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摘要 

 

        我們提出了一個擁有多層次解析度架構  (multi‐resolution hierarchy)  之有效

率的貼圖特徵萃取及追蹤演算法  (feature extraction and tracking algorithm)。  在

前處理運算時，我們套用蓋式濾波器  (Gabor filter)  來計算多層次架構下每層解

析度的貼圖特徵係數  (texture attributes)。  各層次之特徵係數可以以其在空間上

的關係，架構成一個貼圖取樣層次架構。  在執行運算時，我們使用新的基於層

次架構的特徵追蹤演算法。  由於層次架構中，上下層之間有著空間上的關係，

當我們從貼圖取樣架構之頂端追蹤至底層時，上層之追蹤結果，能夠幫助下層之

節點決定其追蹤範圍。  在我們的結果中可以顯示多層次架構的方法明顯的改善

傳統貼圖為主的特徵追蹤演算法之效率，並且此種架構也能夠良好的適應不同類

型的資料及多目標追蹤  (multi‐target tracking)。 



Multi-resolution Texture-based Feature Tracking in Large
Time-varying Volume Visualization

Student: Kuang-Wei Fu Advisor: Dr. Jung-Hong Chuang

Dr. Tsai-Pei Wang

Institute of Multimedia Engineering

College of Computer Science

National Chiao Tung University

ABSTRACT

We proposed an efficient texture-based feature extraction and tracking algorithm with multi-

resolution hierarchy. In the preprocessing step, texture attributes are computed by Gabor filter-

ing at each level of multi-resolution hierarchy. With spatial coherence, these attributes are

builded as a texture sample hierarchy. In the run-time, a hierarchical feature tacking algorithm

is applied. From root to leaves of the texture sample hierarchy, we use the parents tracking result

to help children decide their tracking window. We demonstrate how this structure can perform

more efficient tracking in texture-based datasets. The tracking algorithm is also adapted with

multi-target feature.
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C H A P T E R 1

Introduction

Feature extraction and tracking is a very common approach to overcome the difficulty of effec-

tive visualization of large datasets due to the complexity of illustrating multiple timesteps and

clearly showing changes and variations over time. Instead of visualizing the entire data set at

once, feature extraction process can help isolating the features of interest from the overall data

so they can be more economically stored and examined, or presented more clearly to the user.

When analyzing features of time-varying data, not only do they need to be extracted, but they

need to be tracked through time.

Existing feature extraction and tracking techniques tend to fall into one of two categories:

correspondence based approaches and high-dimensional multi-attributes approaches. In the cor-

respondence based approaches, the features in each timestep are extracted separately and then

correspond the extracted features in consecutive timesteps based on criteria such as position,

size, orientation, or region overlap [24] [25] [27] [28] [29]. These approaches generally are

fairly robust, but there are, however, several limitations. First, previous approaches assume a

high and sufficient temporal sampling in which feature overlap in subsequent timesteps. Sec-

ond, most algorithm assume that important features can be easily segmented. Another category

is to use high-dimensional multi-attributes known as texture-based method. The local textural

1



1.1 Thesis Overview 2

information is extracted using several mathematical or statical calculation, and then compare

the texture in the consecutive timesteps to find a best match. However, the performance of cal-

culating texture attributes is influence by the texture size. Another problem comes out when

tracking feature, without motion prediction the tracking process need lots of comparison to find

the match, and it gets worse when a dataset grows bigger.

1.1 Thesis Overview

Our method is basically based on texture-based feature tracking combined with multi-resolution

data hierarchy. With user choose region of interest (ROI), which decides the tracking target the

feature information is extract and the tracking process can be done by following the target

movement at the rest of the timesteps.

The feature is defined by the data distribution on a texture in texture-based feature track-

ing. These data distribution information are calculated by lots of mathematical and matrix

calculation to extract as texture feature. The texture feature information have to be calculated

after user’s target input, and the loading of feature extraction slows down the tracking and

rendering performance. With pre-calculated texture feature information, we can speed up the

performance, but increase the difficulties of tracking target, because the correctness can not be

ensured.

We propose multi-resolution hierarchy method to ensure tracking correctness and perfor-

mance. We sample and extract information at every level of resolution. As we switch the level

from top to down within the resolution, the spatial coherence and the data distribution properties

increase the tracking process correctness. On the other hand, the tracking structure is similar to

rendering hierarchy and will not increase the rendering loading.
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1.2 Contribution

The contributions of this thesis can be summarized as :

• We proposed a hierarchical feature tracking algorithm, which

– Speed up the texture-based feature tracking processes.

– Spatial coherence is guaranteed.

– The information of the region probability is easily obtained

within the tracking processes.

1.3 Outline

The rest of the thesis is organized as follows: Chapter 2 gives the literature review, the back-

ground of time-varying volume rendering and feature tracking algorithm for volume dataset.

Chapter 3 presents the Texture-based hierarchical feature tracking and hybrid method we pro-

posed for object-based feature picking, which includes algorithms and implementation details.

Chapter 4 shows our experimental result from our approach. In the end, conclusions and future

work are discussed in Chapter 5.



C H A P T E R 2

Background

This chapter introduces the related work about feature extraction and tracking in volume dataset.

It is divided into three parts: the first part is the multi-resolution rendering technique. The sec-

ond part describes the structure and representation of the time-varying volume dataset. Finally,

different approaches of the feature extraction and tracking in 3D volumetric data are introduced.

2.1 Multi-resolution Rendering

The idea of multi-resolution volume rendering algorithms is to provide a spatial hierarchy to

adapt the data resolution to render the interesting or important regions with higher accuracy,

while other regions are rendered with lower accuracy. LaMar et al. [17] describe an octree-

based multi-resolution approach for interactive volume rendering. They filter the volume to

create levels-of-detail in an octree structure. They propose the use of spherical shells to reduce

visual artifacts for 3D texture mapping. A similar technique was proposed by Boada et al. [3].

Their hierarchical representation benefits nearly homogeneous regions and regions of lower

interest. Weiler et al. [36] address the avoidance of discontinuity artifacts between different

4



2.1 Multi-resolution Rendering 5

levels of detail. Their approach allows consistent interpolation between levels. These multi-

resolution techniques can handle volume data sets that do not fit completely into the texture

memory of the graphics hardware. However, the data must still fit into the main memory.

Guthe et al. [11] improved on this by using wavelet representation. They recursively apply

wavelet transform to compress the data and construct a multi-resolution hierarchical wavelet

representation. Their approach is able to render walkthroughs of large data sets in real time on

a conventional PC.

Multi-resolution volume rendering provides a data hierarchy that supports level-of-detail

(LOD). There are several types of criteria for the LOD selection. These LOD selection methods

can be classified into four types. We give a brief overview to these LOD selection methods:

1. View-dependent criterion: This is a general criterion that takes the view- dependent fac-

tors into account. According to the position of viewer, it will let the regions that are closer

to the viewer or the regions with larger projected screen area have higher resolution [11]

[17].

2. Region-of-interest: This criterion depends on the user-specified region- of-interest (ROI)

to decide LOD selection [20] [21]. Usually there is a 3D bounding box to represent the

ROI. The regions inside the ROI bounding box have higher resolution.

3. Data error metric: The data error metric calculates the error (usually the mean squared

error) between the low resolution data block and the corresponding original volume data.

Then, the LOD selection is decided by letting each subvolume satisfy the user-specified

error tolerance [26] [32].

4. Image-based quality metric: The image-based quality metric evaluates the contribution

of multi-resolution data blocks to the final image. The LOD selection algorithm tries to

choose a set of blocks that generate images of best visual quality [18] [33] [34].
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2.2 Time-varying Data Representation

In the volume rendering field, some dataset will evolution as the time goes by, we called time-

varying data. In this kind of dataset, the temporal evolution is as important as the spatial reso-

lution problem. Shen et al. [26] proposed time space partitioning (TSP) tree that captures both

the spatial and temporal coherence of the underlying data. It allows the user to request spatial

and temporal data resolutions independently with separate error tolerances. Wang and Shen fur-

ther utilized wavelet transform to propose wavelet-based time-space partitioning (WTSP) tree

method [32]. They first build a wavelet tree hierarchical representation [11] for each individual

time step. Then for the high-pass filtered coefficients from the corresponding spatial node along

the time axis, they apply 1D wavelet transform to form a binary time tree. Although WTSP tree

method supports flexible spatial-temporal multi-resolution data browsing, their hierarchical 1D

wavelet compression of the spatial node along the time axis is not suitable for interactive play-

back. Ko et al. [16] presented framework that combines the multi-resolution hierarchy with

video-based compression to manage and render large scale time-varying data. The method first

constructs the wavelet tree hierarchy for each individual time step, and then applies motion-

compensation-based prediction. The proposed approach breaks the hierarchical decompression

dependency in the conventional hierarchical wavelet representation methods, and allows a more

efficient reconstruction of data along the time axis.

2.3 Feature Extraction and Tracking

Most of the research in time-varying volume visualization has focused on rendering perfor-

mance of storage issues. Samtaney et al. [25] were the first to identify computer vision feature

extraction techniques and to extend them from the 2D image domain to the 3D volume domain.

Feature extraction and tracking is a well established technique for analyzing time-varying data

in 2D image domain, such as video analysis [4] [35], computer vision [30] [8] [14]. Scientists

also wants to track features in 3D volume domain to observe, analyze the feature information.
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In the feature tracking domain, several problems have to be solved: feature definition, feature

extracting process, and feature tracking algorithm.

Computational fluid dynamic(CFD)simulations figured heavily in early research of visual-

ization and feature extracting and tracking of time-varying data. In the field of CFD data, the

feature usually defines on the fluid itself as an object, that is separate the fluid and the air which

means no data. We use several extraction technique, such as segmentation [27], volume inter-

vals [10] to isolates the features to track for each timestep, then associate them through time.

There are various algorithms proposed previously [22]. Based on how the topological tructure

of a local feature evolves over time, one of the following events can occur: (see Fig 2.1)

• Continuation: An object continues to the next time step, with possible shape deformation

and change of position, orientation, etc.

• Creation: A new feature starts to appear.

• Dissipation: A feature disappears.

• Bifurcation: A feature splits into several parts.

• Amalgamation: Several features merge into a single one.

Silver and Wang [28] [29] presented a feature tracking technique that extracts features,

organizes them into an octree structure, and tracks the thresholded, connected components in

subsequent timesteps. Reinders et al. [24] proposed a tracking technique that uses feature

attributes, such as position, mass, and size to solve the feature correspondence problem between

frames. Ji et al. [15] introduced a method to track local features from time-varying data by using

higher-dimensional iso-surfacing. Tzeng and Ma [31] proposed a technique to extract and track

features in time-varying data by using a machine learning module capable of learning from the

transfer function, with extracts the user wishes the knowledge can be applied to the visualization

pipeline in subsequent volumes.

There are, however, several limitations to existing feature tracking techniques for object-

based time-varying volumetric data:
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Figure 2.1: The evolutionary events that a feature may experience.

• Features overlap in subsequent timesteps - without high and sufficient temporal sampling

rate, feature may moves too fast for tracking process to follows.

• Important features can be easily segmented - not every 3D image can be thresholded to

find and highlight the specific feature to track easily.

Texture analysis and pattern classification techniques have been widely used for various

tasks in the computer vision, computer graphics and visualization fields. With extracting texture

properties to track, features don’t have to overlap in subsequent timesteps. In some scientific

calculation datasets, object-based feature is also not easy to be extracted. There are several

ways to extract texture-based feature, such as texture attributes [5] and image filtering [23].

For texture attributes method, several texture information have been calculated first, such as

mean, standard deviation, and stored as a high-dimensional feature vector. The same features

are expected to have the same feature vector members. Filtering method is applying convolution

application to original image data, and with well designed filter kernel, the texture information

can be extracted and compare between features.

Several texture-based feature extraction and tracking algorithms have been proposed. Be-
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longie et al. [1] used color- and texture-based image segmentation together with the expectation-

maximization(EM) algorithm for retrieving similar images from a large image collection. Guan

et al. [9] used texture-based techniques for categorizing traditional Chinese painting images. In

the medical imaging field, Xu et al. [38] proposed a 3D texture feature approach to classify and

differentiate lung CT images. Quan et al. [23] used a tunable 3D Gabor filter bank, to extract-

ing the tagging sheets in tagged cardiac MR images, and tracking their displacement during the

heart cycle. In the field of scientific volumetric data visualization, Caban et al. [5] proposed

a texture-based feature tracking technique capable of tracking multiple features over time by

analyzing local textural properties and finding correspondent properties in subsequent volumes.

They calculate multiple texture properties, such as mean, variance, co-occurrence matrix, run-

length matrix, as a high-dimensional feature vector. With comparisons between feature vector

of features, features can be tracked within timesteps.



C H A P T E R 3

Texture-based Feature
Tracking

Our development of a texture-based feature tracking algorithm in time-varying volume dataset

is based on our observations. Texture-based feature extraction and tracking can work with

different data format such as object, fluid, and vector field. In contrast, object-based method

such as iso-surface is efficient with object-like dataset. Texture-based extraction needs lots of

mathematical and matrix calculation, which increase with texture sizes, and is limited by the

calculation efficiency.

In this chapter, we will introduce our system with two phases: texture information extrac-

tion and hierarchical feature tracking. First we will define what feature is in texture-based

feature tracking, and followed by an efficient hierarchical feature tracking algorithm to ensure

the tracking performance and quality. Other rendering issues are mentioned bellow.

10
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3.1 System Overview

Figure 3.1: The structure of our system

There are two phases in our system (Fig 3.1). In the preprocessing step, data is encoded by a

time-varying multi-resolution hierarchical structure. Then the texture attributes of the samples

in each resolution level of each timestep are computed. At run time, the user choose a set of

samples to be the tracking targets, and the target’s match is found by a hierarchical tracking

algorithm. Finally, the volume is visualized by conventional texture-based volume rendering

process.

The multi-resolution hierarchy use in our system is introduced by Ko et al.[16]. The struc-

ture classify each timestep of the dataset as either an intra-coded frame (I-frame) or a predictive

frame (P-frame). For an I-frame, the hierarchical wavelet transform is applied to construct the

multi-resolution hierarchical wavelet representation. The high-pass filtered coefficients are en-

coded and stored. For a P-frame, after the hierarchical wavelet transform has applied to build

the hierarchical representation, a motion-compensation-based prediction of the low-pass filtered

data is applied. The difference data and motion vectors are encoded and stored.
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After we build the multi-resolution hierarchy, the textural information have to be extracted.

We apply uniform sampling in each level of resolution at each timestep. These samples’ texture

attributes are computed and stored. We will get a hierarchical sampling of texture attributes at

each timestep.

In tracking process, user choose a set of samples they focus at a certain timestep to be the

target, and these samples’ displacement is tracked by texture-based comparison using their at-

tributes. The numbers of the target sample and the candidates of each sample dominate the

performance of the tracking process. We use multi-resolution structure to accelerate the track-

ing process. Simply, because the numbers of samples in coarse resolution are small, and the

matching results are found quick. As the resolutions increase, the matching results can adjust

their correctness.

Finally, we apply conventional texture-based volume rendering technique. The level of

detail is choose by region of interest combine with user’s view directions. We enforce a back-

to-front traversal order of the resolution octree. For each block, the 3D texture is created and

loaded into the texture memory. View-aligned slices are placed into blocks and render in back-

to-front order. The alpha blending delivers the volume integrals along view rays for all pixels on

the screen. After these steps, the matching results are marked by colored spheres in the scene.
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3.2 Texture Feature Analysis

In computer vision and image processing, textures are fundamental to identifying, character-

izing, and comparing objects and regions with similar properties. Image differentiation can

be achieved by characterizing similar properties and regular frequencies that occur in repeated

patterns of specific images.

There are several ways to identify the texture properties for tracking, such as multiple at-

tributes [5] and filter processing [23]. The multiple attributes method uses several textural met-

rics to identify and track features within dynamic time-varying data. Gabor filtering achieves

optimal localization in both the spatial and the frequency domains, which makes it more suit-

able for the texture tracking process. The Gabor filtering applications are basically a convolution

calculation and the performance is effect by the kernel size and target texture size.

We use 3D Gabor filtering to calculate the texture properties combines with several first-

order statistics, such as mean and texture displacement. In this chapter, we will introduce the

filtering issue first, and then discuss the texture sampling for the pre-processing step. Finally,

gives a global view of the pre-computed texture feature information calculation process to com-

plete the system pre-processing step.

3.2.1 Texture Sampling

We calculate texture feature information in the preprocessing step of the system. Here we use

uniform sampling with fifty percents data overlapping discussed below.

As we take the texture information of some local area as our features to track, the locations

and sizes of the local area are what we have to decide. The Gabor filter application is a weighted

summation of a local area and the filter kernel size is determine how big the local area is. After

we decide the filter kernel size, which set to be 8 by our experiment, the size of the feature is

settled. For uniform sampling of the volume dataset, we shift the filter kernel along three axis

follow by x, y, and z. We use fifty percents data overlapping to increase the flexibility of the
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tracking coordinate. See Fig 3.2 in 2D way.

Figure 3.2: Here we show two levels of hierarchical sampling. Pink crosses stand for the

uniform sampling samples, and the blue crosses are added to increase the coordinate flexibility.

3.2.2 Texture Attributes Calculation

The filter responses that result from the application of a filter bank of Gabor filters can be used

directly as texture features. At the feature comparison processes, we compare these filtered

feature values to decide if these features are similar. The filter bank design is responsible for

our feature tracking result, and have to be considered representative.

The 1D Gabor filter was first introduced by D. Gabor in 1946 [7]. It is basically a product

of a Gaussian window and a complex sinusoid. 3D Gabor filter is a 3D extension of its 1D form

and has been used in many image processing and computer vision field, such as 3D texture

segmentation [6] [37] [19], motion analysis [2], object recognition [12], and medical image

analysis [23]. If we extend the 1D function to 3D, we get

h(x, y, z) = g(x′, y′, z′) · s(x, y, z) (3.1)

where g(x′, y′, z′) is a 3D Gaussian envelope, and s(x, y, z) is a complex sinusoid function, i.e.,

g(x′, y′, z′) =
1

(2π)
3
2σx′σy′σz′

e
− 1

2
[( x′
σx′

)2+( y′
σy′

)2+( z′
σz′

)2]
, (3.2)

s(x, y, z) = exp[−j2π(Ux+ V y +Wz)], (3.3)
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In Equation 3.2: The standard deviation σ of the Gaussian envelope determines the effective

size of the surrounding of a voxel in which weighted summation takes place. Note that σx′ ,

σy′ and σz′ may not be the same. Thus the shape of this Gaussian envelope can be an ellipsoid.

(x′, y′, z′)T = R × (x, y, z)T are the rotated coordinates of the Gaussian envelope. R is a

rotation matrix. Here in our system, we use a sphere-shaped 3D Gaussian envelope, which

has a constant value of σ set to be 5 by our experiment and for sphere-like filter no rotation is

needed. We can reformulate the equation as

g(x, y, z) =
1

(2π)
3
2σ3

e−
1
2
[x

2+y2+z2

σ2 ], (3.4)

In Equation 3.3, (U, V,W ) determine the 3D frequencies and orientations of the complex

sinusoid. As shown in Fig 3.3, a 3D Gabor filter has sets of iso-surfaces, for instance, in Fig

3.3(a), all the same colored voxels are on a same set of iso-surfaces; in Fig 3.3(b), one set of the

iso-surfaces is drawn as the yellow disks. The normal of these iso-surfaces is a constant and set

by:
−→
N isosurface = (U, V,W ) (3.5)

(a) (b)

Figure 3.3: (a) A slice view of a 3D Gabor filter. (b) An iso-surface view of a 3D Gabor filter.

Here σx′ = σy′ = σz′ , which makes the Gaussian envelope symmetric and the iso-surfaces in

(b) circle- shaped; the normal of these iso-surfaces are (1, 1, 1), because U = V = W

The 3D frequencies of the complex sinusoid is determined by (U, V,W ) , and here we
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choose 3 different scale which set to be 1
n

, 3
n

,and 6
n

, where n is determined by filter kernel size

to increase the discriminate ratio of feature tracking (see Fig 3.4).

(a) 1/8 (b) 3/8 (c) 6/8

Figure 3.4: Three different scales of Gabor filter kernel. The kernel size is set to be 8x8.

The sinusoid is symmetry, and in order to achieve rotational invariance, every sample voxel

should have filtered by 13 different directions, which determined by every 45 degrees in three

axis to span 3D space, see Fig 3.5. Thus, Three different preferred spatial frequencies and

thirteen different preferred orientations were used, resulting in a bank of 39 Gabor filters. The

application of such a filter bank results in a 39-dimensional feature vector in each sample voxel.

(a) (b)

Figure 3.5: (a) Filter direction in 2D. (b) Filter direction in 3D as a hemisphere
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3.3 Hierarchical Feature Tracking

In the conventional texture-based feature tracking, after user specify the target they interests, the

system will calculate the texture feature attributes on the fly, and costs lots of time [5]. Tracking

window is a sub-region of data, which has the most possibility that feature may locate. Specify a

target’s tracking window can help system to decrease the tracking comparisons, but the tracking

window of the feature target is hard to decide, because of the data shifting direction and distance

is hard to predict. In our works, the texture attributes are calculated in the pre-processing step.

Although the uniform sampling, described in section 3.2.1 will decrease the flexibility of the

tracked feature position, with enough sampling rate, we proposed a efficient algorithm to track

the target texture within the dataset, without too many unnecessary samples comparisons.

In this section, we proposed a hierarchical feature tracking algorithm to decide the texture

feature tracking window of the target texture efficiently. With multi-resolution hierarchy, the

capacity of the target data to track is small at first. As we switch the resolution level from

coarse to fine, the tracking result can be adjust though the tracking process.

3.3.1 Algorithm

In the conventional texture-based tracking algorithm, the tracking process is doing with brute

force way, like Fig 3.6. After user choose the texture region they are interested (ROI) at a

timestep, the samples circled by ROI is set to be the target of the tracking process. These

target samples are compared with all possible textures at the follow timestep and each of these

samples should find a displacement. The numbers of the target samples and the size of the

possible region dominate the numbers of comparisons tracking process needed, and affect the

performance.

By deciding a tracking window of each target, we can reduce the comparisons and accelerate

the tracking process (see Fig 3.7). But the numbers of the target samples is remain big if the

dataset is large.
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Figure 3.6: As we choose the target from left timestep, a brute force algorithm is apply until we

find the best match.

Figure 3.7: As we choose a tracking window, we can reduce the comparisons we need.

We use multi-resolution hierarchy, that has strongly spatial coherence and data distribution

properties to reduce the target samples and estimate the tracking window of our target samples.

In the tracking process, the user specify the area to track with ROI (region of interest) at timestep

t. With precalculated hierarchical sampling, the ROI region contains lots of texture samples at

each level of timestep t (see Fig 3.8). With the spatial coherence, we can take each sample point

from level 0 of the data resolutions as one sample hierarchy. Each sample hierarchy refer to one

independent tracking process. After the ROI is decided, the numbers of sample hierarchy is

settled, and the target samples of each sample hierarchy are pushed into the tracking queue.

The multi-resolution feature tracking algorithm bas been used in many image processing and

computer vision field. Here we extend to volume dataset with multi-resolution data hierarchy.

For each sample hierarchy the ROI circled, we apply a two steps algorithm from root to leaves.

First, at the root sample, as we don’t have the feature motion information, we use conventional

brute force algorithm to find a best match of the root sample from next timestep t+ 1. Second,
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Figure 3.8: With wavelet transform, every parent node can be separate to 4 child node in 2D

for every children sample node, we use the parent’s match result as a motion information, which

help us to specify the tracking window’s location. Actually, if the match result is perfect, since

every parent can separate to 4 child node in 2D, these children nodes should have the same

perfect match with the same distribution. We can not ensure the result is perfect, so as our

process moves down, we enlarge the area of the tracking window by one ring of the parent, that

is one parent node will determine a size of six by six tracking window size in 2D, see Fig 3.9.

Note that, if we analyze the tracking results of the root level for several timesteps, the tracking

window for the root sample can be predict by the historical motion information.

With these steps, we can summarize the algorithm to Fig 3.10. Note that we take every

texture sample comparison independently, the spatial coherence is ensured, but will not limits

the flexibility of the data motions. Second, the parameter that controls the size of tracking

window enlarging can affects by the speed of the data shifting. In our experiment, one ring is

bigger enough for general dataset.

For each texture sample, the tracking process is independent, so we can have a flexible

tracking result for general data evolution, such as creation, dissipation, bifurcation and amal-

gamation, see Fig 3.11. For ”bifurcation”, as the feature involve several texture sample at the

root level, when we apply tracking process for each texture sample, we will find that these sam-

ple point move apart from each other. It refer to the same rules for ”amalgamation” operation

when texture sample move close. For ”dissipation” operation, it can be done when we can not

find a match within a acceptable threshold. The only problem come to the data operation of
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Figure 3.9: Parent node can decide a 6x6 tracking window size.

”creation”. Since our works use the timestep t to track the timestep t + 1, it means that if the

feature did not shown in the past, we will not have focuses on this particular feature. But, we

have think of some possibly method to overcome this problem by backward tracking within the

same dataset.

3.3.2 Feature Sample Comparison

After the tracking window of a texture sample point has been estimated, three distance mea-

surement function is applied to find the ”best match”. the ”feature distance” function FD is

defined as:

FD(Sti
xyz) = argmin{

maxx∑
p=minx

maxy∑
q=miny

maxz∑
r=minz

[αTED(Sti
xyz, S

ti+1
pqr )+

βPED(Sti
xyz, S

ti+1
pqr ) + γFOS(Sti

xyz, S
ti+1
pqr )]}

(3.6)

TED(Sti
xyz, S

ti+1
pqr ) =

√√√√ 39∑
m=1

(TFm(Sti)− TFm(Sti+1))2 (3.7)
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Figure 3.10: The tracking process of one texture sample hierarchy.

PED(Sti
xyz, S

ti+1
pqr ) =

√
(P ti

x − P ti+1
p )

2
+ (P ti

y − P ti+1
q )

2
+ (P ti

z − P ti+1
r )

2
(3.8)

FOS(Sti
xyz, S

ti+1
pqr ) = (mean(Sti

xyz)−mean(Sti+1
pqr ))+(stdDev(Sti

xyz)−stdDev(Sti+1
pqr ))) (3.9)

where Sti
xyz is the subvolume under consideration at time step i, (minx,miny,minz) and

(maxx,maxy,maxz) represent the estimated tracking window in which the feature could lie,

TED(Sti
xyz, S

ti+1
pqr ) is the 39-dimensional texture Euclidean distance function between the fea-

ture under consideration and the current location within the tracking window, TFm is the filter

function to calculate the texture features, PED(Sti
xyz, S

ti+1
pqr ) is the feature displacement between

the target and the current location, P ti
xyz is the position of the sub-volume Sti

xyz, FOS(Sti
xyz, S

ti+1
pqr )

is the first-order statistics distance between the target and the current location, includes mean

and standard deviation. The α, β and γ is the weighted summation parameters of these three

distance functions.

At the comparison step, a target sample point has been assigned one tracking window. For

finding the ”best match” in the tracking windows, we have to compare the target with the whole
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Figure 3.11: Conventional data motions.

range of the tracking window. For speed up the comparison process, we use the data maximal

and minimal values to remove those unlikely points in the tracking window with two simple

data range check. Next, we calculate the FD function for comparison scoring. We choose the

sample points which has the minimal score as the most likely points in the tracking window,

which we called ”match point”. Here, for result checking of the ”match point”, we have to

ensure the ”match point’s” score is below some threshold ε. If we can not find a ”match point”,

then the tracking process of this target point is fail, which refer to ”no match” or ”feature

disappear”.

For simple rotational invariance of the feature tracking process,we rotate every sample point

in the tracking window by ±45 degrees, and compare with the un-rotated target sample point.

This means that if we find a point, which rotated for a little degree has the smallest value, we

can assume the raw data had been rotated, see Fig 3.12. We can extend our BM function as:

FD(Sti
xyz)

′ = min
i,j,k∈{−45,0,45}

FD(RS(i,j,k)) (3.10)

where RS(i,j,k) is the rotation of the subvolume Sti
xyz.
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Figure 3.12: The figure on the left is the example drawing, which the yellow bar stand for the

peak of the filter kernel. From top to down stand for the filter bank of a data in 2D, which has 4

different directions. In the comparison step, if we don’t have the rotational comparison, then we

can find that target and the Sample A is totally different on every filtered value. On the other

hand, we can find that target(1) has the similar value with Sample B(2), target(2) is similar to

Sample B(3), and so on.
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Result

All experiments are performed on Intel core 2 due E6750 2.66GHz PC using NVIDIA Geforce

8600 GT graphics hardware.

4.1 Example Data Sets

The time-varying data set used in our testing is Turbulent Vortex Simulation data set. This data

set was provided to Kwan-Liu Ma by Dr. D. Silver at Rutgers University. Now this data set is

made available at the TVDR data repository set up by a US NSF ITR project. The original data

set store floating vorticity value at each grid point. There are 128×128×128 voxels, and a total

of 100 time steps. For simplicity reason, we convert the floating variables into 16-bit integers.

We take first 64 time steps as our test data set. (see Table 4.1)

Data set Resolution Time steps Size of each time step Total size

Vortex 128x128x128 64 4 MB 256 MB

Table 4.1: The data set used in our testing.

24
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(a) (b)

Figure 4.1: The Vortex data set.

4.2 Preprocessing Result

For texture attributes computation, the Gabor filter bank is computed. We use sphere-shaped

3D Gaussian envelope, which has a constant σ = 5. The filter kernel size is set to be 8× 8× 8.

The 3D frequencies of the complex sinusoid are choose to be 1
8
, 3

8
, and 6

8
.

In Vortex dataset, we chose the block size to be 32 × 32 × 32, and this leads to a 3-level

hierarchy octree with 73 rendering nodes. The texture samples are decided by uniform sampling

with fifty percent overlap, and this lead to a 3-level hierarchy with 73 root samples, and totally

73 +153 +313 = 33509 texture samples. The require space to store preprocessing table is small,

and will not increase the disk overhead. (see Table 4.2)

Data set Root resolution Filter Size Root samples Num Data size

Vortex 32x32x32 8x8x8 7x7x7 117 KB

Table 4.2: The samples at root level.
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4.3 Run Time Tracking Result

Here we test several different ROI, to verify our algorithm’s correctness. For first test, the

ROI chose 2 samples at the root level, and here we show several time frame with second level

samples’ view. (see Fig 4.2)

(a) Time 0 (b) Time 1 (c) Time 6

(d) Time 12 (e) Time 18 (f) Time 24

Figure 4.2: Tracking result.

In Fig.4.2, the tracked samples are marked as colored spheres, and each sample is colored

differently from red to blue. At frame 1, we can find that some samples are outside the ROI,

it is because the parent of these samples are circled by the ROI (see Fig4.2(a)). Here, we find

that ROI is not quit applicable for some dataset, which is not always cubic-like, and a sufficient

user interface is needed. Except these outsider, we show that when the feature moves right, our

group of samples can follow this movement. Frame 18 and 24 show that, when feature texture

is too small, the information is not enough to let us track the feature. We can use some threshold
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ε to discard these unmatched samples. For Performance testing, the tracking time is determine

by the numbers of comparisons needed. In this case, we have 2 root samples, and each of them

will compare with 73 samples at the first tracking step. For each root samples, one-neighbor

extension is applied and each of the eight children need 113 comparisons. For 3-level hierarchy,

totally 2× 73 +2× 8× 113 +2× 82× 113 sample comparisons are needed, and it costs average

4.85(s). The equation can summarize as N3 + (8×113)×(8level−1)
7

. N is the numbers of samples at

root level.

We also test the results using conventional brute force methods, see Fig 4.3. The user’s view

is slightly different, but it shows that the tracking results are quite similar to our hierarchical

method results. In this case, the numbers of comparisons needed are 313 for each sample at the

leave level, and it costs average 4.27(s). The equation can summarize as (2level× (N +1)−1)3.

N is the numbers of samples at root level.

(a) Time 0 (b) Time 1 (c) Time 6

(d) Time 12 (e) Time 18 (f) Time 24

Figure 4.3: Tracking result.



4.3 Run Time Tracking Result 28

Compare the grows of comparisons of the brute force method and our hierarchical method,

two circumstances are found. See Fig 4.4(a), when the numbers of root samples increase, the

numbers of comparisons needed for brute force method raises quickly. In contrast, when the

numbers of level increase, the numbers of comparisons needed for hierarchical method raises

(see Fig 4.4(b)). Finally, we can draw these two equations together, the yellow surface is stand

for brute force method, and the red one is hierarchical method. It shows that the brute force

method get worse performance than the hierarchical tracking method, when the level and the

samples increase. (Fig 4.5)

(a) Numbers of root samples increase

(b) Numbers of level increase

Figure 4.4: The grows of comparisons.
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(a) Numbers of root samples increase

Figure 4.5: The grows of comparisons for two different tracking algorithm.

4.4 Discussion

There are several subjects that we want to discuss about. First, the texture sampling rate and

sampling criteria strongly affect the tracking algorithm. Increase the texture sampling rate can

increase the correctness of samples’ displacement, but it also enlarge the pre-computed table

sizes and increase the preprocessing times. When the data size of the texture attributes exceeds

the memory size, we have to split the attributes to several data regions for storing. In this case,

it may costs more disk I/O overheads at the tracking process. Importance sampling is a way to

decrease false sampling, but the importance must be defined first.

Second subject is about finding match at the tracking step. In our algorithm, only one match

is marked as tracking result. Actually, when we do sample comparisons, sometimes there are
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several samples that have similar attributes. When we choose different matching sample, the

overall tracking result may change differently. These matching information can help choosing a

tracking result with smaller global error. Still, global error of a tracking result is hard to define

in feature tracking field. Without ground true, usually we can only judge a tracking result with

human vision.

Third, the user interface and rendering issue. The cubic-like ROI is not feasible for any kinds

of datasets, and a more efficiency way to choose the target samples is needed. Another, marking

the tracking result may help user observe the sample displacements, but when the numbers of

samples grow, it may cause ambiguities. This problem can solve by rendering the tracking path

or other object-like rendering techniques.
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Conclusion

In this chapter, we give brief summary of the thesis, and suggest some directions of future work.

5.1 Summary

In this thesis, we proposed a efficient texture-based feature extraction and tracking algorithm

with multi-resolution hierarchy. In the preprocessing step, texture attributes are computed by

Gabor filtering at each level of multi-resolution hierarchy. With spatial coherence, these at-

tributes are builded as a texture sample hierarchy. In the run-time, a hierarchical feature tacking

algorithm is applied. From root to leaves of the texture sample hierarchy, we use the parents

tracking result to help children decide their tracking window. We demonstrate how this struc-

ture can perform more efficient tracking in texture-based datasets. The tracking algorithm is

also adapted with multi-target feature.

31
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The contributions of our work can be summarized as :

• We proposed a hierarchical feature tracking algorithm, which

– Speed up the texture-based feature tracking processes.

– Spatial coherence is guaranteed.

– The information of the region probability is easily obtained

within the tracking processes.

5.2 Future Work

In the scientific research, there are different applications for observing dataset. With texture-

based method we proposed, the feature’s movements are followed, but with the idea of tex-

ture sample comparison, features can be separated to several texture sample points that hard to

maintain other application, such as object picking, feature isolation. The feature is defined as

a small local area texture in our works. Features user specified with ROI contain thousands of

pre-computed texture sample points, and with independent texture-based feature tracking algo-

rithm, the connectivity of these sample points are hard to maintain after we track the feature. We

address several methods to overcome this problem by combines our method with object-based

feature extraction techniques. In the following sections, first we will introduce object-based

feature extraction algorithm, and then three different approaches are discussed with different

applications.
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5.2.1 Object-based Feature Extraction

The region growing algorithm works by doing a breadth-first search(BFS) on voxels starting

from a seed voxel or set of voxels [13]. Like any BFS algorithm, this is done with a queue of

voxels to visit. This queue is pried with the seed voxels(s) then each voxel in the queue is tested

to see if it belongs to the region. If it is, then it is marked as being part of the region. Then, any

of its neighbors that have not yet been visited are enqueued. This process is repeated until the

queue is empty, at which point every voxel in the region has been visited. The region growing

algorithm is very flexible, since the test to see whether a voxel should be in the region or not

can be based on several different properties, such as a threshold value or gradient magnitude.

For our purposes, a threshold value can be used.

In our works, the threshold and the searching seed can be set base on our feature tracking

result. Since the texture-based tracking results represent the most possibly locations of the

feature positions. We can use these positions and there texture properties to estimated the region

growing parameters.

With lots of sample points as our tracking result, first we have to cluster these points to

several groups in the manner of their locations. Several clustering algorithms are proposed

in image segmentation and pattern recognition field, such as K-means algorithm. After we

clustered these points, texture properties, such as mean, standard deviation of the points in each

groups can be used to estimate the threshold value of the region growing process independently

by histogram statistics. The histogram help us to measure the data distribution of the texture

in one group. For continue data, a normal distribution is a fine guess to determine the object

boundary. Finally, the result of the region growing process can be used for other applications,

such as, object picking and feature isolation.



5.2 Future Work 34

5.2.2 Hybrid Method Approach

Texture-based Tracking with Object Extraction Process (Fig 5.1)

In this approach, we take object-based extraction as an bonus for feature isolation and picking.

First, we use a standard texture-based feature tracking algorithm we proposed, and then use

the results to help extracting the feature object. In figure 5.1, after our texture-based tracking

process done, we use a clustering algorithm to find groups of these texture feature samples.

Histogram statistics of the samples in the same groups are builded with samples data. With

mean and standard deviation, we choose a data region to estimate the threshold of the region

growing processes we need. Finally, the region growing process can help us extract the object

liked features. This approach is for data which user have already had a thought of what they

want, and with tracking the movement and object extracting process, user can isolate the feature

for observations.

Figure 5.1: Hybrid method which texture-based tracking result as an object extraction process

input.
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Object-based Extraction with Texture-based Correspondence Test (Fig 5.2)

In the previous object-based feature extraction and tracking algorithm, the features for each

timestep are extracted separately and then the system will try to associate them through time.

Many of the original algorithms correspond feature based on whether or not their regions over-

lap in adjacent timesteps [28] [29]. For breaking the limits of features overlapping, we can use

texture-based comparison to help finding the correspondences. The texture properties are cal-

culated after object extracting processes in each timestep, and the texture comparison process

can use to measure the object’s similarity. For each timestep, every feature object will contain

several texture samples. Several samples distribution properties can be considered, such as most

of the samples must find correspondences in one feature object to ensure this feature object is

the correct tracking result. This approach is for object like dataset, and several object-based

feature extraction techniques and applications for tracking result can be used.

Figure 5.2: Hybrid method which object-based extraction with texture-based correspondence

test.
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Texture-based Tracking with Motion Pattern Recognition (Fig 5.3)

Since the tracking process of each texture samples hierarchy is independent in our works, the

samples’ motion information can be extracted. First, every texture samples in the coarse reso-

lution are tracked by our method, then the displacement information can help us tracking the

feature by observing the samples relations. This method do not need the user input and the

extraction and tracking process can be done in pre-processing time.

Figure 5.3: Hybrid method which texture-based tracking with motion pattern recognition.
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