

國 立 交 通 大 學

多媒體工程研究所

碩 士 論 文

一 種 複 合 場 景 的 描 繪 方 法

A Rendering Algorithm for Hybrid Scene Representation

研 究 生：田 晏

指導教授：施仁忠 教授

中 華 民 國 九 十 七 年 六 月

一種複合場景的描繪方法

A Rendering Algorithm for Hybrid Scene Representation

研 究 生：田 晏 Student：Yen Tien

指導教授：施仁忠 Advisor：Zen-Chung Shih

國 立 交 通 大 學

多 媒 體 工 程 研 究 所

碩 士 論 文

A Thesis
Submitted to Institute of Multimedia Engineering

College of Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master
in

Computer Science

June 2008

Hsinchu, Taiwan, Republic of China

 中華民國九十七年六月

I

一種複合場景的描繪方法

研究生： 田晏 指導教授： 施仁忠 教授

國立交通大學資訊科學系

摘 要

 在本論文中，我們嘗試探討兩項複合式場景的相關基本技術：建立與描繪。

複合場景係指由三角網格模型與點集所組成的場景。由於三角網格模型的建模技

術已相當成熟，我們認為透過取樣將三角網格模型轉換為點集會是較易普及而經

濟的方法。我們將優先序的概念引入階層式取樣法；這個方法具有足夠的彈性，

透過更換優先序計量函式，使用者可以很容易地更換取樣的重點。目前已有許多

傑出的論文在探討如何將三角網格與點集的描繪結果無破綻地融合，本論文改而

探討若三角網格與點集為不同的獨立個體的情境。我們提出一個新的方法消弭深

度阻卻問題並處理點集的貼圖。我們利用新的 shader model 4.0 功能來實作這

個演算法。最終我們的實作品可輕易地與現有的三角網格的描繪系統整合。

II

A Rendering Algorithm for Hybrid Scene

Representation

Student: Yen Tien Advisor: Dr. Zen-Chung Shih

Department of Computer Science

National Chiao Tung University

Abstract
 In this thesis, we discuss two fundamental issues of hybrid scene representation:

constructing and rendering. Hybrid scene representation consists of triangular meshes

and point-set models. Consider the maturity of modeling techniques of triangular

meshes, we suggest that generate a point-set model from a triangular mesh might be

an easier and more economical way. We improve stratified sampling by introducing

the concept of priority. Our method has the flexibility that one may easily change the

importance criteria by substituting priority functions. While many works were

devoted to blend rendering results of point and triangle, our work tries to render

point-set models and triangular meshes as individuals. We propose a novel way to

eliminate depth occlusion artifacts and to texture a point-set model. Finally, we

implement our rendering algorithm with the new features of the shader model 4.0 and

turns out to be easily integrated with existing rendering techniques for triangular

meshes.

III

Acknowledgement

 First of all, I would like to thank to my advisor, Dr. Zen-Chung Shih, for his help,

patience and supervision in this work. Thanks for all the members of Computer

Graphics & Virtual Reality Lab for their comments. Finally, last but not least, special

thanks for my family for their consistent supports.

IV

Contents

摘要..I

Abstract...II

Acknowledgements...III

Contents..IV

List of Figures...VI

Chapter 1: Introduction..1

1.1 Motivation...1

1.2 Overview..3

1.3 Thesis Organization...5

Chapter 2: Related Works...6

Chapter 3: Mesh Sampling...8

3.1 Voxel Approximation..10

3.2 Priority-Based Stratified Sampling..11

3.3 Examples of Sampling..13

Chapter 4: Splat Generation..14

4.1 KNN Graph Construction..15

4.2 Splat Growing..17

4.3 Splat Selection ...18

4.4 Define Tangent Coordinates..19

4.5 Examples of Splat Generation...20

Chapter 5: Rendering...22

5.1 Pass 1: Visibility Pass..26

V

5.2 Pass 2: Attribute Pass..28

5.3 Pass 3: Shading Pass...31

Chapter 6: Results and Discussion...33

6.1 Rendering Results..33

6.2 Performance and Discussion...38

Chapter 7: Conclusions and future works..40

References...42

VI

List of Figures

Figure 1. System flow chart...3

Figure 2. Overview of the sampling process...9

Figure 3. Voxel approximation of Stanford bunny with a depth-eight octree.............13

Figure 4. Sampling result of Stanford bunny: 60000 sample points...........................13

Figure 5. Voxel approximation of happy budda with a depth-eight octree.................13

Figure 6. Sampling result of happy budda: 35000 sample points...............................13

Figure 7. Overview of the splat generation process..15

Figure 8. The 1st iteration of KNN construction...16

Figure 9. The 2nd iteration of KNN construction..16

Figure 10. Concept view of the relation of different point set...............................17

Figure 11. Stanford bunny. 15250 splats selected from 57000 splats...................20

Figure 12. Close up of Stanford bunny..20

Figure 13. A clearer view of splats..21

Figure 14. Omitting global relaxation causes inregular distribution of splats.......21

Figure 15. Stanford bunny intersects to Utah teapot...25

Figure 16. Rendering pass 1: Visibility pass...26

Figure 17. The quad generates by the geometry shader..27

Figure 18. Rendering pass 2: Attribute pass..28

Figure 19. Rendering pass 3: Shading pass...31

Figure 20. Happy budda rendered with 170000 splats..33

Figure 21. A textured cloth..34

Figure 22. A textured long dress..35

Figure 23. Stanford bunny with different textures...36

VII

Figure 24. Before /after depth correction...37

Figure 25. A point-set clothes on a triangular-mesh man......................................38

Figure 26. Bunnies in grass...39

Figure 27. A failure case of texturing..41

1

Chapter 1: Introduction

1.1 Motivation
Point-set model is one of the most widely concerned geometric representations.

For its conceptual simplicity, unstructured nature and ease of data maintenance, its

possibilities have been extensively studied for decades.

One of the most significant discussions is to combine the advantages of

triangular mesh and point-set model. Since triangles can better capture the flat area

and sharp features of a surface while points do better on the complex part, many

works were done in mixing both representations. Chen B. and Nguyen M. X.’s POP

system [6], Dachsbacher C.’s sequential point trees [8], and Cocunu L. and Hege H. C.

[7] construct LOD representation and render triangles when it is a faster option. All

these works blend the rendering result of triangles and points and create a smooth

transition between them. Guennebaud G. and Gross M. [10] further discuss the

blending issues in EWA splatting algorithm. However, they didn’t consider the issues

when blending is not desired, e.g. triangular meshes and point-set models are different

objects.

In this thesis, we focus on the hybrid scene which triangular meshes and

point-set models are individuals. We visit the following issues:

1. How to construct a hybrid scene?

Because of the long dominating history and development of related techniques,

there are plenty of sources of triangular meshes. In contrast, an intuitive way to

2

obtain a point-set model might be through a 3D scanner, which is not available all

the time. Considering the popularity of packages of triangular mesh modeling

tools, we propose that generating point-set models via sampling a triangular mesh

seems to be both reasonable and economical way. In this thesis, we propose a

priority-based sampling algorithm to convert a triangular mesh to a point-set

model. After sampling, we further generate the corresponding splat representation

with a modified version of [28], since we render a point-set model with splatting

algorithm.

2. How to render a hybrid scene?

In this issue, we propose several basic policies:

a. The algorithm must be easily combined with existing triangular mesh

rendering algorithm.

b. It should be hardware-accelerated to guarantee performance.

Since the great work by Zwicker M., et. al. [29], EWA splatting becomes one of

the most popular ways to render a point-set model because of its superior quality.

The original work of M. Zwicker et. al. [29] presented a software implementation.

Many works were done to investigate the power of graphics hardware since then

[3], [4], [5], [22]. Our algorithm follows the same spirits. We propose a novel way

to implement EWA splatting based on shader model 4.0 with DirectX 10.

Consequently, our system is guaranteed to be easily integrated into existing

triangular mesh rendering system.

3

1.2 Overview
 The following flow chart shows the conceptual view of our system.

Triangular
mesh

Sampling

Point set Mesh

User inputs

Our splatting
algorithm

Sampling Sampling
Geometry pipeline

Rendering
result

Splat generation

Any 3D packages

Hybrid scene

Interleaving

Import

Figure 1 : System flow chart

4

Taking a triangular mesh constructed by any available 3D packages as inputs,

our system first samples the mesh to generate an initial point set. At this stage, the

point set only contains the most basic data directly capture or derived from the input

mesh, e.g. position, normal and material information. For rendering purpose, we then

pass the set to the splat generation stage. Here our system assigns all the necessary

information to the point set for splatting, e.g. tangent coordinates and dimensions, and

disposes unnecessary points. For a scene consists of both point-set models and

triangular meshes, we call it a “hybrid scene”. We implement our splatting algorithm

with the principle that it may be easily integrated into existing rendering algorithm for

triangular meshes, which we use the term “geometry pipeline” in figure.1 since the

processing of the two is quite different. The final result may be obtained by rendering

objects with arbitrary order in our implementation.

5

1.3 Thesis Organization
 In the following sections, we first introduce related previous works of techniques

related to point-set models in chapter 2. In chapters 3 and 4, we describe the sampling

and the splat generation algorithm that we use to produce point-set model. Our

rendering algorithm will then be described in chapter 5 in detail. Finally, we show our

results, benchmark, and discussions in chapters 6 and 7, respectively.

6

Chapter 2: Related Works

 Using points as primitives was first proposed by Levoy and Whitted [15].

Because of the development of technology of range scanners and the conceptual

simplicity of a point, many works were devoted to this field since then. However,

efficient rendering of point-set models was not possible until the work by Grossman J.

P. and Dally W. J. [9]. They developed an image-space surface reconstruction

algorithm and made a great step forward in both the rendering performance and

quality. Later, QSplat [23] introduced splat with flat-shading quality and

multi-resolution data structure to deal with massive point sets.

Alexa M. et. al. [1] introduced the concept of MLS (moving-least-square) fitting

with respect to a plane. It soon became the main trend of the surface definition of

point set because of its great approximation of the surface and indefinitely

differentiability [13], [14]. Recently, Guennebaud G. and Gross M. [11] suggested to

define the surface with MLS fitting with respect to algebraic surface to gain more

accuracy.

Zwicker M. et. al. [29] presented a pure software implementation of

EWA(elliptical-weighted-average) splatting and achieved superior rendering quality

and handled transparency correctly. Many works were then devoted to develop an

efficient way to implement EWA splatting on graphics hardware [3], [4, [5, [22].

Recently, Weyrich T. et. al. [27] further presented a prototype of graphics adapter for

EWA splatting.

7

The LOD of point-set model was also investigated for efficiency. QSplat [23]

organized points as bounding-sphere hierarchy and gained a great performance and

memory efficiency via densely encoding node information. For solving depth order

and LOD, Zwicker M. et. al. [23] and Pfister H. et. al [21] first introduced

layered-depth cube (LDC), which is basically an improved version of layered-depth

map [24]. Dachsbacher C. et. al. [8] developed a LOD structure which may process

and select level entirely on graphics adapter.

Since point set may represent complex geometry efficiently while triangle may

be a better choice for broad flat region and sharp features, hybrid representation of

were investigated [6], [7], [8], [10]. They rendered and blended the surface color of

triangles and point-set models when it was a faster option. Müller M. et. al. [17]

expanded the definition of a splat with clipping lines to render sharp features solely

with splatting algorithm.

The unstructured property of point-set models also drew interests in the field of

modeling and physical-based animation. PointShop3D [31] first proposed a modeling

package of point-set models. Following, Pauly M. et. al. [20] developed more robust

and complete solution. Müller M. et. al. [17], [18] pioneered the field of meshless

animation.

8

Chapter 3: Mesh Sampling
 Our sampling algorithm is basically an improved version of the stratified

sampling proposed in [19]. It first converts meshes to voxel approximation by

constructing an octree, and then generates a sample point per voxel with respect of a

radial function. The reason of [19] is to overcome the drawback that area-based

uniform sampling algorithm often failed to spread enough sample point over complex

region of the mesh [26]. With stratified sampling, we may ensure better spatial

uniformity of sampling points over the whole mesh.

Nevertheless, the original algorithm in [19] has two insufficiencies. First, it lacks

of importance criteria. Second, it doesn’t provide user with the ability to define one’s

desired sample count with respect to a voxel approximation level. We improve these

via introducing priority during sampling and allow user to define the number of

sample points in a level.

Figure 2 is an overview of the whole sampling process. By substituting the

priority function and the distribution function, our system may change the perspective

on importance region totally, while maintaining the spatial uniformity. Thus it can be

viewed as a framework, not just an algorithm.

In the following sections, we use the term “leaf cell” and voxel alternatively,

since they are the same in this context. In section 3.1, we first describe how we do the

voxelization. We then present our sampling algorithm and how we define attributes of

each sample point in section 3.2. Finally, we show results in section 3.3.

9

Mesh Voxel
approximation

Priority function

Sampling

Voxels

Voxel heap

The voxel with the
highest priority value

Update

Insert

Minimize the priority
value of the voxel

Reach the user-specified
sample count

Sample points

Figure 2 Overview of the sampling process

10

3.1: Voxel Approximation
We compute the voxel approximation of the input triangular mesh via a

top-down octree construction algorithm like [19]. First, the axis-aligned bounding box

is computed and is taken as the root cell. Next, we recursively divide the cell with

respect to the longest dimension, and store triangles which intersect with the cell. To

detect whether a triangle and a cell intersect, we found that the fast triangle-box

overlap testing procedure presented by T. Akenine-Mäoller [2] is very efficient and is

easily integrated. The recursion stops whether the user-defined depth reached or no

triangle is recorded in the cell. After the whole process terminates, each leaf cell

contains the following information:

Position: The center position of a voxel.

Dimensions: Since our cell is axis-aligned, these are dimensions in x, y, z axis.

Triangles: Triangles which intersects with the voxel.

Priority value: As its name implies, it defines the importance estimation of a voxel. It

is computed by the priority function pre-defined by the system. Our system then

spreads the sample points according to this value. We use the number of triangles as

the default priority function.

11

3.2: Priority-Based Stratified Sampling
 After the above process, we obtain the leaves of the octree as the voxel

approximation of an input mesh. Then we spread the user-defined amount of sample

points on these leaf cells, and assign attributes to each. In the following paragraph, we

examine each stage in detail.

Distribute sample points

 Our system allows user to input the number of sample points. Because we

sample the mesh according to the voxel approximation, there are two scenarios: the

user defined amount is equal to or greater than the number of voxels, or it is less than

the number of voxels.

Apparently, the second scenario is not recommended since it lefts some regions

un-sampled. We sort the voxels according to its priority value, and then assign sample

points in descending order.

 Back to the first scenario, we first compute the priority value of each voxel via

the priority function. Then, we reorganize these voxels to a heap. With the help of

heap, we may easily get the voxel with the highest priority value. Since we hope each

sample point contains as much information as possible, our strategy is to minimize the

priority value of a voxel after sampling. We then update the priority value and insert

the sampled voxel back to the heap. In this way, we may ensure the voxel with higher

priority value may produce more sample points than lower one. After the sample

count reaches the user-specified value, the process terminates.

12

Assign attributes

 For each point generated in the distribution phase, we first project it onto the

surface defined by the triangles recorded in the voxel. The projected point will lie on

one of the triangle. In some rare case, it will lie on edges or vertices. We then choose

the first encountered one. Next, we compute the barycentric coordinates of the

projected point. Finally, we interpolate the attributes with the barycentric coordinates

and get the final sample point. A sample point may contain arbitrary information

defined or derived on the mesh. In our implementation, each sample point contains

position, normal, texture coordinates, and material information.

13

3.3 Examples of Sampling
Here we show some results of our sampling algorithm. Figure 3 and Figure 5 are

samples of the voxel approximation. Figure 4 and Figure 6 are sampling results from

them.

Figure 3 Voxel approximation of Stanford

bunny with a depth-eight octree.

Figure 4 Sampling result of Stanford

bunny: 60000 sample points.

Figure 5 Voxel approximation of happy

budda with a depth-eight octree.

Figure 6 Sampling result of happy budda:

35000 sample points.

14

Chapter 4: Splat Generation

After sampling, we further process and convert the set of sample points to a set

of splats using a simplified version of the optimized sub-sampling algorithm by J. Wu

and L. Kobbelt [28]. It generates optimized hole-free ellipse splat set which

approximates the input point set within a prescribed error tolerance ε. While the error

tolerance is maintained, our system generates circular splats, apply more conservative

coverage estimation.

There is no doubt that our simplification will lost several good features. Using

elliptical splat provides anisotropic filtering, and is proven that can obtains the same

visual quality with less number of splats then circular splats would need [3], [28].

With the global relaxation, the regularity is improved, and geometric features can be

captured with possibly less splats. However, the main goal of our system is not to

generate optimized splat representation. In all of our experiments, this simplified

algorithm does well.

 Figure 7 is an overview of the whole splat generation process. In the following

sections, we discuss each stage thoroughly. Be aware of the difference between “point”

and “splat”. A point is the sample point generated from the sampling stage and is a

zero-dimensional object, while a splat is grew from a point, a circular disk with its

own tangent coordinates.

15

KNN
construction

Point set

Splat growing

KNN
graph

Initial set of splats

Splat selection

Compute
tangent

coordinates

Filtered set of splats

Final result

Figure 7 Overview of the splat generation process

16

4.1: KNN Graph Construction
 The first step of our algorithm is to construct the k-nearest-neighbor graph of the

input point set. We divide the space into an N×N×N grid, iterate through the point set,

and register the point to the grid cell which contains it. With this uniform grid, we

may easily find k-nearest neighbors for each point by traversing the neighboring grids.

A 2D conceptual view is presented in Figure 8 and Figure 9. The dark red point at

center is the point which is going to find its k-nearest neighbors. The light red points

represent the neighbors that are found in each iteration. We set N as 64, K as 10 in our

experiments. The process terminates below two iteration most of the time, and rarely

achieves three iterations. The reason behind this early termination is that we always

input a sufficiently dense point sets. It is reasonable prerequisite for our application.

Undoubtedly, there are many works done in the construction of KNN graph

which definitely outperform than ours [25]. However, the whole splat generation

process is a preprocessing stage. It seems to be unpractical comparing the

performance gained by implement those cleverer algorithms and the work time it may

need for us. Further, in our experiments, this simple algorithm does provide

acceptable performance.

Figure 9 the 1st iteration of KNN
construction

Figure 8 the 2nd iteration of KNN
construction

17

4.2: Splat Growing
 The way we growing splats from the input point set is basically the same as [28].

For each point, we generate a corresponding splat and take the position of the point as

its center. Then, we traverse the KNN graph in a breadth-first manner. For each

traversed point, we check whether its deviation from the tangent plane exceeds the

error tolerance. If the error tolerance is not exceeded, we record the outer-most

encountered points in the confront set, and the points inside the splat are recorded in

the conquered set. As shown Figure 10:

The difference between a confront point and a conquered point is that, a confront

point has not yet been expanded by the breadth-first traversing, while the conquered

point has been expanded. I.e. there exists at least one point farther from the center

than the conquered point. Thus it is definitely inside the splat. The process terminates

if the error tolerance is exceeded. Please consult [28] if further details are needed.

R

Figure 10 A concept view of the relation of different point set. The red
point is the center of the splat. Blue points represent the confront set.
Green points are the conquered set. R is the radius of the splat.

18

4.3: Splat Selection
 After growing splats, we select a subset of splats which cover the whole surface

defined by the input data. As in [28], we define a surface area element with each

sample point, say p,

 1

where d is the distance to the k-th neighbor. We may then define the surface area

contribution, say Q, of a splat by summing up the surface area element of a sample

point:

 2

A greedy selection algorithm based on the surface area contribution is then applied. In

each step we select the splat with the highest surface area contribution, and traverse

through the other splats to reduce the surface area element associated with the

selected splat. The process stops if all the surface area contribution becomes zero,

which indicates that the whole surface area is covered. With this terminating condition,

we may ensure that all the splats represent delicate details will be selected. Since such

a splat often has a conquered set containing itself solely, the only way to reduce their

area contribution to zero is to select them.

Hole-free approximation

 Indicated by [28], to select a hole-free set of splats is actually a NP-hard

dominating set problem. The approximation algorithm they proposed is to project the

conquered set, Q, onto the tangent plane of the splat, construct a 2D convex hull, C,

and use Q – C as a new coverage relation. Our approximation is simpler and heuristic.

We simply adjust the radius of a splat with a constant ratio R, and apply this new

19

radius to define the conquered set. Though not as general as the original work, setting

R as 0.5~0.7 does well in all our experiment.

4.4: Define Tangent Coordinates
 The most general way to define tangent coordinates is to apply

mean-least-squares fitting to find normal, and then compute maximal and minimal

principal curvature as tangent axis [3]. This method may apply to any kind of point set,

especially when the source is a 3D scanner and the only available information within

a point is position [1]. Our point set is sampled from a mesh. The attribute assigning

stage in sampling process already gives us ideal normal. Furthermore, we only grow

circular splats here, and thus any two vectors that are orthonormal to each other and

the normal can form a reasonable tangent coordinates. Finally, in our implementation,

the tangent coordinates are formed by the normal, the projection of x-axis onto the

tangent plane, and the projection of y-axis onto the tangent plane.

20

4.5 Examples of Splat Generation
 Here we show some results of our splat generation process. Figure 11 is a

Stanford bunny formed by 15250 splats selected from the original 57000 splats.

Notice that the hole-free property is well-preserved by our simplified algorithm.

Figure 11 Stanford bunny. 15250 splats selected from 57000 splats.

Figure 12 Close up of Stanford bunny. The hole-free property is well-preserved.

21

In the following figure, we shrink the splats to show a clearer view of splats. In figure

13, we may see that those small splats represent detail parts (tiny white splats) of the

mesh are preserved by the selection stage. Figure 14, we show the affection by

omitting the global relaxation.

Figure 13 A clearer view of splats. Notice that the details (small splats) are preserved.

Figure 14 Omitting global relaxation causes inregular distribution of splats.

22

Chapter 5: Rendering

 Rendering a point-set model can be viewed in two different perspectives. In the

computational-geometry point of view, the surface defined by projecting the point set

to the moving-least-square surface defined by the point set itself will be an

indefinitely differentiable surface [13], [14]. Thus, any implicit surface rendering

techniques can be applied, e.g. ray-casting algorithm. However, it seems to be

unpractical when high performance of rendering is significant because of the cost of

computing implicit surface. In the view of signal processing, if we take the surface

attributes of the input mesh as a spatial signal, then rendering a point-set model

becomes a spatial signal reconstruction problem. We now further discuss this

perspective.

 EWA splatting [29] is a technique with the highest rendering quality so far in our

knowledge. It is originated from the work of Heckbert [12], which applying

elliptical-weighted-average filter for texture filtering. It assigns an elliptical Gaussian

reconstruction filter to each splat, and convolves it with a band-limited filter, which is

called the object space EWA filter. If the band-limited filter is again a Gaussian, then

the projection on the image plane is still a Gaussian, which is referred to as the image

space EWA filter. Projecting and accumulating these reconstruction kernels on the

image plane produce the final image output. The whole process may be considered as

signal reconstruction in object space or image space. For a complete derivation, we

recommend the article by Zwicker M. et. al. [30].

 Over the past decade, the occurrence of programmable vertex and pixel shader

23

grab great interests on implementing hardware-accelerated EWA splatting. Many great

works were done in facilitating of pixel shader to rasterize EWA filter on screen space

[3], [4], [5]. The point sprite like OpenGL point [3] or NV_sprite [5] provide an ideal

way to generate enough fragments to rasterize EWA filter. To rasterize the filter, the

first step is to discard unnecessary fragment via the inside test,

u v · · 1 3

where u and v are tangent coordinates, c is the center, and q is the input point. With

the position and the normal of the splat, the algorithm may then rasterize the shape of

the filter correctly. However, since a point sprite is actually a billboard aligned with

image plane, depth correction is necessary against incorrect depth occlusion artifacts.

Botsch M. and Kobbelt L. [4] first presented an implementation with Gouroud

shading quality. Phong splatting [3] soon achieved phong shading quality by

associating a linear normal field with each splat. Botsch M. et. al. [5] introduced the

idea of deferred shading in EWA splatting and improved the performance further.

Ren L. et. al. [22] proposed an object-space approach. The idea was to render

EWA filter with a quad textured with a unit-Gaussian map. In this way, the

perspective transform is automatically accurate and is computed by hardware. The

rasterization of EWA filter also did not need any special care since it was done by

rasterizing the textured quad. Further, it didn’t need depth correction. However, the

performance was slower than most of the screen space approach because of the

hardware constraints.

No matter object-space or screen-space approach is used, a common issue occurs:

how to blend splats contribution? Since each EWA filter is truncated to a finite

24

support, it is reasonable to blend only the splats which deviate in z direction of eye

coordinates under some threshold values. I.e. the z-test is not simply 0 or 1 anymore;

it contains a small tolerance range and thus the name “fuzzy-z test”. Unfortunately,

there is no way to implement this fuzzy-z test directly under current graphics

hardware since the depth-stencil test stage is not yet programmable. One way to solve

this problem is to apply other visibility technique. Layered-depth cube is a common

choice and has been widely investigated [4], [21]. The other trend is to introduce a

visibility pass to the rendering process [3], [4], [5]. It only generates depth map. One

simply “moves” it along the viewing direction the amount of tolerance range [22], and

then the traditional depth-stencil test will behave as fuzzy-z test.

 Nevertheless, with this fuzzy-z test, rendering a scene with triangular meshes and

point-set models become a tricky task. The point-set model will appear to merge with

the triangular mesh when their depth value is within the tolerance range. A naïve

approach may be render the point-set model in a different render target, and then

merge it back according to the depth buffer. However, depth occlusion artifacts occur

on the intersection region with this approach. Figure 15 shows a point-set Stanford

bunny intersects to a triangular-mesh Utah teapot. These artifacts occur because the

depth value of the point-set model is computed from the tangent plane of each splat

lied on, not from the surface itself.

25

Figure 15 Stanford bunny intersects to Utah teapot

Thanks for the new shader 4.0 specifications, we may efficiently construct

object-space EWA filter with geometry shader now. We further combine the deferred

shading proposed in [5], and implement it with the new feature in shader 4.0 which

allows us to render to multiple render targets concurrently in primitive level. Our

rendering algorithm is a multiple-pass algorithm like [5]. The visibility pass generates

depth map. The attribute pass render the color, normal, and any desired attributes to

different render targets. Finally, the shading pass reads in these attribute maps and

renders the final result. In this thesis, we further generalize the attribute pass to deal

with depth occlusion artifacts.

26

5.1: Pass 1: Visibility Pass
 Figure 16 shows the rendering pipeline of the visibility pass.

The main goal of this pass is to generate the depth map for the following fuzzy-z

test. We first pack the whole splat set into a vertex buffer, and set the primitive type as

point list. The vertex shader in this pass transforms the position and tangent

Vertex shader

Geometry shader

Input assembly

Pixel shader

Splat set

Packing as vertex buffer

Generate a
corresponding quad

Output merger
Set render target as
NULL

Depth
map

Figure 16 Rendering pass 1: visibility pass

27

coordinates to world space, and then passes the data to the geometry shader. The

geometry shader then generates a quad corresponding to each splat, and transforms

them to the projection space, as shown in Figure 17.

Before any draw call is made, we set the render target as NULL. Thus we get a depth

map in this pass without affecting any previous rendering result in the framebuffer.

u

v

urad

vrad

Figure 17 The quad generated by geometry shader. The red point is the
center of the splat, and blue points are points generated by geometry shader.

28

5.2 Rendering Pass 2: Attribute Pass

 Figure 18 shows the rendering pipeline of the attribute pass.

Vertex shader

Geometry shader

Input assembly

Gaussian map

Pixel shader
Depth
map

Multiple render targets

Output merger
Set depth buffer as
NULL

Attribute

maps

Generate corresponding
quad in number of
attribute maps

Figure 18 Rendering pass 2: attribute pass

29

In this pass, the vertex shader transforms the position, normal and tangent

coordinates to the world space. The geometry shader again expands the point into a

quad, then assigns desired attributes in the color channel, and sends them to the

correct render target via SV_RenderTargetArrayIndex semantic. The depth buffer is

set NULL at the beginning and is fed as a shader resource. In the pixel shader, we first

do the inside test as equation (3) to discard unnecessary pixels. Although it is an

optional step for object-space approach, we found that discard these pixels may

increase some performance. Next, it read depth buffer to do fuzzy-z test. Given that a

value, zb, read from the z buffer. Since it is a value defined in the normalized device

space, we need to transform it back to the projection space,

z
FN

F z F N 4

where F stands for the far clipping plane, N stands for the near clipping plane. We

then use this value to perform the fuzzy-z test.

After processing two tests described above, we then render the quad with the

prescribed unit Gaussian map as alpha texture. By using the floating-point precision

render target and enabling alpha blending, surface attributes are accumulated and

blended correctly in each render target:

w h , h 5

where x is the position, xi is the splat center, h is the reconstruction kernel and thus

the Gaussian in this thesis. C stands for the (R, G, B) channel, and alpha stands for

the alpha channel. We then do a per-pixel normalization by dividing the color value

with alpha value:

w
h
∑ h 6

30

 In the original work of Bostch M. and Kobbelt L. [5], they generated a color map

and a normal map in this pass. The color map was basically the blending result of the

material color and the diffuse texture. The normal map was the blending result of

normal vectors as the name described. Here we further generalize the application of

the attribute pass to deal with texturing and eliminate depth occlusion artifacts.

Texturing and depth correction: TexZ map

 As mentioned in the first paragraph, the EWA splatting is actually a spatial signal

reconstruction process, and the spatial signal can be any surface attributes. Since our

point-set model is obtained from sampling a triangular mesh, we may reconstruct the

parameterization of the surface by sending the texture coordinates to the attribute pass.

Further, we may also consider the depth value of each sample point in the projection

space as a surface attribute and reconstruct the depth value of the surface. Our current

implementation only considers 2D texture-space parameterization; thus we may pack

the 2D parameterization and the projection-space depth value, and render it into one

render target. Since it consists of 2D parameterizations for texturing and depth, we

name it TexZ map.

31

5.3 Pass 3: Shading Pass

 Figure 19 shows the rendering pipeline of the shading pass.

In this pass, we take color map, normal map, depth correction map, and any other

possible attribute maps generated in the attribute pass to compute the final result. First,

we set geometry shader and the input layout as NULL. In vertex shader, we use the

system value: SV_Vertex_ID to generate a viewport-sized quad.

Vertex shader

Geometry shader

Input assembly

Pixel shader

Normal
map

Generate a
viewport-sized quad

Output merger

Set the depth buffer again

Set input layout as
NULL

Final
output

Attribute

maps
Depth
map

TexZ
map

Figure 19 Rendering pass 3: shading pass

32

For each pixel, we first load the value from TexZ map by screen coordinates and

discard it if its alpha value is zero. Of course, this check can be done with any

attribute map. Next, for each pixel passing the alpha test, we compute its color value.

It is basically color_value + lighting_component, where color_value is fetched from

the diffuse map with texture coordinates in TexZ map, and the lighting_component is

computed via the normal fetched from the normal map. All the value fetching

mentioned above uses the intrinsic function Load(). Since they are all viewport-sized,

we don’t need any filtering. After fetch the value, we do per-pixel normalization as in

[5].

Notice that we turn on the output channel to the depth buffer in our pixel shader.

Since the z value stores in the TexZ map is in the projection space, we need to

transform it to the normalized device space before output:

z
F

F N 1
N
z 7

Thus any following rendering techniques will then have proper depth information of

our point-set model.

33

Chapter 6:

Results and Discussion

6.1 Rendering Results

Figure 20 Happy budda rendering with 170000 splats. From left to right: shading
result, normal map, and depth correction map. With smoothly blended normal, we
may easily achieve Phong shading quality.

34

Figure 21 A textured cloth.

35

Figure 22 A textured long dress. Note that the spatial aliasing around the edge are
caused by the nature of splats.

36

Figure 23 Stanford bunny with different textures.

37

(1)

(2)

Figure 24 Result of the depth correction. (1): Without depth correction. (2): With
depth correction.

38

Figure 25 A point-set clothes on a triangular-mesh man. With our depth correction
technique, we may try to make a close contact between point-set models and
triangular meshes without depth occlusion artifacts.

39

Figure 26 Bunnies in grass. The scene consists of 231986 splats and 50553 triangles.

Bunnies and rocks are point-set models while grass and carrot are triangular meshes.

The scene is rendered at 55 FPS on 8800GTX

40

6.2 Performance and Discussion

 In this section, we discuss performance issues in detail. The performance was

measured on a machine with GeForce 8800GTX card, the version of the driver was

172.20, and the screen resolution was 1024×768. The algorithm was implemented

with DirectX SDK ver. March 2008. Our implementation achieves 16M splats/sec in

average.

It turns out that graphics adapter and the bandwidth between CPU & GPU

dominates the performance, since CPU does nothing but sends data to graphics

adapter in our system. Please note that we didn’t apply any LOD technique in our

experiment and thus the performance “seems to be” far slower than those pioneer

works [3], [4], [5], [29].

Backface culling

After a point is expanded to a quad in the geometry shader, the default backface

culling will be performed in the output merger stage. Nevertheless, we may do

backface culling in the geometry shader in advance to prevent generating redundant

quads. We gain a performance raise of 1M splats / sec in average by doing so.

MRT controlled at primitive level

 The shader model 4.0 introduces a new feature that controlling MRT at primitive

level. One may easily generate primitives in a geometry shader and rasterizes them

to different render targets with system-value semantic, SV_RenderTargetArrayIndex.

41

Chapter 7:

Conclusions & Future Works
 In this thesis, we try to investigate some of the basic techniques of hybrid scene

representation. We name two fundamental issues: data source of point-set model and

an easily-integrated rendering module. We first present a novel priority-based

stratified sampling to convert a triangular mesh to a point set, and then grew a

corresponding splat representation from it with a simplified version of [28]. Our

priority-based sampling can be viewed as more a framework than simply an

algorithm.

 The idea of generalized attribute pass may be worthy of further investigation. In

our experiment, reconstructing 2D parameterization in this way turns out to be very

sensitive to the quality of sampling. A not-good-enough sampling may cause overly

blurred results using textured splats like [22], but cause an obvious distortion in our

system. Currently, our priority-based sampling applies the number of triangles as

priority value. It cannot correctly capture the high-spatial-frequency region with a

small number of triangles. Figure 25 shows an example. While the body of the zebra

is textured correctly, the sharp region around the head shows serious distortion.

Applying a priority function based on the gradient of distance field might produce

better results. A better splat generation will also improves the overall quality.

42

Figure 27 A failure case of texturing. Notice the distortion around the head. These

artifacts are caused by bad sampling quality around the high frequency region.

 As shown in Figures 21, 22 and 25, our system doesn’t handle sharp edges

properly. Associating clipping lines with splats might be a solution. The way to

defining clipping line automatically in the splat generation stage may be worth to

investigate.

Our current implementation rendered with a raw data set. Integrating a LOD

technique will undoubtedly boost the performance. To not conflict with our basic

principle: easily-integrated with exist triangular mesh rendering modules; we

anticipate that a LOD technique suits for GPU, like sequential point trees [8], will be

an ideal choice.

43

References

1. Alexa M., Behr J., Cohen-Or D., Fleishman S., Levin D., and Silva C. T., Point

Set Surfaces. IEEE Visualization, 2001.

2. Akenine-Mäoller T., Fast Triangle-Box Overlap Testing.

3. Botsch M., Spernat M., and Kobbelt L., Phong Splatting. Eurographics

Symposium on Point-Based Graphics, 2004.

4. Botsch M., and Kobbelt L., High-Quality Point-Based Rendering on Modern

GPUs. Proceedings of the 11th Pacific Conference on Computer Graphics and

Applications, 2003.

5. Botsch M., Hornung A., Zwicker M., and Kobbelt L., High-Quality Surface

Splatting on Today’s GPUs. Eurographics Symposium on Point-Based Graphics,

2005.

6. Chen B., and Nguyen M. X., POP: A Hybrid Point and Polygon Rendering

System for Large Data, IEEE Visualization, 2001.

7. Coconu L., and Hege H. C., Hardware-Accelerated Point-Based Rendering of

Complex Scenes. Thirteenth Eurographics Workshop on Rendering, 2002.

8. Dachsbacher C., Vogelgsang C., and Stamminger M., Sequential Point Trees,

SIGGRAPH 2003.

9. Grossman J. P. and Dally W. J., Point Sample Rendering, Proceedings of

Eurographics Rendering Workshop ’98 page. 181-192, 1998.

10. Guennebaud G., Barthe L., and Paulin M., Splat/Mesh Blending, Perspective

Rasterization and Transparency for Point-Based Rendering, Eurographics

Symposium on Point-Based Graphics, 2006.

11. Guennebaud G., and Gross M., Algebraic Point Set Surfaces, ACM SIGGRAPH,

44

2007.

12. Heckbert P., Fundamentals of Texture Mapping and Image Warping. Master’s

Thesis, University of California at Berkeley, Department of Electrical

Engineering and Computer Science. 1989.

13. Levin D., The Approximation Power of Moving Least-Squares. Mathematics of

Computation, Vol. 67, No. 224, October 1998, pages 1517-1531.

14. Levin D., Mesh-independent Surface Interpolation. Geometric Modeling for

Scientific Visualization. Springer-Verlag, 2003.

15. Levoy M. and Whitted T., The Use of Points as Display Primitives. Technical

Report TR 85-022, the University of North Carolina at Chapel Hill, Department

of Computer Science, 1985.

16. Marroquim R., Kraus M., and Cavalcanti P. R., Efficient Point-Based Rendering

Using Image Reconstruction. Eurographics Symposium on Point-Based Graphics,

2007.

17. Müller M., Heidelberger B., Teschner M., and Gross M., Meshless Deformations

Based on Shape Matching. ACM SIGGRAPH, 2005.

18. Müller M., Keiser R., Nealen A., Pauly M., Gross M., and Alexa M., Point Based

Animation of Elastic, Plastic, and Melting Objects. Eurographics/ACM

SIGGRAPH Symposium on Computer Animation, 2004.

19. Nehab D., and Shilane P., Stratified Point Sampling of 3D Models, Eurographics

Symposium on Point-Based Graphics, 2004.

20. Pauly M., Keiser R., Kobbelt L. P., and Gross M., Shape Modeling with

Point-Sampled Geometry. ACM SIGGRAPH, 2003.

21. Pfister H., Zwicker M., Baar J., and Gross M., Surfels: Surface Elements as

Rendering Primitives, ACM SIGGRAPH, 2000.

45

22. Ren L., Pfister H., and Zwicker M., Object Space EWA Surface Splatting: A

Hardware Accelerated Approach to High Quality Point Rendering, Eurographics

2002.

23. Rusinkiewicz S., and Levoy M., QSplat: A Multiresolution Point Rendering

System for Large Meshes. SIGGRAPH, 2000.

24. Shade J., Gortler S. J., He L., and Szeliski R., Layered Depth Images. In

Computer Graphics, SIGGRAPH 98 Proceedings, pages 231-242. Orlando, FL,

July 1998.

25. Sankaranarayanan J., Samet H., and Varshney A., A Fast K-Neighborhood

Algorithm for Large Point-Clouds. Eurographics Symposium on Point-Based

Graphics, 2006.

26. Turk G., Generating Textures on Arbitrary Surfaces Using Reaction-Diffusion,

Computer Graphics, Vol. 25, No. 4, July 1991.

27. Weyrich T., Heinzle S., Aila T., Fasnacht D. B., Oetiker S., and Botsch M., A

Hardware Architecture for Surface Splatting. ACM SIGGRAPH, 2007.

28. Wu J., and Kobbelt L., Optimized Sub-Sampling of Point Sets for Surface

Splatting, In Proceedings of Eurographics 04, pages 643-652.

29. Zwicker M., Pfister H., Baar J., and Gross M., Surface Splatting, ACM

SIGGRAPH, 2001.

30. Zwicker M., Pfister H., Baar J., and Gross M., EWA Splatting. IEEE

Transactions on Visualization and Computer Graphics, Vol. 8, No. 3,

July-September 2002.

31. Zwicker M., Pauly M., Knull O., and Gross M., Pointshop 3D: An Interactive

System for Point-Based Surface Editing. In Proceedings of SIGGRAPH 2002.

	title
	My Thesis

