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Abstract

The Epilepsy and epileptic seizure prediction,algorithm by extracting useful
features from Electroencephalography (EEG) is a het topic in'the current research of
physiological signals. In view of the erroncous .conclusions from the traditional
statistical analysis methods for non-stationary and non-linear dynamics system of
signals may affect the accuracy ‘of forecasts.

This thesis presents a movel architecture. based on wavelet and chaos theory,
including Discrete Wavelet Transform (DWT), correlation dimension, and correlation
coefficient. The wavelet transform is more suitable for non-stationary signals than
Fast Fourier Transform (FFT) due to the ability of multi-resolution and time-
frequency analysis. The fundamentals of Chaos theory for non-stationary and
non-linear dynamics systems are more in line with the characteristics of brain waves
than statistics. Therefore, combining DWT and Chaos analysis can achieve a high
prediction rate.

In this thesis, first EEG signals are decomposed into several subbands. We
predict seizures by the difference of convergent radius between the correlation

dimension of EEG before a seizure and the one during a seizure for each subband.

il



The proposed algorithm is evaluated with intracranial EEG recordings from a set of
eleven patients with refractory temporal lobe epilepsy. In the experimental results, the
algorithm with global settings for all patients predicted 87% of seizures with a false
prediction rate of 0.24/h. Seizure warnings occur about 27 min ahead the ictal on
average.

To apply the algorithm proposed to a portable physiological monitoring device,
a seizure analysis circuit is also designed. Some techniques, such as lifting wavelet

transform, enhanced memory addressing, and arithmetic reduction etc., are used to

it. In the future, the seizure

il



‘! D)

AR LSRR Y TR B I S
2Eles s BA LS Y EEE Lo Ty 2 2
AR e S sk SR AR R - X A S R B R

B R GEPp S UL L R ARG R 2 R R

2
P
-
]
L S
-
n
[ B

K\—&ﬁﬁﬁ‘&'ﬁ%'{i*’
AT o fH S F L A R L

— ¥r ;’r‘)j?}l'ﬁ’t} o

iv



CONTENTS

L 3 PP i
ADSEEACE....cuuueiiiciinnriinsssnniicsssnsnesssssssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssns ii
R T e rreeeeecrrnneeecernneeeessnaneeesssnateeesssnnteeesssanaeesssatesessssatesessrasteessaaneeeesaanesessnsaseeesrsnnsasenns iv
LSt Of FIUIES..cuuuueiiiiiisniiinisnnricssssnniesssssnsncsssssssessssssssssssssssssssssssssssssssssssssssssssssssasssss vii
LSt Of TADIES..c.ccocvurriiiiirnnricnisnricssssnnricssssnsnessssssssssssssssesssssssssssssssssssssssssssssssssssssssasssssans ix
Chapter 1 INtroducCtion........eicciccceiiciissnniccsssnsecsssssssessssssssssssssssssssssssssssssssssssssssssssssssss 1
1.1 Epilepsy and Epileptic S€IZUIE .........cceeeiieriieeiiieieeiieie et 1

1.2 MOTIVATION .c..iiiiieiie ettt ettt ettt ettt et te et e et e esae st e eneeesbeensaeenseas 3

1.3 Organization of the TheSiS . i i e eeeveereieeieeieee e 4
Chapter 2 Fundamentals of Seizure Analysis Algorithm ....................cccuceuuecunenneen. 5
2.1 Electroencephalography............c.cooeeesiiiinssiea e e 5

2.2 Chaoti¢ Modeling for EEGumm e o oitfin oot 7
2.2.1 Introductionto Chaos Theorem .. .............ccoiit i, 7

222 Reconstruetion of Attractors from Time Series wi........cccveeeeenee. 15

2.3 2 1T AN Y/0VE R S ) S 0 N 1 S 16
Chapter 3 Wavelet-Correlation Dimension Seizure Prediction..........ccccceeecuercnns 21
3.1 Architecture of Seizure Prediction.........o.........iveeeeeeeiieeaiihecnceieeiee, 21

3.2 Discrete Wavelet Transform........ccooiiiiiin i e 23
3.2.1 Discrete Fourier Transform.........ccoeeeveee it bieeaifieeeeie e, 23

322 Heisenberg uncertainty principle ............ccoove i, 24

323 Wavelet and Multiresolution AnalysiSt......cflu.cccveerieeiiienieeneenen. 25

33 Correlation DIMENSION . .........cevveeeieeiesiieiie e ifnie et 39

3.4  Feature Extraction and Prediction Rules...................cccooceiiinnninnnnn. 45
Chapter 4 VLSI Implementation and Verification .............cceeveeeccverccsercssnercssnnncsnnns 50
4.1 Architecture of the Real-Time Seizure Circuit ...........ccccveevveeciieneeennenne. 50

4.2 Arithmetic Functional Units ..........cccoviiiiiiiniiniieiecieeeeieee e 51
4.2.1 Lifting Wavelet ......ccooviieiiieiieie e 51

422 Correlation DImension.........c.cecveviieriienieenienie et 59

4.3 System CONIOLLET ....c..eeeiieiiieiiicie e 63

4.4 Simulation and Verification .............ccoecveeviierieiiiienieeieeece e 65
4.5.1 Simulation in Wavelet Circuit..........ccoevvveerieriiienieeieeieeieece e 66
4.5.2 Simulation in Correlation Dimension Circuit.........coecverveeniveniienneens 67
Chapter 5 Experimental ReSults.........cciciiiveiiciisnniicsissnnicssssnnnecsssnsnesssssssessssssssssssnns 68
5.1 EEG Data and Patient CharacteriStics..........cceevverviierieenieeeneesieerieeereenes 68

5.2 Seizure Prediction StatiStiCS.......eevieriierieeriieeie ettt 69



5.2.1 TErMINOIOZY .. oot 69

522 Seizure Prediction Results ..........cccevieiinieniiniieeeceeee 70

5.3  Comparison with other Prediction Methods ..........ccccocevenininiiiiiicncnnne 72
Chapter 6 Conclusions and Future Works 74
References 77

vi



List of Figures

Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

1-1 Neurons dia@ram .........ccceeevueeriieeiiieniieeieenieeteesiee et esieeeseeseaesbeesaseesseessneeseens 1
1-2 Vagus nerve stimulation (VINS).....cccioriiiiiiinieeiieieeieee et 2
2-1 Electrodes positions: contacts in red are chosen from the seizure onset zone
and contacts in blue are selected as not involved or involved latest during
SCIZUTE SPIEAQ. ....viiiiieiieeiit ettt ettt ettt ettt e et ste et eessbeeteeenbeebeesnseenees 6
2-2 EEG T€COTAINGS .....vvieuvieiieeiieeiie et eite et e eieeeteeseveeteesateesseessaeeseesaeesnseansnesnseens 6
2-3 Time intervals of EEG recordings.........cccccveeiieriieniiieniieeiieiiecieeeeeve e 6
2-4 Logistic map of period-1 CYCle.......ccciiriiiiiiiiiieiieeie et 9
2-5 Logistic map of period-2 CY@luu. i fir. e veerieeiieiieeie et 10
2-6 Logistic map Of 7=309 it st B e 11
2-7 Bifurcation diagram for the LogiStic map .. . iusitafee e, 12
2-8 A plot of Lorenz's.strange attractor s ..ot ... o tueesvsifiueeeneeeieeiieeieeieeenes 13
2-9 Displacement vectors inthe fiducial trajectory...........ocoiiiivieiiieiieciieeee, 17
2-10 Unsmeethed STL over-time (140 min), including a 2-minseizure. [7]....... 19
2-11 The T-index;curves denoting entrainment 55 min before seizure SZ2 [7]...20
3-1 Typical EEG waveforms corresponding to epilepsy. ........coveeenrierveerveenunennen. 21
3-2 Systemrarchitecture of seizure prediction ..............oceceeeeieeesiilecenieenienneenen. 22
3-3 A pyramidal image structure and system block diagram for creating it......... 26
3-4 Two image pyramids and.their statistics: a approximation (Gaussian) pyramid
and a prediction residual (Laplacian) pyramid ..., 27
3-5 (a) A two-band filter bank for one-dimensional subband coding and decoding
and (b) its spectrum Splitting Properties. ..ol ifinueeneenieerieeeeereesveeaeens 28
3-6 FWT analysis bank ...l et et 36
3-7 Time-frequency tilings for (a) sampled data, (b) FFT, and (c) FWT basis
FUNCHIONS. ¢ttt et et 36
3-8 (a) Two-level Daubechies 4 wavelet and (b) Time-frequency tilings of EEG37
3-9 Analysis and synthesis filters ..........cccoocieeiiiiriieiiienieeieee e 38
3-10 Decompose the EEG into many subbands ............ccccceeveevieiiienieenieenneenee. 38
3-11 (a) Time blocks, (b) States, and (c) Embedding dimension ......................... 39
3-12 POINtWiSE dIMENSION «..evviiiiiiiiieriieieeie ettt sttt 40
3-13 Correlation dimension with different radius ...........cccceeveviininiieniinenncnen. 41
3-14 Correlation dimension of unfiltered signal.............ccccoevieniiiiiieniiieiieieee. 42
3-15 Correlation dimension of (a) L; and (b) LL, band............cccoeeeviieiinennnn. 43
3-16 Correlation dimension of (a) LH», and (b) H; band............c.cccevvieeninennenn. 44
3-17 Comparison result of patient] between (a) pre-ictal and (b) inter-ictal ....... 45

vii



Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

3-18 Comparison Result of patient 10 between (a) pre-ictal and (b) inter-ictal...45

3-19 Correlation coefficients between correlation dimensions in different
embedding dIMENSIONS. .......cceiviieiiieeiieeie et eee e e s e e e e eereeeeneas 46
3-20 The sensitivity with five different correlation coefficients ............c............ 47
3-21 Prediction results for patient 1 (a) pre-ictal, and (b) inter-ictal.................... 48
3-22 Prediction results for patient 7 (a) pre-ictal, and (b) inter-ictal.................... 49
4-1 Top level hardware architeCture ...........ccceeecueeeeiiieeecieecie e 50
4-2 WCDSP system archit@CtuIe ........c..eeeeiieeriieeiiieeciieeeieeeeee e evee e 51
4-3 Block diagram of predict and update lifting Steps.......ccceevvveercreeerivieenieeennen. 53
4-4 Polyphase representation of wavelet transform ..........ccccoeeveevciiencieencieeeneen. 54
4-5 Pipelined lifting wavelet architecture of db4 .........c.ccooovvveviiieiiiiiieeeee 55
4-6 Multiplier circuit for the coefficient & ........cccocevviiiiiiiniiiniiiiicee, 57
4-7 Multiplier circuit for the €oefficient [ ... 0. c..oooviiniiiiniiiee, 57
4-8 Multiplier circuitifor the coefficient ¥ ..o i e 58
4-9 Multiplier circuit for the coefficient O ... e, 58
4-10 Multiplier cireuit for the coefficient & il ..ot iimereninecnenieceee 59
4-11 Correlation dimension CIrCuit =...... M. i A i 59
4-12 Block diagram of correlation dimension . . ..iveeeet..ohrterenarceeeeeeneeeneeeneenees 60
4-13 Enhanced memory addressing............fu o coiieereenesiueneeeesieitte e 61
4-14 Timing diagram for the original std. formula-..................L................ 62
4-15 Timing diagram for the adjusted’std. formula................cccmeeeereeiininnnnnen. 63
4-16 Modified wavelet circuit with.two.register.banks........ Lo, 64
4-17 Modified correlation dimenSion CITCUIt: . st erreenevees ornastareeeneeeeeeeeeneenneenees 64
4-18 Block diagram of system controller ...............c.ooodbilie 65
4-19 Wavelet gate-level'simulation with two modes.......lie.vveeeiiieiiiiiiieee, 66
4-20 Correlation dimension simulation-for the first'state...................cccceveenennee. 67
4-21 Correlation dimension stmulation results..............ccceeeevierieneniienieeene, 67
5-1 Defining the SPH and SOP ........ccooooiiiiiiieeeeeeeeee e 70
5-2 Sensitivity and FPR comparisons with other algorithms ...............cccoeeennens 73
6-1 ICA deCOMPOSITION. .....eieriireeiieeeiieeeiieeeieeeeteeesreeeseseeessbeeeseseeessseessseeensseeens 76

viii



List of Tables

Table 2-1 Results of logistic map (7=2.8) .....ccccuieiieriieiiecieeeeee e 9
Table 2-2 Results of logistic map (7=3.14) ....ccvieoiieiiieiieieeeeece e 10
Table 2-3 Results of logistic map (7=3.9) .....ccoouiriiiiiiieiieieeeeeeeee e 11
Table 4-1 Two’s complement to CSD CONVETSION.......ccceeeruieriieriienieeiieeieerieeeieeieenns 56
Table 4-2 Description of control Word...........occueveuiiiiieiiienieeiierie e 65
Table 5-1 Patient CharacteriStiCs ......c.ouevieriiriierieriiiiesieeieeeest et 69
Table 5-2 Performance of WCDSP for the optimal setting over all patients............... 71
Table 5-3 Comparison with other algorithms ............ccccoeviiiiiiiiiiniiieee e, 72
Table 6-1 Comparison between Fourie oty and HHT ..........ccoooooiiiiiii, 75

X



Chapter 1
Introduction

1.1 Epilepsy and Epileptic Seizure

Epilepsy is a common chronic neurological disorder that is characterized by
recurrent unprovoked seizures, called Epileptic Seizure (ES). It may be related to a
brain injury or a family tendency, but most of the time the cause is unknown. About
50 million people worldwide have.epilepsy at any one time, and that would have a
profound impact on the quality of life of epilepsy sutfers. That’s why people want to

know about it andfeven control it.
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Fig. 1-1 Neurons diagram

(From: http://kvhs.nbed.nb.ca/gallant/biology/neuron_structure.html)

These seizures are transient signs or symptoms due to abnormal, excessive or
synchronous neuronal activity in the brain. Generally, the brain continuously
generates tiny electrical impulses in an orderly pattern. These impulses travel along
the network of nerve cells, called neurons, in the brain and throughout the whole body

via chemical messengers called neurotransmitters. A seizure occurs when the brain's

1



nerve cells misfire and generate a sudden, uncontrolled surge of electrical activity in
the brain. Epilepsy should not be understood as a single disorder, but rather as a group
of syndromes with vastly divergent symptoms but all involving episodic abnormal
electrical activity in the brain.

Treatments are available that can successfully prevent seizures for most people
with epilepsy. The first treatment is almost always one of the many seizure medicines
(also called an antiepileptic drug or AED) that are now available. These medicines do
not actually "fix" the problems that cause seizures. Instead, they work by stopping the
seizures from occurring. Th,e _SCC(.)I.’ld,. suréi_cal trea!me-n.t can be an option for epilepsy
when an underlying _bfain abnormality, such as a b'enigr.l t'ugnor or an area of scar

tissue (e.g. h1pp(-)campal scler051s) be 1dent1ﬁed The abnormality must be
removable by a neurosurgeon Surgerj' '1s|usdally only' offered to patlents when their

epilepsy has not been controlled by adequa.te .attempts with mult1ple nledlcatlons

Fig. 1-2 Vagus nerve stimulation (VNS)

(From: http://www.medgear.org/page/4/)

Vagus Nerve Stimulation (VNS), shown in Fig. 1-2, is a recently developed
form of seizure control which uses an implanted electrical device. It is similar in size,

shape and implant location to a heart pacemaker, which connects to the vagus nerve in
2



the neck. The vagus nerve is part of the autonomic nervous system, which controls
functions of the body that are not under voluntary control. Once in place the device
can be set to emit electronic pulses, stimulating the vagus nerve at pre-set intervals
and milliamp levels. A new research on VNS was a major focus at annual meeting of
the American Epilepsy Society in 2000. At a symposium on neurostimulation, it was
reported that long-term efficacy studies lasting up to 5 years show that VNS can help
a wide array of epilepsy patients who do not respond to seizure medicines and cannot
be treated with epilepsy surgery. Overall, the studies indicated that 34% to 48% of
these adult patients experiencéd at least a 50% reductien in seizure frequency after 2

to 5 years of follow-up.

1.2 Motivation

Neurobehavioral ‘disorders can profoundly affect the lives of epilepsy suffers.
Thus, identification and treatment of cognitive and behavioral disorders are essential.
To enhance the gonventional treatments, we. think incorporating the VNS or seizure
medicines with a ‘seizure. prediction algorithm or more accurate to say a seizure
precursory analysis algorithm iswa feasible solution. Thus, the ability to predict
seizures would play an important role te improve the quality of life of the people with
epilepsy. In recent years, more and more researches focus on seizure analysis, and a
lot of valuable papers are presented, such as Similarity Index [1], Sync decrease [2],
Approximate entropy (ApEn) [3] etc. But we can say there is no robust enough
algorithm has been published to date.

In view of the erroneous conclusions from the traditional statistical analysis
methods for non-stationary and non-linear dynamics system of signals may affect the

accuracy of forecasts. To determine the main precursory anomalies from brain waves



more precisely, this thesis presents an architecture based on wavelet and chaos theory,
including Discrete Wavelet Transform (DWT), correlation dimension, and correlation
coefficient. The wavelet transform is more suitable for non-stationary signals than
Fast Fourier Transform (FFT) due to its ability of multi-resolution, and time-
frequency analysis. The fundamentals of Chaos Theory for non-stationary and
non-linear dynamics systems are more in line with the characteristics of brain waves
than statistics. Therefore we can achieve a high prediction rate by combining the
DWT and Chaos analysis.

For applying the algorithm proposed into.a portable physiological monitoring
device, we develop a setzure analysis circuit. Some techniques, such as lifting wavelet
transform, an enhdnced memory addressing, and arithmetic reduction etc., are used in
the design to reduce the area and the power consumption of circuit. In the future, we

even can integrate it into a digital signal processorof biomedical applications.

1.3 Organization of the Thesis

This thesis is“organized as follows. Chapter 2 introduces the theory of chaos
analysis and related works. The proposed algorithm for seizure prediction is described
in Chapter 3. Chapter 4 describes the implementation techniques of seizure circuit

design. Finally, the experimental results and discussions are presented in Chapter 5.



Chapter 2
Fundamentals of Seizure Analysis
Algorithm

This chapter will introduce the seizure analysis algorithm based on the Chaos
Theory. First, we explain what the Electroencephalography (EEG) is, then use the
Chaos Theory to model EEG for analysis. After this, two well-known algorithms as

short-term Lyapunov exponential and correlation dimension are introduced.

2.1 Electroencephalography

Electroencephalography—(EEG) is the measurement of welectrical activity
produced by the brain as recorded from electrodes. So-called scalp EEG is collected
from tens to hundreds of electrodespositioned on different locations at the surface of
the head. EEG 7signals shown in Fig. 2-2_ are amplified and “digitalized for post
processing.

In some situations, such as epileptic studies;;when deeper brain activity needs to
be recorded with more accuracy than provided by scalp EEG, clinicians use an
invasive form of EEG known as intracranial EEG (icEEG) where electrodes are
placed directly inside the skull (see Fig. 2-1). In some cases, a grid of electrodes is
laid on the external surface of the brain, on dura mater yielding epidural EEG but in
other cases, a depth electrode known as subdural EEG (sdEEG) and
electrocorticography (ECoG) is placed into brain structures, such as the amygdala or
hippocampus. Because of the filtering characteristics of the skull and scalp, icEEG

activity has a much higher spatial resolution than surface EEG.



Electrode Positions pat002 ‘ Electrode Positions pat003

Fig. 2-1 Electrodes positions: contacts in red are chosen from the seizure onset zone

and contacts in blue are selected as not involved or involved latest during seizure
spread.

2000
0

-2000
-4000 —
-6000

amplitude

| | | L
0 2 4 6 8 10
time series fsecond!

Fig. 2-2 EEG recordings

Then, we have to classify the EEG by symptoms for;the observation of the
relations between the normal states and abnormal states of thf“: brain, and evaluating
our algorithm later. The time intervals of the EEG in different states are defined as
follows:

(a) Pre-ictal: the period prior to the start of the seizure.

(b) Ictal: the seizure onset.

(c) Inter-ictal: the period between seizures.

(d) Post-ictal: the period after a seizure.

seizure 1 seizure 2

inter-ictal | pre-ictal | post-ictal

EEG(1)

Fig. 2-3 Time intervals of EEG recordings
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2.2 Chaotic Modeling for EEG

Many studies have shown that non-linear analysis could characterize the
dynamics of neural network underlying EEG which cannot be obtained with
conventional linear approach. In the section, we will explain the properties of
non-linear dynamics system and how to build an EEG model for chaotic analysis will

be explained in detail.

2.2.1 Introduction to,Chaos Theorem

Recall that a Newtonian deterministic system 1s a System whose present state is
fully determined by its initial conditions|[4] (ateast, in principle), in contrast to a
stochastic (or random) system, for which the. initial conditions determine the present
state only partially, due to noise or other external circumstances beyond our control.
For a stochastic system, the present state reflects the past initial conditions plus the
particular realization of the moise/encountered along the way. So, in view of classical
science, we have either deterministic or stochastiec systems.

For a long time; scientists avoided the irregular side of nature, such as disorder
in a turbulent sea, in the atmosphere, and in the fluctuation of wild-life populations.
Later, the study of this unusual results revealed that irregularity, nonlinearity, or chaos
was the organizing principle of nature.

A modern scientific term deterministic chaos depicts an irregular and
unpredictable time evolution of many (simple) deterministic dynamical systems,
characterized by nonlinear coupling of its variables. Given an initial condition, the
dynamic equation determines the dynamic process, i.c., every step in the evolution.
However, the initial condition, when magnified, reveals a cluster of values within a

certain error bound. For a regular dynamic system, processes issuing from the cluster



are bundled together, and the bundle constitutes a predictable process with an error
bound similar to that of the initial condition. In a chaotic dynamic system, processes
issuing from the cluster diverge from each other exponentially, and after a while the
error becomes so large that the dynamic equation losses its predictive power.

For example, in 1960s, Ed Lorenz from MIT created a simple weather model in
which small changes in starting conditions led to a marked changes in outcome, called
sensitive dependence on initial conditions, or popularly, the butterfly effect (i.e., “the
notion that a butterfly stirring the air today in Peking can transform storm systems
next month in New York, or)iéven worse, can cause,a hurricane in Texas”). Thus
long—range prediction:of imprecisely measured systems becomes impossibility.

The charactér of chaotic_dynamics can be illustrated with'the logistic map as
follows [5] :

X, =12 (1% )5 2.1
a discrete-time'analog of the logistic equation for population growth.'Here, x, >0 is
a dimensionless measure of the pepulation=in=thesnzrgeneration, and »>0 is the
intrinsic growth rate. We restrict the control parameter r"to the range 0<r<4 so
that (2.1) maps the interval 0.<x <1 into itself.
A. Period-Doubling

Suppose we fix r, choose some initial population x), and then use (2.1) to
generate the subsequent x,,. For the growth rate, we can consider cases as follows.

(1) When r <1, the population always goes extinct: x, -0 as n— .

(2) When 1<r<3 the population grows and eventually reaches a non-zero

steady state, called a period-1 cycle.

(3) Table 2-1 shows the results of logistic map of initial condition x, =0.4

and x,=0.8, and we can find that even though there is a huge difference

between the initial conditions, the two series as shown in Fig. 2-4 converge
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to the same value in a moment.

Table 2-1 Results of logistic map (+=2.8)

Logistic growth equation (r=2.8)

X(0) X(1) X(2) X3) ... X2 X(23) X249  X(25)
0.4 0.672 0.617 0661 -+ 0.642 0.643 0.642 0.642
0.8 0.448 0.692 0596 -+ 0.643 0.642 0.643 0.642

Logistic growth equation (r=2.8)

W x(0)=0.4
W =(0)=0.8

=f1])

scillates about the
former ste population in one
generation and . This type of oscillation, in
which x, repeats every two iterations, is called aperiod-2 cycle. Table 2-2

shows the results of logistic map of initial condition x,=0.1 and x,=0.3,

and the series as shown in Fig. 2-5 reach the same two states after a while.



Table 2-2 Results of logistic map (»=3.14)
Logistic growth equation (r=3.14)

X(0) X(1) X(2) X3) ... X2 X(23) X249  X(25)
0.1 0.2826 06365  0.7264 -+ 05385 07803  0.5382  0.7804
0.3 0.6594 07050  0.6527 -+ 07792  0.5402  0.7799  0.5389

Logistic growth equation (r=3.14)

W x(0)=0.1
W «(0)=0.3

x(1) x(10]) =x(15) x(20)

cur as r increases.

first appears. Then

computer experiments re 54409, ..., r, =3.5699.

The convergence is essentially geo :in the limit of large », the distance

between successive transitions shrinks by a constant factor (2.2).

S =lim 2 "1 = 4,669 (2.2)

o ’/;1+1 - rn
In fact, the same convergence rate appears no matter what unimodal map is
iterated. In this sense, the number ¢ is universal. It is a new mathematical constant,

as basic to period-doubling as n is to circles.

When r>r_, the answer turns out to be complicated: For many values of r,

the sequence {xn} never settles down to a fined point or a periodic orbit instead the
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long-term behavior is aperiodic. Table 2-3 shows the results of logistic map. It is
interesting to note that even though the difference of the initial conditions is only

0.0001, the two series as shown in Fig. 2-6 are totally divergent in a minute.

Table 2-3 Results of logistic map (+=3.9)
Logistic growth equation (r=3.9)

X(0) X(1) X(2) X3) ... X2 X(23)  X(24)  X(25)

0.4 0.936 023362  0.6982 -+ 09184 02919  0.8062  0.609

04001 093607 023336  0.6977 -+  0.6759  0.8542  0.4856  0.9741
| | 1 | | .I ..

Logistic ur.owth euuaiion l’r:S.EH

2(01=0.4
¥y~ W <{0)=0.4001

4

x(1) »x(5) i 10) x(15) x(20) x(25)

4 Fig. 2-6 Logistic map of =3.9" %
- N " L

- u LS

A bifurcation diagram sur;marizes the EIIbZ)VC phenomenon (Fig. 2-7). The
horizontal axis shows the values of the parameter r while the vertical axis shows the
possible values of x.

At r=3.4, the attractor is a period-2 cycle, as indicated by the two branches.
As r increases, both branches split simultaneously, yielding a period-4 cycle. This
splitting is the period-doubling bifurcation mentioned earlier. A cascade of further

period-doublings occurs as r increases, yielding period-8, period-16, and so on,

until at r=r_~3.57, the map becomes chaotic and the attractor changes from a

11



finite to an infinite set of points.

1.0

0.8 -
04 -

0.2 H

0.0 | | | | | | | | | | |

2.4 2.6 2.8 3.0 32 34
r

Fig. 2-7 Bifurcation diagramfor the Logistic map

B. Basic Terms of Nonlinear Dynamics

Recall that nonlinear dynamicsiisrastanguagetortalk about.dynamical systems.

Here, brief definitions are givenifor the basic terms of this language [4].

Dynamical system: A part of the world which can be seen as a
self—contained entity with some temporal behavior. Mathematically, a
dynamical system is defined by its state and by its dynamics.

Phase space: In mathematics and physics, a phase space, introduced by
Willard Gibbs in 1901, is a space in which all possible states of a system are
represented, with each possible state of the system corresponding to one
unique point in the phase space.

Attractor: An attractor is a ‘magnetic set’ in the system’s phase space to
which all neighboring trajectories converge. More precisely, we define an

attractor to be a subset of the phase space with the following properties:
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(1) Itis an invariant set;
(2) It attracts all trajectories that start sufficiently close to it;
(3) It is minimal (it cannot contain one or more smaller attractors).
A strange attractor shown in Fig. 2-8 is defined to be an attractor that
exhibits sensitive dependence on initial conditions. Geometrically, an attractor
can be a point, a curve, a manifold, or even a complicated set with a fractal

structure known as a strange attractor.

Fig. 2-8 A plot of Lorenz's strange attractor

e  Fractal: Roughly speaking, fractals are complex geometric shapes with fine
structure at arbitrarily small scales. Usually they have some degree of
self-similarity. In other words, if we magnify a tiny part of a fractal, we will
see features reminiscent of the whole. Sometimes the similarity is exact;
more often it is only approximate or statistical.

Fractals are of great interest because of their exquisite combination of
beauty, complexity, and endless structure. They are reminiscent of natural objects

like mountains, clouds, coastlines, blood vessel networks, and even broccoli, in a
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way that classical shapes like cones and squares can't match.

e  Embedding dimension: The number of variables needed to characterize the
state of the system. Equivalently, this number is the dimension of the phase
space.

e Fractal dimension: The strange attractors typically have fractal
microstructure. The attractor dimension counts the effective number of
degrees of freedom in the dynamical system, described by a non integer

dimension.

C. The link between EEG and chaos

Within the Context of brains dynamics [4], there are suggestions that “the
controlled chaos”of the brain is mere than an accidental by~product of the brain
complexity” and that “it may be the chief property that makes the brain different from
an artificial intelligence machine”. Namely, Chaos drives the human brain away from
the stable equilibrium, thereby .preventing=the=periodic behavior of neuronal
population bursting.

The EEG, being-the output of a multidimensional system [6], has statistical
properties that depend on both time and space. Components of the brain (neurons) are
densely interconnected and the EEG recorded from one site is inherently related to the
activity at other sites. This makes the EEG a multivariable time series. The analysis of
such nonlinear dynamical systems from time series involves state space reconstruction,
and we will introduce in the next section.

If prediction becomes impossible, it is evident that a chaotic system can
resemble a stochastic system, say a Brownian motion. However, the source of the
irregularity is quite different. For chaos, the irregularity is part of the intrinsic

dynamics of the system, not random external influences. Usually, though, chaotic
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systems are predictable in the short—term. This short—term predictability is useful.
Chaos theory has developed special mathematical procedures to understand
irregularity and unpredictability of low—dimensional nonlinear systems. Lyapunov
exponents and attractor dimension are some examples. Lyapunov exponents evaluate
the sensitive dependence to initial conditions estimating the exponential divergence of
nearby orbits, and we will discuss the method later. Correlation dimensions estimate

the fractal dimension and will be described in Chapter 3.

2.2.2 Reconstruction of Attractors from Time Series

Roux et al. (in. 1983) exploited a surprising data-analysis technique, now known
as attractor recomstruction (Packard et al. 1980, Takens 1981). The claim is that for
systems governed by an attractor, the dynamics:in the full phase space can be
reconstructed from measurements of just a single time series.

Construction of the embedding phase space from a datasegment x(¢) of

duration 7 is made with the method of delays [6]. The vectors,! X, in the phase space

are constructed as
X = (5(t), x4 )7 F (p D7) (2.3)

where 7 is the selected time delay between the components of each vector in the
phase space, p is the selected dimension of the embedding phase space, and
t, e [ILT-(p-1)7] . Obviously, the accuracy of computation depends on the sampling

step At which decides the number of vectors N, within a duration 7' data

segment:

t,=t,+(i—1)*At, where ie[LLN,], (2.4)

where ¢, is the initial time point of the fiducial trajectory and coincides with the time

point of the first data in the data segment of analysis.
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The embedding dimension p can be determined from (2.5) if the attractor
dimension d is known.

p=2d+1 (2.5)

The choice of delay 7 may also significantly affect the metric characteristics

of an attractor. If 7 is too small, the ith and the (i+1)th coordinates of a phase point

are practically equal to each other. In this case, the reconstructed attractor is situated

near the main diagonal of the embedding space, the latter complicating its diagnostics.

When a value for 7 is chosen that is too large, the coordinates become uncorrelated,

and the structure of reconstructed attractor is lost.

2.3 Related Works

A chaoticpattractor is an-attractor where, on the average, orbits;originating from
similar initial conditions (nearby points in,the phase space) diverge exponentially fast
(expansion proeess); they stay closé together only for a short time. If these orbits
belong to an attractor of finite size, they will.fold back into it as time evolves (folding
process). The Lyapunov exponents measure the average rate of expansion and folding
that occurs along the local eigen-directions within'‘an attractor in phase space. For an
attractor to be chaotic, the largest Lyapunov exponent (LLE) must be positive.

As we mentioned before, a relevant time scale should always be used in order to
quantify the physiological changes occurring in the brain. Furthermore, the brain
being a nonstationary system, algorithms used to estimate measures of the brain
dynamics should be capable of automatically identifying and appropriately weighing
existing transients in the data.

lasemidis et al. developed a method [7] for estimation of short-term Lyapunov

exponents (STL), an estimate of LLE for nonstationary data. It is well-known and
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widely used in many researches. Here we will take an epileptic seizure prediction
system, proposed by L. D. lasemidis et al. in the recent years, for example to explain
the STL in detail.

The short-term Lyapunov exponent (STL) is defined as:

N |ox (At
L=—1 S'log, ox,, 0| (2.6)
NACE T 8X,(0)
5X, (0)=X(1)-X(t,)
SX, (At)= X (1, + AD)— X (1, + Ar)

with

based on the reconstruction @ es, discussed in the last section,

R ERTC A - X (1, +Ar) s

%.rbation after time Ar

Fig. 2-9 Displacement vectors in the fiducial trajectory
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The crucial parameter is the adaptive estimation in time and phase space of the
magnitude bounds of the candidate displacement vector to avoid catastrophic
replacements. The improvement in the estimates of L can be achieved by using the

proposed modifications.

e For L to be a reliable estimate of STL, the candidate vector X(¢))

should be chosen such that the previously evolved displacement vector

0X

@, (Af) is almost parallel to the candidate displacement vector

60X, ,(0), that s,
V1=1(5X,, 00,6, , ,(A0) Wi 2.7)

where f¥. " should be small and ‘<5,¢>‘ denotes the absolute value of the

max
angular separation between two vectors.

e For L to be a reliable estimate of STL, 0.X, (0) shouldsalso be small in

magnitude in order to avoidrcomputerroverflow in the future evolution
within very chaotic regions and to reduce the probability of starting up with

points on separatrices.. This means,
6X,,(0)=|X @)= X(1)| < A, 2.8)

with A,

X

assuming small values.

A typical long-term plot of STL versus time, obtained by analysis of continuous
EEG, is shown in Fig. 2-10. This figure shows the evolution of STL at a focal
electrode site, as the brain progresses from interictal to ictal to postictal states. There
is a gradual drop in STL over approximately 2 hours preceding this seizure. The

seizure, 2 minutes in duration, is characterized by a sudden drop in STL values with a
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consequent steep rise. Postictal STL values exceed preictal values and slowly
approach interictal values. This behavior of STL indicates a gradual preictal reduction
in chaoticity, reaching a minimum shortly after seizure onset, and a postictal rise in
chaoticity that corresponds to the reversal of the preictal pathological state. There will

be more discussions about this character in Chapter 3.

£ t
T
|

STLmax ( bit/sec )

1 L L L L

a 20 40 60 B0 100 120 140
TIME (MINUTES)

Fig. 2-10 Unsmoothed STL over time (140 min),including a 2-min seizure. [7]

Having estimated the 'STL temporal profiles at each electrode site, and as the
brain proceeds toward the ictal state, the temporal evolution of the stability of each
cortical site is quantified. However, since the brain is a system of spatial extent,
information about the interactions of its spatial components should also be taken in
consideration by the relations of the STL between different cortical sites.

The 7- index at time t between electrode sites i and j is then defined as:

T,, = E{|STL (t)-STL, ()| o) (2.9)

\/ﬁ s

where E{ } denotes the average of all absolute differences ‘STLZ.(I)—STLJ. (t)‘
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within a moving window w, (1) defined as:
w,(A)=1 for Ae[t-N-1,t] and w(A1)=0 for A¢ [t-N-1t]
where N is the length of the moving window. Then, o, , (t) is the sample standard

deviation of the STL differences between electrode sites i and j within the moving

window.

A dynamical transition toward a seizure is announced at time ¢ when the

T-indexes of sites over time transits from a value above threshold T, at times ¢ <t¢’,

to a value below threshold T at time ¢ , as shown in Fig. 2-11.

L L L H L L= L L 1
] o 0 =1} ¥ i m e 120 140 160 un

TIME (MINUTES)

Fig. 2-11 The T-index curves denoting entrainment 55 min before seizure SZ2 [7].

The method presented achieved amazing results with high prediction sensitivity,

and pretty low false prediction rate. More details and comparison results with other

algorithms and ours will be listed in Chapter 5.
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Chapter 3

Wavelet-Correlation Dimension
Seizure Prediction

In this chapter a real-time seizure prediction method based on correlation

dimension analysis is presented, including the system architecture, data flow, and

algorithms.

3.1 Architecture of Seizure Prediction

Before stasting the prediction- processing, first we observe the EEG signal
whether existsgany clue around-the seizures. Forsexample, as show in Fig. 3-1, for
different clinical states including pre-ictal; ictal, and post-ictal states, the

corresponding properties of intracranial EEG recordings are different:

(a) pre-ictal
4000 T T T T T
. 2000
o
=
= 0
E
© 2000 .
4000 i i i i i
0 1000 2000 3000 4000 5000 6000
time
% 10‘ (b} ictal
1 T T T
. B e e Ea R e
)
é 0 i I ‘ {0 s AYINERL YL L
= [ [l 41 1 I TR || i)
E
B L L i T S S|
4 | | | | |
0 1000 2000 3000 4000 5000 6000
time
« 10" (c) post-ictal
2 ; ; ; ; ;
@
S
=
=
E
&
A i i i i i
0 1000 2000 3000 4000 5000 6000
time

Fig. 3-1 Typical EEG waveforms corresponding to epilepsy:
(a) pre-ictal, (b) ictal, and (c) post-ictal
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In the pre-ictal state the EEG signal is of the chaotic nature. As we approach the
epileptic seizure the signals are less and less chaotic and take the regular shape. These
findings imply that seizures may represent spatiotemporal transitions of the epileptic
brain from chaos-to-order-to-chaos. Therefore the chaoticity measure of the signal is a
good prognostic of the incoming seizure. In fact, this phenomenon is confirmed by
STL in the last chapter, but we try to use another method to prove it.

In this chapter, we would propose a Wavelet-Correlation Dimension based
Seizure Prediction system, called WCDSP, as shown in Fig. 3-2. The system is
consisted of three primary parts:

e Discrete Wavelet Transform analysis: Wavelet 1s used to.decompose the EEG
into several{sub-bands.

e  Chaos analysis: Correlation dimension 1s'used to measure'the EEG complexity.

e Feature extraction: The correlation coefficient is used to be the main feature for

prediction rules and to decide the seizure states.

_____ DWT Analysis__ = ____Chaos Analysis _ ¢ Feature Extraction
| il L !
L) [

| o064 | | B | |

| : g | E |

| Ihl /] '1 II : : o

| \-.m'-,-f'i Iup.'{ﬁ jJW i 2 Correlation | | | S @

' A o % | »=77 | Dimension | = =|!
EEG | ] e D, !l |8 &
—> — g P : : o g : alarm

[ N o=

| (64~128Hz) 1! f | E ndi-lkme

N © p—(

| QR : b= S ||

| L » mwwm —} = C(')rrelat}on | : = o :

| Il lwa| p=13 | Dimension | , = A&

| E- Doy 1|8 I
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Fig. 3-2 System architecture of seizure prediction
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3.2 Discrete Wavelet Transform

We would introduce the discrete wavelet transform (DWT) in this section, and
briefly discuss the properties of the discrete Fourier transform (DFT), the short-time

Fourier transform (STFT), and the wavelet transform.

3.2.1 Discrete Fourier Transform

In mathematics, the discrete Fourier transform (DFT) is one of the specific
forms of Fourier analysis, and, isswidely employed in signal processing and related
fields to analyze the frequencies contained in a sampled signal. As such, it transforms
one function into another, which is called|the frequency domain representation of the
original function (which is often a function in_the time domain).

The sequence, 0f N complex numbers: x,;...,x, , is transformed into the

sequence of N_complex numbers X ,..;; X', by the DET according to the formula

———kn

. NI
f:X(k):ane N ok =0,... ,N-1 (3.1
n=0

The importance of the Fourier transform stems not only from the significance of
their physical interpretations, such as time-frequeney analysis of signals, but also
from the fact that Fourier analyti¢ techniques are extremely powerful.

While Fourier analysis forces us to choose between time on one side of the

(13

transform and frequency on the other, “...our everyday experiences insist on a
description in terms of both time and frequency,” Gabor wrote. To analyze a signal in
both time and frequency, he used the windowed Fourier transform. The idea is to
study the frequencies of a signal segment by segment; the way, one can at least limit
the span of time during witch something is happening. The “window” that defines the

size of the segment to analyzed — and which remains fixed in size — is a little piece

of curve.
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One of the downfalls of the STFT is that it has a fixed resolution. The width of
the windowing function relates to the how the signal is represented — it determines
whether there is good frequency resolution (frequency components close together can

be separated) or good time resolution (the time at which frequencies change).

3.2.2 Heisenberg uncertainty principle

We want to construct a function f whose energy is well localized in time and

whose Fourier transform f has -an energy:. concentrated in a small frequency
neighborhood.

The Heisenberg principle [8] says the following: For every function f'(¢), such
that
| & 2
[ (@) dr=1 (3.2)
The product of the variance of t-and the variance of 7 (the variable of f ) is

h )
at least 16—2’ where /4 is'the Planck's constant:
V4

(,[_D;(t_fm)2 ‘f(f)‘z dt)(f:o(r—rm)z f(t)‘2 dr)z

variance of t varianee of

= (3.3)

These variances measure to what extent ¢ and ¢ take values far from their

average values, ¢, and 7, . Thus the shorter-lived a function, the wider the band of
frequencies given by its Fourier transform; the narrower the band of frequencies of its
Fourier transform, the more the function is spread out in time. Time and frequency

energy concentrations are restricted by the Heisenberg uncertainty principle.
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3.2.3 Wavelet and Multiresolution Analysis

Unlike the Fourier transform, whose basis functions are sinusoids, wavelet
transforms are based on small waves, called wavelets [9], of varying frequency and
limited duration. This allows them to provide the equivalent of a musical score for a
signal, revealing not only what notes (or frequencies) to play but also when to play
them. Conventional Fourier transforms, on the other hand, provide only the notes or
frequency information; temporal information is lost in the transformation process.

In 1987, wavelets were first shown to be the foundation of a powerful new
approach by Mallat to signal.processing and analysis called multiresolution theory.
Multiresolution theory incorporates and unifies . techniques from a variety of
disciplines, including .subband .coding, from signal processing,squadrature mirror
filtering from digital speech-recognition, and pyramidal image processing. As its
name impliesyzmultiresolution theory 1s.concerned with the representation and
analysis of signals at more than oné resolution. The appeal of such an approach is
obvious—features that might go tindetected. at one resolution:may'be easy to spot at
another.

A. Background

When we look at images, generally'we see connected regions of similar texture
and gray level that combine to form objects. If the objects are small in size or low in
contrast, we normally examine them at high resolutions; if they are large in size or
high in contrast, a coarse view is all that is required. If both small and large
objects—or low and high contrast objects—are present simultaneously, it can be
advantageous to study them at several resolutions. This, of course, is the fundamental

motivation for multiresolution processing.
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(1) Image Pyramids

An image pyramid is a collection of decreasing resolution images arranged in
the shape of a pyramid. As can be seen in Fig. 3-3, the base of the pyramid contains a
high-resolution representation of the image being processed; the apex contains a
low-resolution approximation. As you move up the pyramid, both size and resolution

decrease.

1zl AN Level O (aprox)

Level ] (base)

Diergnsarnpler _
| Approximation| | 2 , Levwlpl
filter ]‘ Aprciirnation
24 | Upsampler
[
Interpolation
filter
- D ot
! A rESidu.;;T

Fig. 3-3 A pyramidal image structure and system block diagram for creating it

The level j—1 approximation output is used to create approximation pyramids,
which contain one or more approximations of the original image. The level j
prediction residual output is used to build prediction residual pyramids.

For example, Fig. 3-4 shows one possible approximation (Gaussian) and
prediction residual (Laplacian) pyramid for the vase. The Laplacian pyramid contains
the prediction residuals needed to compute its Gaussian counterpart. To build the

Gaussian pyramid, we begin with the Laplacian pyramid's level j; 64 by 64
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approximation image, predict the Gaussian pyramid's level j+1 128 by 128

resolution approximation (by upsampling and filtering), and add the Laplacian's level

j+1 prediction residual. This process is repeated using successively computed

approximation images until the original 512 by 512 image is generated.

S T 0 B

'--.. 7] O i — s . |. :_L
Fig. 3-4 Two imz-rgf _p'jqamicis-l?gid_lllt‘.l;eir sl_a'tis’c-ﬂs.:ﬁ_&p,prbximaﬁoh:‘{}aussian) pyramid
-I_Eahd'a._Prediélt:llon residual (Laplacian) ‘Bﬁag-il
o

...... . .. h
J...:1.-... .F-: .ﬁ?
T!:'l_l_ i S —— I:l.'-l
(2) Subband Coding "“l-.:l.-"u .‘Tl-"ﬁ-i-

Another important imaging technique with ties to multiresolution analysis
(MRA) is subband coding. In subband coding, an image is decomposed into a set of
band-limited components, called subbands, which can be reassembled to reconstruct
the original image without error. Since the bandwidth of the resulting subbands is
smaller than that of the original signal, the subbands can be downsampled without
loss of information. Reconstruction of the original signal is accomplished by
upsampling, filtering, and summing the individual subbands.

Fig. 3-5 shows the principal components of a two-band subband coding and
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decoding system. The input of the system is a one-dimensional, band-limited

discrete-time signal x(n) for n=0,1,2,...; the output sequence, X(n), is formed
through the decomposition of x(n) into y,(n) and y,(n) via analysis filters
hy(n) and h(n), and subsequent recombination via synthesis filters g,(n) and

g (n). Note that filters #,(n) and h (n) are half-band digital filters whose

idealized transfer characteristics, H, and H,, are shown in Fig. 3-5(b).

Fig. 3-5 (a) A two-band filter bank for one-dimensional subband coding and decoding
and (b) its spectrum splitting properties

Filter H, is alow-pass filter whose output is an approximation of x(n) ; filter

H, is a high-pass filter whose output is the high frequency or detail part of x(n)

We wish to select 4,(n), h(n), g,(n), and g (n) so that the input can be

reconstructed perfectly. That is, so that x(n)=x(n).
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We can express the system's output as:

A

X(2) =5 [Hy ()G (2) + H ()G, (2) ] (2) (3.4)
+2[Hy(-2)G, () + H,(~2)G, ()] X (-2)
For error reconstruction of the input, %(n)=x(n) and X (z)=X(z). Thus, we

impose the following conditions:

H,(z)G,(z)+H,(2)G (z)

2 (3.5)

(3.6)

(3.8)

For FIR filters, the determinate of the modulation matrix is a pure delay.
det(H, (z))=a- 7 )

Ignoring the delay and let o =2

(=1)" A [n]
(=1 [n]

Define P(z)=G,(z)H,(z)

&[n]
& [n]
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= Zk:go [k]ho [n—k]+(—l)n Zk:go [k h, [n—k] = 25[11]

= Zk:go [k]h,[2n—k]=< g, [k].h,[2n—k]>=S[n]

Similarly, we can show that

<g [k],h1 [2n—k] >:5[n]
<g [k],hl[2n—k] >=0
< g [k].h[2n—k]>=0

That is,
< [2n=k). g, [k] >=6]i=d]o[n] ~1j={0.1} (3.9)
Filter banks satisfying this condition ate called biorthogonal. Moreover, the analysis

and synthesis_filter impulse responses of all two-band, real-coefficient, perfect

reconstruction filter banks are subject to.the biorthogonality constraint.

Orthonormal filter-banks:

<h[2n=kl.g,[k]>=5[i-j]6[n] s i j=10.1}

(3.10)
<g[[k],gi[n+2m]>=5[i—j]§[m] i,j={0,1}

g [n] =(—1)n g0[2k—l—n]
hi[n] gi[2k—1—n], i:{O,l}

B. Multiresolution Expansions

(3.11)

In MRA, a scaling function is used to create a series of approximations of a
function, each differing by a factor of 2 from its nearest neighboring approximations.
Additional functions, called wavelets, are then used to encode the difference in

information between adjacent approximations.
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A function f (x) can be decomposed into a linear combination of expansion
functions as follows.
f(x)= Zk:ak(/)k (x)
If the expansion is unique, the ¢, (x) are called basis functions. The expressible
function forms a function space V = span {gok (x)} .
For any function space V' and corresponding expansion set {(pk (x)}, there exist a
set of dual functions, denoted {(ﬁk (x)} , whichycan be used to compute the o,

coefficients for any fi(x)eV

Case 1: Orthonormal basis

{O j#k

<@i(%). 0 (x)>"5 8, = Ll

The basis and its dual.are equivalentand @, = <@, (x), /(x)>.

Case 2: Biorthogonal basis

3 0 j#k
<0,(). 903 BB

e  For the case of wavelet expansion, we restrict ourselves to forming the basis
functions by binary scaling (shrinking by factors of two) and dyadic
translation (shifting by the amount k/2)

e Consider the set of expansion functions composed of integer translations

and binary scalings of the real, square-integrable function ¢(x) :

J

9. (x)= 25go(2"'x—k) forall jkeZ and ¢(x)eL’(R)
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-- ¢(x) is called a scaling function
- I (R) : the set of all measurable, square-integrable functions

-~ By choosing ¢(x) wisely, {(oj,k (x)} can be made to span L’ (R)

If we restrict j to a specify value, j=j, the resulting expansion set
{(pjo,k (x)} is a subset of {(pj,k (x)} :
V.= spkan {¢j0,k (x)}

More generally, we denote

MRA require
The scali
MRA requireme _I B 5 E-
The subspace ngh)#e scaling function a ._l ow scales are nested within

MRA requirement 3:

The only function that is common to all 'V is f (x) =0.

V.. =10}

—00

MRA requirement 4:

Any function can be represented with arbitrary precision.

vV, = {L2 (R)}
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o o,.(x Za Prn(x Zh [n]- 202 (2’“x n)
P(x)= @y (x Zh [n]- 2 -p(2x—n),

which is called as refinement equation (MRA equation, dilation equation).

h,[n]: scaling function coefficients

e Given a scaling function that meets the MRA requirements, we can define a

wavelet function y (x).

J
Wi (x) = 221//(2jx—k

C. Wavelet Transform

We can now formally define several closely related wavelet transformations: the
generalized wavelet series expansion, the discrete wavelet transform, and a
computationally efficient implementation of the discrete wavelet transform called the
fast wavelet transform.

(1) The Wavelet Series Expansion

We begin by defining the wavelet series expansion of function f(x)e L*(R)
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relative to wavelet y (x) and scaling function ¢(x).

:Zk:cjo [k] sz [k l/jjk

J=Jo

¢, [k]: approximation (or scaling) coefficients

d;[k]: detail (or wavelet) coefficients

For orthonormal bases and tight frames,
¢, [K]=< £ (x). 0, (x)>= [ £ (), 4 (
d,[k]=<f(x).w >—_[f x)yljk

For biorthogonal bases,
¢, [ =< £(x).6, 1 (x)>= [ £(2)0 ( )dx
d [ =< 1 ()., ()= [ £ LW, ()

(2) Discrete Wavelet Transform

(3.12)

Like the Fourier series expansion, the wavelet series expansion maps a function

of a continuous ‘variable into .a" sequence. of: coefficients. If “the function being

expanded is a sequenge of-numbers, like samples of a continuous function f (x) , the

resulting coefficients are called the discrete wavelet transform (DWT) of f(x).

1) =7 S Lk (5) - S T, Ly

J=Jo

W, | jo.k]: approximation (or scaling) coefficients

W, [j.k|: detail (or wavelet) coefficients
For orthonormal bases and tight frames,

W]Ok

r zf Jook
", [f,k]=W;f[x]suj,k<x>
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For biorthogonal bases,
. 1 -
W, Lo k] :sz[x]%.k (x)
: 1 -
w, )] =sz[x]‘/’j.k (x)

(3) The Fast Wavelet Transform (FWT)
The fast wavelet transform (FWT) is a computationally efficient implementation

of the discrete wavelet transform (DWT) that exploits a surprising but fortunate

=ﬁlef[x]2j/2 [;hw [m—2k]\/§(p(2j“x—m)}
_ ;hw [m—2k] {ﬁzf[x]z(nl)/zw(zjﬂx_k):|

=W, [j,k]=;hw [m—2k]-W,[j+1.m]

Wl// [j’k] = hw [_n]*W(ﬂ [j+1’m]
Similarly,

W¢J [j,k]=hw[—n]*W¢ [j+1’n]
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Fig. 3-6 reduces these operations to block diagram form. We note that the filter
bank can be "iterated" to create multistage structures for computing DWT

coefficients.

Wq,(j+1,n) *—

] hw(—l’l) 2¢ —® W(/)(j’n)

Fig.3-6 FWT analysis bank

D. Time-Frequency Analysis
Fig. 3-7 shows the time-frequency. tiles. for (a) a delta function (i.e.,

conventional time domain) basis, (b) a sinusoidal (EFT) basis, and (c),an FWT basis.

Frequency

Time Time Time

(2) (b) (©)

Fig. 3-7 Time-frequency tilings for (a) sampled data, (b) FFT, and (c) FWT basis
functions.

Note that the standard time domain basis pinpoints the instants when events
occur but provides no frequency information. A sinusoidal basis, on the other hand,
pinpoints the frequencies that are present in events that occur over long periods but

provides no time resolution. The time and frequency resolution of the FWT tiles vary.
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At low frequencies, the tiles are shorter (i.e., have better frequency resolution) but are
wider (which corresponds to poorer time resolution). At high frequencies, tile width is
smaller (so the time resolution is improved) and tile height is greater (which means
the frequency resolution is poorer). This fundamental difference between the FFT and
FWT was noted in the introduction to the section and is important in the analysis of
nonstationary functions whose frequencies vary in time.

In this research, a two-level Daubechies 4 (db4) wavelet is used for the EEG

recordings. Fig. 3-8 shows (a) the corresponding wavelet structure, and (b) the

Time-frequency tilings for DWT

frequency (Hz)

(0 L

0 2 4 5 g
time (sec)

(b)

Fig. 3-8 (a) Two-level Daubechies 4 wavelet and (b) Time-frequency tilings of EEG
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The corresponding analysis and synthesis filters are shown in Fig. 3-9. We list

the analysis part, including a low-pass and a high-pass filter, as follows:

hy(z)=hy+hz "' +hz? +hz"

h(z)= h322 —hzzl +h — hoz_l ,

1+43 h_3+\/§ 3 _3—x/§ _1—\/§

(3.14)

whete = 427" a2t a2 f = 42
Decormposition |ow-pass filter Decormposition high-pass filter
0.8 0.8
0.6 0.6
0.4 ® 0
0.2 T 0.2
1] 1]
-0.2% 0.2 i .
-0.4 y ‘ 0.4 ] )
1] 1 2 3 1 2 g
Reconstruction low-pass filter Reconstruction high-pass filter
0.8 0.8
0.6 0.6
0.4% 0.4
0.2 T 0.2
1] 1]
-0z L L
-0.4 -0.4
1] 1 2 3 a 1 2 g

Fig. 3-9 Analysis and synthesis filters

We decompose the original EEGrintorseveral*subbands, including L;, H;, LL,,
and LH, (Fig. 3-10). Each subband may contain some specifie, characteristic of the

brain dynamics. In the next section, we will use these:subbands for advanced analysis.

Decomposition at level 2 5= LLz + LH2 +H

5000 —

=) g ! I ! I ! I I ! I 1

5000 - —
L, - !

-5000 —

2000 — —
TR PP
LH, of—shiimnp M%WMWM%WWWMW

-2000 -

1000 | -
500 - -
1 1
-500 |- 4

| | | | | | | |
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Fig. 3-10 Decompose the EEG into many subbands
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3.3 Correlation Dimension

Estimating the fractal dimension of a strange attractor from a corresponding
time series has attracted considerable attention in the past few years and has become
one of the main tools in the analysis of the underlying dynamics. Of all types of
dimensions, most attention has been given to the correlation dimension (D, ). This is
mainly because this type of dimension is easier to estimate than others and also
because it provides a good measure of the complexity of the dynamics, i.e. of the
number of active degrees of freedom,

First, we have to teconstruct the attractor on the:phase space, introduced in
Chapter 2. We divide the EEG into non-overlapping time blocks which is long enough
for a good estimation of D,, shown in Fig. 3-11(a). Bach block contains 256 states of
the attractor (¥, = 256 ), and-the-distance betweenicach state is' 9 (Af =9 ), shown as
Fig. 3-11(b). The dimension of the phase space'is p, and-the delay, 7 =1, shown in
Fig. 3-11(c).

el | _ _ _ 8 sliding window

e TR T R e e

|
BLOCK2 | BLOCK3 |“BLOCK4 =) EEG()
|

(a)
b N, titAt ti-12AL ti+3At
|
|
I X(ti) I X (tiFAt) X(ti+2At) X(ti+3At) > EEG(t)
|
l\ _________ //
BLOCK1
I I I PO !
> EEG(t)
ti ti+t tit21 ti+31 ti+(p-1)t
(c)

X(ti) = ( x(ti), x(ti+1), x(ti+27), -, x(ti+(p-1)1)

Fig. 3-11 (a) Time blocks, (b) States, and (c) Embedding dimension

39



Grassberger and Proccacia suggested a procedure of estimating which became

widely used by mathematicians and applied scientists immediately [5]. Fix a point x

on the attractor A. Let N, (&) denote the number of points on A inside a ball of

radius ¢ about x (Fig. 3-12).

Ball of radius ¢

o ' centered at x

P >

Fig. 3-12 Pomtwise dimension

Most of the points in the ball are unrelated to the immediate portion of the

trajectory through x; instead they come from later-parts that just happen to pass close
to x. Thus N, (8) measures”™ how frequently a typical trajectory visits an
& -neighborhood of x.

Now vary ¢. As ¢ increases, the number of points in the ball typically grows

as a power law:

N, (g)xe’, (3.15)
where d 1is called the pointwise dimension at x. The pointwise dimension can
depend significantly on x; it will be smaller in rarefied regions of the attractor. To get

an overall dimension of A, one averages N (3) over many x. The resulting quantity
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C(¢) is found empirically to scale as

C(g)oce™ (3.16)
where D, is called the correlation dimension.

If the relation C (5) oc & were valid for all &, we'd find a straight line of

slope D, .
. InC(¢&,N,)
D, =lim lim ———= (3.17)
>0 N, > ln &
where C (5) is the correlation integral.and defined as follows [10]:
Ge)=—~ > I(|x-x|<5) (3.18)
Na I<i<j<N,
For distance || . || one-usually-takes the maximum norm, 1.e. for a & -dimensional
vector x, | X || = max|xl. , 1<i<k,and [ isthe Heaviside function.
(a) radius = 1*std() seizure onset

tirne (i)
(b} radius = 1.5%std()
25
! ! ! !
& 2 MMMMMM """""" ]
\s i i i i
0 15 30 45 0 75
time (mirn)
(c) radius = 2*std()

tirne (min) 1
() radius = 2.5%std()

tirne (i)
() radius = 3*std()

time (min)

Fig. 3-13 Correlation dimension with different radius
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It is known that when calculating the correlation dimension some restrictions are
imposed on the value of ¢. We use the standard deviation (std.) of each time block to

estimate it as follows:
& =k *std of the time block, k={1, 1.5, 2, 2.5, 3} (3.19)

The results are shown in Fig. 3-13. When £ is less than two, there is no clear trend
of the wave before the seizure onset. With the increasing of %, we can find that there
is a long-term decreasing before the seizure and a sudden drop during the ictal, and
then a strong rise after the seizure. Recall the feature mentioned in the previous
section, the EEG would decrease in the degrees of freedom during the pre-ictal. And
we confirm this character again by correlation dimension.

Now, we have decided -the.basic, parameters of'the algorithm of correlation
dimension. Next, we will calculate the D - with, different subbands of the EEG,
including the unfiltered signal, L; band (0<63.Hz), H; band (64~128 Hz), LL, band

(0~31 Hz), and;EH; band (32~64 Hz), to find out the most appropriate one.

1.44 T T T T T 100

142 { i seizure onset 4 o
1.4 1 m 8
| ! 470
L5 i}, e

I‘“‘ = a0

I]|¥I

!
1.38 f
1.36

il i "l.,u i

Dc

132
131 - 30
1281 ’ - 20
126 | - 10

12‘1 1 1 L L 1 L 1 D
0 75 15 224 30 7a 45 525 46 B0

time {min]

Fig. 3-14 Correlation dimension of unfiltered signal
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1.38 T T T T T T

136 - seizure ohset
1341
132

Dc

1280 i 1
1260
1240

122

| |
0 B 12 18 24 30 3 42 48 54 56
time {min}

(a)

128 T T T T T T T T 25

seizure onset

118 I I | I I I I I I
0 B 12 18 24 30 36 42 A5 54 56

tirne (rmin)

(b)

Fig. 3-15 Correlation dimension of (a) L, and (b) LL; band

The results of unfilteredssignal, L;, and ELy-are-shown in Fig: 3-15 and Fig. 3-15.
And the correlation dimensions of each band seem a.normal distribution with a very
narrow range (about 0.09~0.18). We can hardly find any features to identify the

seizures.
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seizure onset

30

25

20

a 15

16+ -
10

1.55 - -
15 4 5
1 1 1 I 1 1 I I 1 0

0 51 12 18 24 30 36 42 48 54 56 B0 1.4 15 16 17 1.8 19
tirne (min)
()

2.1 T T T T T T 60

206

seizure onset

a0

40

- 30

1.7 - B
185 - B

tirne (rnin)

(b)

Fig. 3-16 Correlation dimension of (a) LH,, and (b) H; band

The resultsgyof LH, and H,; subbands are:shown in Fig. 3-16. Obviously,
correlation dimensiofis of each band decrease during .the pre-ictal. The histograms
mainly focus on the larger values reflecting sudden fallings at the onset of seizures.
That is, the characteristics of the seizures likely embedded in the high frequency
subbands not in low frequency ones.

In the following experiments, we will see the comparison of the correlation

dimension between pre-ictal and inter-ictal.
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(&) pre-ictal (b inter-ictal
T T T T

T T T 22 T T

seizure \{m_ s16) |

2 16

e ohset
1.4 4 14 4
12 412 1

1 L L L L L L L L L L L L L L L L L

: 1
42 43 54 5860 O B 12

24 30 36 4 30
time {min) tirme (min)

Fig. 3-17 Comparison result of patientl between (a) pre-ictal and (b) inter-ictal

(&) pre-ictal (b inter-ictal
T T T T

2B T T T T

25 Ly 256

24r

24r B

seizure|

23F
onset

Dc
Dc

22r

21F B

2t i

, , , , . , , , , 18
0 B 12 158 24 30 36 42 48 54 5860 D B 12 18 24 30 36 42 45 54 G0
time (min) tirme (min)

Fig. 3-18 Comparison Result of patient 10 between (a) pre-ictal and (b) inter-ictal

The results' perfectlyfmateh the conclusions of STL. Although correlation
dimension can reflect the loss in the degree of freedom, we meed:find out some clue
before a seizure so that we can “predict” it. In the next.section, we will introduce the

concept of correlation coefficient to extract useful features.

3.4 Feature Extraction and Prediction Rules

In fact, there exists a relationship between the embedding dimension p and
correlation dimension D,. If, as p increases, D, continues to rise then this is
symptomatic of a stochastic system. If, however, the data generated by a deterministic
process, then D, will reach a finite limit at some relatively small p .

We suppose that when there is a transition from chaotic to periodic, the radius of

convergence varies. Thus, we have tried to reconstruct the attractor with different
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values of p from 7 to 25. We consider the correlation coefficient between two D,

using distinct embedding dimensions, p, and p,, within a sliding window, denoted

as CCMJ2 .

X,Y) _ cov(X,Y) _ E((X—yx)(Y—yY)) (3.20)

OOy O 4Oy

ccC

P1.P2 (

where

X = (DC (i).D,(i+1),...D, (i+19)),DC lay on p, —dimension

3.21
Y=(Dc(i),Dc(i+1),...,DC(i+l9)),DC lay on p, —dim ension 321

0.95 -

0.9 -

0.85

0.8+ -

CE

075+ -
0.7+ -

0B5F -
seizure onset

DE | 1 | 1 | 1 1 1
a G 12 18 24 30 36 42 45 a0

time (min)

Fig. 3-19 Correlation coefficients between correlation dimensions in different

embedding dimensions

Fig. 3-19 shows the results of CC,,, CC

9112 ***»

and CC

517> and we can

easily find that the correlation does decreases tremendously.
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We evaluate the five different CCs with the following definition of prediction

rule. We find the CC,,,; is the best of all. Thus, the CC,,, is our final choice.

a0
72
= 54
5
a
g 36
&
18
0
cc(7,9) cCl15,17)
Fig. 3-20
We define
(1) The ue below

Fig. 3-21 and Fig. 3- patient 1 and patient 7, and
the system gives an alarm about 7 and 37 minutes earlier than the seizure onset
respectively. On the other hand, the two D, are always highly correlated in

inter-ictal cases. That is, the architecture based on wavelet decomposition, and

correlation dimension could achieve the goal we expect.
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Fig. 3-21 Prediction results for patient 1°(a) pre-ictal, and (b) inter-ictal
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Fig. 3-22 Prediction results for patient:7.(a)pre-ictal, and (b) inter-ictal

More statistical information, such as prediction sensitivity and false prediction

rate, and comparisons with other algorithms will be discussed in Chapter 5.
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Chapter 4
VLSI Implementation and
Verification

In the chapter, VLSI implementation for the components in the seizure chip is
introduced. The system is designed for biomedical portable device, so we consider
about not only the speed, but also the area and power consumption. Top level
hardware architecture describes. how the WEDSP play its role and corporate with

VNS, shown in Fig. 4x1:

MEMORY

i

oo [ e

RIDGE
Y T

Fig. 4-1 Top level hardware architecture

4.1 Architecture of the Real-Time Seizure Circuit

The overall architecture shown in Fig. 4-2 is made up of two parts: the
arithmetic functional unit, and system control unit.

Arithmetic function units mainly consist of wavelet, correlation dimension,
correlation coefficient circuits. To satisfy the requirement of accessing the memory at
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a high frequency when computing the correlation dimension, we need a more efficient
memory access method. Therefore, a memory controller is represented as well to
optimize the addressing of memory, reduce the hardware costs and the power
consumption certainly.

The system control units set the system by control words from users. In order to
saving the most power, we also need a power management to control the activation of

each component.

— ___ Arithmetic functional units _ ___ _ _ |
[
DACT“;]—)IN/ —ﬂ Discrete Wavelet Transform : DATA_OUT
—
LR ]
D
5 c : - @
=1 C(frrelat.lon Correla.tlon N Sel?ul.'e | |Z || ALARM
= L| Diemnsion || Coefficient || prediction [|.2
CLK - b =
= R
— |- = gt S o - ﬂl £&( | OUT_VALID
RESET | 4.&| ! S
Em— I CONTROL ey POWER I
EN I I
| UNIT MANAGEMENT :
| p——— Eapepgegti Ty S Syemgepn gt =l S Spemia
= ik System control units

Fig. 4-2 WCDSP system architecture

4.2 Arithmeétic Functional Units

In this section, implementations of primary” function units will be discussed,
such as using lifting wavelet to reduce the computation complexity, correlation

dimension with an optimized memory controller, etc.

4.2.1 Lifting Wavelet

Various techniques to construct wavelet bases, or to factor existing wavelet
filters into basic building blocks are known. One of these is lifting. The original
motivation for developing lifting was to build second generation wavelets. First
generation wavelets are all translates and dilates of one or a few basic shapes; the
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Fourier transform is then the crucial tool for wavelet construction. A construction
using lifting, on the contrary, is entirely spatial and therefore ideally suited for
building second generation wavelets when Fourier techniques are no longer available.
When restricted to the translation and dilation invariant case, or the “first generation,”
lifting comes down to well-known ladder type structures and certain factoring
algorithms.

The basic idea of wavelet transforms is to exploit the correlation structure
present in most real life signals to build a sparse approximation. The correlation
structure is typically local in space (time) and frequency; neighboring samples and
frequencies are more, correlated than ones that are far apart. Traditional wavelet
constructions usefthe Fourier transform to build the, space-frequency localization.
However, as the'following simple example shows, this can also be'done in the spatial

domain.

Consider a.signal X = (xk). Let usssplit it in two disjoint sets which are called
the polyphase componentsi,the.cven indexed-samples X, =(x2k), or “evens” for

short, and the odd indexed samples X, =(x,,., ), or “odds’Typically these two sets

are closely correlated. Thus it 1s only natural that given one set, e.g., the odd, one can
build a good predictor P for the other set, e.g., the even. Of course, the predictor
does not need to be exact, so we need to record the difference or detail d :

d=X, —P(Xe)

Given the detail d and the odd, we can immediately recover the odd as

The operation of computing a prediction and recording the detail is called a /ifting

step. This idea connects naturally with wavelets as follows. The prediction steps can
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take care of some of the spatial correlation, but for wavelets we also want to get some

separation in the frequency domain. The frequency separation is poor since X, is

obtained by simply subsampling so that serious aliasing occurs. In particular, the

running average of the X, is not the same as that of the original samples X . To

correct this, we propose a second lifting step, which replaces the evens with smoothed

values s with the use of an update operator U applied to the details as
S=X,+U(d)

Again this step is trivially invertible as

X, =s-U(d)
and then X, can berecovered as explaified earlier: This illustrates one of the built-in
features of lifting: no matter how P_and U are"chosen, the scheme is always

invertible and thus leads to critically sampled perfect reconstruction. filter banks. The

block diagram of the two lifting steps is given in Fig. 4-3.

X} split

Fig. 4-3 Block diagram of predict and update lifting steps.

A natural question now is how much of the first generation wavelet families can
be built with the lifting framework. It turns out that every FIR wavelet or filter bank
can be decomposed into lifting steps. This can be seen by writing the transform in the
polyphase form. Statements concerning perfect reconstruction or lifting can then be
made using matrices with polynomial. A lifting step then becomes a so-called
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elementary matrix. It is a well known result in matrix algebra that any matrix with
polynomial entries and determinant one can be factored into such elementary

matrices.

— @ @
g p(zY 13(2)
> Z »@—» ( )—>HP—> *@Z'IS—I}_»

Fig. 4-4 Polyphase representation of wavelet transform

We define P(z) similarly. For the Daubechies 4 wavelet, the polyphase matrix is

P() = P() {ho +hz! —hz —h}

h+hz"' hz' +h,
The analysis polyphase matrix is factored as:

\/\3_/51 0 {1 0}1?;/5‘22{1 o}

P(1/z) = o

J3-1
N
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The corresponding circuit of db4 wavelet is shown in Fig. 4-5.

X[n] ———»

: _»H_» | .

I
Split Lifting Scaling

Z' | delay register H : pipeline register

a=-1.73201, £ =0.43301, » =—0.06698, 6 =1.93185, and £ =.0.51763

Fig. 4-5 Pipelined lifting wavelet architecture of db4

Lifting wavelet transform is:very suitable for VLSI implementation. As a
comparison basezwe use the standard algorithm, 'which corresponds to applying the
polyphase matrix. This already takes advantage of the fact:that the filters will be
subsampled and thus avoids computing samples that will be subsampled immediately.

The unit we use is the cost, measured in number of multiplications and additions.

Take db4 wavelet for example. The cost of applying a filter 4 is |h| multiplications
and |h - 1| additions. The cost of the standard algorithm thus is
2(|n[+|g])-2=2(4+4)-2=14

However, by using the lifting wavelet we need only 9 units. It reduces the complexity
of about 56%.

In the next, we consider the accuracy of the computation. Floating-point adders
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and multipliers definitely perform the best, but they require a lot of hardware resource
and they are usually slower. We use 16-bit fixed-point numeric, which consist of two
bits for the integer part, and fourteen bits for the fractional part. The rough precision
of the fixed point number representation can reach 0.000030518.

Since the coefficients of the lifting are constants and represented by fixed-point
numeric, multiplication can be realized by shifts generating partial products that
subsequently are added together. The number of nonzero partial products is
determined by the number of nonzero bits in the multiplier coefficient. Consequently,
if the number of nonzero bits in.a coefficient is reduced, the number of partial
products is reduced and therefore a smaller, faster, and.less power consuming
summation can befachieved. If a signed digit representation with the digits —1, 0, and
1 is used for the coefficient the number of partial products may be reduced. The
canonical signed digit code (CSD) is a signed:sdigit representation with minimal
Hamming weight, i.e., it has a minimumsnumber of ones, and contains no adjacent
nonzero digits.

The conversion of a two’s complement number intoyCSD code is done

according to Table 4-1.

Table 4-1 Two’s complement to CSD conversion

bi+1 b; Ci a; Ci+1
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 0 0
1 0 1 -1 1
1 1 0 -1 1
1 1 1 0 1

56



The b, is the bit of the two’s complement number to be converted and the g,
is the CSD code after the conversion. The ¢, is the carry generated in step i—1 and

c,,, 1sthe carry out at step .

i+l

The coefficients converted to CSD and the circuits are listed below:

(1) a=-1.73201,, =10.01000100100111,, =10.01000100101001csp

3 =10.01000100101001 * x
=(-22+27 42427 427" —27x
=—(x<<2)+(x>>2)+(x>>6)+ (x> N+ (x>>11)—(x>>14)

S T e

Fig. 4-7 Multiplier circuit for the coefficient S
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(3) 7=-0.06698,=11.11101110110111,,, = 00.00010001001001csp
y = 00.00010001001001 * x

— (_2—4 _2—8 _2—11 _2—14)x
=—(x>>4)—(x>>8) —(x>>11)—(x>>14)

X[n] ¢
A 4 4 A 4

2-14 2-11 2-8 2-4

Fig. 4-9 Multiplier circuit for the coefficient &
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(5) ¢=0.51763,, =11.01111011100000,,, = 00.10000100100000,,

y =00.10000100100000 * x
=—Q27"+27°+27)x
=—(x>D—-(x>6)—(x>>9)

X[n]

As a result, ) ste j idders and shifters.

The hardware ¢os s'tha S ) presentation.

memory | !
controller : vectorl ¢ i vector2 |
|
|
radius [ :
generator I adder I correlation
! Y 2 | integral
: comparitor :
| |
! |
: adder > log —»
|
|

Fig. 4-11 Correlation dimension circuit
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The correlation dimension circuit is composed of three components, including
memory controller, radius generator, and correlation integral (Fig. 4-11) and

operations in detail is shown in Fig. 4-12.

|

1. scan in
2. standard derivation

Fig. 4-12 Block diagram of correlation dimension

First, we scan in all data we need in a register chain, and calculate the standard
deviation used for radius generation at the same time. Then calculate the taken norm
pair by pair and compare with the radius. At last, we obtain the correlation dimension
by log operation.
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(1) Memory controller
There are two tasks of the controller. The one is to reduce the memory access
costs. The memory used in the circuit needs not random access. If we use
conventional memory addressing, it may:
» Infer a very large decoder when scanning in the data, and
» Infer a lot of (at least 13) large multiplexers when generating vectors.
Because the access is well-regulated, we can achieve it more easily by the following
way:
»  When scanning in the data:
Step1: put the data at the tail of the memory
Step2: shift left thé whole memory by one unit until the data is all’scanned in
»  When generating vectors (suppose embedding dimension=13, Az =9):
Step1: select the first consecutive thirteen data as the vector
Step2: shift left the memory by nine units
Step3: return to'stepl until the last loop

Step4: fix the positions of the data'in the memory to the beginning state

DO
OoTIoT0

@ vector 1
radius
AT |:> taken norm <:|

reference vector

Fig. 4-13 Enhanced memory addressing

Therefore we can avoid a great amount of redundant hardware costs. The other task of
the controller is the reconfiguration when applying different embedding dimensions,

and then we can share the same circuit.
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(2) Radius generator
When we generate the radius ¢, standard deviation (std.) is used as mentioned

before. But the original formula does not suitable for hardware implementation.

o= /%iz::(xi—a_c)z (4.1)

It can be divided into three stages:

Stagel: calculate sum for the mean

Stage2: calculate the difference (x, —x) and summation

Stage3: obtain the standarg

"
By this way, we fing : : i a , but the stage2 needs

scan_in i e TR | R — — — —— — — ——
sum e i - — — i — — - —————————

difference @ -—-——-—--——-L-=-<+ L __ 4 -

correlation
integral

al std. formula

To avoid this situation, we adjust the formula as follows:

N - N .,
Z(xl. —x)° =Z(xl.2 =2x,x+x)
i=l1 i=

x” —(2x2xij+Nx

i=1

—_

I
.MZ

Il
—

(4.2)

I
=
[\S}

Il
UR

—(2xNx)+ Nx

—2

—Nx

Il
=
[\S}

Il
LN
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UZ\/ (%gx"zj_? ZJ (%gx"zj_(%gxijz (4.3)

It can be divided into two stages:

Stagel: calculate sum of x> and square of sum

Stage2: obtain the standard deviation
By this way, we can find the std. totally overlaps the time of data scan_in. Therefore
we don’t need any redundant cycles, and speed up the calculation of correlation

dimension.

scan_in - -| | ______________________________

sum of _ _| |
square

square of _4 | ______________________________

sum i

correlation | [
integral : J_

Saved
time

Fig. 4-15 Timing diagram for the adjusted std. formula

4.3 System Controller

The WCDSP system controller takes charge of two major control signals. One is
the mode switching signal, and the other is control word signal.

In the architecture, we need two sets of wavelet and correlation dimension
circuit for two embedding dimensions respectively. However, most part of the two
sets of circuit is similar. Thus, we can slightly modify the two kinds of circuit to be
applied to two different embedding dimensions.

The signal ‘mode’ is used to configure the circuit which embedding dimension
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should be. When the mode="0", the embedding dimension is 11, and the one is 13
otherwise.

For example, we use two sets of register banks in one wavelet blocks to keep the
values of pipeline registers and delay registers instead of two blocks. And we switch

the register banks through mode signal (Fig. 4-16).

Wavelet Circuit

T TT T T TTT

| |

| |

i Wavelet Circuit i Register

i i Bank 11 Combinaltional
”””””””” circuit
f""""”""} Register

| | Bank 13

' Wavelet Circuit | -

! } mode

| |

| 777777777777774\

Fig. 4-16 Modified wavelet circuit with two register banks

For correlation dimension cireuit, we need to increase the number of registers,
and set the memory controller to~adjust-thershiftroperation, radius generator and

comparator to configure:the number of loops, as shown in Fig. 4-17.

for p=13
—
P
|
|
T, D Q D Q D Q
[ >CLK >CLK >CLK
mode emo
ry —p=13—>»
controller ‘ vector] ‘ ‘ vector2 ‘ —p=11—>

: vector
radius adder 1
generator v

¥
Combinaltional
circuit

Fig. 4-17 Modified correlation dimension circuit

mode —>

mode
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The other kind of signal decoded by system controller is control word signal.
For the convenience of analysis and reconfiguration of the algorithm, we can probe
the results of the internal components and applied to the new algorithm by CPU. Thus
we set the control word to tell the controller which results should be scented. The

detail description is in Table 4-2.

Control Word
cwb /9| wepse

System @
Controller

DATA IN d°neT lm"de RIS

ey

EN = | Function Units

output

Main
; C Memory

mode —

XCZmoO~xcX

Fig. 4-18 Block diagram of system controller

Table 4-2 Description of control word

EN" | CWD OUTPUT
0 X invalid
1 00 Result of seizure prediction
1 01 Result of correlation dimension
1 10 Result of wavelet (high frequency)
1 11 Resultof' wavelet (low frequency)

4.4 Simulation and Verification

We develop the algorithm by Verilog HDL which is commonly adopted. In the
design, we use Synopsys Design Compiler with 90nm UMC/Faraday Design Kit for
synthesis, and pre-simulation with ModelSim. In this section, we will show the
simulation results in each component. It contains area report, timing report, and

simulation report.
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4.5.1 Simulation in Wavelet Circuit
Fig. 4-19 shows the gate-level simulation of wavelet circuit. The signals ca_o
and cd o are the low-frequency coefficients and high-frequency coefficients

respectively. And we use two sets of registers to keep the values in different modes.

= wave - default
File Edit View [nsert Foomat Tools Window Mode=0

SHS| s RBA|IDX X |ND QQAM | F|E

j——y
$1 Mtesthench/output_vabd

# . Nestbench/dwt/delayReg2_m2
. Mestbench/dwt/pipelineReg]_m2
. Mestbench/dwt/pipeineReq?_m2
" Mestbench/dwt/pipeineReg3_m2

a wave - defanlt

File Edit WView [nwrt Format Tools Window MOde:l
o (kB &S @[ E

r.

EEHE 2R LK

39

] EilE &
il 8 =R

Fig. 4-19 Wavelet gate-level simulation with two modes
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4.5.2 Simulation in Correlation Dimension Circuit

Fig. 4-20 shows the waves of correlation dimension circuit for the first state.
The state READ IN takes 2306 (for embedding dimension=11)/2308 (for embedding
dimension=13) cycles, and we can see the calculation time of standard deviation

overlaps the READ IN state.

% wave - defanlt
File Edit ¥iew Insert Format Tools  Window

EHE { R f{tkﬁkf x| @ S @ Bxi[fiELENIELEE

VECTOR_REF_SEL

READ_IN 2306 cycles

LA

Standard deviation overlaps READ IN

Figi4-20 Correlation dimension simulation for the first state

5 wave - default
ile Edit Fiew Insert Foomat Tools Window

sHE $RMA K XK (vD G QB EF ELEEEE 3¢

EISTG 6 5 DE JIGL G 5 5 DF ET 6 G 5 DIE JGL G 5 5 DIE 5T

D R b ¢JJJJJJJJJJ‘ ]

JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ)1JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ)1JJJJJJJJJJJJJJJJJJJJJJ10JJJJJJJJJJJJJJJJJJJJJ:0JJJJJJJJJJJJJJJJJJJJJ10JJJJJJJJJJJJJJJJJJJJJJ)1JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJJJJJJJJJJ)JJJJJJJJ 0%3;3;;3;3 JIJIJ —
I
.I|]JJJJJJJJJJ)JJJJJJJJJ

-pm N
(10700007070

Fig. 4-21 Correlation dimension simulation results
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Chapter 5
Experimental Results

In this chapter, we will show the experiment results of the algorithms, and the

comparison with other important algorithms in recent years.

5.1 EEG Data and Patient Characteristics

The EEG data that we use are invasive EEG recordings of 11 patients suffering
from medically intractable temporal lobe epilepsy. The data were recorded during an
invasive pre-surgical epilepsy monitoring at the Epilepsy Centér of the University
Hospital of Freiburg, Germany (http:/www.fdm.uni-fieiburg.de/EpilepsyData/).

In eight patients, the epileptic focus was located in neocortical brain structures,
in two patients'in the hippocampus, and in one patient in both. In order to obtain a
high signal-to-noise ratio, fewer artifactsyrand=torrecord directly from focal areas,
intracranial grid-," strip=, and depth-electrodes were utilized. -The EEG data were
acquired using a Neurofile NT.digital video EEG system with 128 channels, 256 Hz
sampling rate, and a 16 bit analogue-to-digital converter. Notch or band pass filters
have not been applied.

For each of the patients, there are datasets called "ictal" and "interictal", the
former containing files with epileptic seizures and at least 50 min pre-ictal data. the
latter containing approximately 24 hours of EEG-recordings without seizure activity.
At least 24 h of continuous interictal recordings are available for eight patients. For
the remaining patients interictal invasive EEG data consisting of less than 24 h were

joined together, to end up with at least 24 hours per patient (Table 5-1).
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Table 5-1 Patient characteristics

Patient Sex Age Seizure type H/NC Origin Electrodes  #Seizures Interictal (h)
1 f 15 SP, CP NC Frontal g, 4 24
2 m 14 SP, CP NC Frontal g, 5 24
3 f 42 SP, CP, GTC H Temporal d 3 25
4 f 32 SP, CP NC Frontal g, 2 24
5 f 10 SP, CP, GTC NC Parietal g, s 4 24
6 f 42 SP, CP, GTC H Temporal d, g s 4 25

Frontal/
7 f 41 CP, GTC H and NC d, s 4 24
Temporal
8 m 28 SP, CP, GTC NC Temporal S 5 24
9 f 25 SP, CP NE Frontal ] 5 25
10 m 33 SP, CP, GTC NC Tempo/Parietal d, s 5 26
11 m 13 SP, CP NC Temporal S 5 24

Seizure types and location: simple-partial (SP), complex partial (CP), generalized. tonic-clonic (GTC),
hippocampal (H), neocortical (NC).
Electrodes: grid (g),/strip (s), depth (d):

5.2 Secizure Prediction Statistics

5.2.1 Terminology

A seizure prediction.method has to forecast an impending epileptic seizure by
raising an alarm in advanece of the seizure onset..A perfect prediction method indicates
the exact point in time when a seizure occurs. This ideal behavior is not expected for
current prediction methods that analyze EEG data. The uncertainty can be considered
by use of the seizure occurrence period, SOP, which is defined as a time period during
which the seizure is to be expected (Fig. 5-1). In addition, to permit a therapeutic
intervention, a minimum window of time between the alarm raised by the prediction
method and the beginning of SOP is essential. This window of time is called the
seizure prediction horizon, SPH.

Taking into account the two time periods SPH and SOP, a correct prediction is
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defined as follows: after the alarm signal, during SPH, no seizure has occurred yet.

During SOP, a seizure occurs.

Alarm Seizure onset

! !

Seizure Prediction |
Seizure Occurrence Period (SOP)

Horizon (SPH)

time

Fig. 5-1.Defining the SPH and SOP

Thus, the sensitivity was defined as the number of seizures predicted divided by

the total number of seizures recorded.

the number of seizures predicted

(5.1)

Sensitivity = ¥
total number of seizure recorded

The False Positive Rate (FPR) was defined as the average number of warnings

that no seizure occurs within SOP after'SPHper-hour:

the number of warnings that no seizure occurs
EEG recording length (h)

FPR =

(5.2)

5.2.2 Seizure Prediction Results

To evaluate the WCDSP, a prediction was considered to be true if a seizure
occurred within 1 h after a warning was observed and false otherwise. That is, a time
horizon of 1-h period was chosen for the evaluation of the prediction results of the
algorithm. Long time horizons obviously improve the sensitivity of the algorithm but
also increase the uncertainty about the exact time of the next seizure. Short time

horizons decrease the sensitivity and specificity.

70



Table 5-2 Performance of WCDSP for the optimal setting over all patients
(SPH = 1h, SOP = 18s, p1 = 11, p2 = 13, threshold1 = 0.95, threshold2 = 0.85,

interval = 33)

Patient Sensitivity False Positive Rate Average Prediction Time
(False pre hr.) (min)
1 4/4 0.3 14
2 5/5 0.6 34
3 2/3 0.3 20
4 2/2 0.2 28
5 4/4 0.6 29
6 3/4 0.2 28
7 3/4 0.1 20
8 4/5 0.1 33
9 4/5 0 22
10 5/5 0.4 30
11 4/5 0 40
Total 40 0.2545 27
(86.96%)

The algorithm was tested under two cases. In the first case, we evaluated a range
of parameter settings (thresholdl, threshold2, interval) to find the optimal result, when
applied to all eleven patients.(see Table 5-2). Under this_condition, we obtain the
parameter settings with pl = 11, p2 = 13;threshold]1 =10.95, threshold2 = 0.85, and
interval = 33. The sensitivity ranged from 66% (patient 3) to 100% (patient 2, etc.),
with an average of 87% sensitivity overall. For example, the algorithm correctly
predicted 75% (3/4) of seizures in patient 7 with FPR = 0.1/h, and 100% (4/4) of
seizures in patient 1 with FPR = 0.3/h. On average, the algorithm gives alarms
approximate 27 minutes before each seizure.

In the other case, we have the optimal parameter settings for each individual

patient.
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5.3 Comparison with other Prediction Methods

There have been few studies about seizure prediction algorithm. In the thesis,
we will discuss with the difference between our proposed and others in Table 5-3.

In 2008, Bruno Direitol [12] proposed an algorithm based on energy-wavelet
with a sensitivity of 40% and false prediction rate of 0.4/h. V. Navarro’s [13] and Le
van Quyen’s [1] algorithms using similar index achieve sensitivities of 83% and false
prediction rates of 0.3/h in 2002 and 1999, respectively. In 2003, F. Mormann
proposed an algorithm [2] based on synchronization decrease with a sensitivity of
81%. Maryann D’Alessandro et al. [14] presented a method of hybrid-feature with a
sensitivity of 62.5% and false prediction rate of 0.27/hr Leon D. Iasemidis [7]
proposed an algorithm by using short-term Lyapunov exponential.to estimate the LLE,

called ASPA, with a sensitivity of 84% and false prediction rate:of 0zl 2/h.

Table 5-3 Comparison with other algorithms

2008[12] 2002[13] 2003[2] 199911 2003[14]/2003[7]  This Work
B.D.’s VNS FM’s LeV.Q’s MD.s. lasemidis’s

Algorithm Energy’ Similarity Sync. Similarity = Hybrid ASPA WCDSP
Wavelet '« Index ~ decreas- - Index Feature

(S

Sensitivity 40% 83% 81% 83% 62.5% 84% 86.96%
False Positive Rate

04 0.3 N/A N/A 0.2775 0.12 0.254
(False pre hr.)
Prediction Time

5.1 7.54 4-221 5.75 3.455 74.4 27
(min)
Number of Patients 19 11 18 13 4 5 11
Number of Seizures 17/42 34/41 26/32 19/23 N/A 42/50 40/46
Interictal (h) N/A 12-60 49 N/A N/A 70 110
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Our proposed algorithm achieves a higher sensitivity of 86.69% with a slightly
larger false prediction rate of 0.254 than others. Moreover we have the prediction time
of 27 minutes witch is much longer than most of the others for a therapeutic

intervention.
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Chapter 6
Conclusions and Future Works

In this thesis, we have proposed the WCDSP algorithm based on wavelet
analysis, and chaos theory. The experiment results for several patients were shown
with a high sensitivity with respect to prediction of epileptic seizures. The time
horizon for a seizure prediction was set at 1 h and the average prediction time over all
patients was about 27 min/seizure. The inferval is sufficient for a therapeutic
intervention. Not only asmore reliable algorithm is presented, a VLSI implementation
of the seizure analysis IPis also made for applications in portable device, such as
VNS.

In the future, we may improve the prediction sensitivity’ and, lower the false
positive rate (FPR) by the two approaches:

(1) Hilbert-Huang trafisform:

The Hubert-Huang, transform (HHT) is:NASA's designated name for the
combination of the empirical mode decomposition, (EMD) and the Hilbert
spectral analysis (HSA).

It is an adaptive data analysis method, which improves accuracy by using
an adaptive basis to preserve intrinsic properties of data, designed specifically
for analyzing data from nonlinear and non-stationary processes, e.g. EEG
signals. It yields results with more physical meaning and a different perspective

than existing transforms.
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Table 6-1 Comparison between Fourier, wavelet, and HHT

Fourier Wavelet Hilbert
Basis a priori a priori adaptive
Frequency convolution: convolution: differentiation:
global, uncertainty ~ regional, uncertainty local, certainty
Presentation energy-time- energy-time-
energy-frequency
frequency frequency
Nonlinear no no yes
Non-Stationary | no yes yes
Feature discrete: no,
. no ) yes
Extraction continuous: yes
Theoretical o
theory complete theory complete empirical
Base
By HHT, we may obtain more important. information to enhance the
prediction results.

(2) Independent Component Analysis(ICA) :

In recent years, Independent Component Analysis (ICA) has been proved
as a powertful algorithm to solve blind source separation (BSS) problems in a
variety of signal processing applications such as speech, 1mage, or biomedical
signal processing.

The EEG is composed of electrical potentials arising from several sources.
Each source (including separate neural clusters, blink artifact, or pulse artifact)
projects a unique topography onto the scalp, called "scalp maps." These maps
are mixed according to the principle of linear superposition.

Independent component analysis (ICA) attempts to reverse the

superposition by separating the EEG into mutually independent scalp maps, or

components.
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