

國 立 交 通 大 學

多媒體工程研究所

碩碩碩碩 士士士士 論論論論 文文文文

解碼端影像誤差估測用於分散式視訊編碼

法校正優先權的設計

Adaptive Decoder Side Information Error Estimation for
Priority-based Error Correcting Distributed Video Coding

研 究 生：連曉玉

指導教授：蔡淳仁 教授

中中中中 華華華華 民民民民 國國國國 九九九九 十十十十 八八八八 年年年年 二二二二 月月月月

解碼端影像誤差估測用於分散式視訊編碼法校正優先權的設

計

Adaptive Decoder Side Information Error Estimation for
Priority-based Error Correcting Distributed Video Coding

研 究 生：連曉玉 Student：Shiau-Yu Lian

指導教授：蔡淳仁 Advisor：Chun-Jen Tsai

國 立 交 通 大 學
多 媒 體 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Multimedia Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

February 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年二月

 I

解碼端影像誤差估測用於分散式視訊編碼法校正優先

權的設計

研究生 : 連曉玉 指導教授: 蔡淳仁

國 立 交 通 大 學

多 媒 體 工 程 所

摘要摘要摘要摘要

 本篇論文提出了一種使用於分散式視訊編碼的技術，對於 W-Z frame 提供了

有優先順序的 channel coding。在我們所提出的架構中，基於預估的 side

information 誤差程度，W-Z frame 的 macro-block 會被分類為幾個不同的群組。

分類的資訊經由一個上傳 channel 傳回編碼端，所以誤差程度相似的

macro-block 會被聚集在一起以進行 channel coding。使用這種方法，解碼端可

以為side information品質比較不好的macro-block要求多一點的parity bits

以更正這些部分的錯誤。而對於 side information 誤差較小的 macro-block 則

要求比較少的 parity bits。比起目前最好的 DISCOVER DVC codec，對於 QCIF

sequences，在較低的 bitrate 範圍裡(低於 200 kbps)我們所提出的 DVC 架構可

以使 R-D performance 增加 0.3 至 0.5 dB。因為低複雜度的編碼器對於像是

sensor network 之類的低 bitrate 監視應用系統是很重要的，所以我們所提出

的架構可望應用到實際系統上。

 II

 III

Adaptive Decoder Side Information Error Estimation

for Priority-based Error Correcting Distributed

Video Coding

Student: Shiau-Yu Lian Advisor: Dr. Chun-Jen Tsai

Institute of Multimedia Engineering

National Chiao Tung University

Abstract

In this thesis, a distributed video coding technique with prioritized channel

coding of W-Z frames is presented. In the proposed framework, W-Z frame

macro-blocks are classified into different groups based on the estimated errors of the

side information. The information is transmitted via uplink channel back to the

encoder so that macroblocks with similar error statistics can be grouped tighter in

same coding blocks for channel coding. With this approach, decoder can request more

parity bits to correct macroblocks whose side information quality is worse and request

less or no parity bits for macroblocks with small side information errors. The

proposed DVC scheme can increase R-D performance about 0.3 to 0.5 dB over the

state-of-the-art DISCOVER DVC codec for low bitrate (less than 200 kbps)

applications for QCIF sequences. Since low-complexity encoder is important for low

bitrate surveillance applications such as those for sensor networks, the proposed

scheme is very promising for practical applications.

 IV

 V

謝誌謝誌謝誌謝誌

首先我要感謝我的指導教授蔡淳仁老師這兩年半的教導，他總是很細心地對

我的研究提出建議與方向，也不厭其煩地解答我們學生學術上的疑惑。再來我要

感謝 MMES 實驗室的所有同學，大家互相關心、討論生活與課業上的問題，和你

們在一起的時光令人感到開心。特別要感謝域晨學長，在這段時間裡跟我討論有

關 DVC 的研究，讓我獲益良多。

 我也要感謝我的男友順宇在這段期間的支持，以及我的家人，總是不給我帶

來壓力，讓我可以放心地去學習、研究。最後要謝謝我的朋友依婷與孜穎，無論

何時想到你們就讓我很溫暖。

 VI

Table of Contents
摘要.. I

Abstract .. III

謝誌... V

Table of Contents ... VI

List of Figures .. VII

List of Tables .. IX

Chapter 1: Introduction .. 1

Chapter 2: Previous Work .. 4

2.1 Stanford’s DVC Frameworks ... 6

2.2 Side Information Generation.. 8

2.2.1 Interpolation and Symmetric Motion Model 9

2.2.2 Hash Information as Motion Cue .. 11

2.3 Channel Coding for Side Information Correction 13

2.3.1 Virtual Channel Model .. 13

2.3.2 Channel Code .. 15

Chapter 3: Analysis on DVC Virtual Channel Error Characteristics 17

3.1 Study on Virtual Channel Models .. 17

3.1.1 Types of Channel Models ... 17

3.1.2 Adaptive Laplace Channel Model for Each Bit-planes 22

3.2 LDPCA Decoding .. 24

3.2.1 LLR (Log Likely-hood Ratio) Values ... 24

3.2.2 Over-Corrected Pixels ... 28

3.2.3 Prioritized Decoding of Side Information Pixels 31

Chapter 4: System Architecture ... 32

4.1 System Block Diagram .. 32

4.2 Side Information Generation.. 34

4.3 Macroblock Classification and Grouping .. 37

4.4 Transform and Quantize ... 42

4.5 LDPCA Encoding .. 45

4.6 LDPCA Decoding and Reconstruction .. 45

4.7 Pixel Domain DVC Codec ... 48

Chapter 5: Experimental Results ... 50

Chapter 6: Conclusion and Future Work .. 54

 VII

List of Figures
Figure 1. Performance of the cue-based DVC scheme in [22] 6

Figure 2. R-D performance of the DVC scheme in [18] 11

Figure 3. Compression ratio when different error models are used 14

Figure 4. Decoding graph of LDPC codes and LDPCA codes 16

Figure 5. Rate required by turbo codes and SLDPCA codes 16

Figure 6. Histograms of Laplace parameters (mean and scale) 19

Figure 7. R-D curve of ‘Foreman’ and ‘Mother and Daughter’ 21

Figure 8. Error distributions when 1st ~ 4th bit-planes are decoded 23

Figure 9. R-D curve of ‘Foreman’ when different Laplace models are used for

each bit-plane 24

Figure 10. P(x = 0) and corresponding LLR values .. 25

Figure 11. Absolute values of LLR when decoding 1st bit-plane of ‘Foreman’ 2nd

frame 25

Figure 12. Absolute value of LLR and pixel value of side information when

decoding 1st bit-plane of ‘Foreman’ 2nd frame ... 26

Figure 13. Absolute value of LLR and pixel value of side information when

decoding 2nd bit-plane of ‘Foreman’ 2nd frame .. 27

Figure 14. Absolute value of LLR and pixel value of side information when

decoding 2nd bit-plane of ‘Foreman’ 2nd frame .. 27

Figure 15. R-D performance when ignoring pixels with side information near

‘crossing threshold’ and small residual .. 30

Figure 16. R-D performance when decoder ignore pixels with side information

values near ‘crossing threshold’ ... 30

Figure 17. System flow of our transform domain DVC codec 33

Figure 18. Motion estimation for neighboring key frames 34

Figure 19. Bi-directional motion adjustment .. 34

Figure 20. Macroblock rearrange .. 39

Figure 21. R-D performance when different cues are used by the decoder to pick

up worse macroblocks.. 42

Figure 22. Quantization matrices .. 43

Figure 23. The relationship between AC coefficients and quantized values 45

Figure 24. Probability calculation of second significant bit when most significant

bit is decoded as 1 .. 46

Figure 25. Side information is reconstructed to the stripe pattern area when the

decoded value is 0 .. 47

Figure 26. System flow of our pixel domain DVC codec 48

 VIII

Figure 27. R-D performance of our frequency domain DVC codec 53

 IX

List of Tables
Table 1. PSNR of side information using different prediction tools 20

Table 2. Percentage of over-corrected pixels and under-corrected pixels of

foreman 2nd frame .. 28

Table 3. QP Values for encoding key frames ... 43

Table 4. DISCOVER DVC codec testing setting .. 51

Table 5. Side information quality .. 53

 1

Chapter 1: Introduction
Distributed video coding (DVC) is a new video coding paradigm which allows

more flexible coding complexity distribution between encoder and decoder.

Traditional video codecs, for example, H.264, is designed for the situation where

video is encoded once and decoded many times. The coding efficiency is mainly

determined by the computational power of the encoder. But now there are many new

applications, such as sensor networks and security camera systems, where the

computational power of the encoder (sensors or cameras) is weaker than the decoder

(central receiver of recorded videos). For these applications, a reversed paradigm is

needed, and distributed video coding is suitable for this situation.

In traditional closed-loop video coding systems, motion estimation at the encoder

side is used to eliminate temporal correlation of video data and the information of

correlation is transmitted to decoders as motion vectors. The main idea of DVC is to

estimate-and-construct the inter-frame correlation at the decoder side with little help

from the encoder; therefore, the computation burden of motion estimation is shifted to

the decoder [1]. For a typical DVC system, the video source would be divided into

two interleaving sub-sequences: key frame subsequences and Wyner-Ziv (W-Z) frame

subsequences. Key frames would be encoded using traditional encoder (such as the

motion JPEG encoder or any video encoder).

For W-Z frames, the encoder takes the original video frame as input and applies

a low-complexity algorithm to predict and generate some data (refer to as W-Z bits)

that can help the decoder correct any errors in generation of the target frames (refer to

as the side information). On the decoder side, the side information (SI) would be

generated first using any information reconstruction technologies based on temporal

correlation of neighboring key frames. And then, a W-Z decoder uses the W-Z bits

 2

from the encoder to correct any potential errors in the SI such that the resulting W-Z

frames would be close to the original frames at the encoder side. The key components

in a DVC framework are the W-Z bits generator and the SI generator.

The main complexity of encoder in traditional video codec architecture is due to

motion estimation. For distributed video coding, we want a simple, low power

encoder and a powerful decoder. So the encoder cannot perform motion estimation

anymore; the job of predictive coding should be shifted to the decoder side. Whether

this new paradigm can achieve the same coding performance as traditional video

codec is an important research topic. According to previous information theory

research results, the compression efficiency of distributed video coding should match

that of traditional video coding techniques. Two of the most fundamental results

related to the concept of distributed video coding from information theory are

Slepian-Wolf theorem [2] and Wyner-Ziv theorem [3]. The latter is a lossy version of

the former theorem.

Consider when we want to encode two statistically dependent variables, X and Y.

According to information theory, fewer bits (H(X, Y)) are needed to describe the two

variables if we jointly encode them. For video coding, two successive frames can be

coded more efficiently if we consider their predictable relationship by motion

estimation, and then encode the unpredictable residuals. But if the two variables X

and Y are separately encoded, how many bits are required to describe them? For

video coding, what bitrate will be required if frames are intra coded instead of inter

coded?

The Slepian-Wolf theorem tell us that even if two variables X and Y are separately

encoded, once they are jointly decoded, only H(X, Y) bits are required to decode them.

For video coding, when frames are intra coded, if the decoder can jointly decoded

them, the same coding efficiency can be reached. So, theoretically, in distributed

 3

video coding, if the decoder can jointly decode frames, that is, the decoder know the

relationship between the frames and use the information to decode the frames, then

only H(X, Y) bits will be sent to the decoder even if the encoder encodes the frames

in intra mode. The theorem tells us that the performance of distributed video coding

should as good as that of traditional video coding in theory. But until today, there is

no technique based on distributed video coding principle whose performance can be

close to that of traditional video coding.

In this thesis, a macroblock rearranging method is proposed to enhance R-D

performance of distributed video coding. Existing distributed video coding methods

performs particularly worse at low bit-rate end of the R-D curve. For QCIF sequence

with frame rate 15 Hz, the proposed techniques can improve the performance of

existing method by about 0.5 dB in PSNR measure when bit-rate below 200 kbps.

This bit-rate range is reasonable for QCIF sequence. The proposed technique uses

some cues to detect at the decoder side which part of the predicted side information

has potentially high prediction errors and provide the encoder with this information.

The encoder then rearranges the macroblocks so that the channel code-based W-Z bits

generation process can be more efficient. As a result, the decoder can request W-Z

bits to correct the hard-to-predict macroblocks first. Experimental results show that

this technique outperforms current distributed video coding techniques, particularly at

low bit-rate ends.

The organization of this thesis is as follows. Chapter 2 presents a literature

survey on previous work of distributed video coding. In chapter 3, some analyses are

conducted to identify the weakness of current techniques. In chapter 4, the proposed

block rearranging method and system architecture will be described. And the

experimental results will be presented in chapter 5. Finally discussions and future

work are given in chapter 6.

 4

Chapter 2: Previous Work
The key components of distributed video coding are generation of side

information (predicted target frame at the decoder, using only key frames as the

hypotheses) and coding of W-Z bits (data used to correct prediction error at the

decoder side). Currently, there are two major approaches on side information

generation: projection-based motion compensation and cue-based motion

compensation. The first method performs moving block trajectory projection based on

motion smoothness assumption. The projection-based compensation has several

variations such as multi-frame reference projection [20] or sub-pixel motion

projection [5].

An alternative approach on SI generation is the cue-based motion estimation

scheme. In this method, the encoder sends not only W-Z correction bits but also some

image cues for side information generation. The decoder can thus do more accurate

inter-frame correlation discovery using cue bits. Several techniques have been

proposed for cue generating functions, such as CRC codes [6], high pass filters in the

DCT domain [40], and low pass filters in the DCT domain [13]. Although

projection-based methods do not require the encoder to send extra cue bits, comparing

to cue-based estimation, projection-based methods only performs well with ideal

motion behavior. On the other hand, cue-based estimation could provide more robust

and accurate side information but consumes extra bandwidth.

As in traditional close-loop codecs, it is not efficient to use only one coding tool

to handle coding of all video signals. For DVC, the motion projection-based tool and

the cue-based tool are suitable for constructing SI for different types of video signals.

Therefore, low-complexity mode decision at the encoder side is crucial for improving

the performance of DVC codecs. Some DVC frameworks use the differences of

 5

co-located blocks to distinguish the background from the foreground and to determine

the cue bits [13]; however, this approach is limited to stable background patterns.

Kang and Lu proposed a wavelet-based DVC framework [26]. They use

Structural Digital Signature (SDS) [30] to determine which wavelet coefficients are

important, and only these coefficients are sent. For a wavelet tree structure, SDS

records magnitude relation of every node and its child node. If the SDS of wavelet

coefficients is different between two frames, then the two frames are perceptually

different.

SDS of each frame are calculated and compared with the previous frame.

Wavelet coefficients with SDS different from their co-located blocks in previous

frame are marked as important coefficients. Only important coefficients are sent to the

decoder. For non-important coefficients, the decoder copies coefficients from

previous frame. If there are too many important coefficients, then H.264 intra coder

will be used instead. This is a framework that both the complexity of the encoder and

the decoder are low at the same time.

Figure 1 is the RD performance of this method. The plot above in this figure is

R-D curve of Hall sequence, and the plot below is R-D curve of Foreman sequence.

Most part of the Hall sequence is the background without motion, so the number of

important coefficients is small. The performance is near other DVC methods, but

comparing to a traditional video codec such as H.264, there is still a gap. For the

Foreman sequence, most part of the frames is composed of the moving face, the

PSNR of current frame and previous frame is small, so the number of important

coefficients is large. Most blocks are coded using H.264 intra coder, so the

performance is near the H.264 intra case. We can see, this method is only suitable for

sequences with little foreground moving objects, such as in some security camera

applications.

 6

Figure 1. Performance of the cue-based DVC scheme in [22]

2.1 Stanford’s DVC Frameworks

One of the most adopted DVC framework is proposed by Aaron et al.

[1][7][8][11][12][13][14]. In this work, the encoder consists of a quantizer, a channel

encoder, a buffer, and a traditional intra encoder. The decoder consists of a channel

decoder, a side information generator, a frame reconstructor, and a traditional intra

decoder.

At the encoder side, frames in a video sequence are first divided into even frames

and odd frames. The odd frames are intra coded using traditional video codec such as

H.264, and these frames are called ‘key frames.’ The even frames are like B-frames in

 7

traditional video codecs, and these frames are called ‘W-Z frames.’ But in DVC the

encoder does not perform motion estimation and encode the residual. Instead, it treats

these W-Z frames like I frames and encodes them independently by a channel encoder.

The systematic channel encoder produces systematic message bits (the original pixel

values) and parity bits (refer to as the W-Z bits), but only W-Z bits are stored in the

buffer. The systematic bits are all discarded.

At the decoder side, for the ‘key frames,’ the decoder use traditional intra

decoder to decode them. For the ‘W-Z frames,’ the decoder use key frames

neighboring the W-Z frame to generate “side information” of this W-Z frame. The

side information is like predictor in traditional video codec but is only known by the

decoder. The decoder can use any information it has to generate (predict) side

information. For example, the key frames already received can be used as the motion

compensation hypotheses.

After generating the side information, the decoder needs additional bits for

correcting the errors in the side information and reconstructing the original frames.

This is like receiving residuals from encoder in traditional video codec. But the

encoder does not know side information; it only generates W-Z bits of frame. The

decoder requests for W-Z bits and use channel decoder to decode frames. The

systematic bits are discarded at encoder side, so the decoder uses side information as

the systematic bits. By the theory of channel coding, if the channel condition is good

(that is, the decoder prediction error is small), the cross probability is small, and then

fewer bits are needed for recovering the original signal. To be more specific, for DVC,

if the side information of the target frame predicted by the decoder is almost the same

as the W-Z frame we want to decode, then fewer W-Z bits are requested, coding

efficiency is better.

The first version of DVC framework from Stanford does not perform coding in

 8

DCT domain, and spatial redundancy within a frame is not explored. In [14], DCT

domain coding is added to the framework because the performance is better.

In traditional video codecs, when GOP size increases, the coding efficiency will

increase too. That is because there will be more P frames and B frames. In the first

version of the Stanford DVC framework, GOP size is 2. That is, for every two frames,

there is only one W-Z frame. Aaron et al. [11] try to use larger GOP size but the

performance decreases as the GOP size increases. This is very different from

traditional video codec. This is because when GOP size increases, the distance

between W-Z frame and available key frames used to generate side information also

increases, hence, the quality of the side information decreases.

To further improve the coding efficiency, Brites er al. from the DISCOVER

DVC team [16] proposed a variable step size quantization which can make DCT

coefficients less distorted when the dynamic range of coefficient band is smaller. That

is, for a fixed number of quantization levels, if we know the dynamic range, then a

sufficient and small step size can be used, and the distortion can be smaller. But

additional bits are required for representing the value of dynamic range. This method

may be inspired from H.264.

2.2 Side Information Generation

Side information quality directly affects coding efficiency in a DVC codec,

therefore, a lot of research efforts in DVC are devoted to side information generation

algorithms. In [17], some experiments are conducted to show the relation between

PSNR of side information (compared with the original W-Z frame), and number of

W-Z bits requested. In summary, when PSNR of side information is higher, fewer

W-Z bits are needed and the compression ratio is higher.

 9

2.2.1 Interpolation and Symmetric Motion Model

Side information can be interpolated or extrapolated from key frames and

previously reconstructed WZ-frames. This is similar to motion-compensated frame

interpolation which is used to increase frame rate at decoder side. There are many

models being proposed for motion-compensated interpolation. For example, Liu et al.

[29] assume that every frame has same motion field. This model of course is too

simple so that the side information generated are not good. The symmetric motion

model is a simple model but its performance is acceptable for some cases. Many

researchers adopt symmetric motion model and use processing to enhance its

performance [7][18].

The algorithm of the symmetric motion model is explained as follows. If the

W-Z frame is frame Y, and its previous key frame is frame X, next key frame is frame

Z. Symmetric motion model assumes that the object moves at a constant speed. So if

the position of object O is (x1, y1) in frame X and (x1+mvx, y1+mvy) in frame Z, then

the position of object O should be (x1+mvx/2, y1+mvy/2). When the decoder wants to

generate side information of frame Y, it has already received frame X and Z. So it can

perform traditional motion estimation on frame X and Z. For macroblock M at (x1, y1)

in frame Z, there is a best matched macroblock N at (x1+mvx, y1+mvy) in frame X.

Then the decoder will project the average of M and N to (x1+mvx/2, y1+mvy/2) onto

frame Y along the motion path of M and N.

Of course there are many problems when using this model to implement side

information generator. First of all, there may be some macroblocks which do not

satisfy this single-object constant motion model. A macroblock may contain two or

more objects, or objects which do not move at a constant speed. Secondly, when the

decoder projects every matched macroblock pair to W-Z frame, there may be some

 10

pixels which have no projection, or twice or more projections. For pixels that are

projected twice or more, it is not trivial to choose the best projection pair without

knowledge of the original W-Z frame. For pixels that have no projections, the decoder

must use some algorithms to interpolate their values as well.

Klomp et al. [5] believe that using motion estimation with more accuracy may

increase side information quality. However, due to motion model mismatch, the actual

improvements could be very little. Li and Delp [20] conducted some experiments on

the amount of macroblocks in key frames used to generate side information. They

discovered that the more macroblocks used, the better side information is generated,

especially when these macroblocks come from different key frames.

In the above two proposals, decoders must do more computations to either

increase motion estimation accuracy or to increase the number of reference

macroblocks used. Ascenso et al. in DISCOVER team [18] adopt a different approach

and develop a pixel domain DVC codec IST-PDWZ and a transform domain DVC

codec IST-TDWZ. Their proposed technique is also based on the framework from

Stanford with symmetric motion model. But before performing motion estimation on

key frames, a low pass filter is used to make the estimated motion vectors less noisy.

After obtaining motion vectors, if macroblock Y would be the average of macroblock

X and Z. Bi-directional motion estimation is then used to fine-tune the motion vectors.

After that, a smoothing filter is applied to the motion vectors because the motion field

should be smooth. We can see the R-D performance in 0, this adjustment indeed

makes performance better.

 11

Figure 2. R-D performance of the DVC scheme in [18]

2.2.2 Hash Information as Motion Cue

In previous section we see how to use symmetric motion model to utilize key

frames to generate good side information. We know symmetric motion model is

limited. To further increase the quality of side information, it is possible for the

encoder to compute and transmit some extra information to assist the decoder to

generate better side information. Some researchers refer to this information as hash

[13]. When decoder wants to generate side information, it does not perform motion

estimation on neighboring key frames. Instead, it can obtain motion vector by directly

comparing hashes of macroblocks. When hashes of two macroblocks are similar, the

content of these two macroblocks are expected to be similar too.

Traditional hashes, for example, CRC and MD5, are very sensitive to content

changing. But hashes used to compare image similarity should only be sensitive to

perceptual changes in the pixel data. This kind of hash is called media hash, robust

hash, soft hash, and image fingerprinting. Distance between hashes can be used as a

measure of content similarity. If the hash is good enough, that is, a decent

 12

representation of macroblocks, motion estimation by comparing hash shall give us a

good result.

Media hash design is an active research topic, and many papers have already

been published. But most of these papers design media hash for content-based

retrieval, watermarking, image authentication, and image database management.

Media hash can be implemented by calculating the histogram of image [34], or the

position of edges [35] or feature points [36]. DCT sign information is also useful [37].

The researchers hope that the media hash can be robust to geometric transformation

and compression. So calculations of some media hashes are sometimes too

complicated, and they are not suitable for DVC. Furthermore, these applications do

not concern about the size of hashes, but for DVC, hash size affects bitrate.

For DVC, simple and small hashes are considered. In [13], using hash to help

decoder to generate side information is first mentioned. The authors use sub-sampled

and coarsely quantized version of macroblock in W-Z frame as their hash. To

decrease overhead of hash, when co-located macroblock in previous key frame is

similar to macroblock in current W-Z frame, no-hash bit is sent instead.

Girod et al. [8] also mentioned that the possibility of using high frequency

portion of a macroblock as a distinct feature of the block. For an 8-by-8 block, 54

most high frequency coefficients (most of them may be zeros) with run-length and

Huffman compression are sent to decoder as hashes. The remaining 10 low frequency

coefficients are channel encoded and decoded. Although this idea seems reasonable,

but in practice, it is not trivial for decoder to perform motion estimation based on high

frequency coefficients.

 13

2.3 Channel Coding for Side Information Correction

The key concept in DVC is that the side information predicted at the decoder

side can be regarded as a video frame corrupted during the transmission over a

(hypothetical) noisy channel. In DVC, the communication channel between the

encoder and the decoder is a virtual noisy channel and side information is the noisy

version of the original frame transmitted from the encoder across the channel to the

decoder. Since the encoder has knowledge of the original frames, it can generate

systematic channel codes to correct any potential errors of the side information at the

decoder side. In practice, only the W-Z bits of the channel codes have to be

transmitted to the decoder. There are many factors of channel coding that affect the

coding efficiency of the DVC framework. Two of the most significant factors are the

model of the virtual noisy channel and the channel code used.

2.3.1 Virtual Channel Model

For channel decoding, fewer W-Z bits will be requested if we know more about

the nosie characteristics of the channel. But in DVC the noise is strongly related to

side information quality which is not stationary. In early days, only one single

statistics model (usually Laplace distribution), is used to describe the noise

distribution for the whole sequence or the whole frame. This is not practical, because

actual noise distribution is far more complicated and cannot be modeled by a single

Laplace distribution. Borchert et al. [21] propose that if each frame is partitioned into

two types of regions, occluded regions and non-occluded regions, and two different

statistics models are used to model the errors for different types of regions, the

performance will be better than using one statistics model for the whole frame.

Since decoder does not have the original frames, it can not get the exact

 14

parameters of the error distribution. The decoder need to estimate the parameters.

However, one may not need exact parameters since the decoding algorithm allows

some tolerance on the exactness of the statistics model. The tolerance range of the

parameters is different from frame to frame. A distribution which is not sensitive to

errors in parameter estimates and achieves high compression ratio such that decoder

only needs few W-Z bits from the encoder to correct SI prediction errors is desired.

Westerlaken et al. [22] have shown that when a single distribution is used to describe

channel noise, two-sided Gamma and generalized Gaussian distribution have better

decoding performance than Laplace and Gaussian distributions when LDPC codes are

used. The compression ratio when using different error models is in Figure 3. They

also discovered that for generalized Gaussian, there is a small range of shape

parameter that makes LDPC performance less sensitive to the choice of the variance

parameter. But they do not mention how to find this small range.

Figure 3. Compression ratio when different error models are used

 15

2.3.2 Channel Code

In DVC, the virtual channel noise is not stationary, so rate-adaptive channel

codes are needed in distributed video coding schemes. Channel codes near theoretical

bound and rate-adaptive are suitable for DVC. Punctured turbo codes are well known

for their burst error correcting capability and their performance is very close to

Slepian-Wolf bound [23], so at the beginning, many DVC papers use turbo codes as

their channel codes.

Low Density Parity Check (LDPC) codes are also channel codes near

Slepian-Wolf bound. They have been used effectively in fixed-rate distributed source

coding [25]. But in rate-adaptive cases, syndromes are punctured before they are sent,

when compression ratio is high, the performance will be poor because in the decoding

graph there are many single-connected or isolated nodes. The Stanford team presents

two kinds of LDPC-based rate-adaptive codes: LDPC Accumulate codes (LDPCA)

and Sum LDPC Accumulate codes (SLDPCA) [15]. The syndrome bits of LDPCA

and SLDPCA codes contain more redundant information because of accumulation, so

when a subset of syndrome bits are truncated, the performance will not be affected as

much as the original LDPC codes. In Figure 4, circles are source bits and squares are

parity bits after encoding. Left picture is the decoding graph of LDPCA code when all

parity bits are not discarded. The center picture is the decoding graph of LDPCA code

and the right picture is decoding graph of LDPC when half of parity bits are discarded.

All nodes in the LDPCA decoding graph are neither isolated nor single-connected, so

when compression ratio is high, LDPCA codes still have good performance.

 16

Figure 4. Decoding graph of LDPC codes and LDPCA codes

Figure 5. Rate required by turbo codes and SLDPCA codes

In 0, we can see that when conditional entropy H(X|Y) is larger than 0.5, the rate

required for turbo codes increases faster and becomes bigger than LDPC codes,

especially when H(X|Y) is larger than 0.8. Furthermore, LDPCA has one advantage

over turbo codes, that is, syndrome bits can be used to test the correctness after

decoding. When the error position can be detected after decoding, we can do

something to enhance the regions where errors are serious. In [28], the authors decode

the first 3 bit-planes and then perform full searches for side information which

significantly reduces decoding errors. After adjusting the side information, the

decoder keeps decoding remaining bit-planes, and the performance is better.

 17

Chapter 3: Analysis on DVC Virtual Channel

Error Characteristics
In this chapter, we have conducted some investigations on the performance of

DVC-based coding mechanisms. In addition to examine the impact of error

distribution models on coding efficiency, we also study the validity of the common

DVC assumption of using log likelihood ratio as an indication of the reliability of the

side information values. All experiments we describe here are tested using our

pixel-domain DVC framework with lossless key frames. The frame rate is 30 fps.

3.1 Study on Virtual Channel Models

3.1.1 Types of Channel Models

In DVC coding schemes, a Laplace distribution L (µ, b) is in general used to model

the prediction error of side information. The parameter µ is the mean parameter and

often set to 0. The parameter b is the scale parameter. So, the probability density

function of errors is µ−−= xbe
b

xf
2

)(. This definition is often adopted in DVC papers,

which is slightly different from the traditional Laplacian probability density function

b

x

e
b

xf
µ−

−
=

2
1

)(. We use the definition former, so when the errors are more

concentrated, the value of scale parameter will be larger. The two parameters may be

estimated using some sample video sequences offline or estimated by the decoder

adaptively while decoding a sequence. However, our initial experiments show that

when a single distribution model with few parameters is used, the coding efficiency of

the DVC schemes is relatively insensitive to the distribution being used to model the

“channel-imposed” error of side information. In other words, correctly choosing

parameters of distribution does not affect number of LDPC correction bits very much.

 18

The reason is that the side-information prediction error model is quite different from

the communication channel error model. In side-information prediction, large errors

may also occur when energy of original signals are high due to errors in motion

compensation models. That is, even when pixel values in original frames are big, it is

still possible that the side-information errors are serious.

In order to test the relation between the accuracy of channel error model

parameters and the error-correction efficiency on the prediction errors of the side

information, we use three different distributions: Laplace, Gaussian, and uniform

distributions to model channel errors. The parameters of Laplace distribution and

Gaussian distribution are calculated offline. The uniform distribution is used to

simulate the situation where we do not know error distributions at all.

In addition, an adaptive channel error model is also used in which, the

distribution parameters are estimated not for the whole sequence, but adaptively for

every 44×48 region of pixels. Therefore, the adaptive error model should fit the true

error distribution mush better than the non-adaptive ones. The histograms of the

estimated Laplace parameters of the side-information prediction error models for the

‘Foreman’ and the ‘Mother-and-Daughter’ sequences are shown in Figure 6. One can

see that when the ‘scale’ parameter of Laplace distribution is larger, the error

distribution is more concentrated around the mean. Many areas in the

‘Mother-and-Daughter’ sequence have very small residuals, so when using a Laplace

model to fit it, the scale parameters are larger than that of the ‘Foreman’ sequence.

 19

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

Laplace coefficient (mean)

tim
es

Foreman

-1.5 -1 -0.5 0 0.5 1 1.5 2
0

50

100

150

200

250

300

350

400

Laplace coefficient (mean)

tim
es

Mother and Daughter

Figure 6. Histograms of Laplace parameters (mean and scale)

In this experiment, the sequences we use are of QCIF resolution, and only the

first 101 frames are tested. Key frames are not compressed, in other words, they are

lossless. The motion compensated interpolation procedure similar to that proposed in

IST-PDWZ [38] with key frame smoothing and fine-tuning of bi-directional motion

vectors is used to increase side information quality. The side information PSNR

values using different tool combinations are listed in Table 1. Based on Table 1, tool

set (d) is used in the following experiments. We calculate the R-D curves for W-Z

frames and see how channel noise model chosen affects coding performance of side

information prediction errors.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

80

90

Laplace coefficient (scale)

tim
es

Foreman

-0.5 0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

80

90

Laplace coefficient (scale)

tim
es

Mother and Daughter

 20

Table 1. PSNR of side information using different prediction tools

 a b c d e f G h

Foreman 30.94 30.111 34.3677 34.515 32.7166 35.2435 35.7557 35.1935

Mother

And

Daughter

36.817 36.9148 39.43 39.6368 40.9836 41.5151 41.4215 44.7172

Coastguard 33.8926 33.9785 35.866 36 36.2894 34.3556 33.5139 33.8707
(a) Our Method

(b) Our Method + nearest mv for hole

(c) Our Method + Bi-directional mv adjust

(d) Our Method + nearst mv for hole +Bi-directional mv adjust

(e) Our Method + nearest mv for hole +Bi-directional mv adjust + low-passed key frame

(f) Our Method + nearest mv for hole +Bi-directional mv adjust + low-passed key frame

+ median mv

(g) Our Method + nearest mv for hole +Bi-directional mv adjust + median mv

(h) Our Method + nearest mv for hole +Bi-directional mv adjust + low-passed key frame

+ median mv (using non-low-passed key frame)

One can see in Figure 7, for both sequences, at low bit-rate, the differences

between the best and the worst performance is less than 0.1 dB. At higher bit-rate, the

difference is usually less than 1dB. Also note that, for a QCIF sequence, 1dB gain of

PSNR above 40dB is virtually not perceptible by human observer under normal

viewing conditions. It means that for most significant bit-plane, choosing Laplace or

Gaussian model dose not affect performance much in practical sense.

 21

Figure 7. R-D curve of ‘Foreman’ and ‘Mother and Daughter’

The results from IST-PDWZ are also projected in Figure 7. Although the final

PSNR of our corrected side information is worse than those published in [38] for

about 2.5 dB, the slopes of our R-D curves are the same or even larger than the slopes

of the curves of IST-PDWZ. The difference in PSNR is largely due to the initial

quality of side information before error correction. The differences in slopes may be

due to different channel coding techniques (LDPCA in our experiments, and turbo

 22

-150 -100 -50 0 50 100 150
0

0.05

0.1

0.15

0.2

0.25

Residual of SI

P
ro

b.

Foreman

Residual Range:
[-132 109]

-80 -60 -40 -20 0 20 40 60 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Residual of SI after 2nd bitplane decoded

P
ro

b.

Foreman

Residual
Range:
[-63 63]

coder in IST-PDWZ) and it shows that the channel coding efficiency of LDPCA may

be better than that of turbo code for DVC.

3.1.2 Adaptive Laplace Channel Model for Each Bit-planes

In previous section we see that the channel behavior-based error model only has

marginal influence on DVC coding efficiency. One of the possible reasons is due to

the fact that side information errors are not spatially invariant. Therefore, single error

channel model is not sufficient for modeling the entire sequence. But in previous

graph, we can see that even by choosing different parameters for each small area

adaptively, the performance increase is not obviously. Other possible reasons are that

single error model is used for every bit-plane decoding, or that the channel decoding

method used in many DVC papers is not suitable for DVC.

-100 -80 -60 -40 -20 0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Residual of SI after 1st bitplane decoded

P
ro

b.

Foreman

Residual Range:
[-100 93]

-40 -30 -20 -10 0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Residual of SI after 3rd bitplane decoded

P
ro

b.

Foreman

Residual Range:
[-31 31]

 23

-15 -10 -5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Residual of SI after 4th bitplane decoded

P
ro

b.

Foreman

Residual
Range:
[-15 15]

Figure 8. Error distributions when 1st ~ 4th bit-planes are decoded

We can see how the error distribution changes as more bit-planes are decoded in

Figure 8. When more bit-planes are decoded, errors are more concentrated and their

means are more closed to 0. Now we try to use different Laplace models for each

bit-plane. The R-D curve is shown in Figure 9. We can see that the performance is

worse than using one distribution parameter value for all bit-plane. It is even worse

than using a single Gaussian model for all bit-planes when bitrate exceeds 350 kbps.

It may be because that when using different Laplace models for each bit-plane, the

Laplace model for less significant bit-plane will be more concentrated because the

error distribution of SI when decoding less significant bit-plane is more concentrated.

However, actually when decoding less significant bit-plane, the probability of bit

error is larger. So, the error model does not fit the actual error distribution, and it

decreases the performance.

 24

Figure 9. R-D curve of ‘Foreman’ when different Laplace models are used for

each bit-plane

3.2 LDPCA Decoding

3.2.1 LLR (Log Likely-hood Ratio) Values

The LDPC decoding of each bit x in a bitplane of the W-Z frame is based on the

LLR (log likely-hood ratio). The relationship of P(x=0) and the corresponding LLR

values are shown in Figure 10. When the channel error is small, P(x=0) will not be

closed to 0.5, and absolute value of LLR will be far from 0. In this situation, fewer

W-Z bits will be necessary to correct the errors in side information. So, in this section,

we investigate the LLR values of every pixel in the Foreman sequence to estimate the

number of W-Z bits required for error correction.

 25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-8

-6

-4

-2

0

2

4

6

8

prob(x is 0)

LL
R

Figure 10. P(x = 0) and corresponding LLR values

0 1 2 3 4 5 6 7
0

2000

4000

6000

8000

10000

12000

14000

16000

LLR

T
im

es

Figure 11. Absolute values of LLR when decoding 1st bit-plane of ‘Foreman’

2nd frame

We plot the histogram of absolute values of LLR when decoding 1st bit-plane of

the 2nd frame of the ‘Foreman’ sequence in Figure 11. Most of the values are around

 26

3.89 and 6.91. We want to see the amount of pixels with small absolute values of LLR,

because when the absolute values of LLR are small, it means these pixels are

considered noisy. We discover that these pixels are all with side information pixel

values near 127 (from 124 to 133). 127 is the threshold between 0 and 1 in the 1st

bit-plane. We show the scatter plot of side information value and absolute value of

LLR when decoding 1st bit-plane of ‘Foreman’ 2nd frame in Figure 12. The scatter

plots for 2nd and 3rd bit-planes are in Figure 13 and Figure 14. We can see that pixels

with small LLR values are all with side information values near the threshold of

particular bit is ‘0’ and ‘1’. We call this threshold ‘crossing threshold.’

Figure 12. Absolute value of LLR and pixel value of side information when

decoding 1st bit-plane of ‘Foreman’ 2nd frame

 27

Figure 13. Absolute value of LLR and pixel value of side information when

decoding 2nd bit-plane of ‘Foreman’ 2nd frame

Figure 14. Absolute value of LLR and pixel value of side information when

decoding 2nd bit-plane of ‘Foreman’ 2nd frame

Larger absolute values of LLR means less correction bits are needed, but actually

it is not certain that their errors are small. Bitrate may be wasted for these pixels.

 28

Those pixels with large absolute LLR but large errors are called under-corrected

pixels, and pixels with small absolute LLR but small errors are called over-corrected

pixels.

For 2nd frame of foreman sequence, we set the threshold of side information error

at 5 and 25. So when side information is large than 25, we call it “Large error”, while

side information is smaller than 5, we call it “Small error.” We also set the threshold

of |LLR| at 3.89. These thresholds are decided based on the distribution of side

informaion and LLR values of this particular frame. After the thresholds are decided,

we can calculate the percentage of over-corrected pixels and under-corrected pixels

and the result is in Table 2. When more bitplanes are decoded, the percentage of

over-corrected pixels is also increased. Although there is only 10% of pixels are

over-corrected, we want to see how these pixels affect the performance.

Table 2. Percentage of over-corrected pixels and under-corrected pixels of

foreman 2nd frame

 Over-corrected Under-corrected

1st bitplane 5.56% 0.6%

2nd bitplane 6.03% 0.68%

3rd bitplane 10.3% 2.13%

3.2.2 Over-Corrected Pixels

An experiment is conducted to see how these over-corrected pixels affect bitrate.

To achieve this, we peek at pixel values of the original WZ frames. For pixels whose

side information is near ‘crossing threshold’ and error smaller than 5, we assign side

information pixel values to the original frame pixels and do LDPCA encoding and

 29

decoding. Here we change LLR of these pixels to 3.89 or -3.89. In this experiment,

the key frames are encoded using H.264 intra encoder with QP 25. The two R-D

curves are shown in Figure 15. One of them is the original R-D curve. Another one is

the R-D curve when we ignore pixels with side information near crossing threshold

and small residuals. It represents the ideal situation where for all pixels with small

residual, the side information values are not near crossing threshold. From the

experimental results, we can see that the value of side information is impartment and

affects bitrate much although there is only about 10% of pixels are modified. As

bitrate increases, the R-D performance difference increases.

But this experiment could not happen in real world because the encoder cannot

detect which pixels need to be modified. A practical solution is for the decoder to

ignore pixels near ‘crossing threshold’ when it performs LDPCA decoding. So the

encoder does not have to detect and modify these pixels and re-encode them. In this

experiment, the decoder set LLR values of these pixels to 3.89 or -3.89. These pixels

are not modified after each bit-plane is decoded, and when the LDPCA decoder tests

convergence or checks syndromes, these pixels are ignored. Here we use ‘Carphone’

sequence to test, and the R-D curve is in Figure 16.

 30

Figure 15. R-D performance when ignoring pixels with side information near

‘crossing threshold’ and small residual

Figure 16. R-D performance when decoder ignore pixels with side

information values near ‘crossing threshold’

We can see that the performance is worse when decoder ignore pixels with side

information values near ‘crossing threshold.’ This is because there are too many

syndromes not checked because they contain information of ignored pixels. So, when

 31

LDPCA iterative termination condition is reached, it finishes decoding with errors,

and more syndrome bits are requested.

3.2.3 Prioritized Decoding of Side Information Pixels

Based on the previous experiments, we propose a way to perform prioritized

correction of side information. We can divide pixels into two groups, and the two

groups are in different LDPCA coding blocks so we can deal with them separately. In

order to implement this approach, there are some key issues which need to be

resolved. First, how can the DVC codec classify the side information into pixels into

two groups? Secondly, how to encode syndrome bits of different groups of pixels

separately at the encoder?

The decoder can see the side information; it can partition pixels into two groups

and send the group information back to the encoder. If the group information is at

pixel level, then the amount of bits used to describe group information would be too

high. Therefore, we compute the group information at macroblock level. For each

macroblock in a frame, it will be classified into one of two groups.

When the encoder receives group information, it will rearrange macroblocks in a

frame. The macroblocks belong to the same group will be channel-coded together, so

they will be LDPCA encoded within a block. This way, the LDPCA syndrome bits

can be spent on the area where the residual values are large, and errors are corrected

more efficiently. In chapter 4 we will describe the proposed method of classifying and

re-ordering macroblocks in detail. The experimental results will be given in chapter 5.

 32

Chapter 4: System Architecture
In this chapter, the proposed DVC codec will be described in details. Our DVC

codec is implemented in C. Macroblocks in a frame will be classified into different

groups according to their side information quality. Each group of macroblocks will be

LDPCA-coded in the same coding block. So we can encode and decode each group of

macroblocks according to their significance (priority) in R-D improvement. The

prioritized channel decoding will enhance the performance because WZ bits are

requested more efficiently.

We have implemented both pixel domain and frequency domain DVC systems.

In the following sections, we will use frequency domain DVC codec to explain the

proposed scheme, and then the difference between pixel and frequency domain

approach will be described.

4.1 System Block Diagram
The system block diagram of the proposed frequency domain DVC codec is

shown in Figure 17. First, a sequence will be divided into key frames and WZ frames.

Odd frames are key frames and even frames are WZ frames. Key frames are encoded

and decoded using H.264 main profile intra coder. The version of H.264 codec we use

is JM 9.0. The QP values are determined based on quantization matrices used for WZ

frames.

The decoder uses key frames it has received to generate side information of WZ

frame. Then it will classify macroblocks into two groups, SA and SB, based on side

information quality. SA contains 25% macroblocks with worse side information

quality and SB contains 75% macroblocks with less side information error. The

decoder does not see the original WZ frame, so it can only classify macroblocks based

 33

on some cues available. The classifying result will be sent to the encoder. And then

the encoder will group macroblocks in WZ frame while the decoder will group

macroblocks in side information according to the classifying result. Macroblocks in

same group will be gathered together.

Macroblocks in WZ frame and side information are then transformed and

quantized by encoder and decoder. The encoder will calculate quantization interval

for each band and send the values to the decoder. So the encoder and decoder use the

same quantization interval to quantize coefficients.

 The quantized coefficients of WZ frame and side information are then split into

bit-planes. Each bit-plane of a WZ frame will be LDPCA encoded by the encoder.

The WZ bits are stored in a buffer and they will be requested by the decoder.

Figure 17. System flow of our transform domain DVC codec

The decoder will request for WZ bits in the buffer and perform LDPCA

decoding, and the detail will be described later. Only macroblocks in SA are decoded.

After every bitplanes of every coefficient bands are decoded, these decoded

coefficients will be inverse transformed and macroblocks will be rearranged to

original order. The following sections will describe the details in each step of the

 34

proposed algorithm.

4.2 Side Information Generation

As we describe above, key frames are coded by H.264 intra coder and sent to the

decoder. The decoder uses neighboring key frames to interpolate side information of

center WZ frame.

 Steps of side information generation are described in this section.

Figure 18. Motion estimation for neighboring key frames

Figure 19. Bi-directional motion adjustment

In step one, motion estimation is performed for two neighboring key frames, as

shown in Figure 18. Size of macroblock is 16 by 16, search range is ±32, and motion

vector accuracy is at is full pixel precision. The search range is larger than traditional

video codec because the time distance between key frames is 2. In this step, we only

use forward motion estimation to guess the motion field of WZ frame. There are

many works we can do in order to make the motion field more closed to true motion.

 In step two, refer to DISCOVER’s DVC codec[18], a bi-directional motion

adjustment is performed, and the search range is ±10 with half pixel precision. The

half pixel values are calculated using H.264 six-tap filter. The search range is smaller

so the adjusted motion vector will not be very far away from original motion vector.

 35

As in Figure 19, if the motion vector obtained in step one motion estimation is (X1, Y1)

and the center of macroblock in WZ frame is (Px, Py), then when performing

bi-directional motion adjustment, the center is fixed and motion vectors (X1+dx,

Y1+dy) with dx and dy within range ±10 are searched. The new motion vector (X’, Y’)

will make SAD (sum of absolute difference) value of macroblock pair in neighboring

key frames smallest. Every motion vectors obtained in step one will be modified in

this step.

In step three, median filter is applied in order to smooth the estimated motion

field. This step is also suggested by the DISCOVER DVC codec [16]. After motion

estimation for neighboring key frames and bi-directional motion adjustment, for each

macroblock, its motion vector and the motion vectors of eight-connected macroblock

neighbors are listed. Then a median motion vector is obtained among these motion

vectors. When deciding which one of them is the median, a weight for each motion

vector is used.

There are eight neighbors with motion vectors m1 to m8, and motion vector of the

center macroblock is m0. For the center macroblock, the motion vector m0 will point

to two macroblocks in neighboring key frames, and SAD of these two macroblocks is

s0. When m0 is replaced by m1 to m8, the SAD of neighboring two macroblocks will

be s1 to s8. The weight value wi of the neighbor motion vector mi is defined as s0/si. So,

if mi makes neighboring macroblocks similar, then its weight is larger. After median

motion vector is obtained, the motion vector will be replaced with this median motion

vector. Now the motion field of WZ frame is obtained and side information will be

interpolated based on this motion field.

Average of macroblocks in neighboring frames is interpolated to generate side

information. The SAD values of macroblock in neighboring key frames are recorded

for macroblock classification later. Now, there are some pixels which have more than

 36

one projections from neighboring key frames. For such pixels, the average of

interpolated values of all projections is used as the side information. Some pixels do

not have projections at all, and these pixels remain unfilled as holes in the side

information..

Two hole-filling procedures are applied to complete the side information. For the

first procedure, if the Manhattan distance between the hole and nearest filled pixel is

within 25 pixels, then the motion vector of this filled pixel is used by the hole for

motion compensation from neighboring key frames. Otherwise, another hole-filling

procedure is applied. Distance upper bound is chosen as 25 pixels because we do not

want to use motion vectors of pixels too far away.

The remaining holes will be filled by the second hole-filling procedure. Now for

each macroblock in side information, calculate the percentage of holes. If the

percentage of holes is less than 40 percent, then motion estimation for this

macroblock and previous key frame in display order will be performed. Only filled

pixels are used to calculate SAD, and we achieve this by using a mask to ignore

difference values at holes when calculating SAD. The macroblock size is 16 by 16

and the search range is ±32. The macroblock with smallest SAD in previous key

frame is located and the corresponding pixels in this macroblock will be used to fill

the holes in side information.

If the percentage of hole is larger than 40 percent, then the size of macroblock

will be enlarged by 2 each time until it reaches 32 by 32. The percentage of holes is

40 percent at most because when there are too many holes in one macroblock, then

the valid pixels used to find motion will be minority. Thus an incorrect motion vector

will be obtained. The size of macroblock used to find motion vector for holes can not

be too large, too. When the macroblock size is too large, the results of motion

estimation will be bad because pixels within one macroblock in practice have

 37

different motions.

4.3 Macroblock Classification and Grouping

Given the generated side information, the decoder will classify macroblocks into

groups SA and SB. SA contains 25% macroblocks with worse side information quality

and SB contains 75% macroblocks with less side information error. For QCIF

resolution sequences, there are 24 macroblocks in group SA and there are total 99

macroblocks. And this makes each bit-plane of each coefficient band of group SA

contains 384 bits (24 macroblocks are equal to 384 4 by 4 blocks,) and the LDPCA

block size we use when only group SA is decoded is 396. If we pick up 25

macroblocks for group SA, then each bit-plane of each coefficient band of group SA

will contain 400 bits and this is larger than 396.

Because the decoder does not have the original WZ frames, therefore it must

estimate the quality of side information in order to classify macroblocks. Many

features of the side information image, such as the motion field variance, the number

of edges or corner points, and the SAD values of macroblocks in neighboring key

frames, can be used as estimates for classification.

To obtain motion field variance, we need dense motion field. When generating

side information, motion vectors of macroblock size 16 by 16 is generated. And then a

16 by 16 macroblocks is divided to four 8 by 8 blocks. Start from motion field already

obtained, motion estimation similar to bi-direction adjustment above is performed and

the search range is ±10. So, for each macroblock, there will be four motion vectors,

and we get a dense motion field. We can further divide each 8 by 8 macroblock to

four 4 by 4 macroblocks and get a more dense motion field. After dense motion field

is obtained, motion vector length variance of every macroblock is calculated and this

variance is used to classify macroblocks. When the variance is larger, we think the

 38

side information quality of this macroblock is worse.

To obtain number of edges and corner points, we use Sobel filter to get edges

and use Harris corner detector to get corner points. The Sobel filter size is 3 by 3, and

the setting of Harris corner detector is radius 3, sigma 1, and threshold 10 for all test

sequences. The values of radius and sigma are recommended by the author of Harris

corner detector and the threshold is set as 10 so there will not be too many annoying

corner points. When there are more corner points or edges in a macroblock, we think

the side information quality is worse. We use these features as cues because we have

observed that for Foreman sequence, macroblocks containing these features have

worse side information quality.

To obtain SAD of macroblocks in neighboring key frames, we do not do

additional works because we obtain these values when generating side information.

When SAD of macroblocks in neighboring key is larger, we think the quality of side

information is worse. And this is because side information quality is proportioned to

SAD of macroblocks for many pixels statistically, especially when motion is well

guessed.

After trying these cues, we have discovered empirically that SAD of

macroblocks in neighboring key frames is a good cue for the decoder to pick up worse

macroblocks, as shown in Figure 21. Several sequences are tested in pixel domain

with lossless key frames, and the optimal R-D curve is the case where we take a peek

at the original WZ frame and choose macroblocks that have the worst side

information.

The decoder will use 99 bits to descript classifying result and the result will be

sent to the encoder. Bit ‘0’ represents group SA and bit ‘1’ represents group SB. The

decoder will rearrange macroblocks in the side information and macroblocks of same

group will be gathered together. The encoder will also rearrange macroblocks in WZ

 39

frame in the same way.

Figure 20. Macroblock rearrange

The macroblocks of group SA are placed at top of the frame, and macroblocks of

group SB are placed at bottom of the frame, as shown in Figure 20. The order of

macroblocks of same group is maintained in scan-line order. So if there are 2

macroblocks of group SA, m1 and m2, and m1 precedes m2 before the rearrangement.

Then m1 will precede m2 after the rearrangement. After macroblock reordering and

grouping, macroblocks of the same group will be packed in the same LDPCA block

for W-Z frame coding.

 40

0 50 100 150 200 250
37

38

39

40

41

42

43

bit rate (kbps)

P
S

N
R

 (
dB

)

Hall

Original
By SAD

By motion field length variance (8x8)

By motion field length variance (4x4)

By number of corner points
Optimal

0 100 200 300 400 500 600
26

28

30

32

34

36

38

40

bit rate (kbps)

P
S

N
R

 (
dB

)

Ice

Original
By SAD

By motion field length variance (8x8)

By motion field length variance (4x4)

By number of corner points
Optimal

0 20 40 60 80 100 120 140 160 180 200
40.5

41

41.5

42

42.5

43

43.5

44

44.5

bit rate (kbps)

P
S

N
R

 (
dB

)

Mother and Daughter

Original
By SAD

By motion field length variance (8x8)

By motion field length variance (4x4)

By number of corner points
Optimal

0 50 100 150 200 250 300 350 400 450
42.5

43

43.5

44

44.5

45

45.5

46

bit rate (kbps)

P
S

N
R

 (
dB

)

Salesman

Original
By SAD

By motion field length variance (8x8)

By motion field length variance (4x4)

By number of corner points
Optimal

0 20 40 60 80 100 120 140 160
47.2

47.3

47.4

47.5

47.6

47.7

47.8

47.9

48

48.1

48.2

bit rate (kbps)

P
S

N
R

 (
dB

)
Grandmother

Original
By SAD

By motion field length variance (8x8)

By motion field length variance (4x4)

By number of corner points
Optimal

0 50 100 150 200 250 300
33

34

35

36

37

38

39

40

41

bit rate (kbps)

P
S

N
R

 (
dB

)

Highway

Original
By SAD

By motion field length variance (8x8)

By motion field length variance (4x4)

By number of corner points
Optimal

0 50 100 150 200 250
43.8

44

44.2

44.4

44.6

44.8

45

45.2

45.4

45.6

45.8

bit rate (kbps)

P
S

N
R

 (
dB

)

Miss

Original
By SAD

By motion field length variance (8x8)

By motion field length variance (4x4)

By number of corner points
Optimal

0 20 40 60 80 100 120 140 160 180 200
37

38

39

40

41

42

43

44

45

bit rate (kbps)

P
S

N
R

 (
dB

)

News

Original
By SAD

By motion field length variance (8x8)

By motion field length variance (4x4)

By number of corner points
Optimal

 41

0 50 100 150 200 250
40.8

41

41.2

41.4

41.6

41.8

42

42.2

42.4

42.6

bit rate (kbps)

P
S

N
R

 (
dB

)

Bridge (close)

Original
By SAD

By motion field length variance (8x8)

By motion field length variance (4x4)

By number of corner points
Optimal

0 50 100 150 200 250 300 350 400
33

34

35

36

37

38

39

40

bit rate (kbps)

P
S

N
R

 (
dB

)

Carphone

Original
By SAD

By motion field length variance (8x8)

By motion field length variance (4x4)

By number of corner points
Optimal

0 20 40 60 80 100 120
49.3

49.4

49.5

49.6

49.7

49.8

49.9

50

50.1

50.2

bit rate (kbps)

P
S

N
R

 (
dB

)

Container

Original
By SAD

By motion field length variance (8x8)

By motion field length variance (4x4)

By number of corner points
Optimal

0 50 100 150 200 250 300 350 400 450
32

33

34

35

36

37

38

39

bit rate (kbps)

P
S

N
R

 (
dB

)

Foreman

Original
By SAD

By motion field length variance (8x8)

By motion field length variance (4x4)

By number of corner points
Optimal

0 20 40 60 80 100 120
48.5

49

49.5

50

50.5

51

51.5

bit rate (kbps)

P
S

N
R

 (
dB

)

Akiyo

Original
By SAD

By motion field length variance (8x8)

By motion field length variance (4x4)

By number of corner points
Optimal

0 20 40 60 80 100 120 140 160 180
43

43.1

43.2

43.3

43.4

43.5

43.6

43.7

43.8

bit rate (kbps)

P
S

N
R

 (
dB

)

Bridge (far)

Original
By SAD

By motion field length variance (8x8)

By motion field length variance (4x4)

By number of corner points
Optimal

0 20 40 60 80 100 120 140

47.6

47.8

48

48.2

48.4

48.6

48.8

49

49.2

bit rate (kbps)

P
S

N
R

 (
dB

)

Claire

Original
By SAD

By motion field length variance (8x8)

By motion field length variance (4x4)

By number of corner points
Optimal

0 100 200 300 400 500 600 700 800 900 1000
22

24

26

28

30

32

34

bit rate (kbps)

P
S

N
R

 (
dB

)

Football

Original
By SAD

By motion field length variance (8x8)

By motion field length variance (4x4)

By number of corner points
Optimal

 42

0 100 200 300 400 500 600 700 800 900
20

25

30

35

bit rate (kbps)

P
S

N
R

 (
dB

)

Soccer

Original
By SAD

By motion field length variance (8x8)

By motion field length variance (4x4)

By number of corner points
Optimal

0 50 100 150 200 250 300 350 400
37.5

38

38.5

39

39.5

40

40.5

41

41.5

42

bit rate (kbps)

P
S

N
R

 (
dB

)

Suzie

Original
By SAD

By motion field length variance (8x8)

By motion field length variance (4x4)

By number of corner points
Optimal

0 100 200 300 400 500 600 700
26

28

30

32

34

36

38

bit rate (kbps)

P
S

N
R

 (
dB

)

Table Tennis

Original
By SAD

By motion field length variance (8x8)

By motion field length variance (4x4)

By number of corner points
Optimal

Figure 21. R-D performance when different cues are used by the decoder to

pick up worse macroblocks

4.4 Transform and Quantize

At the encoder side, after macroblock rearrangement, each WZ frame will be

transformed to frequency domain. At the decoder side, side information is also

transformed too. The integer transformation of H.264 is used. The block size for the

transformation is 4 by 4. For each 4 by 4 block, after transformation, there will be 16

0 50 100 150 200 250 300
35

36

37

38

39

40

41

42

43

44

bit rate (kbps)

P
S

N
R

 (
dB

)

Silent

Original
By SAD

By motion field length variance (8x8)

By motion field length variance (4x4)

By number of corner points
Optimal

0 100 200 300 400 500 600 700 800
24

26

28

30

32

34

36

bit rate (kbps)

P
S

N
R

 (
dB

)

Stefan

Original
By SAD

By motion field length variance (8x8)

By motion field length variance (4x4)

By number of corner points
Optimal

0 50 100 150 200 250 300 350 400 450
30

31

32

33

34

35

36

37

38

39

bit rate (kbps)

P
S

N
R

 (
dB

)

Tempete

Original
By SAD

By motion field length variance (8x8)

By motion field length variance (4x4)

By number of corner points
Optimal

 43

coefficients, b1 to b16. B1 is the DC band and b2 to b16 are AC bands.

The coefficients of each band will then be quantized. There are 8 quantization

matrices, Q1 to Q8, which are proposed by the Stanford DVC team except Q7 by

DISCOVER. These 8 quantization matrices are listed in Figure 22. Numbers in these

matrices represent the number of quantization levels for coefficients of corresponding

band. Matrix Qk with larger k will introduce less quantization error because more bits

are used to represent coefficient values. QP values for encoding key frames are

chosen according to quantization matrices used. The DISCOVER team has proposed a

set of QP values which make the decoded WZ frames and key frames have almost

same quality. The QP values for Foreman, Hall, Coastguard, and Soccer sequences

are listed in Table 3.

Figure 22. Quantization matrices

Table 3. QP Values for encoding key frames

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Foreman 40 39 38 34 34 32 29 25

Hall Monitor 37 36 36 33 33 31 29 24

Coastguard 38 37 37 34 33 31 30 26

Soccer 44 43 41 36 36 34 31 25

 44

The quantization we use is uniform quantization. The number of quantization

levels is already determined by quantization matrices. But the quantization interval of

each band is determined according to the range of coefficients. Before applying

quantization, the quantization interval I2 to I16 will be calculated by the encoder. If the

coefficients of band bk is within range ±Rk and number of quantization level is Nk,

then the quantization interval for this band will be 2Rk/Nk. The range of DC band is

fixed as 0 to 1024, so the quantization interval of DC band is also fixed. So, fixing

number of quantization interval, when the range is smaller, the quantization interval

will be smaller too, and this will reduce quantization error. The calculated

quantization interval for each band will be sent to the decoder. The decoder will

transform and quantize side information using the same quantization interval.

After quantization, the coefficients will be split into bit-planes. The DC

coefficients are all positive while AC coefficients may be positive or negative. When

AC coefficients are split into bit-planes, the most significant bit is a sign bit. ’0’

represents positive and ‘1’ represents negative. The remaining bits are magnitude bits.

The relationship between AC coefficients and quantized values are shown in Figure

23. A double dead zone quantization is used. That is, coefficients with small absolute

values are quantized to positive zero whether they are positive or negative. From

experimental result, we discover that double dead zone will make R-D performance

better. This is because for coefficients with small absolute values, the error of sign

does not reduce PSNR a lot but it cost many correction bits to recover.

 45

Figure 23. The relationship between AC coefficients and quantized values

4.5 LDPCA Encoding

Each coefficient band is represented in different number of bits as defined by the

quantization matrices, so each band will be split into different number of bit-planes.

Regular LDPCA codes with degree 3 will be used for encoding and decoding these

bit-planes. For a QCIF resolution frame, each bit-plane contains 1584 bits, and this is

the longest length of channel coding block we can choose. So we use length 1584

LDPCA code to encode and decode these bit-planes if all macroblocks are encoded

and decoded. If only chosen macroblocks are encoded and decoded, then length 396

LDPCA code is used. The LDPCA encoding and decoding procedure of our DVC

codec is rewritten from Stanford’s MATLAB implementation. After encoding, the

WZ bits are stored in a buffer.

4.6 LDPCA Decoding and Reconstruction

The model used to describe the error of side information is the Laplace

distribution with scale parameter and zero mean. The scale parameter for each

coefficient band is estimated offline for the entire sequence. So, there will be 16 scale

parameters for 16 coefficient bands.

 46

Figure 24. Probability calculation of second significant bit when most

significant bit is decoded as 1

After side information is transformed and quantized. The quantized coefficients

are split into bit-planes and then LDPCA decoded. For each bit-plane, LLR values of

each bit are calculated according to error model and bit-planes decoded. To calculate

LLR value of each bit bi of one coefficient, probability P (bi = 1) and P (bi = 0) must

be calculated first. Taking DC band for example, in Figure 24, the coefficient value of

side information is c. When calculating LLR of most significant bit of c, the

probabilities are calculated within the range 0 to 1024. But when calculating LLR of

second significant bit of c, the probabilities are calculated within the range with stripe

pattern if the most significant bit is decoded as 1.

When decoder performs LDPCA decoding, the rate will increase as more W-Z

bits are requested by the decoder if the corrected side information still has errors. The

rate can be from 2/66 to 66/66, and when rate equal to 66/66, all bits will be decoded

without error. Each time W-Z bits are requested, iterative belief propagation with at

most 1000 iterations is performed in order to decode bits. We choose 1000 iterations

as upper bound because for most test sequences, 1000 iterations are close enough to

convergence. For each iteration, the decoded bits are syndrome-checked. If

syndrome-check is not satisfied, next iteration continues. When the belief propagation

iterations converge, the values decoded must be checked. The decoder checks

correctness of decoded values by peeking at the original values of WZ frame. If any

 47

of decoded values is wrong, then higher rate will be tried by requesting more W-Z bits,

otherwise the LDPCA decoding procedure ends.

For coefficient c of side information, after one bit is decoded, if the bit is correct,

then the value of c does not needs to be changed. But if the bit is wrong, then value of

c will be reconstructed. As Figure 25 shows, when the bit is wrong, the value of c will

not be in the correct range. So, the value of c will be reconstructed to the nearest value

which is in the correct range. For example, when decoding most significant bit of

coefficients in DC band, if the decoded value is 0, then the correct range will be from

0 to 511. If coefficient of the side information is outside the range, then it will be

reconstructed to 511.

Figure 25. Side information is reconstructed to the stripe pattern area when

the decoded value is 0

Because the macroblocks of group SA are all in one LDPCA block, so we can

only request WZ bits for these macroblocks and only decode them. For macroblocks

of group SB, no WZ bits are requested. So, prioritized channel decoding is achieved.

After LDPCA decoding, the macroblocks will be inverse transformed and

rearranged to original order. Then WZ frame decoding is finished.

 48

Figure 26. System flow of our pixel domain DVC codec

4.7 Pixel Domain DVC Codec

The block diagram of pixel domain DVC codec is shown in Figure 26. The

differences between pixel domain DVC codec and frequency domain DVC codec are

described as follows.

The pixel domain DVC codec works at pixel domain, so there is no

transformation. The quantization is achieved while splitting pixels into bit-planes. At

the encoder side, each WZ frame is split into 8 bit-planes. Discarding less significant

bit-planes is equal to quantization. We discard 4 less significant bit-planes. At the

decoder side, side information is generated using same method used in frequency

domain DVC codec. The side information is also split into 8 bit-planes and 4

bit-planes are discarded.

For the frequency domain DVC codec, there are Laplace parameters for each

coefficient band. For pixel domain DVC codec, one Laplace parameter for all pixels

is estimated offline for entire sequence.

Each bit-plane is LDPCA encoded and decoded. For a QCIF sequence, each

 49

bit-plane contains 25344 bits. We use LDPCA codes with block length 6336, so each

bit-plane will be packed into 4 LDPCA blocks. When only chosen macroblocks are

encoded and decoded, each bit-plane will be packed into 1 LDPCA block. When the

decoder performing LDPCA decoding, LLR values are calculated in the same way we

have described in frequency domain DVC codec. Reconstruction is the same, too.

 50

Chapter 5: Experimental Results
In this chapter, experimental results and performance of our frequency domain

DVC with macroblock rearrangement are presented. The performance of DISCOVER

frequency domain DVC codec is used for comparison because the DISCOVER codec

has the best performance among published DVC codecs today. The testing conditions

used in these experiments is the same as those used in DISCOVER, as shown in Table

4. The QP values for encoding key frames are listed in Table 3.

In Figure 27 there are R-D curves of our frequency domain DVC codec and

DISCOVER DVC codec. For our DVC codec, we decode all macroblocks within a

frame and plot one R-D curve. This curve represents original performance of our

DVC codec. And then we apply our prioritized channel decoding method and plot

another R-D curve. The two R-D curves of DISCOVER codec are plotted according

to the performance data they present in their website and the data obtained by

executing their released program.

Without prioritized channel decoding, performance of the proposed DVC codec

is worse than DISCOVER. And it is mainly because the DISCOVER codec generates

much better side information. In particular, when less significant bits of coefficient

bands are LDPCA decoded, the simple frequency-domain DVC codec without

prioritized coding requests more bits than the DISCOVER codec and the R-D

performance is worse. The side information quality of our implementation when

quantization matrices are Q4 and Q8 is listed in Table 5. The side information quality

of DISCOVER’s is not listed because they do not release the side information quality

data.

For Foreman, Hall Monitor, and Coast Guard sequences, when prioritized

channel decoding is applied, the R-D performance will increase at most 0.5 dB when

 51

bit-rate is smaller than 200 kbps, which is a reasonable bit-rate range for QCIF

sequences. However, for the Soccer sequence, the performance is worse when

macroblock rearrangement and partial decoding is applied. This is because we choose

SAD of macroblocks in neighboring key frames as a measure for deciding which

macroblocks are worst and need more parity bits. The motion field of Soccer

sequence is not regular and motion field prediction error affects side information

quality a lot. The really worst macroblocks are not detected and parity bits are wasted

on macroblocks not really bad and PSNR of side information increase a little.

Although the proposed prioritized channel decoding DVC codec is not obviously

better than the DISCOVER DVC codec, it is most likely due to worse side

information quality. And side information quality improvement is not the key points

in this thesis. If the side information quality of the proposed scheme is improved, the

R-D performance of the proposed scheme should be better than that of the

DISCOVER codec.

Table 4. DISCOVER DVC codec testing setting

DISCOVER DVC Codec Testing Setting

Test Sequence Foreman, Hall Monitor, Coast Guard, and Soccer

Test Frames All frames

Spatial Resolution QCIF

Temporal Resolution 15 Hz, so when GOP length is 2, WZ frames are 7.5 Hz

Key Frames H.264 intra (main profile)

GOP Length 2

Channel Code LDPCA

 52

 53

Figure 27. R-D performance of our frequency domain DVC codec

Table 5. Side information quality

 Key Frame QP = Q4 Key Frame QP = Q8

Foreman 27.9104 29.3168

Hall Monitor 32.7581 35.5093

Coast Guard 29.3375 31.0476

Soccer 22.1290 22.4782

 54

Chapter 6: Conclusion and Future Work
In this thesis we present a prioritized channel decoding DVC scheme to improve

the coding efficiency. After side information is generated, the decoder classifies

macroblocks according to side information quality. And more WZ bits can be used to

correct macroblocks whose side information quality is worse while less WZ bits are

requested for macroblocks with less side information error. The WZ bits can be

requested more efficiently.

From experimental results, we tried several cues and discover that SAD value of

motion-matching macroblocks in neighboring key frames is a good cue to estimate the

errors in side infromation. When the SAD value is larger, the macroblock is

considered worse. Although the classification is not very accurate, for some test

sequences, the R-D performance will increase especially for lower bit-rate. Compare

to DISCOVER’s DVC codec, our improvement is little. But it is because our side

information quality is not as good as that of the DISCOVER codec. Our prioritized

channel decoding DVC codec should be better than DISCOVER’s if our side

information quality is improved. Although side information quality improvement is

not a key point in this thesis, it is one of the future work items.

In this thesis we try to use motion field variance, number of edges and corner

points, and SAD of motion-matching macroblocks in neighboring key frames as cues

for classifying macroblocks. In the end, only SAD of motion-matching macroblocks

in neighboring key frames is used to classify macroblocks. But this cue is bad when

motion is irregular and the performance will become very poor because macroblocks

with really worse side information are not recognized. So, in the future we can

combine several different cues for the decoder to classify macroblocks more correctly.

For example, we can use motion field variance to decide whether we should use SAD

 55

or other cues to classify macroblocks. Only when motion field variance is not small,

SAD can be used to classify macroblocks. If motion field variance is large, we will try

to use other cues to classify macroblocks.

The decoder classifies macroblocks and sends the classifying result to the

encoder. The encoder waits for the decoder’s instruction before coding of a W-Z

frame and delay occurs. If the macroblock classification is done by the encoder or the

classification result can be guessed by the encoder, it will not be delayed. However,

after observing classification result, we discover the classification is not regular

enough for encoder to guess. And the classification at decoder side is not very good

even the decoder has the side information. The encoder can not do better than decoder

so we can not let encoder do this job.

In this experiment, we classify macroblocks to two groups A and SB and

prioritized channel decode them. In the future we can increase the number of groups

and rate distribution can be more flexible. For example, we can classify macroblocks

to three groups SA, SB and SC. SA is group with worse side information quality and SC

is group with best side information quality. The quantization matrix for group SA, SB

and SC will be Q8, Q4 and Q1. So more bits are requested for this SA and fewer bits are

requested for group SC. The percentage of SA, SB and SC can also adaptive for

different test sequences.

 56

Reference:

[1] B. Girod, A. Aaron, S. Rane, and D. Rebollo-Monedero, “Distributed video

coding,” Proceedings of the IEEE, pp. 71–83, 2005.

[2] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information sources,”

IEEE Trans. Inform. Theory, 1973.

[3] A. D. Wyner and J. Ziv., “The rate distortion function for source coding with side

information at the decoder,” IEEE Trans. Inform. Theory, 1976.

[4] L. Lu, D. He, and A. Jagmohan, “Side information generation for distributed

video coding,” Proc.of IEEE ICIP, 2007.

[5] S. Klomp, Y. Vatis, and J. Ostermann, “Side information interpolation with

sub-pel motion compensation for Wyner-Ziv decoder,” In Nordic Signal

Processing Symposium, Reykjavik, Iceland, June 2006.

[6] R. Puri and K. Ramchandran, “PRISM: A “reversed” multimedia coding

paradigm,” Proc. of IEEE ICIP, 2003.

[7] A. Aaron, R. Zhang, and B. Girod, “Wyner-Ziv coding of motion video,” Proc.

Asilomar Conference on Signals and Systems, pp. 240–244, vol.1, 2002.

[8] A. Aaron and B. Girod, “Wyner-Ziv video coding with low-encoder complexity,”

Proc. Of 2004 Picture Coding Symposium (PCS-2004), San Francisco, CA, Dec.

2004.

[9] J. Ascenso and F. Pereira, “Adaptive hash-based side information exploitation for

efficient Wyner-Ziv video coding,” Proc. of IEEE. ICIP, 2007.

[10] M. Tagliasacchi, L. Frigerio and S. Tubaro, “Analysis of coding efficiency of

motion-compensated interpolation at the decoder in distributed video coding,”

IEEE Proc. of ICIP, 2007.

 57

[11] A. Aaron, E. Setton, and B. Girod, “Towards practical Wyner-Ziv coding of

video,” Proc. IEEE International Conference on Image Processing, ICIP-2003,

Barcelona, Spain, Sept. 2003.

[12] A. Aaron and B. Girod, “Compression with side information using turbo codes,”

Proc. Of IEEE Data Compression Conf., pp. 252–261, Snowbird, Utah, USA,

2002.

[13] A. Aaron, S. Rane, and B. Girod, “Wyner-Ziv video coding with hash-based

motion compensation at the receiver,” Proc. Of 2004 International Conference on

Image Processing, vol. 5, pp. 3097–3100, 2004.

[14] A. Aaron, S. Rane, E. Setton, and B. Girod, “Transform-domain Wyner-Ziv

codec for video,” Proc. Of Visual Communications and Image Processing, Jan.

2004.

[15] D. Varodayan, A. Aaron, and B. Girod, “Rate-adaptive distributed source coding

using low-density parity-check codes,” Conference Record of the Thirty-Ninth

Asilomar Conference, pp. 1203–1207, 2005.

[16] C. Brites, J. Ascenso, and F. Pereira, “Improving transform domain Wyner-Ziv

video coding performance,” Proc. Of 2006 IEEE International Conference In

Acoustics, Speech and Signal Processing, vol. 2, 2006.

[17] C. Brites, J. Ascenso, and F. Pereira, “Feedback channel in pixel domain

Wyner-Ziv video coding: Myths and realities,” 14th European Signal Processing

Conference (EUSIPCO2006), Sep. 2006.

[18] J. Ascenso, C. Brites, and F. Pereira, “Improving frame interpolation with spatial

motion smoothing for pixel domain distributed video coding,” In 5th EURASIP

Conference on Speech and Image Processing, Multimedia Communications and

Services, July 2005.

 58

[19] R. P. Westerlaken, S. Borchert, R. K. Gunnewiek, and R. I. L. Lagendijk, “On

the comparison of distributed video coding using ldpc codes on bit-plane and

symbol level,” Proc. Of the Thirteenth Annual Conference Of The Advanced

School For Computing And Imaging, 2007.

[20] Zhen Li and E. J. Delp, “Wyner-Ziv video side estimator: conventional motion

search methods revisited,” Proc. Of IEEE International Conference on Image

Processing, vol. 1, 2005.

[21] S. Borchert, R. P. Westerlaken, R. Klein Gunnewiek, and R. L. Lagendijk, “On

the generation of side information for DVC,” In Twenty-eigth Sympoisum on

Information Theory in the Benelux, pp. 1141–148, May 2007.

[22] R. P. Westerlaken, S. Borchert, R. K. Gunnewiek, and R. L. Lagendijk,

“Dependency channel modeling for a ldpc-based Wyner-Ziv video compression

scheme,” In IEEE International Conference on Image Processing, pp. 277–280,

Oct 2006.

[23] J. Garcia-Frias and Y. Zhao, “Compression of correlated binary sources using

turbo codes,” In IEEE Communication Letters, Oct 2001.

[24] M. Tagliasacchi, J. Pedro, F. Pereira, and S. Tubaro, “An efficient request

stopping method at the turbo decoder in distributed video coding,” In 15th

EURASIP European Signal Processing Conference, 2007.

[25] A. Liveris, Z. Xiong, and C. Georghiades, “Compression of correlated binary

sources using turbo codes,” In IEEE Communication Letters, 2002.

[26] Li-Wei Kang and Chun-Shien Lu, “Low-complexity Wyner-Ziv video coding

based on robust media hashing,” In IEEE 8th Workshop on Multimedia Signal

Processing, pp. 267–272, 2006.

 59

[27] H. Kondo, K. Yamahara, and Jun Liao, “Identification of DCT signs for

sub-block coding,” In Sixth International Symposium on Signal Processing and its

Applications, vol. 2, pp. 569–572, 2001.

[28] Yixuan Zhang, and Ce Zhu, “Full Search of side-Information in distributed video

coding,” Fourth International Conference on Image and Graphics, pp. 246-249,

2007

[29] L. Liu, Z. Li, and E. J. Delp, “Backward channel aware Wyner-Ziv video

coding,” Proc. On IEEE International Conference on Image Processing, pp.

1677-1680, 2006

[30] C. S. Liu and H. Y. M. Liao, “Structural digital signature for image

authentication: an incidental distortion resistant scheme,” IEEE Trans. On

Multimedia, vol.5, no. 2, pp. 161-173, June 2003.

[31] J. Ascenso, C. Brites, and F. Pereira, “Motion compensated refinement for low

complexity pixel based distributed video coding,” IEEE Conference on Advanced

Video and Signal Based Surveillance, pp. 593-598, 2005

[32] M. Dalai, R. Leonardi, and F. Pereira, “Improving turbo codec integration in

pixel-domain distributed video coding,” IEEE International Conference on

Acoustics, Speech and Signal Processing, 2006.

[33] M. Tagliasacchi, A. Trapanese, S.Tubaro, J. Ascenso, C. Brites, and F. Pereira,

“Exploiting spatial redundancy in pixel domain Wyner-Ziv video coding,” IEEE

International Conference on Image Processing, pp. 53-256, 2006

[34] M. Schneider and S. F. Chang, “A robust content based digital signature for

image authentication,” IEEE International Conference on Image Processing, Vol.

3, pp. 227-230, 1996

 60

[35] F. Lefebvre, J. Czyz, and B. Macq, “A robust soft hash algorithm for digital

image signature,” IEEE International Conference on Image Processing, 2003

[36] V. Monga, D. Vats and, B. L. Evans, “Image authentication under geometric

attacks via structure matching,” IEEE International Conference on Multimedia

and Expo, pp. 229-232, July 2005

[37] L. Yu and S. Sun, “Image robust hashing based on DCT sign,” IEEE

International Conference on Intelligent Information Hiding and Multimedia Signal

Processing, pp. 131-134, 2006

[38] C. Brites, “Advances on distributed video coding,” Instituto Superior Tecnico,

Technical University of Lisbon, Portugal, Dec 2005.

[39] C. Harris and M. Stephens, “A combined corner and edge detector,” Proceedings

of The Fourth Alvey Vision Conference, Manchester, pp 147-151. 1988

[40] M. Tagliasacchi and S. Tubaro, “Hash-based motion modeling in Wyner-Ziv

video coding,” IEEE International Conference on Acoustics, Speech and Signal

Processing, vol. 1, pp. I-5-9-I-512, 2007

