

國 立 交 通 大 學

多媒體工程研究所

碩碩碩碩 士士士士 論論論論 文文文文

線 上 樂 譜 手 寫 辨 識 系 統

An Online Handwritten Recognition System of

Music Score

研 究 生：龔信嘉

指導教授：陳玲慧 教授

中中中中 華華華華 民民民民 國國國國 九九九九 十十十十 七七七七 年年年年 六六六六 月月月月

線上樂譜手寫辨識系統

An Online Handwritten Recognition System of Music Score

研 究 生：龔信嘉 Student：Sin-Jia Gong

指導教授：陳玲慧 Advisor：Dr. Ling-Hwei Chen

國 立 交 通 大 學

多 媒 體 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Multimedia Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年六月

 i

線上樂譜手寫辨識系統

研究生：龔信嘉 指導教授：陳玲慧 博士

國立交通大學多媒體工程研究所

摘要

本篇論文中我們提出了一個線上的樂譜手寫辨識系統。

樂譜是用來記錄樂曲的工具，作曲家常用其於創作與交流音

樂。論文中，我們使用與在紙上相同的書寫方法，利用多筆

劃組合出音樂符號。而筆劃的特徵有三種，高度，組成之基

本圖形以及方向，可用來辨識出此筆劃所屬類型，再將其組

合成所需要的音樂符號。本系統支援基本創作需要之全部音

樂符號，辨識率為 98.35%，並且提供方便及完善的樂譜修改

功能。

索引詞：手寫、音樂符號、線上、筆劃

 ii

An Online Handwritten Recognition System of

Music Score

Student: Sin-Jia Gong Advisor: Dr. Ling-Hwei Chen

Institute of Multimedia and Engineering

National Chiao Tung University

Abstract

In this thesis, we present an online handwritten system for music

score recognition. Music score is used to record a music song. People

often used to compose a music score on the sheet of paper. In our system,

we propose the pen based writing method and use multi-strokes to form a

music notation. We extract the height, shape and direction from a stroke

as the features and recognize it as a symbol. Then the symbol is combined

with other symbols to form a music notation. The system is robust for a

general use and supports enough music notations for composition. The

recognition rate is 98.35%.

Index term: handwritten, music score, music notation, online, stroke

 iii

誌謝誌謝誌謝誌謝

這篇論文能夠完成，最主要感謝指導教授陳玲慧博士在這兩年內細心的教

導，讓我在這兩年的碩士生涯中，學習到研究的方法以及態度，也體認到師生之

間相處的情誼。

接著也感謝實驗室的學長、同學和學弟們，對於系統的架構以及資料庫的建

置上給予了非常多的建議，在生活上的大小事情也給了非常多的協助。特別感謝

井民全學長和郭萓聖學長在技術上的支援；同屆的三位夥伴，王偉全、徐子翔和

黃薰瑩在課業及研究上的陪伴；還有李惠龍學長、楊文超學長、陳俊旻學長、尤

瓊雪學姊、陳立人學長、何維中學長、林芳如學姊、林佩瑩學姊、張明旭學弟、

楊志鴻學弟、郭益成學弟和林志達學弟，少了你們實驗室將會失色許多；另外還

有大學時期同窗好友，陪我嬉鬧談笑解苦悶，增添許多人生樂趣。

最後要感謝我的父母，一直能提供這麼棒的環境讓我專心於研究上，讓我無

後顧之憂。僅以誠摯的心將此論文獻給我父母。

 iv

TABLE OF CONTENTS

ABSTRACT (IN CHINESE) .. i

ABSTRACT (IN ENGLISH) ... ii

ACKNOWLEDGEMENT (IN CHINESE) ... iii

TABLE OF CONTENTS .. iv

LIST OF FIGURES .. vi

LIST OF TABLES...viii

CHAPTER 1 INTRODUCTION... 1

CHAPTER 2 STROKE DATABASE .. 5

CHAPTER 3 THE PROPOSED METHOD ... 9

3.1 Preprocessing ... 10

3.1.1 Smoothing filter .. 10

3.1.2 Gap filter .. 11

3.1.3 Slipped segment remover .. 12

3.2 Simple symbol classifier .. 14

3.3 Feature extraction .. 15

3.3.1 Height ... 16

3.3.2 Shape .. 16

3.3.3 Direction ... 20

3.4 Complex symbol classifier ... 21

3.4.1 Height classifier .. 22

3.4.2 Shape classifier ... 24

3.4.3 Direction classifier .. 26

3.5 Notation recognition .. 28

3.6.1 Bar level .. 28

3.6.2 Note level .. 29

3.6.3 Group level ... 37

 v

3.6.4 Modification operation .. 38

3.5 Database reduction ... 41

CHAPTER 4 EXPERIEMENT RESULT ... 43

CHAPTER 5 CONCLUSION ... 46

REFERENCES .. 48

 vi

LIST OF FIGURES

Fig. 3.1 Flow diagram of the symbol recognition……………………………….... 9

Fig. 3.2 An example of gap filter......................………………………………….... 12

(a) The original stroke which writing speed is from fast to slow.

(b) The stroke after the process of the interpolation.

Fig. 3.3 An example of slipped segments in a stroke……………...……………… 12

Fig. 3.4 8 ways chain codes……………………………………………………….. 13

Fig. 3.5 An example of five dominant points in a stroke…………………………. 14

Fig. 3.6 An example of linearity of a stroke..………………………...................… 15

Fig. 3.7 Two examples of heights of symbols on staff…...……………………….. 16

(a) FClefArc.

(b) WHead.

Fig. 3.8 An example for the shape feature of a stroke……………………………. 17

Fig. 3.9 Examples of curve segments ……….. 18

(a) Clockwise curve.

(b) Counter-clockwise curve.

(c) Circle.

Fig. 3.10 Examples of the direction changes....................………………………… 19

(a) Clockwise curve.

(b) Counter-clockwise curve.

(c) Straight line.

Fig. 3.11 An example of direction feature in a stroke..…………………………… 21

Fig. 3.12 An example of two strokes with the same shape feature, but different

direction features.…….….. 21

(a) WRest with direction feature (0, 2, 4).

(b) HRest with direction feature (4, 2, 0).

Fig. 3.13 A decision tree...…………...... 22

Fig. 3.14 Three groups in height. ..…………….. 23

(a) Low group.

(b) High group.

(c) Variant group.

Fig. 3.15 Two groups in the height classifier. ...………………………………….. 24

(a) Low group.

(b) High group.

Fig. 3.16 Groups in the shape classifier………………………….. 25

(a) For low group.

 vii

(b) For high group.

Fig. 3.17 The reactive areas in a bar……………..…………...……….. 29

Fig. 3.18 An example of the determinable note ...…………………….………….. 30

Fig. 3.19 Some examples of the uncertain notes……………………… 30

Fig. 3.20 An example of the uncompleted note ………………………………….. 30

Fig. 3.21 Some examples of combining symbols at note level………………….... 33

(a) Case 1.

(b) Case 2.

(c) Case 3.

Fig. 3.22 An example of deleting an incomplete note ...…...……………………... 34

Fig. 3.23 Some examples for the pitches of notes corresponding to line 2.........… 35

(a) Sharp.

(b) Natural.

(c) Flat.

(d) Whole note.

(e) Half note.

(f) Note with filled head.

Fig. 3.24 An example of a sharp projected to y-axis..................................……….. 36

Fig. 3.25 Some examples of pitch detection..……….. 36

(a) The pitch on the space.

(a) The pitch on the line.

Fig. 3.26 An example of group note...……….. 38

Fig. 3.27 An example of adding a beam to a grouped note........................……….. 38

Fig. 3.28 The border line, writing area and deleting area in the system....……….. 39

 viii

LIST OF TABLES

Table 2.1 Supported symbols…………………………………………………...… 6

Table 2.2 Supported music notations……………………………………………....7

Table 3.1 The 7 basic shapes……………………………………………………… 17

Table 3.2 The cost between two chain codes……………………………………... 19

Table 3.3 Difference between two chain codes………………….......……………. 27

Table 3.4 List of bar line with the set of symbols forming them….……....……….29

Table 3.5 List of note with the set of symbols forming them…...………………… 31

Table 3.6 List of the supported modification operation... 40

Table 4.1 Precision of each symbol.. 45

 1

CHAPTER 1

INTRODUCTION

Music score is a handwritten or printed form of music notations, and it is often

used in music composition and music representation. It consists of staff, clefs, notes,

rests, and signatures …, etc.

The common way to record a music score is to write the score on sheets of

papers by pencil or pen. As the computer technology grows rapidly, Musicians use

computer to aid their composition. In early period, optical music recognition (OMR)

is used to recognize the music score which is scanned to an image. However, the error

rate of OMR system is relatively high and the editing work of the music score is slow

and tedious [1]. Due to the inconvenience of OMR, the online music editing system is

proposed. The system can directly output the editing resultant to musicians. Besides,

more convenient systems are rapidly developing for user to write on the tablet. One is

the “point and click” system, such as MagicScore Maestro [2] and Allegro [3], which

selects music notations from menus or icons. Hence, the system can directly input the

music notations without recognizing them. Nevertheless, the input processes are

tedious and complicated due to many pen and mouse movements [4].

In order to reduce the tedious input processes, gesture-based music score

recognition systems are developed. Musicians could use specific gestures to represent

 2

specific notations defined by systems. Forsberg et al. [5] proposed such a system

which uses gesture and voice to input the music notations. In the gesture part, it

combines Calligrapher system [6], Rubine’s gesture recognition system [7] and their

recognizer to recognize the input gesture. The supported music notations are limited

and are not sufficient for professional music editors, and some gestures are irrelative

to the shapes of the corresponding music notations. This makes learning curve long

and difficult. Anstice et al. [1] also proposed a gesture-based system called Presto.

After that, Ng et al. [8] proposed an improved version denoted as Presto2, which

improves both usability and speed of input, but the gestures in the system have little

relation with the actual writing. The recognition accuracy of gesture-based system

may be acceptable. However, in the gesture-based systems, users must learn and

remember these miscellaneous gestures. Therefore, the gesture-based system is often

very constraining for the user.

Instead of learning miscellaneous gestures, pen-based handwritten systems are

developed to catch the human writing styles. The characteristic of pen-based systems

is that the writing styles is as the same as on sheets of papers. There are several

methods proposed, like neural network, context-free grammar and SVM. In 2003,

George et al. [4] proposed such a system with artificial neural networks. They used a

multi-layer perception to learn music notations and extract the features. The inputs of

 3

these handwriting systems are natural and direct for users, but the error rate may be

alarmingly high. Subsequently, music notations can be recognized by the trained

neural networks. Taubman et al. [9] proposed a handwritten music recognition system

based on statistical moments. Nevertheless, the current system is not stable and not

robust enough for a general use. In 2005, Macé et al. [10] proposed a generic method

which recognizes the music score by context-free grammars and lots of recognizers.

Unfortunately, the user must follow the writing orders and writing locations that are

defined by professional musicians, and it is not friendly for the users that are not

familiar with the music theory. Miyao and Maruyama [11] proposed a handwritten

system based on time series data and image features. Their system uses dynamic

programming and SVM algorithm to recognize handwritten music notations. However,

only a small part of music notations is supported in the system. In other way, the

system does not support modification operations, such as deleting or moving a

notation, and this makes the system impractical.

In this thesis, we propose an online handwritten recognition system of music

score which utilizes the input stroke properties, including the height, the shape and the

direction. With these properties, we build a pen based system with high recognition

rate. The system also supports enough music notations and intuitional modification

operations for general use.

 4

The rest of the thesis is structured as follows. Chapter 2 describes the strokes

used in the system. The proposed recognition method is discussed in Chapter 3. The

proposed method has been evaluated by experiments as reported in Chapter 4. The

final chapter closes the thesis with conclusion and future researches.

 5

CHAPTER 2

STROKE DATABASE

A stroke is a collection of points from pen-down to pen-up. A music notation or

notation is the basic unit to record music, including staff, clefs, notes, rests, and

signatures …, etc. When we are writing, there are some notations we cannot write in a

single stroke, like natural or sharp. We have to write multiple strokes to represent a

notation. In other way, some notations have innumerable dots, heads, or flags, and we

cannot assure the exacted strokes in these notations. In a word, a notation could be

considered as a collection of many strokes, and a stroke is a basic input unit in the

system. In our system, as a new stroke is written, it would be recognized as a

meaningful symbol. The system collect the symbols inputted in previous time, and try

to convert them to a meaningful notation. Here, we divide the strokes into 17 kinds of

symbol categories, as shown in Table 2.1.

In Table 2.1(1), categories (1) to (6) are called “simple symbols, “ which means

that they could be recognized quickly by some extreme properties, like the stroke

length. The others are called “complex symbols,” which means they need to extract

the features and be classified by the complex symbol classifier which will be

elaborated in the next section.

In our database, we obtained the strokes using a WACOM digital tablet written

 6

by 14 users. The users are not expert musicians and do not have any knowledge about

the music theory. They write the strokes for all symbols on the digital tablet and the

staff is pre-drawn on the screen. Each gap on staff is 25 pixels. For robustness, the

procedure would be carried out at least 1000 times to each user.

Table 2.1 Supported symbols (continued).

(1) Dot

(2) HLine (3) VLine (4) Slash (Flag)

(5) UHook (Flag)

(6) GClef (7) FClefArc (8) Flat

(9) NaturalRt

(10) LCheck (11) StUHook

(12) WHead (13) BHead

 7

Table 2.2 shows all the supported music notations in this system. There are four

types of notations supported. Table 2.2(a) is bar line which is used to separate the bars.

Table 2.2(b) shows two examples of group which is a beam note formed by grouping

several notes with filled head using a horizontal beam. Table 2.2(c) is the

determinable note which consists of fixed number of symbols. Table 2.2(d) shows

some uncertain notes with innumerable symbols, such as dot, flag...etc.

Table 2.1 Supported symbols.

(14) WRest (15) HRest (16) QRest (17) 8Rest

Table 2.2 Supported music notations (continued).

 (a) Bar line

(b) Group

 8

Table 2.2 Supported music notations.

 (c) Determinable note

(d) Uncertain note

 9

CHAPTER 3

THE PROPOSED METHOD

In this system, we recognize the input stroke as a symbol and then combine the

symbol with other symbols to form a music notation.

The flow diagram of the symbol recognition is shown in Fig. 3.1. The whole

process consists of 4 major phases: preprocessing, simple symbol classifier, feature

extraction and complex symbol classifier. In the preprocessing phase, the noise and

variety in the stroke would be eliminated. In the simple symbol classifier, the stroke

with extreme properties would be recognized as a symbol and output as the result. If

the stroke in the simple classifier is not recognized, it would be processed in the next

phase. In the feature extraction phase, height, shape and direction are extracted from

the stroke as features. In the complex symbol recognition phase, based on the

extracted features, the stroke would be recognized as a symbol by the decision tree. In

the decision tree, some similarity measures are provided to determine the most similar

symbol in the database.

Fig. 3.1 Flow diagram of the symbol recognition.

 10

After the symbol recognition, the notation recognition is conducted. Based on the

semantic information, the output symbol would be combined with other existed

symbols to form a notation. Finally, the system outputs the printed music notation and

puts it at the exact location on staff.

3.1 Preprocessing

There are some problems after sampling the stroke. First, the stroke captured by

the digital tablet tends to contain some noises which make the stroke jagged. Second,

the stroke is sampled from the digital tablet by the fixed time interval, so the writing

speed would affect the captured stroke. Finally, as pen-up and pen-down, there are

some slips occurred which is caused by the user. In order to reduce the noise and

variety in the stroke, we apply the preprocessing, including smoothing filter, gap filter

and slipped segment remover.

3.1.1 Smoothing filter

The reason why a stroke jagged is that some errors occurred in the digital tablet

or the unstable state the user is writing in. In order to eliminate these jags, we apply

Gaussian filter [12] to make the stroke more smooth and keep the global information

of corners in the stroke.

 11

For every point (x(t),y(t)), we smooth the stroke by

,)()'(,)()'(
3

3

3

3

∑∑
−=−=

==
σ

σ

σ

σ i

i

i

i tywtytxwtx (1)

where

∑ −=

−

−

=
σ

σ

σ

σ

3

3

2

2

2

2

2

2

j

i

i

i

e

e
w , σ=11

3.1.2 Gap filter

Because the digital tablet samples points with a fixed time interval, the writing

speed makes the distances between two points to be different. There would be some

gaps in the stroke. These gaps would affect the curvature detection in later process.

Fig. 3.2(a) is an example of writing with different speed. In order to compensate these

gaps, we interpolate some new points between two adjacent points.

For each two adjacent points, let dx be the x difference between the two points,

dy be the y difference between the two points. Then if max(dx,dy)>1, we interpolate

max(dx,dy) points between them by linear interpolation. Fig. 3.2(b) shows the result

of applying the process of the interpolation to Fig. 3.2(a).

 12

3.1.3 Slipped segment remover

Slips are the action that user’s pen move to the unexpected direction on the

digital tablet. In the beginning and ending to write a stroke, it is easy to generate

surplus slipped segments. The circles in Fig. 3.3 show the slipped segments of a

stroke. We could remove slipped segments by detecting whether the length of the first

segment or the last segment in a stroke is shorter than a given threshold.

(a) (b)

Fig. 3.2 An example of gap filter. (a) The original stroke with writing speed from

 fast to slow. (b) The stroke after the process of the interpolation.

Fig. 3.3 An example of slipped segments in a stroke.

 13

In order to eliminate the slipped segments, the first step is to find the candidates

of slipped segments. Along a stroke, there usually exist some points with local

extrema of curvature between the slipped segment and the others. To get these points,

we first define dominant points as follows: (a) points corresponding to the local

extrema of curvature; and (b) pen-up and pen-down points. Li and Hall proposed a

method [13] to find dominant points in a stroke using a support region based on 8

ways chain codes which is shown in Fig. 3.4. Here, this method is adopted to find all

dominant points in a stroke. Then we divide the stroke into several segments by

dominant points. The first segment and last one are the candidates of the slipped

segments. If the length of the candidate is less than a threshold, it is a slipped segment

and would be removed. The threshold is set as half of the gap’s height on staff in

music score. Fig. 3.5 shows that there are five dominant points found in Fig. 3.3 and

four segments are obtained. The first and the last segments are slipped ones.

Fig. 3.4 8 ways chain codes.

 14

3.2 Simple symbol classifier

By observing the 17 kinds of symbols, we find that some symbols can be

classified quickly by the extreme properties. We call these symbols as simple symbols,

including Dot, the straight line of HLine, VLine, the straight line of Slash, the straight

line of UHook and GClef. Here, we will discuss how to classify simple symbols.

Among all symbols, the length of GClef is longest obviously. By this property,

we could easily recognize a stroke as a GClef symbol if the length of the stroke is

longer than the length threshold. The length threshold is set as 12 times gap’s height.

 By observing the width and the height of a symbol, the Dot symbol has the

smallest width and the smallest height in symbols. Therefore, the stroke would be

recognized as a Dot symbol if the width and the height of the stroke are both shorter

than a given threshold. The threshold is set as half of gap’s height on staff.

To classify if a stroke is a straight line, a linearity measure is defined as

1

2

3

4

Fig. 3.5 An example of five dominant points in a stroke.

 15

,
))(),((ePsPG

L
linearity = (2)

where L denotes the length of the stroke. G() denotes Euclidean distance. P(s)

denotes the starting point of the stroke and P(e) denotes the ending point of the stroke.

Fig 3.6 illustrates an example of the linearity. If a stroke is a straight line, the linearity

should approach to 1. Thus, if the linearity is smaller than the threshold, 1.07, we

consider the stroke as a straight line and recognize it as HLine, VLine, Slash or

UHook according to its slope. Once the stroke is recognized as a simple symbol, it

would be output and exit the symbol recognition.

3.3 Feature extraction

If a stroke is not classified as a simple symbol, we will do feature extraction from

the stroke. Here, we take three kinds of features: height, shape and direction.

 Fig. 3.6 An example of linearity of a stroke.

 16

3.3.1 Height

Notations in music theory have height limitation. Since notations are formed by

symbols, symbols also have the height limitation. In Fig. 3.7, the height of FClefArc

must be at least 2 times gap’s height on staff, and the height of WHead must be less

than 2 times gap’s height. We could extract the height of a stroke as a feature for

rough classification.

3.3.2 Shape

As described in Section 3.1.3, each stroke will be divided into several segments.

Every segment has its special shape. Fig. 3.8 shows that a stroke consists of two

segments with a vertical line and a slash. The number of shapes would be useful for

classifying stroke. There are 7 kinds of basic shapes shown in Table 3.1. These shapes

are horizontal line, vertical line, slash, backslash, clockwise curve, counter-clockwise

curve and circle. Here, the horizontal line, vertical line, slash and backslash are

roughly called “straight line.” The clockwise curve, counter-clockwise curve and

(a) (b)

Fig.3.7 Two examples of heights of symbols on staff. (a) FClefArc. (b) WHead.

 17

circle are roughly called “curve.”

By the linearity and slopes mentioned in Section 3.2, we could determine if a

segment is a horizontal line, vertical line, slash or backslash. If the segment does not

belong to straight line, it may be a clockwise curve, a counter-clockwise curve, or a

circle. Fig. 3.9 shows the clockwise curve, the counter-clockwise curve and the circle.

Fig. 3.8 An example for the shape feature of a stroke.

Table 3.1 The 7 basic shapes. (1) Horizontal line. (2) Vertical line. (3) Slash.

 (4) Backslash. (5) Clockwise curve. (6) Counter-clockwise curve.

 (7) Circle.

(1) (2) (3) (4) (5) (6) (7)

 18

The difference between the straight line and the curve is that the curve changes

its direction very often. For each three adjacent points of a clockwise curve, the

direction change from the previous point to the next point tends to be right direction.

The direction change of the counter-clock curve tends to be left direction. The straight

line has no direction change. Fig. 3.10 shows the direction changes in clockwise curve,

counter-clockwise curve, and straight line. We could accumulate the direction change

value to detect what kind of curve the segment is like. Based on the 8 way chain codes,

the accumulated direction change value v is calculated by

,))1(),((cost
1

∑
=

−=
n

i

icicv (3)

where i denotes the ith point in the segment. n denotes the number of points in the

segment. c(i) denotes the chain code of the ith point in the segment. “cost” denotes the

cost between two chain codes, which is shown in Table 3.2.

(a) (b) (c)

Fig. 3.9 Examples of curve segments. (a) Clockwise curve. (b) Counter-clockwise

 curve. (c) Circle.

 19

In the cost table, the values are defined by 2 cases which are explained as

follows:

1. If the current chain code is the same as the previous one, it means that

they go toward the same direction and the direction change value is 0.

(a) (b) (c)

Fig. 3.10 Examples of the direction changes. (a) Clockwise curve.

 (b)Counter-clockwise curve. (c) Straight line.

Table 3.2 The cost between two chain codes.

c(i)\c(i-1) 0 1 2 3 4 5 6 7

0 0 -1 -1 -1 -1 1 1 1

1 1 0 -1 -1 -1 -1 1 1

2 1 1 0 -1 -1 -1 -1 1

3 1 1 1 0 -1 -1 -1 -1

4 1 1 1 1 0 -1 -1 -1

5 -1 1 1 1 1 0 -1 -1

6 -1 -1 1 1 1 1 0 -1

7 -1 -1 -1 1 1 1 1 0

 20

2. Otherwise, it means that the direction has been changed. We assign the

direction change value +1 as they are toward the clockwise direction, and

-1 as the counter-clockwise direction.

Then we classify each segment based on the accumulated direction change. If

v>0, the segment is a clockwise curve. If v<0, it is a counter-clockwise curve.

Furthermore, if |v|>5, it means that the curve changes its direction frequently and the

segment is classified as a circle.

The last step is to calculate the number of every kind of shapes in the stroke. The

vector of dimension 7 containing numbers of seven shapes is viewed as a shape

feature.

3.3.3 Direction

The direction is the sequence of writing direction in time order, and it could

reflect the writing style of a symbol. Fig. 3.11 shows the stroke with two writing

directions, one is south and the other is east-north. The direction extracted from the

stroke could help us clarify the difference among some symbols with similar shapes.

For example, Fig. 3.12 shows two strokes with the same shape feature, but their

direction features are different. We use the 8 way chain codes to represent the

direction. We could extract the direction by eliminating the duplicate chain codes in

 21

the same direction. For example, if the chain code sequence of a stroke is

(444444400111), the (4, 0, 1) is the direction feature. Note that the dimensions of the

direction features of different strokes may be different.

3.4 Complex symbol classifier

Symbols except simple symbols are complex symbols. Features extracted from a

stroke, including height, shape and direction, are taken for complex symbol matching

at this phase.

Fig. 3.11 An example of direction feature in a stroke.

(a)

(b)

Fig. 3.12 An example of two strokes with the same shape feature, but

 different direction features. (a)WRest with direction feature (4, 2,

 0). (b)HRest with direction feature (0, 2, 4).

 22

Based on these three features, we construct three classifiers separately, including

height classifier, shape classifier and direction classifier. Because some symbols in

some classifiers are similar and are hard to separate them, we build a three level

decision tree, which is shown in Fig. 3.13, to deal with this problem. The first level is

the height classifier which roughly classifies symbols by the height feature. The

second is the shape classifier which classifies symbols by the shape feature. The third

level is the direction classifier which classifies symbols by the direction feature and

outputs the recognized result.

3.4.1 Height classifier

The heights of printed music notations are ruled by the music theory. Because the

Fig. 3.13 A decision tree.

 23

music notations are formed by symbols, symbols also have the height limitations in

writing. By a height threshold, some symbols will be considered as high and some

will be considered as low. However, due to the writing distortion, some symbols

sometimes will be considered as in the high, sometimes low. We consider these

symbols with unsure heights as variant. Fig. 3.14 shows the symbols in the low group,

the high group, and the variant group.

In the height classifier, we use 2 times gap’s height on staff as a threshold to

classify symbols into the high group and the low group. Fig. 3.15(a) shows the low

group in the height classifier. Fig 3.15(b) shows the high group in the height group.

(a) Low

(b) High

(c) Variant

Fig. 3.14 Three groups in height. (a) Low group. (b) High group. (c) Variant

group.

 24

The symbols surrounded by the dotted line and originally belonging to the variant

group will be handled later.

When a new stroke is coming, this classifier classifies the stroke to the high

group or low group based on the height feature.

3.4.2 Shape classifier

In this stage, we group symbols with similar shape features. Fig. 3.16 shows the

groups with similar shape features. The shape difference, SD, between two shape

(a) Low group

(b) High group

Fig. 3.15 Two groups in the height classifier. (a) Low group. (b) High group.

 25

features is defined as follows:

where S1 is the vector of the shape feature 1. S2 is the vector of the shape feature 2.

As a new stroke is coming, the classifier could measure the shape distance

between the stroke and the shape templates in each group and applies KNN to find the

group with the nearest distance. In H1 of Fig 3.16(b), there is only one possible

symbol in the group, which will be output directly without further processing.

,)()(
7

1

22∑
=

−=
i

iS2iS1SD (4)

(a)

Fig. 3.16 Groups in the shape classifier. (a) For low group. (b) For high group.

 (continued).

 26

3.4.3 Direction classifier

In the third level of the decision tree, we would find most likely symbol

according to the direction feature. We measure the distance between the direction

feature of the stroke and the direction templates in database. Because the direction

features are variable in dimension, the distance measure could be considered as the

string matching problem. We apply the dynamic programming to obtain the distance.

Let {a1, a2,.., aI} denotes the direction feature and {bk1, bk2,…, bkJ} denotes the

kth template in database. The accumulated distance gk(i,j) is calculated as follows:

High

H1 H2 H3

(b)

Fig. 3.16 Groups in the shape classifier. (a) For low group. (b) For high group.

 27

Initial values:

∞=

∞=

=

),0(

,)0,(

0)0,0(

jg

ig

g

k

k

k

 (5)

Recurrence formula:

()

),,(differnece

)1,(),,1(,)1,1(min),(

kji

kkkk

ba

jigjigjigjig

+

−−−−=
 (6)

where the difference is the chain code difference between chain code ai and chain

code bkj. The difference is defined in Table 3.3.

Using above formula, the distance, gk(I,J), is calculated. After examining the

distances with all templates, we find the symbol with the nearest distance and output

Table 3.3 Difference between two chain codes.

ai \bkj 0 1 2 3 4 5 6 7

0 0 1 2 3 4 3 2 1

1 1 0 1 2 3 4 3 2

2 2 1 0 1 2 3 4 3

3 3 2 1 0 1 2 3 4

4 4 3 2 1 0 1 2 3

5 3 4 3 2 1 0 1 2

6 2 3 4 3 2 1 0 1

7 1 2 3 4 3 2 1 0

 28

the symbol as the recognized result.

3.5 Notation recognition

After a stroke is recognized as a symbol, the notation recognizer will be

conducted by combining symbols. The output symbol will be combined with

previously recognized and unused symbols to form a notation based on the semantic

information. There are 3 levels in the notation recognition. In the bar level, those

unused symbols would be combined to form a bar line. In the note level, those unused

symbols would be combined to form a note. In the group level, some specific notes

would be grouped together. The other part of notation recognition is modification

operation. It provides the deleting, editing and moving operations which can be used

in the three levels.

3.6.1 Bar level

In music theory, a bar is a container containing notes, and a bar line is used to

separate bars. In our system, the bar would be constructed automatically to hint the

user. We combine unused symbols to form a bar line in the bar level. In each bar, the

pseudo borders of the bar are pre-drawn in our system. We define the head and the

end of the bar as the reactive area for combining symbols separately. Fig 3.17 shows

 29

the reactive areas in a bar. By the shape of bar lines, we define the components in

Table 3.4 to describe how to form a bar line. When a new coming symbol falls in one

of these reactive areas, we would combine the new symbol and the existed symbols in

the area and check whether the combined one matches the sets in Table 3.4. If yes,

update the bar line; otherwise, the symbol would be sent to the note level.

3.6.2 Note level

Notes are used to represent the relative duration and pitch of a sound in the music

score. Symbols are combined to form a note in this level. By the composition of a

Fig. 3.17 The reactive areas in a bar.

Table 3.4 List of bar line with the set of components forming them.

Bar line name Component

Single bar line () 1 VLine

Double bar line () 2 VLines

End bar line () 3 VLines

Repeat sign line() 1 Dot, 0 or more VLines

 30

note in music theory, there are three types of notes: determinable, uncertain and

incomplete. Determinable note means that the numbers of symbols in it are fixed. The

uncertain note means there are innumerable dots, heads, or flags in it. The incomplete

note is a part of a certain note and recorded as a temporary note in this system. Fig.

3.18 shows that a sharp, which is a determinable note, has two VLines and two

HLines exactly. Fig. 3.19 shows that a Note with filled head would be added by some

hooks or dots. Fig. 3.20 shows an incomplete note which only has a filled head.

When a new symbol is coming to this level, we would search the nearest

uncertain or incomplete note. We do not have to search the determinable note, because

Fig. 3.18 An example of the determinable note.

Fig. 3.19 Some examples of the uncertain notes.

Fig. 3.20 An example of the incomplete note.

 31

it is impossible to add more symbols to it. If the distance to the nearest note is too

large, we would construct a new empty incomplete note, and add the new symbol to it.

Then check the symbols with rules in Table 3.5 [11], which consists of three cases as

follows:

1. If we find a match in the table, then update the note and set its type.

2. If we could not find a match in the table, and the set of symbols is a subset of

a note, then we add the symbol to the note and set its type to be incomplete.

3. If we could not find a match and the set of symbols is not a subset of a note,

then the new symbol would be discarded.

Table 3.5 List of notes with the set of symbols forming them (continued).

Note name Type Components

FClef () Determinable 2 Dots, 1 FClefArc

Determinable 1 FClefArc

Sharp () Determinable 2 HLines, 2 VLines

Determinable 2 Slashes, 2 VLines

Determinable 1 HLine, 1 Slash, 2 VLines

Determinable 2 UHooks, 2 VLines

Determinable 1 HLine, 1 UHook, 2 VLines

Determinable 1 Slash, 1 UHook, 2 VLines

GClef () Determinable 1 GClef

Natural () Determinable 1 LCheck, 1 NaturalRt

1 LCheck, 1 8Rest

Flat () Determinable 1 Flat

 32

Fig. 3.21 shows the examples of the three cases. In Fig. 3.21(a), a NaturalRt is

combined with an LCheck to form a Natural note which is determinable. In Fig.

3.21(b), a LCheck symbol is added to an empty note. Since it is a subset of Natural

and may become a Natural in the future, the note is set as an incomplete note. In Fig.

Table 3.5 List of notes with the set of symbols forming them.

Note name Type Components

Whole note

(e.g., , ,)

Uncertain 0 or more Dot(s), 1 or more WHead(s)

Half note

(e.g., , ,)

Uncertain 0 or more Dot(s), 1 VLine, 1 or more

WHead(s)

Note with filled head

(e.g., , , ,)

Uncertain 1 or more BHead(s), 0 or more Dot(s),

0 or more UHook(s), 1 VLine, 0 or

more Slash(es)

Uncertain 1 or more BHead(s), 0 or more Dot(s),

0 or more Slash(es), 1 VLine, 0 or

more UHook (s)

Uncertain 1 or more BHead(s), 0 or more Dot(s),

1 StUHook, 0 or more Uhook(s), 0 or

more Slash(es)

Uncertain 1 or more BHead(s), 0 or more Dot(s),

1 Lcheck, 0 or more Slash(es), 0 or

more UHook(s)

Whole rest

(e.g., ,)

Uncertain 0 or more Dot(s), 1 WRest

Half rest

(e.g., ,)

Uncertain 0 or more Dot(s), 1 HRest

Eight rest

(e.g., , ,)

Uncertain 1 8Rest, 0 or more Dot(s), 0 or more

HLine(s)

Quarter rest

(e.g., ,)

Uncertain 0 or more Dot(s), 1 QRest

 33

3.21(c), an HLine symbol is added to a Note with a filled head. This action is illegal

and the set of symbols doesn’t belong to any note. Since the HLine could not be used

in the future, hence the HLine would be discarded.

In order to keep the simplification of the system, when there are two incomplete

notes existing in the meanwhile, we would only keep the latest note and delete the

(a)

(b)

(c)

Fig. 3.21 Some examples of combining symbols at the note level. (a) Case 1.

 (b) Case 2. (c) Case 3.

 34

other. Fig 3.22 shows an example. At first, there is an incomplete note existed in the

system. Then the user writes a new stroke, and the distance between the stroke and the

incomplete note is too large. After the symbol recognition, the stroke is recognized as

a new symbol and applies the notation recognition. In the note level, because of the

large distance, the system constructs a new incomplete note containing the new

symbol. At this time, there are two incomplete notes existing. We would consider that

the user wants give up the old incomplete note and writes another new notation.

Hence the old incomplete note would be deleted.

For recording the pitch, some notes have to be located at the corresponding line

or space on staff. These notes are Sharp, Natural, Flat, Whole note, Half note and

Note with filled head. Fig. 3.23 shows some of these notes with pitch corresponding

to line 2. We proposed a method to obtain the pitch of these notes. First, because the

pitch on staff is related to the y-axis, we project all points of the note to the y-axis,

Fig. 3.22 An example of deleting an incomplete note.

 35

and calculate the number of the projected points for each y-value. Fig. 3.24 shows a

Sharp projected to y-axis. Then we apply the threshold which is defined for each note

separately. The number of projected points on y which is below the threshold would

be set to zero. Finally, we obtain an interval contains all non-zero values on y. The

lines or spaces in the interval are the candidates for the pitch, and next we would

determine the most possible one. We get the middle point, my, of the interval and

define a window of size t, which is less than a half height of a space. If there is a line

existing between my-t and my+t, the line is considered as the pitch of the note;

otherwise, the space where my falls would be the pitch of the note. In Fig. 3.25(a), we

could see that no line falls between my-t and my+t, so the pitch of the sharp is the

space i. Fig. 3.25(b) shows another example that a line falls between my-t and my+t,

and the pitch of the sharp is line i.

Fig. 3.23 Some examples for the pitches of notes corresponding to line 2. (a) Sharp.

 (b) Natural. (c) Flat. (d) Whole note. (e) Half note. (f) Note with filled head.

 36

Fig. 3.24 An example of a sharp projected to y-axis.

(a)

(b)

Fig. 3.25 Some examples of pitch detection. (a) The pitch on the space. (b)

The pitch on the line.

 37

3.6.3 Group level

In music theory, when two or more notes with filled head and flags appear

successively, we could group them using a beam to replace the flags. When playing

the music score, the notes with beam should be more connected than non-beamed

notes. As writing, users always draw a horizontal line across the notes to represent the

grouping action. In the group level, we group the notes to form a beamed note. Steps

for grouping are presented as follows:

1. We define the HLine symbol as the signal to group the notes by the

common practice. If the new coming symbol is HLine, go to step 2;

otherwise, reject the symbol.

2. Only the Note with filled head could be grouped in the music theory, and

the accidental notes, like Sharp, Flat and Natural could be ignored. In the

range where the HLine symbol covers along the x-axis, check whether

the notes are valid.

3. The system would detect the time duration of each Note with filled head

and draw the appropriate beam. In the meanwhile, all the flags on the

notes would be removed.

If the grouped notes are quarter notes, we would consider the user forces to

group the notes, and they would be converted to eighth notes automatically. Fig 3.26

 38

shows an example which indicates how notes are grouped by the three steps.

For those notes grouped, we also support to add more beams on these notes. By

the common practice, the user only write a HLine on the notes where he would like to

add a beam, the system would draw a new beam and update the time durations of

these notes covered by the HLine. Fig. 3.27 shows an example of adding a new beam

to a grouped note.

3.6.4 Modification operation

In this stage, we introduce the modification operations for editing the music

score. In the past, few systems provide the easy-using modification operations. They

just use buttons as the modification operations on the screen for users to click. The

input method is like the “point and click” based systems which is mentioned in

Fig. 3.26 An example of group note.

Fig. 3.27 An example of adding a beam to a grouped note.

 39

previous chapter. For users, this is not intuitional at all. Instead of buttons, we take the

advantage of pen based input method and provide some gestures for the modification

operations.

We define two horizontal lines which are higher and lower than the music score,

called “border lines.” The border lines are the writing borders in the system. The area

between two border lines is called “writing area,” and the other areas are called

“deleting area.” Fig. 3.28 shows these lines and areas. Writing in the writing area is

valid, or it is an illegal operation. The concept of the modification operations contains

two points: (1) if we want to move the location or pitch of a note, we could drag parts

of a notation or whole notation to the destination directly. (2) If we want to delete

some parts of the notation or the whole one, just drag it to the deleting area.

In Table 3.6, we list all the modification operations supported in the system and

the details of these operations. The arrow line is the trajectory of the modification

operation.

Fig. 3.28 The border line, writing area and deleting area in the system.

 40

Table 3.6 List of the supported modification operation (continued).

Modification operation Example

Move a beam note: Drag the beam

and move to the destination.

Move a note: Drag the note and

move to the destination.

Modify the pitch of a note: Drag the

note and move to the desired line or

space.

Modify the pitch of a note with

heads: Drag the head of the note and

move to the desired line or space.

Delete a bar line: Drag the bar line to

the deleting area.

Separate a group of notes: Drag the

beam to the deleting area.

 41

3.5 Database reduction

The database consists of a lot of templates. To compare the feature with every

template is very inefficient. If we could reduce the number of templates, the

consuming time would be reduced. The problem is how to obtain the representative

Table 3.6 List of the supported modification operation.

Delete a note: Drag the note to the

deleting area.

Delete a dot of a note: Drag the dot

of the note to the deleting area.

Delete a flag of a note: Drag the flag

of the note to the deleting area.

Delete a head of a note: Drag the

head of the note to the deleting area.

Delete some of notes: Draw a line

across these notes which will be

deleted and drag to the deleting area.

 42

templates and discard the others. The clustering methods, like K-Means, are proposed

to solve this problem. However, we do not know the distribution of the templates and

could not assign the number of initial seeds exactly. So, we applied MBSAS

(Modified Sequential Algorithmic Scheme) [14] to clustering templates which

automatically determinates the number of initial seeds.

In our databases, we train the shape feature and the direction feature separately.

The training process is applied to every symbol separately. Finally, for each symbol,

we obtain the representative templates.

 43

CHAPTER 4

EXPERIEMENT RESULT

Experiments are conducted to evaluate the performance of the proposed method.

13801 strokes, collected form 14 distinct writers, are used to test our algorithm. 6509

out of 13801 are taken as the training data. The remaining 7292 strokes are the testing

data. Every stroke in the testing data is examined by symbol recognition. Finally, we

could get the most similar symbol of the stroke as the output. In our experiments, a

notebook (Intel T2300 CPU; only single cpu used; 1.66GHz; 1GB memory) and a

digital tablet are used.

In order to measure the performance, we define the “precision” as follows:

,
IncorrectCorrect

Correct
Precision

+
= (7)

The precision for each symbol is shown in Table 4.1. The average precision for

the symbols of our method is 98.35%, which is better than 97.54% of Miyao-

Maruyama’s method [11].

 44

From the misclassified strokes, we find that the misclassification is due to that

some users do not have any domain knowledge about the music theory, and they are

not familiar with writing music notations. Sometimes they ignore the detail about the

difference between symbols, like the curvature or the corners in a stroke. It makes

some strokes ambiguous as trying to recognize. For example, if the user ignores the

curvature between the slash and circle in BHead, the stroke is easily to be recognized

as a WHead.

Table 4.1 Precision of each symbol.

Symbol name Our method (%)

Miyao- Maruyama’s

method(%)

Dot 100.00 99.73

HLine 97.73 87.31

VLine 100.00 100.00

Slash 96.52 96.52

UHook 100.00 93.85

GClef 98.80 99.71

FClefArc 98.55 93.68

LCheck 99.71 90.81

NatureRt 97.87 100.00

Flat 98.69 100.00

WHead 98.46 97.49

BHead 96.70 99.85

StUHook 96.90 99.78

WRest 99.72 99.72

HRest 100.00 100.00

QRest 96.41 99.70

8Rest 95.88 100.00

Average 98.35 97.54

 45

For the misclassified strokes, we provide the semantic correction to correct the

mistakes. There are two rules defined in note level of notation recognition. First,

while a WHead is misclassified to BHead and combine with a Half note, the system

would convert BHead to WHead and do the combination. Second, while a BHead is

misclassified to WHead and combine with Note with filled head, the system would

convert WHead to BHead and do the combination. By the semantic correction, the

precisions of WHead and BHead raise to 99.48% and 99.38%.

The total time of processing the 7292 testing data is about 157.38 seconds. Thus,

the average processing time is about 0.0216 seconds per stroke. This is faster than

Miyao-Maruyama’s method which takes 0.0731 seconds per stroke by a PC (Pentium

4 CPU; 1.8GHz; 512MB memory). Thus, a user takes less waiting time while writing.

Furthermore, our method is more suitable to migrate to the handheld devices with

touched screen which have low computing power, and the user could compose a

music score everywhere.

 46

CHAPTER 5

CONCLUSION

The study proposed a method for recognizing music score by the properties of

strokes. A stroke is recognized as a symbol and the symbol is combined with other

symbols to form a music notation. Firstly, the preprocessing is applied to eliminate

distortion in the stroke. Next, the stroke could be recognized as a simple symbol by

the simple symbol classifier. If not, three feature extraction methods are performed on

the stroke, and then the complex symbol classifier is applied. A decision tree with

three classifiers is used to recognize the stroke to a complex symbol. Finally, the

output symbol is combined with nearby symbols by rules in three levels and output a

music notation. Both recognition rate and recognition speed of our method is better

than those of existing method.

This system is robust enough for a general use. It provides all the common music

notations and easy-using modification operations. Furthermore, music score playing

function is supported for users to listen to the melody while they are editing the music

score. Users are able to compose a complete music score by this system.

The future works are as follows:

 47

• Multi-strokes input: in the proposed system, a stroke is considered as an

input at a time. If the system supports the multi-strokes in a single input, the

user could take less time waiting for the recognition.

• More symbols supported: The symbols are related to the writing styles of the

notation. In this system, we support 17 kinds of symbols. The more

symbols supported means the more ways to write a notation.

• More uncommon used notations supported: The common used music

notations are supported, but some notations only used in a specific purpose

are not included in the system, like C Clef ..., etc. In the future, these

notations would be added to the system, and the system would be suitable

for professional use.

• Semantic hint: When the music score is illegal to the music theory, the

system would show hints to the user. It is very useful for the users who are

not familiar with music theory.

 48

REFERENCES

[1] J. Anstice, T. Bell, A. Cockburn and M. Setchell, “The Design of a Pen-Based

Musical Input System,” In Proceedings of the 6th Australian Conference on

Computer-Human Interaction (OZCHI 1996), Hamilton, New Zealand, pp.

260-267, Nov. 1996.

[2] MagicScore Maestro software, DG software. (http://www.dgalaxy.net/)

[3] Allegro, finale software. (http://www.finalemusic.com/)

[4] S. E. George, “Online Pen-Based Recognition of Music Notation with Artificial

Neural Networks,” Computer Music Journal, vol. 27, no. 2, pp. 70-79, Jun. 2003.

[5] A. Forsberg, M. Dieterich, and R. Zeleznik, “The music notepad,” In Proceedings

of the 11th annual ACM symposium on User interface software and technology,

San Francisco, CA, USA, pp. 203-210, Nov. 1998.

[6] Calligrapher, ParaGraph International, Inc. (http://www.paragraph.com/)

[7] D. Rubine, “Specifying Gestures by Example,” In Proceedings of ACM

SIGGRAPH ’91, New York, USA, pp. 329-337, Jul. 1991.

[8] E. Ng, T. Bell and A. Cockburn, “Improvements to a Pen-Based Musical Input

System,” OzCHI’98: The Australian Conference on Computer-Human

Interaction, Adelaide, South Australia, pp. 178-185, Dec. 1998.

[9] G. Taubman, “MusicHand: A Handwritten Music Recognition System,”Honor

 49

thesis, Brown University, 2005.

[10] S. Macé, E. Anquetil and B. Coüasnon, “A generic method to design pen-based

systems for structured document composition : Development of a musical score

editor,” In Proceedings of the 1st Workshop on Improving and Assessing

Pen-Based Input Techniques, Edinburgh, Scotland, pp. 15-22, Sep. 2005.

[11] H. Miyao and M. Maruyama, “An Online Handwritten Music Score Recognition

System,” In Proceedings of the 17th International Conference on Pattern

Recognition (ICPR 2004), Cambridge, United Kingdom, pp. 461-464, Aug.

2004.

[12] S. Connell and A.K. Jain, "Template-based Online Character Recognition,"

Pattern Recognition 34(1), pp. 1-13. 2001.

[13] X. Li and N. S. Hall, “Corner detection and shape classification of on-line

handprinted Kanji strokes,” Pattern Recognition 26(9), pp. 1315-1334. 1993.

[14] S. Theodoridis and K. Koutroumbas, Pattern recognition, Academic Press. 2006.

	論文封面 （表4）
	論文內頁 （表6）
	Paper v7

