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摘         要 

 

 

目前對於實體材質合成(solid texture synthesis)的研究，大多以二維切面

(2D slice)來模擬三維合成(3D synthesis)的效果，然而此類方法只記錄立體空

間中，三個二維切面(2D slice)上的資料，用做鄰近點比對(neighborhood 

matching)，對於在立體空間中的其他部份資料則無法拿來利用於材質合成

(texture synthesis)的過程中，使得最後結果會喪失空間中的資料，更甚至無

法控制立體空間的材質(texture)方向性。本篇利用立體空間中的鄰近點比對

(neighborhood matching)，發展出一套可以運用在真正三維空間中實體材質合

成(solid texture synthesis)的方法；過程中使用表面向量值(appearance vector)

取代傳統只用色彩值 (RGB color value)來做鄰近點比對 (neighborhood 

matching)，有了資料量豐富的表面向量值(appearance vector)，我們就可以只

比對 8 個點來建立 5×5×5 個點的立方體(cube)內的鄰近點(neighborhood)資

料，並且利用額外的向量場(vector field)來達到控制材質方向性(texture 

control)的目的。 
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ABASTRACT 

 
Recently, some researches have been focusing on solid texture synthesis and 

most of them use three orthogonal 2D slices to synthesize solid textures. 

However, these methods only use the information on three 2D slices for 

neighborhood matching, and the information within 3D space is not used. It 

makes the results lost some information, and it is unable to control solid textures 

in the 3D space. Our method presents a new technique for generating solid 

textures with cube neighborhood matching. It helps us to synthesize within real 

3D space. Appearance vectors are used to replace color neighborhood values. 

With these information-rich vectors, we can only use 8 locations acts for 5×5×5 

cube structure neighborhoods. Additionally, we introduce our approach for 

controllable texture synthesis with vector fields for coherent anisometric 

synthesis. 
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Chapter 1 
Introduction 
 
1.1 Motivation 

Recently, a wide range of textures can be synthesized in 2D; even structural 

textures such as wood and marble can be synthesized well. But there is still a lack 

of techniques in generating 3D textures. There are many different kinds of 

techniques for 3D surface texturing, such as texture mapping [7, 20, 21], 

procedural texturing [4, 14] and image-based surface texturing [17, 18, 19]. 

Texture mapping is the easiest way for 3D surface texturing. However, it suffers 

the well-know problems of distortion, discontinuity, and unwanted seams. 

Procedural texturing can generate high quality 3D surface textures without 

distortion and discontinuity, but still some problems exist. First, procedural 

texturing models only limit types of textures, such as marble. Second, there are 

too many parameters for users to understand and control. The results will depend 
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on the designers. 

Image-based surface texturing can synthesize a wider range of textures, but 

it fails for large structural textures such as bricks. And it still suffers the distortion 

problem when the curvature is too large. As a result, when 2D textures are used 

in texturing 3D objects, there are some disadvantages such as discontinuous 

problems, distortion problems on large-curvature surfaces, and non-reusable 

problems. Thus, textures generated for one surface can not be used for other 

surfaces.  

Solid textures can be used to overcome the above problems. Peachey [13] 

and Perlin [14] introduced the idea of 3D solid textures considered as a block of 

colored points in 3D space to represent a real-world material. Solid textures 

obviate the need for finding a parameterization for the surface of the object to be 

textured, avoiding the problems of distortion and discontinuity. Moreover, solid 

textures provide texture information not only on surfaces, but also inside the 

entire volume.  

Recently, some methods [3, 10, 15] used three orthogonal slices for 

neighborhood matching, but there are some drawbacks within these methods: 

They do not include the neighborhood information in 3D space, and they are 

difficult to control in 3D space. Therefore, we present a method for real 3D space 

  2



texture synthesis and use vector fields for controllable texture synthesis. The 

whole process is totally automatic. We use information-rich appearance vectors 

and cube neighborhoods for neighborhood matching. The results show that our 

proposed approach can model a wide range of textures. 

 

1.2 Overview 

The flow of our proposed system is shown in Figure 1.1. First, input a 

volume texture data. Then, in the pre-process, feature vectors and similarity sets 

are generated. For feature vector generation, it captures 5x5x5 cube information 

and applies PCA to reduce the dimension as the voxel RGB color values. For the 

similarity set generation, it will find three most similar voxels for each voxel. In 

the synthesis process, we apply the pyramid synthesis method in [11] to our 

system. Upsampling, jitter and correction are used at each level to get the result.  

Furthermore, for the anisomeric synthesis, we use vector fields to control the 

results. First, input a vector field as the anisometric field and compute the 

inverse anisomertic field from the vector field. When the correction technique is 

applied, these two fields are used to get the results. 
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Input Volume Texture 

Feature Vector 

Generation 

Anisometric Field 

Inverse   

Anisometric Field 

Similarity Set 

Generation 

Pre‐process 

Upsampling 

Jitter 

Synthesis Process

Correction

Result 

Vector Field 

Figure 1.1 System flow chart 

The major contributions of this thesis are as follows: First, we present an 

approach for synthesizing solid textures from volume textures. With appearance 

vectors, only 8 locations are used to synthesize solid textures, whereas prior 

schemes require 5×5×5 neighborhoods. Second, we propose a coherent 
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anisometric synthesis algorithm for solid textures based on vector field control. 

 

1.3 Thesis Organization 

The rest of this thesis is organized as follows: In Chapter 2, we review 

related works about texture synthesis with control and solid texture synthesis. In 

Chapter 3, we present the proposed approach for synthesizing solid textures 

from volume textures. Chapter 4 presents the proposed anisometric synthesis 

approach for solid textures based on vector field control. The implementation 

and results are given in Chapter 5. Finally, conclusions and future works are 

discussed in Chapter 6.   
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Chapter 2 
Related Works 
 

In this chapter, we review previous researches related to our work. We focus 

on two parts: texture synthesis with control mechanism and solid texture 

synthesis.  

 

2.1 Texture Synthesis with Control Mechanism 

We first review approaches with 2D texture control and 3D surface control. 

 

Ashikhmin [1] presented an algorithm for users to use an interactive 

painting-style interface to control over the texture synthesis process. He proposed 

a shift-neighborhood method to find some candidate pixels for neighborhood 

matching and then searched a best similar neighborhood from them. This 

approach uses a smaller neighborhood to obtain the quality characteristics of a 

larger neighborhood and maintains the coherence of the results. Users can control 

where the patterns appear in the result images. This method provides users an 

interactive way to control the texture results, and it is fast and straightforward for 

the users. However, it could not obtain good results if the user’s control does not 
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contain significant amount of high frequency components. 

Lefebvre and Hoppe [11] introduced a high-quality pyramid synthesis 

algorithm to achieve parallelism. Their method includes a coordinates 

upsampling step to maintain patch coherence, jittering of exemplar coordinates to 

make the texture various, and an order-independent correction approach to 

improve texture quality. The results would be high-quality and efficient because 

of the order-independent correction step, it corrects the pixel coordinates after 

jittering for more accurate neighborhood matching, and the process can be 

divided into many subpasses to increase efficiency. Only a drawback exists: it 

will perform poorly if the features are too large to be captured by small 

neighborhoods. It is also a well known problem for other neighborhood-based 

per-pixel synthesis methods. 

 

Lefebvre and Hoppe [12] presented a framework for exemplar-based texture 

synthesis with anisometric control. They used appearance vectors to replace 

traditional RGB color values for neighborhood matching. Their appearance space 

makes the synthesis more efficiently because it reduces runtime neighborhood 

vectors from 5×5 grids to only 4 locations, and produces high-quality results 

because of the information-rich appearance vectors. They also combined their 

pyramid synthesis with this method to accelerate neighborhood matching and 

introduce novel techniques for coherent anisometric synthesis which reproduces 

arbitrary affine deformations on textures. They provided a convenient method for 

texture control.  

 

Kwatra et al. [8] presented a method for flow control on 2D textures and they 

presented an algorithm to achieve texture control on 3D surfaces [9]. They 

  7



provided a novel vector advection technique with global texture synthesis to 

achieve dynamically changing fluid surfaces. The user-defined fluid velocity 

fields are used to control the texture results on 3D surfaces, and the neighborhood 

construction step in the process will consider orientation coherent with it. This 

approach keeps the synthesized texture similar to the input texture and maintains 

temporally coherent. The limitation is that it is difficult for the users to define an 

orientation velocity field which is smooth everywhere. 

 

2.2 Solid Texture Synthesis 

Now we review different methods for solid texture synthesis.  

 

Jagnow et al. [6] gave a stereological technique for solid textures. This 

approach used traditional stereological methods to synthesize 3D solid textures 

from 2D images. They synthesized solid textures for spherical particles and then 

extended the technique to apply to particles of arbitrary shapes. Their approach 

needs cross-section images to record the distribution of circle sizes on 2D slices 

and builds the relationship of 2D profile density and 3D particle density. Users 

could use the particle density to reconstruct the volume data by adding one 

particle at a time, and it means the step is manual. This method uses many 2D 

profiles to construct 3D density for volume result. Their results are good for 

marble textures, but their system is not automatic and only for particle textures. 

Chiou and Yang [2] improved this method to automatic process, but it still only 

for particle textures.  

 

Qin et al. [15] presented an image-based solid texturing based on basic 

  8



gray-level aura matrices (BGLAMs) framework. They used BGLAMs rather than 

traditional gray-level histograms for neighborhood matching. They created aura 

matrix from input exemplars and then generated a solid texture from multiple 

view directions. For every voxel in the volume result, they will only consider the 

pixels on the three orthogonal slices for neighborhood matching. Their system is 

fully automatic and requires no user interaction in the process. Furthermore, they 

can generate faithful results of both stochastic and structural textures. But they 

needed large storages for large matrix and their results are not good for color 

textures. They used the information on three slices to create the aura matrix, so 

they could not do texture control on the results in 3D space. 

 

Kopf et al. [10] introduced a solid texture synthesis method from 2D 

exemplars. They extended 2D texture optimization techniques to synthesize 3D 

solid textures and then used optimization approach with histogram matching to 

preserve global statistical properties. They only considered the neighborhood 

coherence in three orthogonal slices for one voxel, and iteratively increase the 

similarity between the solid textures and the exemplar. Their approach could 

generate good results for wide range of textures. However, they synthesized the 

texture with the information on the slices. It is difficult to control in 3D space. 

 

Takayama et. al. [16] presented a method for filling a model with anisotropic 

textures. They had some volume textures and then specify it how to map to 3D 

objects. They pasted solid texture exemplars repeatedly on the 3D object. Users 

can design volumetric tensor fields over the mesh, and the texture patches are 

placed according to these fields.  
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Chapter 3 
 Solid Synthesis Process 
 

In this section, we will present our approach for synthesizing solid textures 

from volume textures. In Section 3.1, we describe the feature vector in appearance 

space and how we obtain the feature vectors. Then we use the similarity set to 

accelerate neighborhood matching in Section 3.2. In Section 3.3, we introduce 

how to apply 2D pyramid texture synthesis to solid texture synthesis. The 

upsampling process is to increase the texture sizes between different levels, that 

every one voxel in parent level will generate eight voxels in children level. The 

jitter step is to perturb the textures to achieve deterministic randomness. The last 

step in pyramid solid synthesis is voexl correction, using neighborhood matching 

to make the results more similar to the exemplar.  

 

3.1 Feature Vector Generation 

Solid texture synthesis using RGB color values for neighborhood matching 

needs larger neighborhood size and numerous data. Appearance vectors have 

been proved that they are continuous and low-dimensional than RGB color 

values for neighborhood matching. Therefore, we decide to transform the volume 

data values in color space into feature vectors in appearance space. As shown in 
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Fig. 3.1, we transform volume data  into appearance space volume data . 

We use the information-rich feature vectors for every voxel to obtain high-quality 

and efficient solid texture results.  

V V ′

 

 
Color Space  Appearance Space Appearance   

                     

      Dimension Reduced 

V ′                  V~ ′  
Volume Data 

Vectors

 V

Figure 3.1  Overview of volume data transformation 

  

Lefebvre and Hoppe [12] introduced appearance vectors in 2D space, and 

we will apply it in 3D space. After getting the RGB color values of input volume 

data, we take the values in 5×5×5 grids (Fig. 3.2 (b)) to construct feature vectors 

for every voxel in the input volume exemplar (Fig. 3.2 (a)). The exemplar  

is consisted of the feature vectors at every voxel. There are 375 dimensions (125 

for grids and 3 for RGB) for one voxel in 

V

V

V ′

′ , and then we perform PCA to 

reduce the dimensions for a transformed exemplar (Fig. 3.2 (c)). It means that 

we project the exemplar using PCA to obtain the transformed exemplar .  

V~ ′

V ′ V~ ′

 

We suppose that the data on each side is connected with them on the 

opposite side. For the voxels on the border, we will treat the voxels on the 

opposite border as its neighbors, and then take their RGB values to construct 

feature vectors. However, the data is always not continuous at the borders for 

some input exemplars. In order to avoid border effect problems, we will discard 

the data of 2 voxels (about half of 5) on each border, and we compute the feature 

vectors for the )2()2()2( −×−×− nnn  voxels in the exemplar .  V

 

  11



 

 
 

                    

           

Figure 3.2 The process for feature vector generation 

         (a) input volume data V  (b) 5×5×5 grids structure for feature vectors 

(c) transformed exemplar  V~ ′

 

3.2 Similarity Set Generation 

By the -coherence search method [21], we could find the  most similar 

candidates in the exemplar V  for the pixel 

k k

p , and then search from the 

candidates for neighborhood matching. The method can accelerate neighborhood 

matching because we do not have to search from each pixel in the exemplar  

for neighborhood matching. Therefore, we have to construct a similarity set to 

record the candidates similar to each voxel. 

V

k

 

We apply the 2D -coherence search method [21] to 3D space. In the 3D 

space, we find the  most similar voxels from all voxels in the transformed 

exemplar  for voxel 

k

k

V~ ′ p , and then construct the candidate set  to 

record the  candidates similar to every voxel 

)(...1 pC l
K

k p , where l is the pyramid level, 

(b) 

(c) (a) 
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ppCl =)(1

nn×

, and  is a user-defined parameter.  k

By the principle of coherence synthesis [1], searching candidates from the 

 neighbors of pixel p  in the exemplar V  can accelerate the synthesis 

process. Following this principle, we can find the  most similar voxels from 

the  neighbors of voxel 

k

nnn ×× p  in the transformed exemplar V~ ′  to 

construct the similarity set  for voxel )(...1 pl
KC p , where  is a user-defined 

parameter to control the window size for coherent synthesis. In the experiments, 

 is set as 7. 

n

n

 

However, it will suffer the local minimum problem if we follow the 

principle of coherence synthesis [1] because we only consider the  

neighbors of voxel 

nnn ××

p  to be candidate voxels for p . We do not consider the 

global optimization. Therefore, we reform the method for the similarity set. We 

still find the  most similar voxels for voxel k p  in the transformed exemplar 

V~ ′ . In order to avoid the local minimum problem, after finding C , we 

restrict that the voxel in the 

)(1 pl

nnn ××  neighbors of  can not be , 

and we search from the other voxels besides the 

)(1 pl

n

C

n

)(2 pCl

n ××  neighbors of  

to be . By the same way, the voxel in the 

)(1 pCl

)(2 pCl nnn ××  neighbors of  

can not be C for 

)( pCl
n

)(1 pl
n+ p  until we construct . Now we finish the 

similarity set for the transformed exemplar V

)p(...
l

K1C

~ ′ , and then we will use the 

similarity set in synthesis process. 
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3.3 Pyramid Solid Texture Synthesis 

3.3.1 Pyramid Upsampling 

The pyramid synthesis method [5] synthesizes textures from coarse level to 

fine level. There are  levels in synthesis process, l=0~ , where m is 

the size of the target texture. They synthesized an image  from , 

where . We will apply this 2D pyramid synthesis method to 3D space.  

1+l m2log

S LSS ~0

mL 2log=

                                   0S 1S 2S
                                0=l 1=l 2=l 

 

Figure 3.3  Synthesis from one voxel to mmm ××  solid texture 

 

We will synthesize from one voxel to a m×m×m solid texture, from , 

as shown in Fig. 3.3. We synthesize a volume data  in which each voxel  

stores the coordinate value of the exemplar voxel. At the first, we build a voxel 

and assign value (1,1,1) to it as coordinate value, and then we upsample the 

coordinate values of parent voxels for next level, assigning each eight children 

the scaled parent coordinates plus child-dependent offset. 

LSS ~0

[ ]pSS
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where  denotes the regular output spacing of exemplar coordinates, and  

means the relative locations for 8 children. 

lh Δ

 

3.3.2 Jitter Method 

After upsampling the coordinate values, we have to jitter our texture to 

achieve deterministic randomness. We plus the upsampled coordinates at each 

level a jitter function value to perturb it. The jitter function  is produced 

by a hash function 

)( pJ l

[ ]22 1,1:)( +−→ΖpH  and a user-defined parameter . lr

 

)(][][ pJpSpS lll +=                     (2) 

lll rpHhpJ )()( =  

 

3.3.3 Voxel Correction 

In order to make the coordinates similar to those in the exemplar , we 

will take the jittered results to recreate neighbors. There is a feature value for 

every voxel after constructing feature vectors. For every voxel 

V

p , we collect the 

feature values of its neighbors to obtain the neighborhood vector , and 

then search the most similar voxel from the transformed exemplar 

)p(Nsl

V~ ′  to make 

the result similar to the exemplar . V
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In neighborhood matching, we take 8 diagonal locations for voxel p  to 

obtain the neighborhood vector : )( pNsl
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Fig. 3.4 shows the 8 diagonal locations for every voxel p . 

 

 

Figure 3.4  Eight neighbors for  )( pNsl

 

By [12], they averaged the pixels nearby pixel Δ+p  to improve 

convergence without increasing the size of the neighborhood vector . 

They averaged the appearance values from 3 synthesized pixels nearby  

as the new feature value at pixel 

)( pNsl

Δ+p

Δ+p , and then used the new feature values at 

4 diagonal pixel to construct neighborhood vector . )( pNsl

 

We apply this approach to perform 3D coordinate correction. First, we 

average the feature values from 4 synthesized voxels nearby neighborhood voxel 

of p , , as the new feature value at voxelΔ+p Δ+p .  means the 

averaged feature value at voxel 

);( ΔpNsl

Δ+p . Fig. 3.5 shows the locations of 4 
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synthesized voxels for every neighbor. Then we use the new feature values from 

8 diagonal voxels to construct neighborhood vectors . )( pNsl

 

]][[~
4
1);( '

, Δ′−Δ+Δ+p

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

0
0
0

,
0
0
0

′=Δ ∑ Ψ∈Δ=Δ′ SVpN MMsl          (4) 

{ }
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
∈Ψ

10
00
00

00
10
00

,
000
000
001

,
000
000
000

 

 

 
Figure 3.5  Four sub-neighbors for every neighbor of voxel p   

 

We search the voxel  which is most similar to voxel u p  by comparing 

neighborhood vectors  and . We use the similarity sets and 

coherence synthesis method in the searching process, utilizing the 8 voxels 

nearby voxel 

)( pNsl )(uNsl

p  to infer where the voxel u  is. For example, for the voxel 

neighbor voxel  ( ), we can get the most similar 3 voxels ( , , ) for 

voxel  from the similarity set, and then use the relationship between voxel  

and voxel 

i 8~1=i 1i 2i 3i

i i

p  to infer the candidate voxels ( , , )  for voxel pi1 pi2 pi3 p , as 
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shown in Fig. 3.6. We set the 3 voxels ( , , ) as the candidates for voxel pi1 pi2 pi3

p . We compute the neighborhood vectors by the averaged feature values from 

the 8 nearby voxels of 3 candiates. We can obtain , , and 

. 

)( 1psl iN )( 2 psl iN

)( 3 pislN

Figure 3.6  Process for inferring candidates for voxel p . Using three similar  

       voxels of neighbor voxel  to infer candidates for voxel i p  

 

In the same way, there are 8 voxel neighbors near voxel p , and each of 

them has 3 similar voxels. Therefore, we will infer 24 candidates for voxel p . 

Then we compute the 24 s, where  is a candidate, compare these 

s with  for neighborhood matching, and find the most similar 

)(uNsl u

)(uNsl )( pNsl

i1 

i3 

i2 

i1p 

i3p

i2p 
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voxel  to replace voxel u p . 

 

We can synthesize any size for results if the information in the exemplar  

is enough. It means the size of the input data must be large enough. 

V
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Chapter 4 
 Anisometric Synthesis Process 

 
In this section, we present the proposed anisometric synthesis approach for 

solid textures with vector field control. In Section 4.1, we introduce 3D vector 

fields for texture control and how we generate anisometric fields and inverse 

anisometric fields with the 3D vector fields. Then we introduce the differences 

between solid synthesis and anisometric synthesis in Section 4.2. These 

differences are about upsampling and voxel correction. The jitter step is the same 

as it in the solid synthesis process. 

 

4.1 3D Vector Field 

We need the user-defined 3D vector fields to implement anisometric solid 

texture synthesis. We use the vector fields to control the result. 

 

We design a 3D space that contains three orthogonal axes at every point first, 

and then use mathematics formulas to control the three axes. Fig. 4.1 shows the 

3D vector field with orthogonal axes at every point, and the space size is 5×5×5. 

We make the three axes various, and expect that the texture results would be 

changed with the fields. For example, we design a circular field, and there will be 
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a circular pattern on the texture. Fig. 4.2 shows the 3D vector field with a circular 

pattern on XY plane. The vector field should be the same size as the texture 

result.  

 

   

(a) (b) 

 

 

(c) 

Figure 4.1  5×5×5 3D vector field with orthogonal axes 

          (a) XY plane             (b) XZ plane    

(c) three orthogonal axes at every point 
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          (a)                                (b) 

 

 

(c) 

Figure 4.2  5×5×5 3D vector field with a circle pattern on XY plane 

          (a) XY plane   (b) and (c) are three axes at every point 

 

We have to make the anisometric field  and the inverse anisometric field 

 for each level with the user-defined 3D vector field,. The anisometric field 

A

1−A

A  is made by downsampling the 3D vector field, and we will obtain  for 

each level. Then, we inverse the  to get inverse anisometric field  for 

lA

1−
lAlA
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each level. In the anisometrc synthesis process, the steps for upsampling and 

correction will refer to the fields  and  at each level. lA

] S

1−
lA

]

 

4.2 Anisometric Solid Texture Synthesis 

4.2.1 Pyramid Upsampling 
The goal for upsmapling step in anisometric synthesis is the same as it in 

isometric synthesis. It helps synthesize from coarse level to fine level, and we 

have to upsample the coordinate values of parent voxels for the next level. 

 

The difference is that the child-dependent offset for upsmapling step in 

anisometric synthesis is dependent on the anisometric field . We use the 

anisometric field  to compute the distance for spacing.  

A

A
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where  denotes the regular output spacing of exemplar coordinates, and  

means the relative locations for 8 children. 

lh Δ

 

4.2.2 Voxel Correction 

The goal for correction step is to make the coordinates similar to those in the 

exemplar . For every voxel V p , we collect the feature values of warped 
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neighbors by the anisometric field  and the inverse anisometric field to 

obtain , and then search the most similar voxel from the transformed 

exemplar 

lA 1−
lA

)( pNsl

V~ ′  to make the result similar to the exemplar  according to the 3D 

vector field. 

V

 

The method presented by Lefebvre and Hoppe [12] for anisometric 

synthesis is able to reproduce arbitrary affine deformations, including shears and 

non-uniform scales. They only accessed immediate neighbors of pixel p  to 

construct the neighborhood vector . They used the Jacobian field  and 

the inverse Jacobian field  to infer which pixel neighbors to access, and the 

results will be transformed by the inverse Jacobian field  at the current point. 

We will apply this to 3D space. 

)p(Nsl J

1−J

1−J

 

First, we have to know which 8 voxel neighbors to voxel p . We use the 

inverse anisometric field  to infer the 8 warped neighbors for voxel 1−
lA p , and 

construct the warped neighborhood vector )(~ pNsl : 
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ϕ

Δ
ϕϕ  

where )(~ Δϕ  keeps its rotation but removes any scaling. 

 

Fig. 4.3 shows the 8 warped neighbors for every voxel p . Their locations 
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are changed from diagonal locations by the inverse anisometric field . 1−
lA

 

Figure 4.3  Eight warped neighbors for )(~ pNsl  

 

Second, we have to find the 4 synthesized voxels nearby warped 

neoghborhod voxels of voxel p . We use the inverse anisometric field  to 

infer the 4 synthesized voxels for voxel 

1−A

)(~ Δ+ϕp

)(

, and compute the averaged 

feature value as the new feature value at ~ Δ+ϕp . Fig. 4.4 shows the locations 

of 4 warped synthesized voxels for each warped neighbor. 
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Figure 4.4  Four warped sub-neighbors for warped neighbors of voxel p  

 

We search the voxel  which is most similar to voxel u′ p  by comparing 

neighborhood vectors )(~ pNsl  and )(~ uNsl ′ . We utilize the 8 warped voxels 

nearby voxel p  and the anisometric fields  to infer where the voxel  is. 

For example, the warped neighbor voxel 

A u′

i′  ( 8~1=′i ), we can get the most 

similar 3 voxels ( , , ) for voxel 1i′ 2i′ 3i′ i′  from the similarity set, and then use the 

warped relationship with the anisometric fields  between voxel i  and voxel A ′

p  to infer the candidate voxels ( pi1′ , pi2′ , pi3′ )  for voxel p , as shown in Fig. 4.5. 

With the candidates for voxel p , we can compute the warped neighborhood 

vectors )(~
1sl iN p′ , )(~

2 p′slN i  and )(~
2 pi′slN  with the inverse anisometric field . 1−

lA
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3i′

Figure 4.5  Process for inferring warped candidates for voxel p . Using three  

           similar voxels of warped neighbor voxel i′  to infer candidates for  

           voxel p  

 

By the same way, we will infer 24 candidates for voxel p , and compute the 

24 )(~ uNsl ′ s, where  is a candidate. Comparing these u′ )(~ uslN ′ s with )(~ pNsl  

for neighborhood matching, we could find the most similar voxel  to replace 

voxel 

u′

p . 

 

 

 

 

 

1i′
i’3p 

 

2i′
i’1p 

i’2p 
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Chapter 5 
       Implementation and Results 
 

We implement our system on a PC with 2.67GHz and 2.66GHz Core2 Quad 

CPU and 4.0GB of system memory. We use MATLAB to implement our method. 

For a 32×32×32 volume data V , it needs about 3 minutes to construct a 

transformed exemplar  from feature vectors and about 2 hours to construct a 

similarity set. For a 64×64×64 volume data , it needs about 90~120 minutes 

for a transformed exemplar 

V ′

V

V ′  and about 85~95 hours for a similarity set. The 

transformed exemplar V  from feature vectors and the similarity set can be 

reused for synthesis process. It means that once the feature vectors and similarity 

sets are constructed, we can use them for other syntheses with different target 

sizes for results and with different vector fields. 

′

  

For a 64×64×64 result data, it needs about 6 hours to synthesize solid 

texture. For a 128×128×128 result data, it needs about 7~10 hours for synthesis 

process. We will show our results with 64×64×64 input volume data and 

128×128×128 result data in this chapter. The detail computation time for different 

textures are shown in Table 5.1. In Section 5.1, we show some isometric 

synthesis results, and we show anisometric results with different vector fields 
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control in Section 5.2. 

 

We use 5×5×5 grids for feature vectors at each voxel, 7×7×7 grids for 

similarity set that the voxels in this area could not be the candidate of the center 

voxel, and the parameter for jitter step is set to 0.7. 

 

5.1 Isometric Results 

The input data in Fig. 5.1(b) (case_1) is stochastic and marble-like texture. It 

only contains two kinds of colors, and it is vivid. It is information-rich that only 

needs small amount of data to represent the whole texture. It means that we can 

synthesize larger results (bigger than two times of input data size) with this kind 

of textures. Fig. 5.1(c)~(f) show the result. As we can see, the result is continuous 

and not the duplication of the input data. 

 

The input data in Fig. 5.2(b) (case_2) is particle-like texture. It contains few 

kinds of color, and it is very different between particles and background. The 

particles in case_2 are the same kind. As long as there are few complete particle 

patterns in the input data, we can synthesize good result, as shown in Fig. 

5.2(c)~(f). Because the few particle patterns can represent whole texture, we can 

synthesize it from 32×32×32 to 128×128×128, even from 64×64×64 to 

256×256×256 volume data (the result size is four times of input size). 

 

The input data in Fig. 5.3(b) (case_3) is another type of particle texture. It 

contains different sizes and different colors of particles, and most of particles 

look like the same color as background. Fig. 5.3(c)~(f) show the result from 
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64×64×64 to 128×128×128 volume result. Because the input data is not 

information-rich, the distribution of the particles in the result is sparse, not as it in 

the input data. It means that the size of the input data is not enough to contain 

enough information for us to synthesize. 

 

The input data in Fig. 5.4(b) (case_4)  is about sea water. It is a kind of 

homogeneous textures because it is almost in the same color in the whole volume. 

The main feature in the input data is the highlight area. As the result in       

Fig. 5.4(c)~(f) shown, there are few highlight area in the result volume data.  

 

The input data in Fig. 5.5(b) (case_5)  is a kind of structural textures. The 

patterns in the input data are small and compact, so the texture is 

information-rich. Only small size for input data could contain enough patterns for 

synthesis. It can be synthesized with a few input data and obtain good results. 

The result is shown in Fig. 5.5(c)~(f).  

 

The input data in Fig. 5.6(b) (case_6) is structural and continuous on two 

directions and broken on the other direction. It is consist of thin stokes from 

black and white. The result in Fig. 5.6(c)~(f) is good at the two continuous 

directions, which is continuous and not duplicate, but broken at the other 

direction because the input data is information-poor. 

 

The input data in Fig. 5.7(b) (case_7) is structural with bigger patterns. The 

feature in the input data is too large, so the input data could not represent the 

whole volume data if the input size is too small. As we can see in Fig. 5.7(c)~(f), 

the information in the 64×64×64 input data is regular, not various, so the result is 
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not as we expect.  

 

Table 5.1  computation time for different textures 

 Feature Vector 
Construction 

Similarity Set 
Construction 

Synthesis Process 

Case_1 47.8 seconds 85 hours 37 minutes  7 hours 55 minutes 
Case_2 31.1 seconds 85 hours 28 minutes  8 hours 17 minutes 
Case_3 35.4 seconds 86 hours 5 minutes  8 hours 22 minutes 
Case_4 48.6 seconds 84 hours 42 minutes 8 hours 5 minutes 
Csse_5 34.3 seconds 83 hours 46 minutes 7 hours 28 minutes 
Csse_6 38.2 seconds 86 hours 21 minutes 8 hours 41 minutes 
Csse_7 35.7 seconds  86 hours 51 minutes 8 hours 43 minutes 
Csse_8 37.3 seconds 93 hours 30 minutes 6 hours 52 minutes 
Csse_9 34.9 seconds  85 hours 4 minutes 8 hours 43 minutes 
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(a)                                   (b) 

   
              (c)                                   (d) 

   
(e)                                  (f) 

Figure 5.1 Input and result data for case_1 
         (a) cross sections at X=32, Y=32, and Z=32 for input data 
         (b) input volume data for case_1 
         (c) cross section at X=126, Y=126, and Z=126 for result data 
         (d) cross section at X=80, Y=80, and Z=80 for result data 
         (e) cross section at X=64, Y=64, and Z=64 for result data 
         (f) result volume data for case_1 
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(a)                                   (b) 

   
(c)                                  (d) 

   
(e)                                 (f) 

Figure 5.2 Input and result data for case_2 
         (a) cross sections at X=32, Y=32, and Z=32 for input data 
         (b) input volume data for case_2 
         (c) cross section at X=126, Y=126, and Z=126 for result data 
         (d) cross section at X=80, Y=80, and Z=80 for result data 
         (e) cross section at X=64, Y=64, and Z=64 for result data 
         (f) result volume data for case_2 
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(a)                                   (b) 

 \  

(c)                                  (d) 

   

(e)                                  (f) 
Figure 5.3 Input and result data for case_3 
         (a) cross sections at X=32, Y=32, and Z=32 for input data 
         (b) input volume data for case_3 
         (c) cross section at X=126, Y=126, and Z=126 for result data 
         (d) cross section at X=80, Y=80, and Z=80 for result data 
         (e) cross section at X=64, Y=64, and Z=64 for result data 
         (f) result volume data for case_3 
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(a)                                   (b) 

   
(c)                                   (d) 

   
(e)                                   (f) 

Figure 5.4 Input and result data for case_4 
         (a) cross sections at X=32, Y=32, and Z=32 for input data 
         (b) input volume data for case_4 
         (c) cross section at X=126, Y=126, and Z=126 for result data 
         (d) cross section at X=80, Y=80, and Z=80 for result data 
         (e) cross section at X=64, Y=64, and Z=64 for result data 
         (f) result volume data for case_4 
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(a)                                   (b) 

   
(c)                                   (d) 

   
(e)                                   (f) 

Figure 5.5 Input and result data for case_5 
         (a) cross sections at X=32, Y=32, and Z=32 for input data 
         (b) input volume data for case_5 
         (c) cross section at X=126, Y=126, and Z=126 for result data 
         (d) cross section at X=80, Y=80, and Z=80 for result data 
         (e) cross section at X=64, Y=64, and Z=64 for result data 
         (f) result volume data for case_5 
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(a)                                   (b) 

   
(c)                                   (d) 

   
(e)                                   (f) 

Figure 5.6 Input and result data for case_6 
         (a) cross sections at X=32, Y=32, and Z=32 for input data 
         (b) input volume data for case_6 
         (c) cross section at X=126, Y=126, and Z=126 for result data 
         (d) cross section at X=80, Y=80, and Z=80 for result data 
         (e) cross section at X=64, Y=64, and Z=64 for result data 
         (f) result volume data for case_6 

  37



   

(a)                                   (b) 

   
(c)                                   (d) 

   
(e)                                   (f) 

Figure 5.7 Input and result data for case_7 
         (a) cross sections at X=32, Y=32, and Z=32 for input data 
         (b) input volume data for case_7 
         (c) cross section at X=126, Y=126, and Z=126 for result data 
         (d) cross section at X=80, Y=80, and Z=80 for result data 
         (e) cross section at X=64, Y=64, and Z=64 for result data 
         (f) result volume data for case_7 
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5.2 Anisometric Results 

We show anisometric results with different vector field controls : circular 

pattern on XY plane, oval pattern on XY plane, slant pattern on XY plane, zigzag 

pattern on XY plane, and slant control on 3D space. In order to emphasize the 

control effect, we show the results about structural textures, as brickwalls and 

woods et. al. 

 

The vector field about circular control is in Fig. 5.8. The results with circular 

pattern control on the XY plane are shown in Fig. 5.9 and Fig. 5.10. Fig. 5.9 

shows the result for case_5. The result is good because of its small and compact 

pattern. The input data in Fig. 5.10(b) (case_8) is wood texture, it is continuous 

on the two directions and broken on the other direction. We can see the patterns 

changed with circular control on XY plane.   

 

   

(a)                                   (b) 

Figure 5.8  5×5×5 3D vector field about circular control 

(a) XY plane               (b) three orthogonal axes at every point 
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(a)                                   (b) 

   
(c)                                   (d) 

Figure 5.9 Anisometric result with circular control for case_5 
         (a) cross section at X=126, Y=126, and Z=126 for result data 
         (b) cross section at X=80, Y=80, and Z=80 for result data 
         (c) cross section at X=64, Y=64, and Z=64 for result data 
         (d) anisometric result with circular control for case_5 
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(a)                                   (b) 

   

(c)                                   (d) 

   

(e)                                   (f) 
Figure 5.10 Input data and anisometric result with circular control for case_8 
          (a) cross sections at X=32, Y=32, and Z=32 for input data 
          (b) input volume data for case_8 
          (c) cross section at X=126, Y=126, and Z=126 for result data 
          (d) cross section at X=80, Y=80, and Z=80 for result data 
          (e) cross section at X=64, Y=64, and Z=64 for result data 
          (f) anisometric result with circular control for case_8 
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The vector field about oval control is in Fig. 5.11. The results with oval 

pattern control on the XY plane are shown in Fig. 5.12 and Fig. 5.13. Fig. 5.12 

shows the result for case_5, it is good at this kind of control. Fig. 5.13 is the 

result for case_8, it is continuous with the oval control. 

 

   
(a)                                   (b) 

Figure 5.11 5×5×5 3D vector field about oval control 

(a) XY plane               (b) three orthogonal axes at every point 
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(a)                                   (b) 

     

(c)                                   (d) 
Figure 5.12 Anisometric result with oval control for case_5 
          (a) cross section at X=126, Y=126, and Z=126 for result data 
          (b) cross section at X=80, Y=80, and Z=80 for result data 
          (c) cross section at X=64, Y=64, and Z=64 for result data 
          (d) anisometric result with oval control for case_5 
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(a)                                   (b) 

   

(c)                                   (d) 
Figure 5.13 Anisometric result with oval control for case_8 
          (a) cross section at X=126, Y=126, and Z=126 for result data 
          (b) cross section at X=80, Y=80, and Z=80 for result data 
          (c) cross section at X=64, Y=64, and Z=64 for result data 
          (d) anisometric result with oval control for case_8 
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The vector field about slant control is in Fig. 5.14. The results with slant 

control on the XY plane are shown in Fig. 5.15 and Fig. 5.16. As we can see, 

there are slant control on XY direction, and no change from isometric results on 

XZ and YZ direction. The input data in Fig. 5.15(b) (case_9) is about brickwalls, 

a kind of structural texture. The result in Fig. 5.15(c)~(f) is continuous with the 

slant control at the whole volume. It is good at the cross sections of different 

planes. Fig 5.16 shows the result for case_5, there is a little discontinuity on XY 

plane and no change on the other planes.  

 

   

(a)                                   (b) 

   

(c)                                   (d) 

Figure 5.14 5×5×5 3D vector field about slant control 
(a) one axes on XY plane     (b) one axes at every point 
(c) three axes on XY plane    (d) three orthogonal axes at every point 
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(a)                                   (b) 

   

(c)                                   (d) 

   

(e)                                   (f) 
Figure 5.15 Input data and anisometric result with slant control for case_9 
          (a) cross sections at X=32, Y=32, and Z=32 for input data 
          (b) input volume data for case_9 
          (c) cross section at X=126, Y=126, and Z=126 for result data 
          (d) cross section at X=80, Y=80, and Z=80 for result data 
          (e) cross section at X=64, Y=64, and Z=64 for result data 
                    (f) anisometric result with slant control for case_9 
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(a)                                   (b) 

   

(c)                                   (d) 
Figure 5.16 Anisometric result with slant control for case_5 
          (a) cross section at X=126, Y=126, and Z=126 for result data 
          (b) cross section at X=80, Y=80, and Z=80 for result data 
          (c) cross section at X=64, Y=64, and Z=64 for result data 
          (d) anisometric result with slant control for case_5 
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The vector field about zigzag control is in Fig. 5.17, and we make it changed 

by two different directions for slant. We make the texture results changed on the 

XY plane with zigzag control, as shown in Fig. 5.18~ Fig. 5.20. As Fig. 5.15(b) 

shown, there is almost no information on XZ plane in the input data for case_9. 

We reconstruct the texture and there are some information shown in the result 

volume data (Fig. 5.18). The zigzag control is the same as we expect for case_9. 

Fig. 5.19 shows the result for case_5 with zigzag control on XY plane, and it is 

better than slant control (Fig. 5.16). Fig. 5.20 shows the result for case_8, the 

patterns on XY plane are changed by zigzag control. It keeps the continuity 

between different planes (XY planes with XZ planes, and XY planes with YZ 

planes).  
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(a)                                   (b) 

   

(c)                                   (d) 
Figure 5.17 5×5×5 3D vector field about zigzag control 

(a) one axes on XY plane     (b) one axes at every point 
(c) three axes on XY plane    (b) three orthogonal axes at every point 
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(a)                                   (b) 

   

(c)                                   (d) 
Figure 5.18 Anisometric result with zigzag control for case_9 
          (a) cross section at X=126, Y=126, and Z=126 for result data 
          (b) cross section at X=80, Y=80, and Z=80 for result data 
          (c) cross section at X=64, Y=64, and Z=64 for result data 
          (d) anisometric result with zigzag control for case_9 
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(a)                                   (b) 

   

(c)                                   (d) 
Figure 5.19 Anisometric result with zigzag control for case_5 
          (a) cross section at X=126, Y=126, and Z=126 for result data 
          (b) cross section at X=80, Y=80, and Z=80 for result data 
          (c) cross section at X=64, Y=64, and Z=64 for result data 
          (d) anisometric result with zigzag control for case_5 
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(a)                                   (b) 

   

(c)                                   (d) 
Figure 5.20 Anisometric result with zigzag control for case_8 
          (a) cross section at X=126, Y=126, and Z=126 for result data 
          (b) cross section at X=80, Y=80, and Z=80 for result data 
          (c) cross section at X=64, Y=64, and Z=64 for result data 
          (d) anisometric result with zigzag control for case_8 
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The vector field about 3D slant control is in Fig. 5.21. We make the results 

changed in the 3D space with slant control, as shown in Fig. 5.22~ Fig. 5.24. 

There are slant patterns on all planes and inside the volume results. Besides, they 

are continuous between different planes. Fig. 5.22 shows the anisometric result 

for case_9. There are on information on XZ plane of the input data for case_9, 

but it is continuous on all planes and inside the result in Fig. 5.22. The result is 

good in Fig. 5.23 because of the compact information in the input data. The 

anisometric result for case_8 is in Fig. 5.24. After 3D slant control, the 

information ion XZ plane shows up, even the result is not very continuous. 

   

 (a)                                   (b) 

   

(c)                                   (d) 
Figure 5.21 5×5×5 3D vector field about 3D slant control 

(a) one axes on XY plane     (b) one axes at every point 
(c) three axes on XY plane    (b) three orthogonal axes at every point 
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(a)                                   (b) 

   

(c)                                   (d) 
Figure 5.22 Anisometric result with 3D slant control for case_9 
          (a) cross section at X=126, Y=126, and Z=126 for result data 
          (b) cross section at X=80, Y=80, and Z=80 for result data 
          (c) cross section at X=64, Y=64, and Z=64 for result data 
          (d) anisometric result with 3D slant control for case_9 
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(a)                                   (b) 

   

(c)                                   (d) 
Figure 5.23 Anisometric result with 3D slant control for case_5 
          (a) cross section at X=126, Y=126, and Z=126 for result data 
          (b) cross section at X=80, Y=80, and Z=80 for result data 
          (c) cross section at X=64, Y=64, and Z=64 for result data 
          (d) anisometric result with 3D slant control for case_5 
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(a)                                   (b) 

   

(c)                                   (d) 
Figure 5.24 Anisometric result with 3D slant control for case_8 
          (a) cross section at X=126, Y=126, and Z=126 for result data 
          (b) cross section at X=80, Y=80, and Z=80 for result data 
          (c) cross section at X=64, Y=64, and Z=64 for result data 
          (d) anisometric result with 3D slant control for case_8 
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Chapter 6 
Conclusions and Future Works 

 
We have presented an exemplar-based system for solid texture synthesis 

with anisometric control. We apply 2D texture synthesis algorithm to 3D space. 

In the preprocessing, we construct the feature vectors and a similarity set for an 

input volume data. We use the feature vectors not traditional RGB values to 

construct neighbor vectors for more accurate neighborhood matching. The 

similarity set which records 3 candidates for each voxel helps more effective 

neighborhood matching. In the synthesis process, we use the pyramid synthesis 

method to synthesize textures from coarse level to fine level, from one voxel to 

m×m×m result data. We can only use 8 locations of each voxel for neighborhood 

matching in synthesis process. In the anisometric synthesis process, we generate 

vector fields and make the result textures changed by the vector fields.  

 

Comparing to other methods for solid synthesis, they only considered the 

information on three orthogonal 2D slices. They could not capture the 

information in the 3D space, and they can only control the textures on the slices 

not in the 3D space. We present a system for more accurate, effective and various 

solid texture synthesis. 
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In the future, we may control the anisometric textures with flow fields that 

make the results changed with time. Kwatra et. al. [9] presented a method for 3D 

surface texture synthesis with flow field. We may apply their method to 

synthesize anisometric textures changing with time in the 3D space. Besides, we 

may reduce the cost time for similarity set construction. The most time are spent 

on constructing similarity set in our system now, we may try another algorithm 

for similarity set construction to make the system more effective. 
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