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基於小波混沌分析法之癲癇預測及電路實現 
 

學生：王舒愷    指導教授：林進燈 博士 

                                   

國立交通大學多媒體工程研究所 

 

中文摘要 

在大腦生理訊號分析的研究中，如何從長時間的腦電波訊號找出可靠的特徵

來進行癲癇疾病的預測是目前熱門的研究議題，有鑑於傳統的統計分析方法對於

非穩定、非線性動態系統的訊號，容易因錯誤的結論而影響預測準確性。 

本論文提出一個基於小波及混沌理論分析的架構包含離散小波轉換、相關維

度、及相關係數。因小波具有多解析度、時頻分析的特性，相對於傅立葉轉換更

適合用在非穩定訊號。而混沌理論對於非穩定、非線性動態系統的基本推論，比

傳統的統計學方法能更有效地重建腦波的特徵，有助於腦波訊號的分析。因此，

結合小波與混沌理論將可有效提高癲癇預測的準確性及降低誤判率。 

本論文提出的作法是先將訊號分解成若干子頻帶，並針對子頻帶，利用腦電

波在癲癇發作前後，其相關維度收歛速度的不同來做為預測的依據。經實驗結

果，本論文所提出的演算法在 11 位具癲癇病患的測試中，可達到 87%的預測準

確率，誤判率為 0.24 次/小時，其平均預測時間約在發病前 27 分鐘。 

為了能讓本論文提出的方法能應用於可攜式生理監控設備，我們將其設計成

癲癇分析的處理電路，並針對演算法特性，使用提升式小波轉換、改良記憶體定

址、及其他算數化簡來降低電路面積及功耗，也可於將來進一步整合到生醫的訊

號處理器中。 
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Abstract 

The Epilepsy and epileptic seizure prediction algorithm by extracting useful 

features from Electroencephalography (EEG) is a hot topic in the current research of 

physiological signals. In view of the erroneous conclusions from the traditional 

statistical analysis methods for non-stationary and non-linear dynamics system of 

signals may affect the accuracy of forecasts. 

This thesis presents a novel architecture based on wavelet and chaos theory, 

including Discrete Wavelet Transform (DWT), correlation dimension, and correlation 

coefficient. The wavelet transform is more suitable for non-stationary signals than 

Fast Fourier Transform (FFT) due to the ability of multi-resolution and time- 

frequency analysis. The fundamentals of Chaos theory for non-stationary and 

non-linear dynamics systems are more in line with the characteristics of brain waves 

than statistics. Therefore, combining DWT and Chaos analysis can achieve a high 

prediction rate. 

In this thesis, first EEG signals are decomposed into several subbands. We 

predict seizures by the difference of convergent radius between the correlation 

dimension of EEG before a seizure and the one during a seizure for each subband. 
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The proposed algorithm is evaluated with intracranial EEG recordings from a set of 

eleven patients with refractory temporal lobe epilepsy. In the experimental results, the 

algorithm with global settings for all patients predicted 87% of seizures with a false 

prediction rate of 0.24/h. Seizure warnings occur about 27 min ahead the ictal on 

average. 

To apply the algorithm proposed to a portable physiological monitoring device, 

a seizure analysis circuit is also designed. Some techniques, such as lifting wavelet 

transform, enhanced memory addressing, and arithmetic reduction etc., are used to 

reduce circuit area and power consumption of circuit. In the future, the seizure 

analysis circuit can be further integrated into a digital signal processor for biomedical 

applications. 
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Chapter 1              
Introduction 
 

1.1 Epilepsy and Epileptic Seizure 
Epilepsy is a common chronic neurological disorder that is characterized by 

recurrent unprovoked seizures, called Epileptic Seizure (ES). It may be related to a 

brain injury or a family tendency, but most of the time the cause is unknown. About 

50 million people worldwide have epilepsy at any one time, and that would have a 

profound impact on the quality of life of epilepsy suffers. That’s why people want to 

know about it and even control it. 

 

 
Fig. 1-1 Neurons diagram 

(From: http://kvhs.nbed.nb.ca/gallant/biology/neuron_structure.html) 

 

These seizures are transient signs or symptoms due to abnormal, excessive or 

synchronous neuronal activity in the brain. Generally, the brain continuously 

generates tiny electrical impulses in an orderly pattern. These impulses travel along 

the network of nerve cells, called neurons, in the brain and throughout the whole body 

via chemical messengers called neurotransmitters. A seizure occurs when the brain's 
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nerve cells misfire and generate a sudden, uncontrolled surge of electrical activity in 

the brain. Epilepsy should not be understood as a single disorder, but rather as a group 

of syndromes with vastly divergent symptoms but all involving episodic abnormal 

electrical activity in the brain. 

Treatments are available that can successfully prevent seizures for most people 

with epilepsy. The first treatment is almost always one of the many seizure medicines 

(also called an antiepileptic drug or AED) that are now available. These medicines do 

not actually "fix" the problems that cause seizures. Instead, they work by stopping the 

seizures from occurring. The second, surgical treatment can be an option for epilepsy 

when an underlying brain abnormality, such as a benign tumor or an area of scar 

tissue (e.g. hippocampal sclerosis) can be identified. The abnormality must be 

removable by a neurosurgeon. Surgery is usually only offered to patients when their 

epilepsy has not been controlled by adequate attempts with multiple medications. 

 

   

Fig. 1-2 Vagus nerve stimulation (VNS) 

(From: http://www.medgear.org/page/4/) 

 

Vagus Nerve Stimulation (VNS), shown in Fig. 1-2, is a recently developed 

form of seizure control which uses an implanted electrical device. It is similar in size, 

shape and implant location to a heart pacemaker, which connects to the vagus nerve in 
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the neck. The vagus nerve is part of the autonomic nervous system, which controls 

functions of the body that are not under voluntary control. Once in place the device 

can be set to emit electronic pulses, stimulating the vagus nerve at pre-set intervals 

and milliamp levels. A new research on VNS was a major focus at annual meeting of 

the American Epilepsy Society in 2000. At a symposium on neurostimulation, it was 

reported that long-term efficacy studies lasting up to 5 years show that VNS can help 

a wide array of epilepsy patients who do not respond to seizure medicines and cannot 

be treated with epilepsy surgery. Overall, the studies indicated that 34% to 48% of 

these adult patients experienced at least a 50% reduction in seizure frequency after 2 

to 5 years of follow-up. 

 

1.2 Motivation 
Neurobehavioral disorders can profoundly affect the lives of epilepsy suffers. 

Thus, identification and treatment of cognitive and behavioral disorders are essential. 

To enhance the conventional treatments, we think incorporating the VNS or seizure 

medicines with a seizure prediction algorithm or more accurate to say a seizure 

precursory analysis algorithm is a feasible solution. Thus, the ability to predict 

seizures would play an important role to improve the quality of life of the people with 

epilepsy. In recent years, more and more researches focus on seizure analysis, and a 

lot of valuable papers are presented, such as Similarity Index [1], Sync decrease [2], 

Approximate entropy (ApEn) [3] etc. But we can say there is no robust enough 

algorithm has been published to date. 

In view of the erroneous conclusions from the traditional statistical analysis 

methods for non-stationary and non-linear dynamics system of signals may affect the 

accuracy of forecasts. To determine the main precursory anomalies from brain waves 
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more precisely, this thesis presents an architecture based on wavelet and chaos theory, 

including Discrete Wavelet Transform (DWT), correlation dimension, and correlation 

coefficient. The wavelet transform is more suitable for non-stationary signals than 

Fast Fourier Transform (FFT) due to its ability of multi-resolution, and time- 

frequency analysis. The fundamentals of Chaos Theory for non-stationary and 

non-linear dynamics systems are more in line with the characteristics of brain waves 

than statistics. Therefore we can achieve a high prediction rate by combining the 

DWT and Chaos analysis.  

For applying the algorithm proposed into a portable physiological monitoring 

device, we develop a seizure analysis circuit. Some techniques, such as lifting wavelet 

transform, an enhanced memory addressing, and arithmetic reduction etc., are used in 

the design to reduce the area and the power consumption of circuit. In the future, we 

even can integrate it into a digital signal processor of biomedical applications. 

 

1.3 Organization of the Thesis 
This thesis is organized as follows. Chapter 2 introduces the theory of chaos 

analysis and related works. The proposed algorithm for seizure prediction is described 

in Chapter 3. Chapter 4 describes the implementation techniques of seizure circuit 

design. Finally, the experimental results and discussions are presented in Chapter 5.   
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Chapter 2            
Fundamentals of Seizure Analysis 
Algorithm 

 

This chapter will introduce the seizure analysis algorithm based on the Chaos 

Theory. First, we explain what the Electroencephalography (EEG) is, then use the 

Chaos Theory to model EEG for analysis. After this, two well-known algorithms as 

short-term Lyapunov exponential and correlation dimension are introduced. 

 

2.1 Electroencephalography  
Electroencephalography (EEG) is the measurement of electrical activity 

produced by the brain as recorded from electrodes. So-called scalp EEG is collected 

from tens to hundreds of electrodes positioned on different locations at the surface of 

the head. EEG signals shown in Fig. 2-2 are amplified and digitalized for post 

processing.  

In some situations, such as epileptic studies, when deeper brain activity needs to 

be recorded with more accuracy than provided by scalp EEG, clinicians use an 

invasive form of EEG known as intracranial EEG (icEEG) where electrodes are 

placed directly inside the skull (see Fig. 2-1). In some cases, a grid of electrodes is 

laid on the external surface of the brain, on dura mater yielding epidural EEG but in 

other cases, a depth electrode known as subdural EEG (sdEEG) and 

electrocorticography (ECoG) is placed into brain structures, such as the amygdala or 

hippocampus. Because of the filtering characteristics of the skull and scalp, icEEG 

activity has a much higher spatial resolution than surface EEG.  
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Fig. 2-1 Electrodes positions: contacts in red are chosen from the seizure onset zone 
and contacts in blue are selected as not involved or involved latest during seizure 
spread. 

 

 
Fig. 2-2 EEG recordings 

 

Then, we have to classify the EEG by symptoms for the observation of the 

relations between the normal states and abnormal states of the brain, and evaluating 

our algorithm later. The time intervals of the EEG in different states are defined as 

follows:  

(a) Pre-ictal: the period prior to the start of the seizure.  

(b) Ictal: the seizure onset.  

(c) Inter-ictal: the period between seizures.  

(d) Post-ictal: the period after a seizure.  

 
Fig. 2-3 Time intervals of EEG recordings 

Seizure onset 
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2.2 Chaotic Modeling for EEG 
Many studies have shown that non-linear analysis could characterize the 

dynamics of neural network underlying EEG which cannot be obtained with 

conventional linear approach. In the section, we will explain the properties of 

non-linear dynamics system and how to build an EEG model for chaotic analysis will 

be explained in detail. 

 

2.2.1 Introduction to Chaos Theorem 
Recall that a Newtonian deterministic system is a system whose present state is 

fully determined by its initial conditions [4] (at least, in principle), in contrast to a 

stochastic (or random) system, for which the initial conditions determine the present 

state only partially, due to noise or other external circumstances beyond our control. 

For a stochastic system, the present state reflects the past initial conditions plus the 

particular realization of the noise encountered along the way. So, in view of classical 

science, we have either deterministic or stochastic systems. 

For a long time, scientists avoided the irregular side of nature, such as disorder 

in a turbulent sea, in the atmosphere, and in the fluctuation of wild–life populations. 

Later, the study of this unusual results revealed that irregularity, nonlinearity, or chaos 

was the organizing principle of nature.  

A modern scientific term deterministic chaos depicts an irregular and 

unpredictable time evolution of many (simple) deterministic dynamical systems, 

characterized by nonlinear coupling of its variables. Given an initial condition, the 

dynamic equation determines the dynamic process, i.e., every step in the evolution. 

However, the initial condition, when magnified, reveals a cluster of values within a 

certain error bound. For a regular dynamic system, processes issuing from the cluster 
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are bundled together, and the bundle constitutes a predictable process with an error 

bound similar to that of the initial condition. In a chaotic dynamic system, processes 

issuing from the cluster diverge from each other exponentially, and after a while the 

error becomes so large that the dynamic equation losses its predictive power. 

For example, in 1960s, Ed Lorenz from MIT created a simple weather model in 

which small changes in starting conditions led to a marked changes in outcome, called 

sensitive dependence on initial conditions, or popularly, the butterfly effect (i.e., “the 

notion that a butterfly stirring the air today in Peking can transform storm systems 

next month in New York, or, even worse, can cause a hurricane in Texas”). Thus 

long–range prediction of imprecisely measured systems becomes impossibility. 

The character of chaotic dynamics can be illustrated with the logistic map as 

follows [5] : 

 1 (1 )n n nx rx x+ = − , (2.1) 

a discrete-time analog of the logistic equation for population growth. Here, 0nx ≥  is 

a dimensionless measure of the population in the nth generation, and 0r ≥  is the 

intrinsic growth rate. We restrict the control parameter r to the range 0 4r≤ ≤  so 

that (2.1) maps the interval 0 1x≤ ≤  into itself. 

A. Period-Doubling 

Suppose we fix r, choose some initial population x0, and then use (2.1) to 

generate the subsequent xn. For the growth rate, we can consider cases as follows. 

(1) When 1r < , the population always goes extinct: 0nx →  as n →∞ .  

(2) When 1 3r< <  the population grows and eventually reaches a non-zero 

steady state, called a period-1 cycle.  

(3) Table 2-1 shows the results of logistic map of initial condition 0 0.4x =  

and 0 0.8x = , and we can find that even though there is a huge difference 

between the initial conditions, the two series as shown in Fig. 2-4 converge 
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to the same value in a moment. 

Table 2-1 Results of logistic map (r=2.8)  

Logistic growth equation (r=2.8) 
X(0) X(1) X(2) X(3) … X(22) X(23) X(24) X(25) 
0.4 0.672 0.617 0.661 … 0.642 0.643 0.642 0.642 

0.8 0.448 0.692 0.596 … 0.643 0.642 0.643 0.642 

 

 
Fig. 2-4 Logistic map of period-1 cycle  

 

(4) When 3.14r = , the population builds up again but now oscillates about the 

former steady state, alternating between a large population in one 

generation and a smaller population in the next. This type of oscillation, in 

which xn repeats every two iterations, is called aperiod-2 cycle. Table 2-2 

shows the results of logistic map of initial condition 0 0.1x =  and 0 0.3x = , 

and the series as shown in Fig. 2-5 reach the same two states after a while. 
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Table 2-2 Results of logistic map (r=3.14) 

Logistic growth equation (r=3.14) 
X(0) X(1) X(2) X(3) … X(22) X(23) X(24) X(25) 
0.1 0.2826 0.6365 0.7264 … 0.5385 0.7803 0.5382 0.7804 

0.3 0.6594 0.7050 0.6527 … 0.7792 0.5402 0.7799 0.5389 

 

 
Fig. 2-5 Logistic map of period-2 cycle 

 

Further period-doublings to cycles of period 8, 16, 32, . . . , occur as r increases. 

Specifically, let rn denote the value of r  where a 2n -cycle first appears. Then 

computer experiments reveal that 1 3r = , 2 3.449r = , 3 3.54409r = , …, 3.5699r∞ = . 

The convergence is essentially geometric: in the limit of large n , the distance 

between successive transitions shrinks by a constant factor (2.2). 

 1

1

lim 4.669n n

n
n n

r r
r r

δ −

→∞
+

−
= =

−
 (2.2) 

In fact, the same convergence rate appears no matter what unimodal map is 

iterated. In this sense, the number δ  is universal. It is a new mathematical constant, 

as basic to period-doubling as n is to circles. 

When r r∞> , the answer turns out to be complicated: For many values of r , 

the sequence { }nx  never settles down to a fined point or a periodic orbit instead the 
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long-term behavior is aperiodic. Table 2-3 shows the results of logistic map. It is 

interesting to note that even though the difference of the initial conditions is only 

0.0001, the two series as shown in Fig. 2-6 are totally divergent in a minute.  

 

Table 2-3 Results of logistic map (r=3.9) 

Logistic growth equation (r=3.9) 
X(0) X(1) X(2) X(3) … X(22) X(23) X(24) X(25) 
0.4 0.936 0.23362 0.6982 … 0.9184 0.2919 0.8062 0.609 

0.4001 0.93607 0.23336 0.6977 … 0.6759 0.8542 0.4856 0.9741 

 

 
Fig. 2-6 Logistic map of r=3.9 

 

A bifurcation diagram summarizes the above phenomenon (Fig. 2-7). The 

horizontal axis shows the values of the parameter r while the vertical axis shows the 

possible values of x.  

At 3.4r = , the attractor is a period-2 cycle, as indicated by the two branches. 

As r  increases, both branches split simultaneously, yielding a period-4 cycle. This 

splitting is the period-doubling bifurcation mentioned earlier. A cascade of further 

period-doublings occurs as r  increases, yielding period-8, period-16, and so on, 

until at 3.57r r∞= ≈ , the map becomes chaotic and the attractor changes from a 
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finite to an infinite set of points. 

 

Fig. 2-7 Bifurcation diagram for the Logistic map 

 

B. Basic Terms of Nonlinear Dynamics 

Recall that nonlinear dynamics is a language to talk about dynamical systems. 

Here, brief definitions are given for the basic terms of this language [4]. 

 Dynamical system: A part of the world which can be seen as a 

self–contained entity with some temporal behavior. Mathematically, a 

dynamical system is defined by its state and by its dynamics. 

 Phase space: In mathematics and physics, a phase space, introduced by 

Willard Gibbs in 1901, is a space in which all possible states of a system are 

represented, with each possible state of the system corresponding to one 

unique point in the phase space. 

 Attractor: An attractor is a ‘magnetic set’ in the system’s phase space to 

which all neighboring trajectories converge. More precisely, we define an 

attractor to be a subset of the phase space with the following properties: 
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(1) It is an invariant set; 

(2) It attracts all trajectories that start sufficiently close to it; 

(3) It is minimal (it cannot contain one or more smaller attractors). 

A strange attractor shown in Fig. 2-8 is defined to be an attractor that 

exhibits sensitive dependence on initial conditions. Geometrically, an attractor 

can be a point, a curve, a manifold, or even a complicated set with a fractal 

structure known as a strange attractor. 

 

 
Fig. 2-8 A plot of Lorenz's strange attractor 

 

 Fractal: Roughly speaking, fractals are complex geometric shapes with fine 

structure at arbitrarily small scales. Usually they have some degree of 

self-similarity. In other words, if we magnify a tiny part of a fractal, we will 

see features reminiscent of the whole. Sometimes the similarity is exact; 

more often it is only approximate or statistical. 

Fractals are of great interest because of their exquisite combination of 

beauty, complexity, and endless structure. They are reminiscent of natural objects 

like mountains, clouds, coastlines, blood vessel networks, and even broccoli, in a 
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way that classical shapes like cones and squares can't match. 

 Embedding dimension: The number of variables needed to characterize the 

state of the system. Equivalently, this number is the dimension of the phase 

space. 

 Fractal dimension: The strange attractors typically have fractal 

microstructure. The attractor dimension counts the effective number of 

degrees of freedom in the dynamical system, described by a non integer 

dimension.  

 

C. The link between EEG and chaos 

Within the context of brain dynamics [4], there are suggestions that “the 

controlled chaos of the brain is more than an accidental by–product of the brain 

complexity” and that “it may be the chief property that makes the brain different from 

an artificial intelligence machine”. Namely, Chaos drives the human brain away from 

the stable equilibrium, thereby preventing the periodic behavior of neuronal 

population bursting. 

The EEG, being the output of a multidimensional system [6], has statistical 

properties that depend on both time and space. Components of the brain (neurons) are 

densely interconnected and the EEG recorded from one site is inherently related to the 

activity at other sites. This makes the EEG a multivariable time series. The analysis of 

such nonlinear dynamical systems from time series involves state space reconstruction, 

and we will introduce in the next section.  

If prediction becomes impossible, it is evident that a chaotic system can 

resemble a stochastic system, say a Brownian motion. However, the source of the 

irregularity is quite different. For chaos, the irregularity is part of the intrinsic 

dynamics of the system, not random external influences. Usually, though, chaotic 
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systems are predictable in the short–term. This short–term predictability is useful. 

Chaos theory has developed special mathematical procedures to understand 

irregularity and unpredictability of low–dimensional nonlinear systems. Lyapunov 

exponents and attractor dimension are some examples. Lyapunov exponents evaluate 

the sensitive dependence to initial conditions estimating the exponential divergence of 

nearby orbits, and we will discuss the method later. Correlation dimensions estimate 

the fractal dimension and will be described in Chapter 3. 

 

2.2.2 Reconstruction of Attractors from Time Series 
Roux et al. (in 1983) exploited a surprising data-analysis technique, now known 

as attractor reconstruction (Packard et al. 1980, Takens 1981). The claim is that for 

systems governed by an attractor, the dynamics in the full phase space can be 

reconstructed from measurements of just a single time series. 

Construction of the embedding phase space from a data segment ( )x t  of 

duration T is made with the method of delays [6]. The vectors iX  in the phase space 

are constructed as 

 ( ( ), ( ) ( ( 1) ))T
i i i iX x t x t x t pτ τ= + + −… , (2.3) 

where τ  is the selected time delay between the components of each vector in the 

phase space, p  is the selected dimension of the embedding phase space, and 

it [1,T -(p -1)τ]∈ . Obviously, the accuracy of computation depends on the sampling 

step tΔ  which decides the number of vectors aN  within a duration T  data 

segment: 

 ( )0 1it t i * t= + − Δ , where [ ]1 ai ,N∈ , (2.4) 

where 0t  is the initial time point of the fiducial trajectory and coincides with the time 

point of the first data in the data segment of analysis. 
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The embedding dimension p  can be determined from (2.5) if the attractor 

dimension d  is known. 

 2 1p d≥ +  (2.5) 

The choice of delay τ  may also significantly affect the metric characteristics 

of an attractor. If τ  is too small, the ith and the (i+1)th coordinates of a phase point 

are practically equal to each other. In this case, the reconstructed attractor is situated 

near the main diagonal of the embedding space, the latter complicating its diagnostics. 

When a value for τ  is chosen that is too large, the coordinates become uncorrelated, 

and the structure of reconstructed attractor is lost. 

 

2.3 Related Works 
A chaotic attractor is an attractor where, on the average, orbits originating from 

similar initial conditions (nearby points in the phase space) diverge exponentially fast 

(expansion process); they stay close together only for a short time. If these orbits 

belong to an attractor of finite size, they will fold back into it as time evolves (folding 

process). The Lyapunov exponents measure the average rate of expansion and folding 

that occurs along the local eigen-directions within an attractor in phase space. For an 

attractor to be chaotic, the largest Lyapunov exponent (LLE) must be positive. 

As we mentioned before, a relevant time scale should always be used in order to 

quantify the physiological changes occurring in the brain. Furthermore, the brain 

being a nonstationary system, algorithms used to estimate measures of the brain 

dynamics should be capable of automatically identifying and appropriately weighing 

existing transients in the data. 

Iasemidis et al. developed a method [7] for estimation of short-term Lyapunov 

exponents (STL), an estimate of LLE for nonstationary data. It is well-known and 
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widely used in many researches. Here we will take an epileptic seizure prediction 

system, proposed by L. D. Iasemidis et al. in the recent years, for example to explain 

the STL in detail. 

The short-term Lyapunov exponent (STL) is defined as: 

 ,
2

1 ,

( )1 log
(0)

aN
i j

ia i j

X t
L

N t X

δ

δ=

Δ
=

Δ ∑  (2.6) 

with                    ,

,

(0) ( ) ( )

( ) ( ) ( )
i j i j

i j i j

X X t X t

X t X t t X t t

δ

δ

= −

Δ = + Δ − + Δ
 

based on the reconstruction of attractors from time series, discussed in the last section, 

where: 

 ( )iX t  is the point of the fiducial trajectory ( )( )0t X tφ  with it t= , and 

( )jX t  is a properly chosen vector adjacent to ( )iX t  (see below). 

 , (0) ( )  ( )i j i jX X t X tδ = −  is the displacement vector at it , that is, a 

perturbation of the orbit at it , and , ( ) ( ) ( )i j i jX t X t t X t tδ Δ = + Δ − + Δ  is 

the evolution of this perturbation after time tΔ . 

 tΔ  is the evolution time for ijXδ , that is, the time one allows ijXδ  to 

evolve in the phase space. 

 

 

 

 

 

 

Fig. 2-9 Displacement vectors in the fiducial trajectory 
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The crucial parameter is the adaptive estimation in time and phase space of the 

magnitude bounds of the candidate displacement vector to avoid catastrophic 

replacements. The improvement in the estimates of L  can be achieved by using the 

proposed modifications. 

 For L  to be a reliable estimate of STL, the candidate vector ( )jX t  

should be chosen such that the previously evolved displacement vector 

( 1), ( )i jX tδ − Δ  is almost parallel to the candidate displacement vector 

, (0)i jXδ , that is,  

 , 1, max(0), ( )ij i j i jV X X t Vδ δ −= Δ ≤  (2.7) 

where maxV  should be small and ,ε φ  denotes the absolute value of the 

angular separation between two vectors. 

 For L  to be a reliable estimate of STL, , (0)i jXδ  should also be small in 

magnitude in order to avoid computer overflow in the future evolution 

within very chaotic regions and to reduce the probability of starting up with 

points on separatrices. This means, 

 , max(0) ( ) ( )i j i jX X t X tδ = − < Δ  (2.8) 

  with maxΔ  assuming small values. 

 

A typical long-term plot of STL versus time, obtained by analysis of continuous 

EEG, is shown in Fig. 2-10. This figure shows the evolution of STL at a focal 

electrode site, as the brain progresses from interictal to ictal to postictal states. There 

is a gradual drop in STL over approximately 2 hours preceding this seizure. The 

seizure, 2 minutes in duration, is characterized by a sudden drop in STL values with a 
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consequent steep rise. Postictal STL values exceed preictal values and slowly 

approach interictal values. This behavior of STL indicates a gradual preictal reduction 

in chaoticity, reaching a minimum shortly after seizure onset, and a postictal rise in 

chaoticity that corresponds to the reversal of the preictal pathological state. There will 

be more discussions about this character in Chapter 3. 

 

 

Fig. 2-10 Unsmoothed STL over time (140 min), including a 2-min seizure. [7] 

 

Having estimated the STL temporal profiles at each electrode site, and as the 

brain proceeds toward the ictal state, the temporal evolution of the stability of each 

cortical site is quantified. However, since the brain is a system of spatial extent, 

information about the interactions of its spatial components should also be taken in 

consideration by the relations of the STL between different cortical sites.  

The T- index at time t between electrode sites i and j is then defined as: 

 ( ) ( ){ } ( )i , j
i , j i j

t
T E STL t STL t

N
σ

= − ÷ , (2.9) 

where { }E  denotes the average of all absolute differences ( ) ( )i jSTL t STL t−  
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within a moving window ( )tw λ  defined as: 

( ) 1tw λ =  for [t-N-1,t]λ∈  and ( ) 0w λ =  for [t-N-1,t]λ∉  

where N  is the length of the moving window. Then, ( )i , j tσ  is the sample standard 

deviation of the STL differences between electrode sites i and j within the moving 

window. 

A dynamical transition toward a seizure is announced at time *t  when the 

T-indexes of sites over time transits from a value above threshold T1 at times t t '< , 

to a value below threshold T2 at time *t , as shown in Fig. 2-11. 

 

 

Fig. 2-11 The T-index curves denoting entrainment 55 min before seizure SZ2 [7]. 

 

The method presented achieved amazing results with high prediction sensitivity, 

and pretty low false prediction rate. More details and comparison results with other 

algorithms and ours will be listed in Chapter 5. 
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Chapter 3       
Wavelet-Correlation Dimension 
Seizure Prediction 

 

In this chapter a real-time seizure prediction method based on correlation 

dimension analysis is presented, including the system architecture, data flow, and 

algorithms. 

 

3.1 Architecture of Seizure Prediction  
Before starting the prediction processing, first we observe the EEG signal 

whether exists any clue around the seizures. For example, as show in Fig. 3-1, for 

different clinical states including pre-ictal, ictal, and post-ictal states, the 

corresponding properties of intracranial EEG recordings are different. 

 

 
Fig. 3-1 Typical EEG waveforms corresponding to epilepsy: 

(a) pre-ictal, (b) ictal, and (c) post-ictal 
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In the pre-ictal state the EEG signal is of the chaotic nature. As we approach the 

epileptic seizure the signals are less and less chaotic and take the regular shape. These 

findings imply that seizures may represent spatiotemporal transitions of the epileptic 

brain from chaos-to-order-to-chaos. Therefore the chaoticity measure of the signal is a 

good prognostic of the incoming seizure. In fact, this phenomenon is confirmed by 

STL in the last chapter, but we try to use another method to prove it. 

In this chapter, we would propose a Wavelet-Correlation Dimension based 

Seizure Prediction system, called WCDSP, as shown in Fig. 3-2. The system is 

consisted of three primary parts: 

 Discrete Wavelet Transform analysis: Wavelet is used to decompose the EEG 

into several sub-bands.  

 Chaos analysis: Correlation dimension is used to measure the EEG complexity.  

 Feature extraction: The correlation coefficient is used to be the main feature for 

prediction rules and to decide the seizure states. 
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Fig. 3-2 System architecture of seizure prediction 
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3.2 Discrete Wavelet Transform 
We would introduce the discrete wavelet transform (DWT) in this section, and 

briefly discuss the properties of the discrete Fourier transform (DFT), the short-time 

Fourier transform (STFT), and the wavelet transform. 

 

3.2.1 Discrete Fourier Transform 
In mathematics, the discrete Fourier transform (DFT) is one of the specific 

forms of Fourier analysis, and is widely employed in signal processing and related 

fields to analyze the frequencies contained in a sampled signal. As such, it transforms 

one function into another, which is called the frequency domain representation of the 

original function (which is often a function in the time domain). 

The sequence of N  complex numbers 0 1Nx ,...,x −  is transformed into the 

sequence of N  complex numbers 0 1NX ,...,X −  by the DFT according to the formula  

 ( )
21

0

iN kn
N

n
n

f̂ X k x e
π− −

=

= =∑    , 0 1k ,...,N= −   (3.1) 

The importance of the Fourier transform stems not only from the significance of 

their physical interpretations, such as time-frequency analysis of signals, but also 

from the fact that Fourier analytic techniques are extremely powerful. 

While Fourier analysis forces us to choose between time on one side of the 

transform and frequency on the other, “…our everyday experiences insist on a 

description in terms of both time and frequency,” Gabor wrote. To analyze a signal in 

both time and frequency, he used the windowed Fourier transform. The idea is to 

study the frequencies of a signal segment by segment; the way, one can at least limit 

the span of time during witch something is happening. The “window” that defines the 

size of the segment to analyzed — and which remains fixed in size — is a little piece 

of curve.  



 24

One of the downfalls of the STFT is that it has a fixed resolution. The width of 

the windowing function relates to the how the signal is represented — it determines 

whether there is good frequency resolution (frequency components close together can 

be separated) or good time resolution (the time at which frequencies change).  

 

3.2.2 Heisenberg uncertainty principle 
We want to construct a function f  whose energy is well localized in time and 

whose Fourier transform f̂  has an energy concentrated in a small frequency 

neighborhood.  

The Heisenberg principle [8] says the following. For every function ( )f t , such 

that 

 ( )
2

1f t dt
∞

−∞
=∫  (3.2) 

The product of the variance of t and the variance of τ  (the variable of f̂  ) is 

at least 216
h
π

, where h  is the Planck's constant: 

 ( ) ( )( ) ( ) ( )( )222 2
216m m

variance of t variance of 

hˆt t f t dt f t d

τ

τ τ τ
π

∞ ∞

−∞ −∞
− − ≥∫ ∫

�����	����
�����	����

 (3.3) 

These variances measure to what extent t  and τ  take values far from their 

average values, mt  and mτ . Thus the shorter-lived a function, the wider the band of 

frequencies given by its Fourier transform; the narrower the band of frequencies of its 

Fourier transform, the more the function is spread out in time. Time and frequency 

energy concentrations are restricted by the Heisenberg uncertainty principle. 
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3.2.3 Wavelet and Multiresolution Analysis 
Unlike the Fourier transform, whose basis functions are sinusoids, wavelet 

transforms are based on small waves, called wavelets [9], of varying frequency and 

limited duration. This allows them to provide the equivalent of a musical score for a 

signal, revealing not only what notes (or frequencies) to play but also when to play 

them. Conventional Fourier transforms, on the other hand, provide only the notes or 

frequency information; temporal information is lost in the transformation process. 

In 1987, wavelets were first shown to be the foundation of a powerful new 

approach by Mallat to signal processing and analysis called multiresolution theory. 

Multiresolution theory incorporates and unifies techniques from a variety of 

disciplines, including subband coding from signal processing, quadrature mirror 

filtering from digital speech recognition, and pyramidal image processing. As its 

name implies, multiresolution theory is concerned with the representation and 

analysis of signals at more than one resolution. The appeal of such an approach is 

obvious—features that might go undetected at one resolution may be easy to spot at 

another. 

A. Background 

When we look at images, generally we see connected regions of similar texture 

and gray level that combine to form objects. If the objects are small in size or low in 

contrast, we normally examine them at high resolutions; if they are large in size or 

high in contrast, a coarse view is all that is required. If both small and large 

objects—or low and high contrast objects—are present simultaneously, it can be 

advantageous to study them at several resolutions. This, of course, is the fundamental 

motivation for multiresolution processing. 
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(1) Image Pyramids 

An image pyramid is a collection of decreasing resolution images arranged in 

the shape of a pyramid. As can be seen in Fig. 3-3, the base of the pyramid contains a 

high-resolution representation of the image being processed; the apex contains a 

low-resolution approximation. As you move up the pyramid, both size and resolution 

decrease. 

 
Fig. 3-3 A pyramidal image structure and system block diagram for creating it 

 

The level 1j −  approximation output is used to create approximation pyramids, 

which contain one or more approximations of the original image. The level j  

prediction residual output is used to build prediction residual pyramids.  

For example, Fig. 3-4 shows one possible approximation (Gaussian) and 

prediction residual (Laplacian) pyramid for the vase. The Laplacian pyramid contains 

the prediction residuals needed to compute its Gaussian counterpart. To build the 

Gaussian pyramid, we begin with the Laplacian pyramid's level j  64 by 64 



 27

approximation image, predict the Gaussian pyramid's level 1j +  128 by 128 

resolution approximation (by upsampling and filtering), and add the Laplacian's level 

1j +  prediction residual. This process is repeated using successively computed 

approximation images until the original 512 by 512 image is generated. 

     

Fig. 3-4 Two image pyramids and their statistics: a approximation (Gaussian) pyramid 
and a prediction residual (Laplacian) pyramid 

 

(2) Subband Coding 

Another important imaging technique with ties to multiresolution analysis 

(MRA) is subband coding. In subband coding, an image is decomposed into a set of 

band-limited components, called subbands, which can be reassembled to reconstruct 

the original image without error. Since the bandwidth of the resulting subbands is 

smaller than that of the original signal, the subbands can be downsampled without 

loss of information. Reconstruction of the original signal is accomplished by 

upsampling, filtering, and summing the individual subbands. 

Fig. 3-5 shows the principal components of a two-band subband coding and 
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decoding system. The input of the system is a one-dimensional, band-limited 

discrete-time signal ( )x n  for 0 1 2n , , ,...= ; the output sequence, ( )x̂ n , is formed 

through the decomposition of ( )x n  into ( )0y n  and ( )1y n  via analysis filters 

( )0h n  and ( )1h n , and subsequent recombination via synthesis filters ( )0g n  and 

( )1g n . Note that filters ( )0h n  and ( )1h n  are half-band digital filters whose 

idealized transfer characteristics, 0H  and 1H , are shown in Fig. 3-5(b).  

 

( )x̂ n( )x n
( )0y n

( )1y n

 

(a) 

    
(b) 

Fig. 3-5 (a) A two-band filter bank for one-dimensional subband coding and decoding 
and (b) its spectrum splitting properties 

 

Filter 0H  is a low-pass filter whose output is an approximation of ( )x n ; filter 

1H  is a high-pass filter whose output is the high frequency or detail part of ( )x n . 

We wish to select ( )0h n , ( )1h n , ( )0g n , and ( )1g n  so that the input can be 

reconstructed perfectly. That is, so that ( ) ( )x̂ n x n= . 
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We can express the system's output as: 

 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 0 1 1

0 0 1 1

1
2
1
2

X̂ z H z G z H z G z X z

H z G z H z G z X z

⎡ ⎤= +⎣ ⎦

⎡ ⎤+ − + − −⎣ ⎦

 (3.4) 

For error reconstruction of the input, ( ) ( )x̂ n x n=  and ( ) ( )X̂ z X z= . Thus, we 

impose the following conditions: 

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 0 1 1

0 0 1 1

2

0

H z G z H z G z

H z G z H z G z

+ =

− + − =

 (3.5) 

Both can be incorporated into the single matrix expression 

 ( ) ( ) ( ) [ ]0 1 2 0mG z G z H z⎡ ⎤ =⎣ ⎦  (3.6) 

where analysis modulation matrix ( )mH z  is 

 ( ) ( ) ( )
( ) ( )

0 0

1 1
m

H z H z
H z

H z H z
⎡ ⎤−

= ⎢ ⎥−⎣ ⎦
 (3.7) 

 Assume ( )mH z  is nonsingular, we can transpose (3.6) and left multiply by inverse 

( )( ) 1T
mH z

−
 to get          

 
( )
( ) ( )( )

( )
( )

0 1

1 0

2

m

G z H z
G z H zdet H z
⎡ ⎤ ⎡ ⎤−

=⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
 (3.8) 

For FIR filters, the determinate of the modulation matrix is a pure delay. 

( )( ) ( )2 1k
mdet H z zα − += ⋅  

Ignoring the delay and let 2α =  

[ ] ( ) [ ]
[ ] ( ) [ ]

0 1

1
1 0

1

1

n

n

g n h n

g n h n+

= −

= −
 

Define ( ) ( ) ( ) ( )( ) ( ) ( )0 0 0 1
2

m

P z G z H z H z H z
det H z

= = −  
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Then, ( ) ( ) ( )( ) ( ) ( ) ( )1 1 0 1
2

m

G z H z H z H z P z
det H z

−
= − = −  

( ) ( ) ( ) ( )
[ ] [ ] ( ) [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

0 0 0 0

0 0 0 0

0 0 0 0

2

1 2

2 2

n

k k

k

H z G z H z G z

g k h n k g k h n k n

g k h n k g k ,h n k n

δ

δ

⇒ + − − =

⇒ − + − − =

⇒ − =< − >=

∑ ∑

∑

 

Similarly, we can show that  

[ ] [ ] [ ]
[ ] [ ]
[ ] [ ]

1 1

0 1

1 0

2

2 0

2 0

g k ,h n k n

g k ,h n k

g k ,h n k

δ< − >=

< − >=

< − >=

 

That is,  

 [ ] [ ] [ ] [ ]2i jh n k ,g k i j nδ δ< − >= −    { }0 1i, j ,=  (3.9) 

Filter banks satisfying this condition are called biorthogonal. Moreover, the analysis 

and synthesis filter impulse responses of all two-band, real-coefficient, perfect 

reconstruction filter banks are subject to the biorthogonality constraint. 

 

Orthonormal filter banks: 

 
[ ] [ ] [ ] [ ] { }
[ ] [ ] [ ] [ ] { }
2 0 1

2 0 1
i j

i i

h n k ,g k i j n         i, j ,

g k ,g n m i j m        i, j ,

δ δ

δ δ

< − >= − =

< + >= − =
    (3.10) 

 
[ ] ( ) [ ]
[ ] [ ] { }

1 01 2 1

2 1 0 1

n

i i

g n g k n

h n g k n ,  i ,

= − − −

= − − =
 (3.11) 

B. Multiresolution Expansions           

In MRA, a scaling function is used to create a series of approximations of a 

function, each differing by a factor of 2 from its nearest neighboring approximations. 

Additional functions, called wavelets, are then used to encode the difference in 

information between adjacent approximations. 
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A function ( )f x  can be decomposed into a linear combination of expansion 

functions as follows. 

( ) ( )k k
k

f x xα ϕ=∑  

If the expansion is unique, the ( )k xϕ  are called basis functions. The expressible 

function forms a function space ( ){ }k
k

V span xϕ= . 

For any function space V  and corresponding expansion set ( ){ }k xϕ , there exist a 

set of dual functions, denoted ( ){ }k xϕ� , which can be used to compute the kα  

coefficients for any ( )f x V∈ . 

( ) ( ) ( ) ( )*
k k k x , f x   x f x dxα ϕ ϕ= < > = ∫� �  

Case 1: Orthonormal basis 

( ) ( )
0
1j k jk

j k
x , x     

j k
ϕ ϕ δ

≠⎧
< > = = ⎨ =⎩

 

The basis and its dual are equivalent and ( ) ( )k k x , f xα ϕ= < > . 

Case 2: Biorthogonal basis 

( ) ( )
0
1j k jk

j k
x , x     

j k
ϕ ϕ δ

≠⎧
< > = = ⎨ =⎩

�  

 For the case of wavelet expansion, we restrict ourselves to forming the basis 

functions by binary scaling (shrinking by factors of two) and dyadic 

translation (shifting by the amount k/2j) 

 Consider the set of expansion functions composed of integer translations 

and binary scalings of the real, square-integrable function ( )xϕ : 

( ) ( )22 2
j

j
j ,k x x kϕ ϕ= −    for all j ,k Z∈  and ( ) ( )2x L Rϕ ∈  
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-- ( )xϕ  is called a scaling function 

-- ( )2L R : the set of all measurable, square-integrable functions 

--  By choosing ( )xϕ  wisely, ( ){ }j ,k xϕ  can be made to span ( )2L R  

--  If we restrict j  to a specify value, 0j j=  the resulting expansion set 

( ){ }0j ,k xϕ  is a subset of ( ){ }j ,k xϕ . 

( ){ }0 0j j ,k
k

V span xϕ=  

More generally, we denote 

           ( ){ }j j ,k
k

V span xϕ=  

 

Four fundamental requirements of multiresolution analysis: 

MRA requirement 1: 

 The scaling function is orthogonal to its integer translates. 

MRA requirement 2: 

The subspaces spanned by the scaling function at low scales are nested within 

those spanned at higher scales. 

 1 0 1 2V ... V V V V ... V−∞ − ∞⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂  

MRA requirement 3: 

 The only function that is common to all jV  is ( ) 0f x = . 

  { }0V−∞ =  

MRA requirement 4: 

 Any function can be represented with arbitrary precision. 

  ( ){ }2V L R∞ =  
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 ( ) ( ) [ ] ( ) ( )1 2 1
1 2 2j / j

j ,k n j ,n
n n

x x h n x nϕϕ α ϕ ϕ+ +
+= = ⋅ −∑ ∑  

( ) ( ) [ ] ( )0 0 2 2,
n

x x h n x nϕϕ ϕ ϕ= = ⋅ ⋅ −∑ ,  

which is called as refinement equation (MRA equation, dilation equation). 

 [ ]h nϕ : scaling function coefficients 

 Given a scaling function that meets the MRA requirements, we can define a 

wavelet function ( )xψ . 

( ) ( )22 2
j

j
j ,k x x kψ ψ= −     for all j ,k Z∈  

 and ( ){ }j j ,k
k

W span xψ=  

   1j j jV V W+ = ⊕  

  ( ) ( ) 0j ,k j ,lx , xϕ ψ< >=   for all j ,k ,l Z∈  

  
( )2

0 0

1 1 2

2 1 1

L R V W ...
V W W ...
... W W W W ...− −

= ⊕ ⊕

= ⊕ ⊕ ⊕
= ⊕ ⊕ ⊕ ⊕ ⊕

 

  ( ) [ ] ( )2 2
n

x h n x nψψ ϕ= ⋅ ⋅ −∑  

   [ ]h nψ : wavelet function coefficients 

C. Wavelet Transform 

We can now formally define several closely related wavelet transformations: the 

generalized wavelet series expansion, the discrete wavelet transform, and a 

computationally efficient implementation of the discrete wavelet transform called the 

fast wavelet transform. 

(1) The Wavelet Series Expansion 

We begin by defining the wavelet series expansion of function ( ) ( )2f x L R∈  
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relative to wavelet ( )xψ  and scaling function ( )xϕ .  

 ( ) [ ] ( ) [ ] ( )
0 0

0

j j ,k j j ,k
k j j k

f x c k x d k xϕ ψ
∞

=

= ⋅ + ⋅∑ ∑∑ , (3.12) 

[ ]
0j

c k : approximation (or scaling) coefficients 

[ ]jd k : detail (or wavelet) coefficients 

  For orthonormal bases and tight frames, 

[ ] ( ) ( ) ( ) ( )
[ ] ( ) ( ) ( ) ( )

0 0 0j j ,k j ,k

j j ,k j ,k

c k f x , x f x x dx

d k f x , x f x x dx

ϕ ϕ

ψ ψ

=< >=

=< >=

∫
∫

 

  For biorthogonal bases, 

   
[ ] ( ) ( ) ( ) ( )
[ ] ( ) ( ) ( ) ( )

0 0 0j j ,k j ,k

j j ,k j ,k

c k f x , x f x x dx

d k f x , x f x x dx

ϕ ϕ

ψ ψ

=< >=

=< >=

∫
∫

� �

� �
 

 

(2) Discrete Wavelet Transform 

Like the Fourier series expansion, the wavelet series expansion maps a function 

of a continuous variable into a sequence of coefficients. If the function being 

expanded is a sequence of numbers, like samples of a continuous function ( )f x , the 

resulting coefficients are called the discrete wavelet transform (DWT) of ( )f x . 

 ( ) [ ] ( ) [ ] ( )
0

0

0
1 1

j ,k j ,k
k j j k

f x W j ,k x W j,k x
M Mϕ ψϕ ψ

∞

=

= +∑ ∑∑ , (3.13) 

[ ]0W j ,kϕ : approximation (or scaling) coefficients 

[ ]W j,kψ : detail (or wavelet) coefficients 

For orthonormal bases and tight frames, 

  [ ] [ ] ( )
00

1
j ,k

x
W j ,k f x x

Mϕ ϕ= ∑  

  [ ] [ ] ( )1
j ,k

x
W j,k f x x

Mψ ψ= ∑  
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 For biorthogonal bases, 

  [ ] [ ] ( )
00

1
j ,k

x
W j ,k f x x

Mϕ ϕ= ∑ �  

  [ ] [ ] ( )1
j ,k

x
W j,k f x x

Mψ ψ= ∑ �  

 

(3) The Fast Wavelet Transform (FWT) 

The fast wavelet transform (FWT) is a computationally efficient implementation 

of the discrete wavelet transform (DWT) that exploits a surprising but fortunate 

relationship between the coefficients of the DWT at adjacent scales, also called 

Mallat's herringbone algorithm (Mallat [1989]). 

Consider again the multiresolution refinement equation: 

( ) [ ] ( )2 2
n

x h n x nϕϕ ϕ= ⋅ ⋅ −∑  

( ) [ ] ( )( )
[ ] ( )1

2 2 2 2

2 2 2

j j

n

j

m

x k h n x k n

h m k x m

ϕ

ϕ

ϕ ϕ

ϕ +

− = ⋅ ⋅ − −

= − ⋅ ⋅ −

∑

∑
 

Similarly,  ( ) [ ] ( )12 2 2 2j j

m
x k h m k x mψψ ψ +− = − ⋅ ⋅ −∑  

 

  

[ ] [ ] ( ) [ ] ( )

[ ] [ ] ( )

[ ] [ ] ( ) ( )

2

2 1

1 2 1

1 1 2 2

1 2 2 2 2

12 2 2

j / j
j ,k

x x

j / j

x m

j / j

m x

W j,k f x x f x x k
M M

f x h m k x m
M

h m k f x x k
M

ψ

ψ

ψ

ψ ψ

ϕ

ψ

+

+ +

= = −

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
⎡ ⎤

= − −⎢ ⎥
⎣ ⎦

∑ ∑

∑ ∑

∑ ∑

 

 [ ] [ ] [ ]2 1
m

W j,k h m k  W j ,mψ ψ ϕ⇒ = − ⋅ +∑  

[ ] [ ] [ ]1W j,k h n *W j ,mψ ψ ϕ= − +  

Similarly,  

   [ ] [ ] [ ]1W j,k h n *W j ,nϕ ϕ ϕ= − +  
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Fig. 3-6 reduces these operations to block diagram form. We note that the filter 

bank can be "iterated" to create multistage structures for computing DWT 

coefficients. 

( )h nψ −

( )h nϕ −

( )1W j ,nϕ +

( )W j,nψ

( )W j,nϕ

 

Fig. 3-6 FWT analysis bank 

 

D. Time-Frequency Analysis 

Fig. 3-7 shows the time-frequency tiles for (a) a delta function (i.e., 

conventional time domain) basis, (b) a sinusoidal (FFT) basis, and (c) an FWT basis.  

 

                (a)                 (b)                 (c) 

Fig. 3-7 Time-frequency tilings for (a) sampled data, (b) FFT, and (c) FWT basis 
functions. 

 

Note that the standard time domain basis pinpoints the instants when events 

occur but provides no frequency information. A sinusoidal basis, on the other hand, 

pinpoints the frequencies that are present in events that occur over long periods but 

provides no time resolution. The time and frequency resolution of the FWT tiles vary. 
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At low frequencies, the tiles are shorter (i.e., have better frequency resolution) but are 

wider (which corresponds to poorer time resolution). At high frequencies, tile width is 

smaller (so the time resolution is improved) and tile height is greater (which means 

the frequency resolution is poorer). This fundamental difference between the FFT and 

FWT was noted in the introduction to the section and is important in the analysis of 

nonstationary functions whose frequencies vary in time. 

In this research, a two-level Daubechies 4 (db4) wavelet is used for the EEG 

recordings. Fig. 3-8 shows (a) the corresponding wavelet structure, and (b) the 

time-frequency tilings of EEG signal.  

LEVEL 1

LEVEL 2

ORIGINAL EEG
(0~128Hz)

H1
(64~128Hz)

LH2
(32~64Hz)

LL2
(0~32Hz)

Daubechies 4th Order Wavelet (db4)

L1
(0~64Hz)

 

(a) 

   

(b) 

Fig. 3-8 (a) Two-level Daubechies 4 wavelet and (b) Time-frequency tilings of EEG 
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The corresponding analysis and synthesis filters are shown in Fig. 3-9. We list 

the analysis part, including a low-pass and a high-pass filter, as follows: 

 
1 2 3

0 0 1 2 3
2 1 1

1 3 2 1 0

( )

( ) ,

h z h h z h z h z

h z h z h z h h z

− − −

−

= + + +

= − + −
 (3.14) 

where 0 1 2 3
1 3 3 3 3 3 1 3, , ,
4 2 4 2 4 2 4 2

h h h h+ + − −
= = = =  

 

Fig. 3-9 Analysis and synthesis filters 

 

We decompose the original EEG into several subbands, including L1, H1, LL2, 

and LH2 (Fig. 3-10). Each subband may contain some specific characteristic of the 

brain dynamics. In the next section, we will use these subbands for advanced analysis. 

 

 
Fig. 3-10 Decompose the EEG into many subbands 
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3.3 Correlation Dimension 
Estimating the fractal dimension of a strange attractor from a corresponding 

time series has attracted considerable attention in the past few years and has become 

one of the main tools in the analysis of the underlying dynamics. Of all types of 

dimensions, most attention has been given to the correlation dimension ( cD ). This is 

mainly because this type of dimension is easier to estimate than others and also 

because it provides a good measure of the complexity of the dynamics, i.e. of the 

number of active degrees of freedom. 

First, we have to reconstruct the attractor on the phase space, introduced in 

Chapter 2. We divide the EEG into non-overlapping time blocks which is long enough 

for a good estimation of cD , shown in Fig. 3-11(a). Each block contains 256 states of 

the attractor ( 256aN = ), and the distance between each state is 9 ( 9tΔ = ), shown as 

Fig. 3-11(b). The dimension of the phase space is p , and the delay 1τ = , shown in 

Fig. 3-11(c). 

 
Fig. 3-11 (a) Time blocks, (b) States, and (c) Embedding dimension 
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Grassberger and Proccacia suggested a procedure of estimating which became 

widely used by mathematicians and applied scientists immediately [5]. Fix a point x 

on the attractor A. Let ( )xN ε  denote the number of points on A inside a ball of 

radius ε  about x (Fig. 3-12). 

Ball of radius  
centered at x

ε

 

Fig. 3-12 Pointwise dimension 

 

Most of the points in the ball are unrelated to the immediate portion of the 

trajectory through x; instead they come from later parts that just happen to pass close 

to x. Thus ( )xN ε  measures how frequently a typical trajectory visits an 

ε -neighborhood of x. 

Now vary ε . As ε  increases, the number of points in the ball typically grows 

as a power law: 

 ( ) d
xN ε ε∝ , (3.15) 

where d  is called the pointwise dimension at x. The pointwise dimension can 

depend significantly on x; it will be smaller in rarefied regions of the attractor. To get 

an overall dimension of A, one averages ( )xN ε  over many x. The resulting quantity 
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( )C ε  is found empirically to scale as 

 ( ) cDC ε ε∝  (3.16) 

where cD  is called the correlation dimension. 

If the relation ( ) cDC ε ε∝  were valid for all ε , we'd find a straight line of 

slope cD . 

 ( )
0 a

a
c N

lnC ,N
D lim lim

lnε

ε
ε→ →∞

=  (3.17) 

where ( )C ε  is the correlation integral and defined as follows [10]: 

 ( ) ( )2
1

1

a

i j
i j Na

C l X X
N

ε ε
< < <

= − ≤∑  (3.18) 

For distance   ⋅  one usually takes the maximum norm, i.e. for a k -dimensional 

vector x , 1i x max x ,   i k= ≤ ≤ , and l  is the Heaviside function. 

 

 
Fig. 3-13 Correlation dimension with different radius  
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It is known that when calculating the correlation dimension some restrictions are 

imposed on the value of ε . We use the standard deviation (std.) of each time block to 

estimate it as follows: 

 { }1 1 5 2 2 5 3k std of  the time block,   k= , . , , . , ε = ∗  (3.19) 

The results are shown in Fig. 3-13. When k  is less than two, there is no clear trend 

of the wave before the seizure onset. With the increasing of k , we can find that there 

is a long-term decreasing before the seizure and a sudden drop during the ictal, and 

then a strong rise after the seizure. Recall the feature mentioned in the previous 

section, the EEG would decrease in the degrees of freedom during the pre-ictal. And 

we confirm this character again by correlation dimension. 

Now, we have decided the basic parameters of the algorithm of correlation 

dimension. Next, we will calculate the cD  with different subbands of the EEG, 

including the unfiltered signal, L1 band (0~63 Hz), H1 band (64~128 Hz), LL2 band 

(0~31 Hz), and LH2 band (32~64 Hz), to find out the most appropriate one. 

 

 

Fig. 3-14 Correlation dimension of unfiltered signal 
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(a) 

 

(b) 

Fig. 3-15 Correlation dimension of (a) L1 and (b) LL2 band 

 

The results of unfiltered signal, L1, and LL2 are shown in Fig. 3-15 and Fig. 3-15. 

And the correlation dimensions of each band seem a normal distribution with a very 

narrow range (about 0.09~0.18). We can hardly find any features to identify the 

seizures. 
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(a) 

   

(b) 

Fig. 3-16 Correlation dimension of (a) LH2, and (b) H1 band 

 

The results of LH2 and H1 subbands are shown in Fig. 3-16. Obviously, 

correlation dimensions of each band decrease during the pre-ictal. The histograms 

mainly focus on the larger values reflecting sudden fallings at the onset of seizures. 

That is, the characteristics of the seizures likely embedded in the high frequency 

subbands not in low frequency ones.  

In the following experiments, we will see the comparison of the correlation 

dimension between pre-ictal and inter-ictal.  
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Fig. 3-17 Comparison result of patient1 between (a) pre-ictal and (b) inter-ictal 

 

Fig. 3-18 Comparison Result of patient 10 between (a) pre-ictal and (b) inter-ictal 

 

The results perfectly match the conclusions of STL. Although correlation 

dimension can reflect the loss in the degree of freedom, we need find out some clue 

before a seizure so that we can “predict” it. In the next section, we will introduce the 

concept of correlation coefficient to extract useful features. 

 

3.4 Feature Extraction and Prediction Rules 
In fact, there exists a relationship between the embedding dimension p  and 

correlation dimension cD . If, as p  increases, cD  continues to rise then this is 

symptomatic of a stochastic system. If, however, the data generated by a deterministic 

process, then cD  will reach a finite limit at some relatively small p .  

We suppose that when there is a transition from chaotic to periodic, the radius of 

convergence varies. Thus, we have tried to reconstruct the attractor with different 
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values of p  from 7 to 25. We consider the correlation coefficient between two cD  

using distinct embedding dimensions, 1p  and 2p , within a sliding window, denoted 

as 
1 2p ,pCC . 

 ( ) ( ) ( )( )( )
1 2

X Y
p ,p

X Y X Y

E X Ycov X ,Y
CC X ,Y

μ μ
σ σ σ σ

− −
= =  (3.20) 

where  

 
( ) ( ) ( )( )
( ) ( ) ( )( )

1 19

1 19
c c c c 1

c c c c 2

X D i ,D i ,...,D i ,D  lay on p dimension

Y D i ,D i ,...,D i ,D  lay on p dimension

= + + −

= + + −
 (3.21) 

 

 
Fig. 3-19 Correlation coefficients between correlation dimensions in different 

embedding dimensions 

 

Fig. 3-19 shows the results of 7 9,CC , 9 11,CC , …, and 15 17,CC , and we can 

easily find that the correlation does decreases tremendously.  
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We evaluate the five different CCs  with the following definition of prediction 

rule. We find the 1113,CC  is the best of all. Thus, the 1113,CC  is our final choice.  

 

 

Fig. 3-20 The sensitivity with five different correlation coefficients 

 

We define the timing to give an alarm if: 

(1) The CC must transit from a value above threshold T1 to a value below 

threshold T2. 

(2) The period of the CC below T1 must longer than L.  

 

Fig. 3-21 and Fig. 3-22 are the prediction results for patient 1 and patient 7, and 

the system gives an alarm about 7 and 37 minutes earlier than the seizure onset 

respectively. On the other hand, the two cD  are always highly correlated in 

inter-ictal cases. That is, the architecture based on wavelet decomposition, and 

correlation dimension could achieve the goal we expect. 
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(a) 

   

(b) 

Fig. 3-21 Prediction results for patient 1 (a) pre-ictal, and (b) inter-ictal 
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Fig. 3-22 Prediction results for patient 7 (a) pre-ictal, and (b) inter-ictal 

 

More statistical information, such as prediction sensitivity and false prediction 

rate, and comparisons with other algorithms will be discussed in Chapter 5. 
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Chapter 4                    
VLSI Implementation and 
Verification 

 

In the chapter, VLSI implementation for the components in the seizure chip is 

introduced. The system is designed for biomedical portable device, so we consider 

about not only the speed, but also the area and power consumption. Top level 

hardware architecture describes how the WCDSP play its role and corporate with 

VNS, shown in Fig. 4-1. 

 

 
ADC 

 
BRIDGE 

 
MEMORY 

 
VNS 

 

WCDSP 

IP
 

Fig. 4-1 Top level hardware architecture 

 

4.1 Architecture of the Real-Time Seizure Circuit 
The overall architecture shown in Fig. 4-2 is made up of two parts: the 

arithmetic functional unit, and system control unit. 

Arithmetic function units mainly consist of wavelet, correlation dimension, 

correlation coefficient circuits. To satisfy the requirement of accessing the memory at 
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a high frequency when computing the correlation dimension, we need a more efficient 

memory access method. Therefore, a memory controller is represented as well to 

optimize the addressing of memory, reduce the hardware costs and the power 

consumption certainly.  

The system control units set the system by control words from users. In order to 

saving the most power, we also need a power management to control the activation of 

each component.  

in
pu

t b
uf

fe
r

Discrete Wavelet Transform

Correlation
Diemnsion

Correlation 
Coefficient

Seizure 
prediction

DATA_IN/
CWD

CLK

RESET

EN

ALARM

OUT_VALID

CONTROL 
UNIT

POWER 
MANAGEMENT

ou
tp

ut
 b

uf
fe

r
System control units

Arithmetic functional units

DATA_OUT

 

Fig. 4-2 WCDSP system architecture 

 

4.2 Arithmetic Functional Units 
In this section, implementations of primary function units will be discussed, 

such as using lifting wavelet to reduce the computation complexity, correlation 

dimension with an optimized memory controller, etc.   

 

4.2.1 Lifting Wavelet 
Various techniques to construct wavelet bases, or to factor existing wavelet 

filters into basic building blocks are known. One of these is lifting. The original 

motivation for developing lifting was to build second generation wavelets. First 

generation wavelets are all translates and dilates of one or a few basic shapes; the 
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Fourier transform is then the crucial tool for wavelet construction. A construction 

using lifting, on the contrary, is entirely spatial and therefore ideally suited for 

building second generation wavelets when Fourier techniques are no longer available. 

When restricted to the translation and dilation invariant case, or the “first generation,” 

lifting comes down to well-known ladder type structures and certain factoring 

algorithms. 

The basic idea of wavelet transforms is to exploit the correlation structure 

present in most real life signals to build a sparse approximation. The correlation 

structure is typically local in space (time) and frequency; neighboring samples and 

frequencies are more correlated than ones that are far apart. Traditional wavelet 

constructions use the Fourier transform to build the space-frequency localization. 

However, as the following simple example shows, this can also be done in the spatial 

domain. 

Consider a signal ( )kX x= . Let us split it in two disjoint sets which are called 

the polyphase components: the even indexed samples ( )2e kX x= , or “evens” for 

short, and the odd indexed samples ( )2 1o kX x += , or “odds.” Typically these two sets 

are closely correlated. Thus it is only natural that given one set, e.g., the odd, one can 

build a good predictor P  for the other set, e.g., the even. Of course, the predictor 

does not need to be exact, so we need to record the difference or detail d : 

( )o ed X P X= −  

Given the detail d  and the odd, we can immediately recover the odd as 

( )o eX P X d= +  

The operation of computing a prediction and recording the detail is called a lifting 

step. This idea connects naturally with wavelets as follows. The prediction steps can 
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take care of some of the spatial correlation, but for wavelets we also want to get some 

separation in the frequency domain. The frequency separation is poor since eX is 

obtained by simply subsampling so that serious aliasing occurs. In particular, the 

running average of the eX  is not the same as that of the original samples X . To 

correct this, we propose a second lifting step, which replaces the evens with smoothed 

values s  with the use of an update operator U  applied to the details as 

( )eS X U d= +  

Again this step is trivially invertible as 

( )eX s U d= −  

and then oX  can be recovered as explained earlier. This illustrates one of the built-in 

features of lifting: no matter how P  and U  are chosen, the scheme is always 

invertible and thus leads to critically sampled perfect reconstruction filter banks. The 

block diagram of the two lifting steps is given in Fig. 4-3. 

 

split -P UX[n]

d

s
 

Fig. 4-3 Block diagram of predict and update lifting steps. 

 

A natural question now is how much of the first generation wavelet families can 

be built with the lifting framework. It turns out that every FIR wavelet or filter bank 

can be decomposed into lifting steps. This can be seen by writing the transform in the 

polyphase form. Statements concerning perfect reconstruction or lifting can then be 

made using matrices with polynomial. A lifting step then becomes a so-called 



 54

elementary matrix. It is a well known result in matrix algebra that any matrix with 

polynomial entries and determinant one can be factored into such elementary 

matrices. 

( )1 t
P z− ( )P z�

 

Fig. 4-4 Polyphase representation of wavelet transform 

 

Supposing the analysis filters are ( )h z , ( )g z , and synthesis filters are ( )h z� , 

( )g z� . The polyphase representation of a filter h�  is given by 

( ) ( ) ( )2 1 2
e oh z h z z h z−= +� � �  

where eh  contains the even coefficients, and oh  contains the odd coefficients: 

( ) ( ) ( ) ( ) ( ) ( )2 2
12 2e o

h z h z h z h z
h z  and h z

 z−
+ − − −

= =
� � � �

� �  

We assemble the polyphase matrix as 

( ) ( ) ( )
( ) ( )

e e

o o

h z g z
P z

h z g z

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

� ��
� �

 

We define ( )P z  similarly. For the Daubechies 4 wavelet, the polyphase matrix is 

1 1~
0 2 3 1

1 1
1 3 2 0

( ) ( )
h h z h z h

P z P z
h h z h z h

−

−

⎡ ⎤+ − −
= = ⎢ ⎥

+ +⎢ ⎥⎣ ⎦
 

The analysis polyphase matrix is factored as: 

1

3 1 0 3 3 2 1 01 02 1(1/ ) 4 41 3 13 1 0 10
2

t zP z
z−

⎡ ⎤+
⎡ ⎤⎢ ⎥ − ⎡ ⎤⎡ ⎤ +⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ −− ⎣ ⎦ ⎣ ⎦⎢ ⎥⎢ ⎥ ⎣ ⎦

⎣ ⎦
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The corresponding circuit of db4 wavelet is shown in Fig. 4-5. 

 

Z-1

Z-1

α
β

γ

δ

ζ

2 

2 Z-1

X[n]

Split Lifting Scaling

L

H

Z-1 : delay register : pipeline register

1.73201,  0.43301,  0.06698,  1.93185,  and 0.51763α β γ δ ζ= − = = − = =  

Fig. 4-5 Pipelined lifting wavelet architecture of db4 

 

Lifting wavelet transform is very suitable for VLSI implementation. As a 

comparison base we use the standard algorithm, which corresponds to applying the 

polyphase matrix. This already takes advantage of the fact that the filters will be 

subsampled and thus avoids computing samples that will be subsampled immediately. 

The unit we use is the cost, measured in number of multiplications and additions. 

Take db4 wavelet for example. The cost of applying a filter h  is h  multiplications 

and 1h −  additions. The cost of the standard algorithm thus is 

( ) ( )2 2 2 4 4 2 14h g+ − = + − =  

However, by using the lifting wavelet we need only 9 units. It reduces the complexity 

of about 56%.  

In the next, we consider the accuracy of the computation. Floating-point adders 
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and multipliers definitely perform the best, but they require a lot of hardware resource 

and they are usually slower. We use 16-bit fixed-point numeric, which consist of two 

bits for the integer part, and fourteen bits for the fractional part. The rough precision 

of the fixed point number representation can reach 0.000030518.  

Since the coefficients of the lifting are constants and represented by fixed-point 

numeric, multiplication can be realized by shifts generating partial products that 

subsequently are added together. The number of nonzero partial products is 

determined by the number of nonzero bits in the multiplier coefficient. Consequently, 

if the number of nonzero bits in a coefficient is reduced, the number of partial 

products is reduced and therefore a smaller, faster, and less power consuming 

summation can be achieved. If a signed digit representation with the digits −1, 0, and 

1 is used for the coefficient the number of partial products may be reduced. The 

canonical signed digit code (CSD) is a signed digit representation with minimal 

Hamming weight, i.e., it has a minimum number of ones, and contains no adjacent 

nonzero digits.  

The conversion of a two’s complement number into CSD code is done 

according to Table 4-1. 

 

Table 4-1 Two’s complement to CSD conversion 

bi+1 bi ci ai ci+1 
0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 0 0 
1 0 1 -1 1 
1 1 0 -1 1 
1 1 1 0 1 
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The ib  is the bit of the two’s complement number to be converted and the ia  

is the CSD code after the conversion. The ic  is the carry generated in step 1i −  and 

1ic +  is the carry out at step i . 

The coefficients converted to CSD and the circuits are listed below: 

(1) 10 2'1.73201 10.01000100100111 10.01000100101001CSDsα = − = =  

2 2 6 9 11 14

10.01000100101001*
( 2 2 2 2 2 2 )

( 2) ( 2) ( 6) ( 9) ( 11) ( 14)

y x
x

x x x x x x

− − − − −

=

= − + + + + −
= − << + >> + >> + >> + >> − >>

 

 

Fig. 4-6 Multiplier circuit for the coefficient α   

(2) 10 2'0.43301 00.01101110110110 00.10010001001010s CSDβ = = =  

1 4 8 11 13

00.10010001001010*
(2 2 2 2 2 )
( 1) ( 4) ( 8) ( 11) ( 13)

y x
x

x x x x x

− − − − −

=

= − − − −
= >> − >> − >> − >> + >>

 

 

Fig. 4-7 Multiplier circuit for the coefficient β  
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(3) 10 2'0.06698 11.11101110110111 00.00010001001001CSDsγ = − = =  

4 8 11 14

00.00010001001001*
( 2 2 2 2 )

( 4) ( 8) ( 11) ( 14)

y x
x

x x x x

− − − −

=

= − − − −
= − >> − >> − >> − >>

 

 

Fig. 4-8 Multiplier circuit for the coefficient γ  

(4) 10 2'1.93185 01.11101110100011 10.00010010100101CSDsδ = = =  

2 4 7 9 12 14

2 4 7 9 12 14

2 4 7 2 12 2

2 2

10.00010010100101*
(2 2 2 2 2 2 )
(2 2 ) (2 2 ) (2 2 )
(2 2 ) (2 ( 2 )) (2 ( 2 ))
( 2) ( 4) ( 7) ( 12)

y x
x

x x x x x x
x x x x x x

x x x x

− − − − −

− − − − −

− − − − −

=

= − − + + −

= − − − + −

= − − − + −
= << − >> − >> + >>

 

2 ( 2)x x x= − >>  

222-4

X[n]

2-2

2-7 2-12

--

-

 
Fig. 4-9 Multiplier circuit for the coefficient δ  
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(5) 10 2'0.51763 11.01111011100000 00.10000100100000s CSDζ = = =  

1 6 9

00.10000100100000*
(2 2 2 )
( 1) ( 6) ( 9)

y x
x

x x x

− − −

=

= − + +
= − >> − >> − >>

 

 

Fig. 4-10 Multiplier circuit for the coefficient ζ  

 

As a result, we need only twenty four instead of forty two adders and shifters. 

The hardware costs are about 42% less than using 2’s complement representation.   

 

4.2.2 Correlation Dimension 
 

 
Fig. 4-11 Correlation dimension circuit 
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The correlation dimension circuit is composed of three components, including 

memory controller, radius generator, and correlation integral (Fig. 4-11) and 

operations in detail is shown in Fig. 4-12.  

   1. scan in
   2. standard derivation

Counter < # data
no

yes

   select reference vector 

no

   select a vector 

   1. taken norm 
   2. compare with radius

Counter < # vectors

yes

Counter < # vectors

no
   log 

 

Fig. 4-12 Block diagram of correlation dimension 

 

First, we scan in all data we need in a register chain, and calculate the standard 

deviation used for radius generation at the same time. Then calculate the taken norm 

pair by pair and compare with the radius. At last, we obtain the correlation dimension 

by log operation. 
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(1) Memory controller 

There are two tasks of the controller. The one is to reduce the memory access 

costs. The memory used in the circuit needs not random access. If we use 

conventional memory addressing, it may: 

 Infer a very large decoder when scanning in the data, and 

 Infer a lot of (at least 13) large multiplexers when generating vectors. 

Because the access is well-regulated, we can achieve it more easily by the following 

way: 

 When scanning in the data: 

Step1: put the data at the tail of the memory 

Step2: shift left the whole memory by one unit until the data is all scanned in 

 When generating vectors (suppose embedding dimension=13, 9tΔ = ): 

Step1: select the first consecutive thirteen data as the vector 

Step2: shift left the memory by nine units 

Step3: return to step1 until the last loop 

Step4: fix the positions of the data in the memory to the beginning state 

 

 

Fig. 4-13 Enhanced memory addressing 

 

Therefore we can avoid a great amount of redundant hardware costs. The other task of 

the controller is the reconfiguration when applying different embedding dimensions, 

and then we can share the same circuit. 
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(2) Radius generator 

When we generate the radius ε , standard deviation (std.) is used as mentioned 

before. But the original formula does not suitable for hardware implementation.  

_
2

1

1 ( )
N

i
i

x x
N

σ
=

= −∑                  (4.1) 

It can be divided into three stages: 

Stage1: calculate sum for the mean 

Stage2: calculate the difference 
_

( )ix x−  and summation 

Stage3: obtain the standard deviation 

By this way, we find the stage1 overlaps the time of data scan_in, but the stage2 needs 

another cycles. And the system waits for it to go on. 

 
Fig. 4-14 Timing diagram for the original std. formula  

 

To avoid this situation, we adjust the formula as follows: 

 
( )

_ 22 2

1 1
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1 1
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1
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1
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2
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= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞
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∑

 (4.2)  
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2

22 2

1 1 1

1 1 1N N N

i i i
i i i

x x x x
N N N

σ
= = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑  (4.3) 

It can be divided into two stages: 

Stage1: calculate sum of 2
ix  and square of sum 

Stage2: obtain the standard deviation 

By this way, we can find the std. totally overlaps the time of data scan_in. Therefore 

we don’t need any redundant cycles, and speed up the calculation of correlation 

dimension. 

 

Fig. 4-15 Timing diagram for the adjusted std. formula 

 

4.3 System Controller 
The WCDSP system controller takes charge of two major control signals. One is 

the mode switching signal, and the other is control word signal. 

In the architecture, we need two sets of wavelet and correlation dimension 

circuit for two embedding dimensions respectively. However, most part of the two 

sets of circuit is similar. Thus, we can slightly modify the two kinds of circuit to be 

applied to two different embedding dimensions.  

The signal ‘mode’ is used to configure the circuit which embedding dimension 
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should be. When the mode=’0’, the embedding dimension is 11, and the one is 13 

otherwise. 

For example, we use two sets of register banks in one wavelet blocks to keep the 

values of pipeline registers and delay registers instead of two blocks. And we switch 

the register banks through mode signal (Fig. 4-16). 

 

 

Fig. 4-16 Modified wavelet circuit with two register banks 

 

For correlation dimension circuit, we need to increase the number of registers, 

and set the memory controller to adjust the shift operation, radius generator and 

comparator to configure the number of loops, as shown in Fig. 4-17.  

 

 

Fig. 4-17 Modified correlation dimension circuit 
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The other kind of signal decoded by system controller is control word signal. 

For the convenience of analysis and reconfiguration of the algorithm, we can probe 

the results of the internal components and applied to the new algorithm by CPU. Thus 

we set the control word to tell the controller which results should be scented. The 

detail description is in Table 4-2. 

 

Fig. 4-18 Block diagram of system controller 

 

Table 4-2 Description of control word 

EN CWD OUTPUT 
0 X invalid 
1 00 Result of seizure prediction 
1 01 Result of correlation dimension 
1 10 Result of wavelet (high frequency) 
1 11 Result of wavelet (low frequency) 

 

4.4 Simulation and Verification 
We develop the algorithm by Verilog HDL which is commonly adopted. In the 

design, we use Synopsys Design Compiler with 90nm UMC/Faraday Design Kit for 

synthesis, and pre-simulation with ModelSim. In this section, we will show the 

simulation results in each component. It contains area report, timing report, and 

simulation report. 
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4.5.1 Simulation in Wavelet Circuit 
Fig. 4-19 shows the gate-level simulation of wavelet circuit. The signals ca_o 

and cd_o are the low-frequency coefficients and high-frequency coefficients 

respectively. And we use two sets of registers to keep the values in different modes.  

 

 

  

Fig. 4-19 Wavelet gate-level simulation with two modes 

 

Mode=0 

Dim=11 

Mode=1 

Dim=13 
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4.5.2 Simulation in Correlation Dimension Circuit 
Fig. 4-20 shows the waves of correlation dimension circuit for the first state. 

The state READ_IN takes 2306 (for embedding dimension=11)/2308 (for embedding 

dimension=13) cycles, and we can see the calculation time of standard deviation 

overlaps the READ_IN state. 

 

 

 

Fig. 4-20 Correlation dimension simulation for the first state 

 

 

Fig. 4-21 Correlation dimension simulation results 

 

 

READ_IN 2306 cycles 

VECTOR_REF_SEL 

Standard deviation overlaps READ_IN 
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Chapter 5             
Experimental Results 
 

In this chapter, we will show the experiment results of the algorithms, and the 

comparison with other important algorithms in recent years.  

 

5.1 EEG Data and Patient Characteristics 
The EEG data that we use are invasive EEG recordings of 11 patients suffering 

from medically intractable temporal lobe epilepsy. The data were recorded during an 

invasive pre-surgical epilepsy monitoring at the Epilepsy Center of the University 

Hospital of Freiburg, Germany (http://www.fdm.uni-freiburg.de/EpilepsyData/). 

In eight patients, the epileptic focus was located in neocortical brain structures, 

in two patients in the hippocampus, and in one patient in both. In order to obtain a 

high signal-to-noise ratio, fewer artifacts, and to record directly from focal areas, 

intracranial grid-, strip-, and depth-electrodes were utilized. The EEG data were 

acquired using a Neurofile NT digital video EEG system with 128 channels, 256 Hz 

sampling rate, and a 16 bit analogue-to-digital converter. Notch or band pass filters 

have not been applied. 

For each of the patients, there are datasets called "ictal" and "interictal", the 

former containing files with epileptic seizures and at least 50 min pre-ictal data. the 

latter containing approximately 24 hours of EEG-recordings without seizure activity. 

At least 24 h of continuous interictal recordings are available for eight patients. For 

the remaining patients interictal invasive EEG data consisting of less than 24 h were 

joined together, to end up with at least 24 hours per patient (Table 5-1).  
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Table 5-1 Patient characteristics 

Patient Sex Age Seizure type H/NC Origin Electrodes #Seizures Interictal (h)

1 f 15 SP, CP NC Frontal g, s 4 24 

2 m 14 SP, CP NC Frontal g, s 5 24 

3 f 42 SP, CP, GTC H Temporal d 3 25 

4 f 32 SP, CP NC Frontal g, s 2 24 

5 f 10 SP, CP, GTC NC Parietal g, s 4 24 

6 f 42 SP, CP, GTC H Temporal d, g, s 4 25 

7 f 41 CP, GTC H and NC
Frontal/ 

Temporal 
d, s 4 24 

8 m 28 SP, CP, GTC NC Temporal s 5 24 

9 f 25 SP, CP NC Frontal s 5 25 

10 m 33 SP, CP, GTC NC Tempo/Parietal d, s 5 26 

11 m 13 SP, CP NC Temporal s 5 24 

Seizure types and location: simple partial (SP), complex partial (CP), generalized tonic-clonic (GTC), 

hippocampal (H), neocortical (NC). 

Electrodes: grid (g), strip (s), depth (d).      

 

5.2 Seizure Prediction Statistics 

5.2.1 Terminology 
A seizure prediction method has to forecast an impending epileptic seizure by 

raising an alarm in advance of the seizure onset. A perfect prediction method indicates 

the exact point in time when a seizure occurs. This ideal behavior is not expected for 

current prediction methods that analyze EEG data. The uncertainty can be considered 

by use of the seizure occurrence period, SOP, which is defined as a time period during 

which the seizure is to be expected (Fig. 5-1). In addition, to permit a therapeutic 

intervention, a minimum window of time between the alarm raised by the prediction 

method and the beginning of SOP is essential. This window of time is called the 

seizure prediction horizon, SPH. 

Taking into account the two time periods SPH and SOP, a correct prediction is 
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defined as follows: after the alarm signal, during SPH, no seizure has occurred yet. 

During SOP, a seizure occurs.  

 

 

Fig. 5-1 Defining the SPH and SOP 

 

Thus, the sensitivity was defined as the number of seizures predicted divided by 

the total number of seizures recorded. 

 the number of seizures predictedSensitivity
total number of seizure recorded

=  (5.1) 

The False Positive Rate (FPR) was defined as the average number of warnings 

that no seizure occurs within SOP after SPH per hour.  

 the number of warnings that no seizure occursFPR
EEG recording length (h)

=  (5.2) 

 

5.2.2 Seizure Prediction Results 
To evaluate the WCDSP, a prediction was considered to be true if a seizure 

occurred within 1 h after a warning was observed and false otherwise. That is, a time 

horizon of 1-h period was chosen for the evaluation of the prediction results of the 

algorithm. Long time horizons obviously improve the sensitivity of the algorithm but 

also increase the uncertainty about the exact time of the next seizure. Short time 

horizons decrease the sensitivity and specificity. 

 

Seizure Prediction 

Horizon (SPH) Seizure Occurrence Period (SOP) 

Alarm Seizure onset

time 
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Table 5-2 Performance of WCDSP for the optimal setting over all patients 

(SPH = 1h, SOP = 18s, p1 = 11, p2 = 13, threshold1 = 0.95, threshold2 = 0.85, 
interval = 33) 

Sensitivity False Positive Rate Average Prediction Time 
Patient 

 (False pre hr.) (min) 
1 4/4 0.3 14 
2 5/5 0.6 34 
3 2/3 0.3 20 
4 2/2 0.2 28 
5 4/4 0.6 29 
6 3/4 0.2 28 
7 3/4 0.1 20 
8 4/5 0.1 33 
9 4/5 0 22 
10 5/5 0.4 30 
11 4/5 0 40 

Total 
40/46 

(86.96%) 
0.2545  27  

 

The algorithm was tested under two cases. In the first case, we evaluated a range 

of parameter settings (threshold1, threshold2, interval) to find the optimal result, when 

applied to all eleven patients (see Table 5-2). Under this condition, we obtain the 

parameter settings with p1 = 11, p2 = 13, threshold1 = 0.95, threshold2 = 0.85, and 

interval = 33. The sensitivity ranged from 66% (patient 3) to 100% (patient 2, etc.), 

with an average of 87% sensitivity overall. For example, the algorithm correctly 

predicted 75% (3/4) of seizures in patient 7 with FPR = 0.1/h, and 100% (4/4) of 

seizures in patient 1 with FPR = 0.3/h. On average, the algorithm gives alarms 

approximate 27 minutes before each seizure. 

In the other case, we have the optimal parameter settings for each individual 

patient.  
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5.3 Comparison with other Prediction Methods 
There have been few studies about seizure prediction algorithm. In the thesis, 

we will discuss with the difference between our proposed and others in Table 5-3. 

In 2008, Bruno Direito1 [12] proposed an algorithm based on energy-wavelet 

with a sensitivity of 40% and false prediction rate of 0.4/h. V. Navarro’s [13] and Le 

van Quyen’s [1] algorithms using similar index achieve sensitivities of 83% and false 

prediction rates of 0.3/h in 2002 and 1999, respectively. In 2003, F. Mormann 

proposed an algorithm [2] based on synchronization decrease with a sensitivity of 

81%. Maryann D’Alessandro et al. [14] presented a method of hybrid-feature with a 

sensitivity of 62.5% and false prediction rate of 0.27/h. Leon D. Iasemidis [7] 

proposed an algorithm by using short-term Lyapunov exponential to estimate the LLE, 

called ASPA, with a sensitivity of 84% and false prediction rate of 0.12/h. 

 

Table 5-3 Comparison with other algorithms 

 2008[12] 

B.D.’s 

2002[13]

V.N.’s 

2003[2]

F.M.’s

1999[1] 

Le V.Q.’s

2003[14]

M.D.’s 

2003[7] 

Iasemidis’s 

This Work 

Algorithm Energy 

Wavelet 

Similarity 

Index 

Sync. 

decreas

e 

Similarity 

Index 

Hybrid 

Feature

ASPA WCDSP 

Sensitivity 40% 83% 81% 83% 62.5% 84% 86.96% 

False Positive Rate  

(False pre hr.) 
0.4 0.3 N/A N/A 0.2775 0.12 0.254 

Prediction Time 

(min) 
5.1 7.54 4 - 221 5.75 3.455 74.4 27 

Number of Patients 19 11 18 13 4 5 11 

Number of Seizures 17/42 34/41 26/32 19/23 N/A 42/50 40/46 

Interictal (h) N/A 12-60 49 N/A N/A 70 110 
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Our proposed algorithm achieves a higher sensitivity of 86.69% with a slightly 

larger false prediction rate of 0.254 than others. Moreover we have the prediction time 

of 27 minutes witch is much longer than most of the others for a therapeutic 

intervention. 

 

 

Fig. 5-2 Sensitivity and FPR comparisons with other algorithms 

 

In Fig. 5-2, we show the comparison results of sensitivity and FPR. The bars of 

the chart represent the result of sensitivity and the line represents the one of FPR.  
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Chapter 6              
Conclusions and Future Works 

 

In this thesis, we have proposed the WCDSP algorithm based on wavelet 

analysis, and chaos theory. The experiment results for several patients were shown 

with a high sensitivity with respect to prediction of epileptic seizures. The time 

horizon for a seizure prediction was set at 1 h and the average prediction time over all 

patients was about 27 min/seizure. The interval is sufficient for a therapeutic 

intervention. Not only a more reliable algorithm is presented, a VLSI implementation 

of the seizure analysis IP is also made for applications in portable device, such as 

VNS. 

In the future, we may improve the prediction sensitivity and lower the false 

positive rate (FPR) by the two approaches: 

(1) Hilbert-Huang transform: 

The Hilbert-Huang transform (HHT) is NASA's designated name for the 

combination of the empirical mode decomposition (EMD) and the Hilbert 

spectral analysis (HSA).  

It is an adaptive data analysis method, which improves accuracy by using 

an adaptive basis to preserve intrinsic properties of data, designed specifically 

for analyzing data from nonlinear and non-stationary processes, e.g. EEG 

signals. It yields results with more physical meaning and a different perspective 

than existing transforms. 
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Table 6-1 Comparison between Fourier, wavelet, and HHT 

 Fourier Wavelet Hilbert 
Basis a priori  a priori  adaptive 
Frequency convolution: 

global, uncertainty 
convolution: 
regional, uncertainty 

differentiation:  
local, certainty  

Presentation 
energy-frequency  

energy-time- 
frequency  

energy-time- 
frequency  

Nonlinear no  no  yes  
Non-Stationary no  yes  yes  
Feature 
Extraction 

no  
discrete: no, 
continuous: yes  

yes  

Theoretical 
Base 

theory complete  theory complete  empirical  

 

By HHT, we may obtain more important information to enhance the 

prediction results. 

(2) Independent Component Analysis (ICA) : 

In recent years, Independent Component Analysis (ICA) has been proved 

as a powerful algorithm to solve blind source separation (BSS) problems in a 

variety of signal processing applications such as speech, image, or biomedical 

signal processing. 

The EEG is composed of electrical potentials arising from several sources. 

Each source (including separate neural clusters, blink artifact, or pulse artifact) 

projects a unique topography onto the scalp, called "scalp maps." These maps 

are mixed according to the principle of linear superposition.  

Independent component analysis (ICA) attempts to reverse the 

superposition by separating the EEG into mutually independent scalp maps, or 

components. 
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Fig. 6-1 ICA decomposition 

 

We can apply ICA to multi-channel EEG recordings and remove a wide 

variety of artifacts from EEG records by eliminating the contributions of 

artifactual sources onto the scalp maps. It may lead to noiseless signals and we 

could more easily extract useful features to increase the sensitivity.   
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