efficiency. Onetbé possible reasons is due to
the fact that side information errors are not gigtinvariant. Therefore, single error
channel model is not sufficient for modeling thdirensequence. But in previous
graph, we can see that even by choosing differardimpeters for each small area
adaptively, the performance increase is not obWo@ther possible reasons are that
single error model is used for every hit-plane diug, or that the channel decoding

method used in many DVC papers is not suitabl®©C.
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Figure 8.Error distributions when 1st ~ 4th bit-planes are cecoded

We can see how the error distribution changes as ttplanes are decoded in
Figure 8. When more bit-planes are decoded, ea@snore concentrated and their
means are more closed to 0. Now we try to userdifteLaplace models for each
bit-plane. The R-D curve is shown in Figure 9. & see that the performance is
worse than using one distribution parameter vatweafi bit-plane. It is even worse
than using a single Gaussian model for all bit-e&awhen bitrate exceeds 350 kbps.
It may be because that when“using different Lapraceels for each bit-plane, the
Laplace model for less significant bit-plane wik Inore concentrated because the
error distribution of SI when decoding less sigrdfit bit-plane is more concentrated.
However, actually when decoding less significaritptane, the probability of bit
error is larger. So, the error model does notHé &actual error distribution, and it

decreases the performance.
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Figure 9.R-D curve of ‘Foreman’ when different Laplace modes are used for
each bit-plane

3.2 LDPCA Decoding

3.2.1 LLR (Log Likely-hood Ratio) Values

The LDPC decoding of each bit x in.a bitplane & Y-Z frame is based on the
LLR (log likely-hood ratio). The relationship of 2{0) and the corresponding LLR
values are shown in Figure 10. When the channel &rsmall, P(x=0) will not be
closed to 0.5, and absolute value of LLR will be ffam 0. In this situation, fewer
W-Z bits will be necessary to correct the errorsidge information. So, in this section,
we investigate the LLR values of every pixel in frieman sequence to estimate the

number of W-Z bits required for error correction.
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We plot the histogram of absolute values of LLR widecoding T bit-plane of

the 2" frame of the ‘Foreman’ sequence in Figure 11. Mdghe values are around
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3.89 and 6.91. We want to see the amount of pixgtssmall absolute values of LLR,
because when the absolute values of LLR are sntalheans these pixels are
considered noisy. We discover that these pixelsaliravith side information pixel
values near 127 (from 124 to 133). 127 is the tiolesbetween 0 and 1 in thé'1
bit-plane. We show the scatter plot of side infaiioravalue and absolute value of
LLR when decoding i bit-plane of ‘Foreman’ %' frame in Figure 12. The scatter
plots for 2% and & bit-planes are in Figure 13 and Figure 14. Wesemthat pixels
with small LLR values are all with side informatioalues near the threshold of

particular bit is ‘0’ and ‘1’. We call this threshib'crossing threshold.’
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Figure 12.  Absolute value of LLR and pixel value of side infomation when
decoding f' bit-plane of ‘Foreman’ 2™ frame
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Figure 13.  Absolute value of LLR and pixel value of side infomation when
decoding 2 bit-plane of ‘Foreman’ 2" frame
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Figure 14.  Absolute value of LLR and pixel value of side infomation when
decoding 29 bit-plane of ‘Foreman’ 2" frame

Larger absolute values of LLR means less corrediitsnare needed, but actually

it is not certain that their errors are small. 8iér may be wasted for these pixels.
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Those pixels with large absolute LLR but large exrare called under-corrected
pixels, and pixels with small absolute LLR but sheators are called over-corrected
pixels.

For 2" frame of foreman sequence, we set the threshaitlefinformation error
at 5 and 25. So when side information is large @&nwe call it “Large error”, while
side information is smaller than 5, we call it “Sheror.” We also set the threshold
of |[LLR| at 3.89. These thresholds are decided doase the distribution of side
informaion and LLR values of this particular frarddter the thresholds are decided,
we can calculate the percentage of over-correcteglspand under-corrected pixels
and the result is in Table 2. When more bitplanes decoded, the percentage of
over-corrected pixels is also increased. Althoulgére is only 10% of pixels are

over-corrected, we want to see.how these pixet&athe performance.

Table 2. Percentage of over-corrected pixels and under-coroted pixels of
foreman 24 frame

Over-corrected

Under-corrected

1% bitplane 5.56% 0.6%
2" bitplane 6.03% 0.68%
3 bitplane 10.3% 2.13%

3.2.2 Over-Corrected Pixels

An experiment is conducted to see how these oveecied pixels affect bitrate.
To achieve this, we peek at pixel values of thginal WZ frames. For pixels whose
side information is near ‘crossing threshold’ amedbesmaller than 5, we assign side

information pixel values to the original frame pgsxend do LDPCA encoding and
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decoding. Here we change LLR of these pixels t® 88-3.89. In this experiment,
the key frames are encoded using H.264 intra emcodh QP 25. The two R-D

curves are shown in Figure 15. One of them is tiggnal R-D curve. Another one is
the R-D curve when we ignore pixels with side infation near crossing threshold
and small residuals. It represents the ideal stoawvhere for all pixels with small

residual, the side information values are not nemssing threshold. From the
experimental results, we can see that the valgtdefinformation is impartment and
affects bitrate much although there is only abod¥olof pixels are modified. As

bitrate increases, the R-D performance differenceeases.

But this experiment could not happen in real wdrdttause the encoder cannot
detect which pixels need to be modified. A prad¢t®alution is for the decoder to
ignore pixels near ‘crossing threshold” when.itfpens LDPCA decoding. So the
encoder does not have to detect and modify thesdspand re-encode them. In this
experiment, the decoder set LLR values-of.theselpito 3.89 or -3.89. These pixels
are not modified after each bit-plane.is decoded, ahen the LDPCA decoder tests
convergence or checks syndromes, these pixelgaoeed. Here we use ‘Carphone’

sequence to test, and the R-D curve is in Figure 16
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Figure 15. R-D performance when ignoring pixels with side infomation near
‘crossing threshold’ and small residual
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Figure 16. R-D performance when decoder ignore pixels with sl
information values near ‘crossing threshold’

We can see that the performance is worse when deogiore pixels with side
information values near ‘crossing threshold.” Thesbecause there are too many

syndromes not checked because they contain infammatf ignored pixels. So, when
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LDPCA iterative termination condition is reachedfinishes decoding with errors,

and more syndrome bits are requested.

3.2.3 Prioritized Decoding of Side Information Pixés

Based on the previous experiments, we propose atwaerform prioritized
correction of side information. We can divide pseahto two groups, and the two
groups are in different LDPCA coding blocks so vae deal with them separately. In
order to implement this approach, there are some i¢sues which need to be
resolved. First, how can the DVC codec classifydige information into pixels into
two groups? Secondly, how to encode syndrome Iidifferent groups of pixels
separately at the encoder?

The decoder can see the.side information;.it catitipa pixels into two groups
and send the group information back to the encdflehe group information is at
pixel level, then the amount of bits used to déscgroup information would be too
high. Therefore, we compute the group informatiormacroblock level. For each
macroblock in a frame, it will be classified intoeoof two groups.

When the encoder receives group information, it sghrrange macroblocks in a
frame. The macroblocks belong to the same groulpbe&ichannel-coded together, so
they will be LDPCA encoded within a block. This wdkie LDPCA syndrome bits
can be spent on the area where the residual vaheelarge, and errors are corrected
more efficiently. In chapter 4 we will describe f@posed method of classifying and

re-ordering macroblocks in detail. The experimergallts will be given in chapter 5.
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Chapter 4. System Architecture

In this chapter, the proposed DVC codec will becdesd in details. Our DVC
codec is implemented in C. Macroblocks in a framk lve classified into different
groups according to their side information qualiEgach group of macroblocks will be
LDPCA-coded in the same coding block. So we cam@a@and decode each group of
macroblocks according to their significance (ptyriin R-D improvement. The
prioritized channel decoding will enhance the peniance because WZ bits are
requested more efficiently.

We have implemented both pixel domain and frequatapain DVC systems.
In the following sections, we will use frequencyntin DVC codec to explain the
proposed scheme, and then the difference betweesl pnd frequency domain

approach will be described.

4.1 System Block Diagram

The system block diagram of the proposed frequadmyain DVC codec is
shown in Figure 17. First, a sequence will be aidighto key frames and WZ frames.
Odd frames are key frames and even frames are Wiefs. Key frames are encoded
and decoded using H.264 main profile intra codee Version of H.264 codec we use
is JM 9.0. The QP values are determined based antigation matrices used for WZ
frames.

The decoder uses key frames it has received ta@engide information of WZ
frame. Then it will classify macroblocks into twoogps, & and $, based on side
information quality. ® contains 25% macroblocks with worse side infororati
quality and § contains 75% macroblocks with less side informmateror. The

decoder does not see the original WZ frame, santanly classify macroblocks based
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on some cues available. The classifying result kgllsent to the encoder. And then
the encoder will group macroblocks in WZ frame whthe decoder will group
macroblocks in side information according to thasslfying result. Macroblocks in
same group will be gathered together.

Macroblocks in WZ frame and side information arerthtransformed and
guantized by encoder and decoder. The encodercalidulate quantization interval
for each band and send the values to the decodeheSencoder and decoder use the
same quantization interval to quantize coefficients

The quantized coefficients of WZ frame and siderimation are then split into
bit-planes. Each bit-plane of a WZ frame will be ROA encoded by the encoder.

The WZ bits are stored in a buffer and they willrkbguested by the decoder.
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Figure 17.  System flow of our transform domain DVC codec

The decoder will request for WZ bits in the buffeand perform LDPCA
decoding, and the detail will be described latarlyOnacroblocks in §are decoded.
After every bitplanes of every coefficient bandse adecoded, these decoded
coefficients will be inverse transformed and matwoks will be rearranged to

original order. The following sections will desazilthe details in each step of the
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proposed algorithm.

4.2 Side Information Generation

As we describe above, key frames are coded by Hri@éalcoder and sent to the
decoder. The decoder uses neighboring key framagerpolate side information of
center WZ frame.

Steps of side information generation are describeklis section.

Key Frame K4 WZ Frame WZ, Key Frame K5

[ Xu¥i] P 2,
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Figure 18.  Motion estimation for neighboring key frames
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Figure 19.  Bi-directional motion adjustment

In step one, motion estimation is performed for twaghboring key frames, as
shown in Figure 18. Size of macroblock is 16 by déirch range is £32, and motion
vector accuracy is at is full pixel precision. T¢earch range is larger than traditional
video codec because the time distance betweenr&mes is 2. In this step, we only
use forward motion estimation to guess the motiefd fof WZ frame. There are
many works we can do in order to make the motield fimore closed to true motion.

In step two, refer to DISCOVER’s DVC codec[18],badirectional motion
adjustment is performed, and the search range Gswith half pixel precision. The
half pixel values are calculated using H.264 spxfiier. The search range is smaller

so the adjusted motion vector will not be verydaray from original motion vector.
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As in Figure 19, if the motion vector obtained fasone motion estimation is {XY;)
and the center of macroblock in WZ frame is, (P,), then when performing
bi-directional motion adjustment, the center iseixand motion vectors (Xdx,
Y1+dy) with d and ¢ within range +10 are searched. The new motionor€@t, Y’)
will make SAD (sum of absolute difference) valuenmdicroblock pair in neighboring
key frames smallest. Every motion vectors obtaimedgtep one will be modified in
this step.

In step three, median filter is applied in orderstnooth the estimated motion
field. This step is also suggested by the DISCOVBERC codec [16]. After motion
estimation for neighboring key frames and bi-di@tl motion adjustment, for each
macroblock, its motion vector and the motion vestolr eight-connected macroblock
neighbors are listed. Then a median motion vedarhtained among these motion
vectors. When deciding which one of them is the imeda weight for each motion
vector is used.

There are eight neighbors with-motion vectorstonms, and motion vector of the
center macroblock is gnFor the center macroblock, the motion vectgrwill point
to two macroblocks in neighboring key frames, aAddD%f these two macroblocks is
S. When mg is replaced by mto ng, the SAD of neighboring two macroblocks will
be 5 to . The weight value wof the neighbor motion vector;ms defined asgs. So,
if m; makes neighboring macroblocks similar, then itggiveis larger. After median
motion vector is obtained, the motion vector wél teplaced with this median motion
vector. Now the motion field of WZ frame is obtaghand side information will be
interpolated based on this motion field.

Average of macroblocks in neighboring frames ignpblated to generate side
information. The SAD values of macroblock in neighibg key frames are recorded

for macroblock classification later. Now, there aoene pixels which have more than
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one projections from neighboring key frames. Fochspixels, the average of
interpolated values of all projections is usedhasdide information. Some pixels do
not have projections at all, and these pixels ramaifilled as holes in the side
information..

Two hole-filling procedures are applied to complite side information. For the
first procedure, if the Manhattan distance betwienhole and nearest filled pixel is
within 25 pixels, then the motion vector of thiflefil pixel is used by the hole for
motion compensation from neighboring key frameshe@wise, another hole-filling
procedure is applied. Distance upper bound is ¢hase25 pixels because we do not
want to use motion vectors of pixels too far away.

The remaining holes will be filled by the secondehfilling procedure. Now for
each macroblock in side information, calculate ftercentage of holes. If the
percentage of holes is less .than 40 percent, thetiom estimation for this
macroblock and previous key frame.in-display ondér be performed. Only filled
pixels are used to calculate SAD; and we achieis lifi using a mask to ignore
difference values at holes when calculating SADe Tmacroblock size is 16 by 16
and the search range is £32. The macroblock withllest SAD in previous key
frame is located and the corresponding pixels is tiacroblock will be used to fill
the holes in side information.

If the percentage of hole is larger than 40 percir@n the size of macroblock
will be enlarged by 2 each time until it reachesb$232. The percentage of holes is
40 percent at most because when there are too hwdag in one macroblock, then
the valid pixels used to find motion will be mintyri Thus an incorrect motion vector
will be obtained. The size of macroblock used il fmotion vector for holes can not
be too large, too. When the macroblock size is lavge, the results of motion

estimation will be bad because pixels within onecmblock in practice have
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different motions.

4.3 Macroblock Classification and Grouping

Given the generated side information, the decodkclassify macroblocks into
groups & and $. Sy contains 25% macroblocks with worse side infororaguality
and $ contains 75% macroblocks with less side infornrmaterror. For QCIF
resolution sequences, there are 24 macroblocksonpgS, and there are total 99
macroblocks. And this makes each bit-plane of eamdfficient band of group S
contains 384 bits (24 macroblocks are equal to 884 4 blocks,) and the LDPCA
block size we use when only group. $ decoded is 396. If we pick up 25
macroblocks for group 5 then each bit-plane of each coefficient bandroig S
will contain 400 bits and this is larger.than 396.

Because the decoder does not ‘have the original \Wx4ds, therefore it must
estimate the quality of side information in order dlassify macroblocks. Many
features of the side information image, such asrb#on field variance, the number
of edges or corner points, and the SAD ‘values afratdocks in neighboring key
frames, can be used as estimates for classification

To obtain motion field variance, we need dense omofield. When generating
side information, motion vectors of macroblock slfeby 16 is generated. And then a
16 by 16 macroblocks is divided to four 8 by 8 lBcStart from motion field already
obtained, motion estimation similar to bi-directiadjustment above is performed and
the search range is £10. So, for each macrobldeketwill be four motion vectors,
and we get a dense motion field. We can furtherddiveach 8 by 8 macroblock to
four 4 by 4 macroblocks and get a more dense mdigdoh After dense motion field
is obtained, motion vector length variance of ewaacroblock is calculated and this

variance is used to classify macroblocks. Whenvidméance is larger, we think the
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side information quality of this macroblock is wers

To obtain number of edges and corner points, weSadee| filter to get edges
and use Harris corner detector to get corner poiite Sobel filter size is 3 by 3, and
the setting of Harris corner detector is radiusi@ma 1, and threshold 10 for all test
sequences. The values of radius and sigma are neended by the author of Harris
corner detector and the threshold is set as 1@ese will not be too many annoying
corner points. When there are more corner pointdges in a macroblock, we think
the side information quality is worse. We use thiesg¢ures as cues because we have
observed that for Foreman sequence, macroblock&inory these features have
worse side information quality.

To obtain SAD of macroblocks in neighboring keynfies, we do not do
additional works because we abtain these valueswgeaerating side information.
When SAD of macroblocks in neighboring key is largee think the quality of side
information is worse. And this is because-sidenmifation quality is proportioned to
SAD of macroblocks for many pixels_statisticallyspecially when motion is well
guessed.

After trying these cues, we have discovered engllyicthat SAD of
macroblocks in neighboring key frames is a goodfou¢he decoder to pick up worse
macroblocks, as shown in Figure 21. Several se@seace tested in pixel domain
with lossless key frames, and the optimal R-D cusvbie case where we take a peek
at the original WZ frame and choose macroblockst thave the worst side
information.

The decoder will use 99 bits to descript classdyrasult and the result will be
sent to the encoder. Bit ‘O’ represents groypa8d bit ‘1’ represents groupgs SThe
decoder will rearrange macroblocks in the sidermfttion and macroblocks of same

group will be gathered together. The encoder vi&b aearrange macroblocks in WZ
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frame in the same way.
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Figure 20.  Macroblock rearrange

MB in Sg

MB in Sg

The macroblocks of groupa&re placed at top of the frame, and macroblocks of

group $ are placed at bottom of the frame, as shown imr€i@0. The order of

macroblocks of same group is maintained in scam-tinder. So if there are 2

macroblocks of group S my, and m, and m precedes mbefore the rearrangement.

Then m will precede m after the rearrangement. After macroblock reordeand

grouping, macroblocks of the same group will bekpdcin the same LDPCA block

for W-Z frame coding.

39



Grandmother

PSNR (dB)

1
20 40 60 80

bit rate (kbps)

—+— Original

—o— By SAD

—+— By motion field length variance (8x8)
——— By motion field length variance (4x4)
—H&— By number of corer points

—4&— Optimal

. . . I
100 120 140 160

41

391

37r

PSNR (dB)

36

Highway

—+— Original

5 —o— By SAD J
—— By motion field length variance (8x8)
2 —— By motion field length variance (4x4)
P —H&— By number of corner points
—4&— Optimal
33 L L
0 50 100 150 200 250 300
bit rate (kbps)
Miss
45.8 T T T T
45.6 b
45.4 - B
4521 1
. 45 1
o
=2
x 4481 4
z
I
O s46f — q
—+— Original
sa.4 —6— By SAD J
—#— By motion field length variance (8x8)
44.2 —— By motion field length variance (4x4) | ~
—H&— By number of corner points
44 —&— Optimal 1
43. . . . .
0 50 100 150 200 250
bit rate (kbps)
News
45 T T T T T T T T T
a4}
43}
a2
o
=2
x 411
z
0
a
40}
—+— Original
sl —6— By SAD ll
—+— By motion field length variance (8x8)
—— By motion field length variance (4x4)
38 —&— By number of comer points I
—&4— Optimal
3 . . . n T n n n n
‘0 20 40 60 80 100 120 140 160 180 200

bit rate (kbps)

40

Hall
43 T T T T
22} J
a1t 1
o
2
x 40f 1
z
I
a
—+— Original
& —o— By SAD 1
—#— By motion field length variance (8x8)
—— By motion field length variance (4x4)
3 —&— By number of corner points
—2&— Optimal
37 . . . .
0 50 100 150 200
bit rate (kbps)
Ice
40 T T T T T
38 1
36+ B
o 34 1
2
x
&
9 32r q
—+— Original
301 —6— By SAD i
—#— By motion field length variance (8x8)
281 ——— By motion field length variance (4x4) | |
—&— By number of corner points
—&4— Optimal
268 . . n n n
0 100 200 300 400 500
bit rate (kbps)
Mother and Daughter
44.5 T T T T T T T T T
a4} 1
435] J
43} 1

45 —+— By motion field length variance (8x8)
—— By motion field length variance (4x4)
418 —H&— By number of comner points 1
—&— Optimal
405 . . . . . . . . .
0 20 40 60 80 100 120 140 160 180
bit rate (kbps)
Salesman
46 T T T T T T T T

PSNR (dB)

425 L L L ! ! ! ! !
0

PSNR (dB)
B
N
o

250

600

—+— Original
—o— By SAD

200

—+— Original

—o— By SAD

—+— By motion field length variance (8x8)
—— By motion field length variance (4x4)
—H&— By number of corner points

—24A— Optimal

50 100 150 200 250

bit rate (kbps)

300 350 400



51.5

51

50.5

50

PSNR (dB)

49.5

—+— Original
—o— By SAD

—#— By motion field length variance (8x8)
—— By motion field length variance (4x4)

4
s —H&— By number of corner points
—&— Optimal
485 . . . .
0 20 40 60 80 100 120
bit rate (kbps)
Bridge (far)
43.8 T T T T
43.7+ B
43.6 1
4351 B
o
2
x 434F 1
z
I
a
4331 B
—+— Original
—6— By SAD
43.2 —+— By motion field length variance (8x8) | |
—— By motion field length variance (4x4)
43-1l —&— By number of corner points 1
I —~A— Optimal
43 . . . . . . . .
0 20 40 60 80 100 120 140 160 180
bit rate (kbps)
Claire
49.2 T T T T T T
a9t 4
48.8 4
48.6 1
5 48.4 B
x
b4
o 4821 B
a
481 —+— Original
—6— By SAD
47.8 —+— By motion field length variance (8x8)
—— By motion field length variance (4x4)
47.6 —H— By number of corner points
B —2&— Optimal
. . . . . . I
0 20 40 60 80 100 120 140
bit rate (kbps)
Football
34 T T T T T T T T T
32r 1
301 1
o
2
x 28} 1
z
I
a
26 —+— Original
—6— By SAD
—#— By motion field length variance (8x8)
24 —— By motion field length variance (4x4)
—H&— By number of corner points
—&— Optimal
Py . . . . . . . . . I

0 100

200 300 400 500 600

bit rate (kbps)

700 800 900 1000

41

Bridge (close)

42.6 T T
424+ B
422} J
a2t B
g a8 q
£
o 4161 B
a
41.4r —+— Original q
—6— By SAD
41.2 —+— By motion field length variance (8x8) | -
—— By motion field length variance (4x4)
A1gk —&— By number of corner points 1
—2&— Optimal
40.8 . N N N
0 50 100 150 200 250
bit rate (kbps)
Carphone
40 T T T T T T T
39+ B
38 1
m 37f B
=2
x
&
P 36f 4
—+— Original
35 —6— By SAD 1
—+— By motion field length variance (8x8)
——— By motion field length variance (4x4)
34 - 4
P —H&— By number of corner points
—4A— Optimal
33 . . ! ! ! ! !
0 50 100 150 200 250 300 350 400
bit rate (kbps)
Container
50.2 T
50.1+ B
50 1
49.9 1
g a08f 1
x
z
0 4971 B
a
49.6 - —+— Original B
—o&— By SAD
49.5 —#— By motion field length variance (8x8) |-
—— By motion field length variance (4x4)
49,454 —H— By number of corner points 4
—2&— Optimal
49.3 . . . . .
20 40 60 80 100 120
bit rate (kbps)
Foreman
39 T T T T T T T T
38+ B
37+ 1
o 36 1
=2
x
&
9 35t 4
—+— Original
” —6— By SAD
—#— By motion field length variance (8x8)
——— By motion field length variance (4x4)
33 —H— By number of corner points El
L —4&— Optimal
32 . . . . . . . .
0 50 100 150 200 250 300 350 400 450

bit rate (kbps)



Silent

Soccer

44 T T T T T 35 T T T T T T T T
43+ 4
a2t 1
at — 30+ 1
8 wf 1 g
o @
z z
o 391 4 &
o o
38 —+— Original - 25 —+— Original il
—6&— By SAD —©o— By SAD
37 —#— By motion field length variance (8x8) | - By mOt!O" field length variance (8x8)
—— By motion field length variance (4x4) By motion field length variance (4x4)
3659 —H&— By number of corner points R —SBy number of comer points
—&— Optimal : —4A— Optimal
35 . . . . . 20 . . . . . . . .
0 50 100 150 200 250 300 0 100 200 300 400 500 600 700 800 900
bit rate (kbps) bit rate (kbps)
Stefan ;
Suzie
36 i i i i i i i 42 : : : . : : :
41.51 b
34+ B
af i
32r 1 40.5} B
g g aof -
x 30r 4 =
Z @
I3 & 305f N
a o -
28+ —+— Original 39l —+— Original 4
—S&—By SAF) ) —6&— By SAD
By motfon field length var!ance (8x8) 385 —#— By motion field length variance (8x8) | -|
26 < By motion field length @rlance (4x4) —— By motion field length variance (4x4)
& —S— By |‘1umber of comer points 38 —8&— By number of comner points 4
—4— Optimal g —4A— Optimal
2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ T - ‘ ‘ ‘ : ‘ ‘ ‘
G ¢ 0 50 100 150 200 250 300 350 400
it rate (kbps) bit rate (kbps)
Tempete Table Tennis
39 T T T T T T T T 38 T T T T T T
38+
36+ b
371
36 34r B
8 3¢ g
['4 x 32 b
z z
o 34r 7
o o
33+ —+— Original 30+ —+— Original
—S—By SAD —&— By SAD
32 —k— By motion field length variance (8x8) | - —#— By motion field length variance (8x8)
—— By motion field length variance (4x4) 28 —— By motion field length variance (4x4)
31142 5 By number of comer points g —8— By number of corner points
A —24— Optimal f —&— Optimal
2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 26 ‘ ‘ ‘ ‘ : ‘ ]
0 50 100 150 200 250 300 350 400 450 0 100 200 300 400 500 600 700

Figure 21.

bit rate (kbps)

bit rate (kbps)

R-D performance when different cues are used by théecoder to

pick up worse macroblocks

4.4 Transform and Quantize

At the encoder side, after macroblock rearrangeymeath WZ frame will be
transformed to frequency domain. At the decodee,s&lde information is also
transformed too. The integer transformation of M.Z5used. The block size for the

transformation is 4 by 4. For each 4 by 4 blockerafransformation, there will be 16
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coefficients, b to be. B is the DC band and:lto big are AC bands.

The coefficients of each band will then be quantiZzEhere are 8 quantization
matrices, @ to s, which are proposed by the Stanford DVC team ex€@pby
DISCOVER. These 8 quantization matrices are ligtefigure 22. Numbers in these
matrices represent the number of quantization $efeel coefficients of corresponding
band. Matrix Q with larger k will introduce less quantization@rbecause more bits
are used to represent coefficient values. QP valaesencoding key frames are
chosen according to quantization matrices used DIBEOVER team has proposed a
set of QP values which make the decoded WZ frameskay frames have almost

same quality. The QP values for Foreman, Hall, @uasd, and Soccer sequences

are listed in Table 3.

Qi=1 Q=2 Qi=3 Q=4
6 8 0 0 32 8 0 0 32 8 4 0 32 16 8 4
8§ 0 o0 0 s 0 0 o0 5 4 0 0 16 8 4 0
¢ 0o 0 0 0 0 0 0 4 0 0 0 8§ 4 0 0
0o 0 o0 o0 0o 0 o0 0 o 0 o0 0 4 0 0 0
Q=5 Qi=6 Q=7 Q=8
32 16 8 4 64 16 8 8§ 64 32 16 8 128 64 32 16
16 8 4 4 16 8 8 4 32 16 8 4 64 32 16 8
8 4 4 0 8 8 4 4 16 8 4 4 32 16 8 4
4 4 0 0 8 4 4 0 8 4 4 0 16 8 4 0

Figure 22.  Quantization matrices

Table 3. QP Values for encoding key frames

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Foreman 40 39 38 34 34 32 29 25
Hall Monitor 37 36 36 33 33 31 29 24
Coastguard 38 37 37 34 33 3] 30 26
Soccer 44 43 41 36 36 34 31 25

43



The quantization we use is uniform quantizatione Tlumber of quantization
levels is already determined by quantization mesidut the quantization interval of
each band is determined according to the rangeoefficients. Before applying
guantization, the quantization intervald |, will be calculated by the encoder. If the
coefficients of band bis within range +R and number of quantization level ig,N
then the quantization interval for this band widl BR/Ny. The range of DC band is
fixed as 0 to 1024, so the quantization intervaD@ band is also fixed. So, fixing
number of quantization interval, when the rangenmller, the quantization interval
will be smaller too, and this will reduce quantieat error. The calculated
guantization interval for each band will be senttlie decoder. The decoder will
transform and quantize side information using #mae quantization interval.

After quantization, the coefficients will. be splibto bit-planes. The DC
coefficients are all positive while AC coefficientsay be positive or negative. When
AC coefficients are split into bit-planes;-the maeggnificant bit is a sign bit. '0’
represents positive and ‘1’ represents negative.rémaining bits are magnitude bits.
The relationship between AC coefficients and quactivalues are shown in Figure
23. A double dead zone quantization is used. Tataefficients with small absolute
values are quantized to positive zero whether #uey positive or negative. From
experimental result, we discover that double deamkavill make R-D performance
better. This is because for coefficients with snaddsolute values, the error of sign

does not reduce PSNR a lot but it cost many cooretits to recover.
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Figure 23.  The relationship between AC coefficients and quartied values
4.5 LDPCA Encoding

Each coefficient band is represented in differamhber of bits as defined by the
guantization matrices, so each band will be sptiv idifferent number of bit-planes.
Regular LDPCA codes with degree 3 will be usedéncoding and decoding these
bit-planes. For a QCIF resolution frame, each l@tip contains 1584 bits, and this is
the longest length of channel coding block we choose. So we use length 1584
LDPCA code to encode and:decode these bit-planals mhacroblocks are encoded
and decoded. If only chosen macroblocks are encaddddecoded, then length 396
LDPCA code is used. The LDPCA encoding -and decogirmgedure of our DVC
codec is rewritten from Stanford’s MATLAB implematibn. After encoding, the

WZ bits are stored in a buffer.

4.6 LDPCA Decoding and Reconstruction

The model used to describe the error of side in&bion is the Laplace
distribution with scale parameter and zero meare $hale parameter for each
coefficient band is estimated offline for the emtiequence. So, there will be 16 scale

parameters for 16 coefficient bands.
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Figure 24.  Probability calculation of second significant bit when most
significant bit is decoded as 1

After side information is transformed and quantiz€de quantized coefficients
are split into bit-planes and then LDPCA decodedt. éach bit-plane, LLR values of
each bit are calculated according to error moddll@atiplanes decoded. To calculate
LLR value of each bit;lof one coefficient, probability P (b 1) and P (b= 0) must
be calculated first. Taking DC band for examplefFigure 24, the coefficient value of
side information is c¢c. When calculating LLR" of masignificant bit of c, the
probabilities are calculated within the range A@4. But when calculating LLR of
second significant bit of ¢, the probabilities asdculated within the range with stripe
pattern if the most significant bit is decoded as 1

When decoder performs LDPCA decoding, the rate widlease as more W-Z
bits are requested by the decoder if the corresitdalinformation still has errors. The
rate can be from 2/66 to 66/66, and when rate eguab/66, all bits will be decoded
without error. Each time W-Z bits are requesteekaiive belief propagation with at
most 1000 iterations is performed in order to decbits. We choose 1000 iterations
as upper bound because for most test sequences jté@dtions are close enough to
convergence. For each iteration, the decoded bhies syndrome-checked. If
syndrome-check is not satisfied, next iterationticwes. When the belief propagation
iterations converge, the values decoded must bekelle The decoder checks

correctness of decoded values by peeking at tlggnativalues of WZ frame. If any
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of decoded values is wrong, then higher rate veltied by requesting more W-Z bits,
otherwise the LDPCA decoding procedure ends.

For coefficient c of side information, after on¢ isidecoded, if the bit is correct,
then the value of ¢ does not needs to be changedf 8e bit is wrong, then value of
¢ will be reconstructed. As Figure 25 shows, whenliit is wrong, the value of ¢ will
not be in the correct range. So, the value of thwlreconstructed to the nearest value
which is in the correct range. For example, wheoodeng most significant bit of
coefficients in DC band, if the decoded value ithen the correct range will be from
0 to 511. If coefficient of the side information asitside the range, then it will be

reconstructed to 511.

AR . | I
0

512 I 1024
i ST

SI’=511

Figure 25.  Side information is reconstructed to the stripe paern area when
the decoded value is 0

Because the macroblocks of group &e all in one LDPCA block, so we can
only request WZ bits for these macroblocks and a@gode them. For macroblocks
of group $, no WZ bits are requested. So, prioritized chadeebding is achieved.

After LDPCA decoding, the macroblocks will be insertransformed and

rearranged to original order. Then WZ frame deagdsrfinished.
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Figure 26.  System flow of our pixel domain DVC codec
4.7 Pixel Domain DVC Codec

The block diagram of pixel domain -DVC.codec is show Figure 26. The
differences between pixel domain DVC codec andueegy domain DVC codec are
described as follows.

The pixel domain DVC codec works at pixel domairg there is no
transformation. The quantization is achieved whpétting pixels into bit-planes. At
the encoder side, each WZ frame is split into &laihes. Discarding less significant
bit-planes is equal to quantization. We discardesgk Isignificant bit-planes. At the
decoder side, side information is generated usargesmethod used in frequency
domain DVC codec. The side information is also tspito 8 bit-planes and 4
bit-planes are discarded.

For the frequency domain DVC codec, there are leaplaarameters for each
coefficient band. For pixel domain DVC codec, oraplace parameter for all pixels
is estimated offline for entire sequence.

Each bit-plane is LDPCA encoded and decoded. FQC# sequence, each
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bit-plane contains 25344 bits. We use LDPCA codils klock length 6336, so each
bit-plane will be packed into 4 LDPCA blocks. Whenly chosen macroblocks are
encoded and decoded, each bit-plane will be pairkedl LDPCA block. When the

decoder performing LDPCA decoding, LLR values aleuated in the same way we

have described in frequency domain DVC codec. R&aaction is the same, too.
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Chapter 5: Experimental Results

In this chapter, experimental results and perfolceanf our frequency domain
DVC with macroblock rearrangement are presented. gerformance of DISCOVER
frequency domain DVC codec is used for compariserabse the DISCOVER codec
has the best performance among published DVC cdddey. The testing conditions
used in these experiments is the same as thoseruB#8COVER, as shown in Table
4. The QP values for encoding key frames are listddhble 3.

In Figure 27 there are R-D curves of our frequedoynain DVC codec and
DISCOVER DVC codec. For our DVC codec, we decodearacroblocks within a
frame and plot one R-D curve. This curve represeniginal performance of our
DVC codec. And then we apply our prioritized chdntecoding method and plot
another R-D curve. The two R-D. curves of DISCOVERIec are plotted according
to the performance data they present in their weband the data obtained by
executing their released program.

Without prioritized channel decoding, performanéehe proposed DVC codec
is worse than DISCOVER. And it is mainly because EHRSCOVER codec generates
much better side information. In particular, whesd significant bits of coefficient
bands are LDPCA decoded, the simple frequency-donta¥C codec without
prioritized coding requests more bits than the DIMER codec and the R-D
performance is worse. The side information quatifyour implementation when
guantization matrices are;@nd Q is listed in Table 5. The side information quality
of DISCOVER's is not listed because they do not¢asé the side information quality
data.

For Foreman, Hall Monitor, and Coast Guard sequeneéhen prioritized

channel decoding is applied, the R-D performandkimdrease at most 0.5 dB when
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bit-rate is smaller than 200 kbps, which is a reabte bit-rate range for QCIF
sequences. However, for the Soccer sequence, ttiermance is worse when
macroblock rearrangement and partial decoding diegh This is because we choose
SAD of macroblocks in neighboring key frames as easaire for deciding which
macroblocks are worst and need more parity bitse Totion field of Soccer
sequence is not regular and motion field predicioror affects side information
guality a lot. The really worst macroblocks are detected and parity bits are wasted
on macroblocks not really bad and PSNR of siderié&tion increase a little.
Although the proposed prioritized channel decodi?®gC codec is not obviously
better than the DISCOVER DVC codec, it is most lijkelue to worse side
information quality. And side information qualitgnprovement is not the key points
in this thesis. If the side information qualitytbe proposed scheme is improved, the
R-D performance of the proposed scheme should Weerbéhan that of the

DISCOVER codec.

Table 4. DISCOVER DVC codec testing setting

DISCOVER DVC Codec Testing Setting

Test Sequence Foreman, Hall Monitor, Coast Guaud Sooccer

Test Frames All frames

Spatial Resolution QCIF

Temporal Resolution 15 Hz, so when GOP length is 2, WZ frames are z.5 H

Key Frames H.264 intra (main profile)
GOP Length 2
Channel Code LDPCA
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Figure 27.  R-D performance of our frequency domain DVC codec
Table 5. Side information quality
Key Frame QP = Q4 Key Frame QP = Q8
Foreman 27.9104 29.3168
Hall Monitor 32.7581 35.5093
Coast Guard 29.3375 31.0476
Soccer 22.1290 22.4782
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Chapter 6: Conclusion and Future Work

In this thesis we present a prioritized channebdegy DVC scheme to improve
the coding efficiency. After side information is nggated, the decoder classifies
macroblocks according to side information qualind more WZ bits can be used to
correct macroblocks whose side information quastyvorse while less WZ bits are
requested for macroblocks with less side inforrmateror. The WZ bits can be
requested more efficiently.

From experimental results, we tried several cuesdascover that SAD value of
motion-matching macroblocks in neighboring key fesns a good cue to estimate the
errors in side infromation. When the SAD value @&gkr, the macroblock is
considered worse. Although the classification i¢ wery accurate, for some test
sequences, the R-D performance willincrease .eslhefor lower bit-rate. Compare
to DISCOVER’s DVC codec, our improvement is littBBut it is because our side
information quality is not as good as thatof thlSOOVER codec. Our prioritized
channel decoding DVC codec should ‘be better thaBCOIVER’s if our side
information quality is improved. Although side imfoation quality improvement is
not a key point in this thesis, it is one of thaufe work items.

In this thesis we try to use motion field varianoember of edges and corner
points, and SAD of motion-matching macroblocks @ghboring key frames as cues
for classifying macroblocks. In the end, only SADnootion-matching macroblocks
in neighboring key frames is used to classify miblocks. But this cue is bad when
motion is irregular and the performance will becomey poor because macroblocks
with really worse side information are not recoguiz So, in the future we can
combine several different cues for the decodetassdy macroblocks more correctly.

For example, we can use motion field variance wddewhether we should use SAD
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or other cues to classify macroblocks. Only wheriomofield variance is not small,
SAD can be used to classify macroblocks. If mofield variance is large, we will try
to use other cues to classify macroblocks.

The decoder classifies macroblocks and sends thassifiling result to the
encoder. The encoder waits for the decoder’s ioBtmu before coding of a W-Z
frame and delay occurs. If the macroblock clasaiion is done by the encoder or the
classification result can be guessed by the encdaderll not be delayed. However,
after observing classification result, we discovlee classification is not regular
enough for encoder to guess. And the classificattodecoder side is not very good
even the decoder has the side information. Thedsraman not do better than decoder
SO we can not let encoder do this job.

In this experiment, we classify macrablocks to tgmups. and $ and
prioritized channel decode them. In the future &e mcrease the number of groups
and rate distribution can be more:flexible.-Formgke, we can classify macroblocks
to three groups S S and &. Sa IS group with worse side information quality angl S
is group with best side information quality. Theagtization matrix for group 5 Ss
and $ will be @, Qs and Q. So more bits are requested for thisa®d fewer bits are
requested for group ¢S The percentage ofaS S and $ can also adaptive for

different test sequences.
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