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An Online Handwritten Recognition System of

Music Score

Student: Sin-Jia Gong Advisor: Dr. Ling-Hwei Chen

Institute of Multimedia and Engineering

National Chiao Tung University

Abstract

In this thesis, we presént,an jonline handwritten system for music
score recognition. Music score is_used to record a music song. People
often used to compose a music score on the sheet of paper. In our system,
we propose the pen based writing method and use multi-strokes to form a
music notation. We extract the height, shape and direction from a stroke
as the features and recognize it as a symbol. Then the symbol is combined
with other symbols to form a music notation. The system is robust for a
general use and supports enough music notations for composition. The
recognition rate is 98.35%.

Index term: handwritten, music score, music notation, online, stroke
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CHAPTER 1

INTRODUCTION

Music score is a handwritten or printed form of music notations, and it is often

used in music composition and music representation. It consists of staff, clefs, notes,

rests, and signatures ..., etc.

The common way to record a music score is to write the score on sheets of

papers by pencil or pen. As the computer technology grows rapidly, Musicians use

computer to aid their composition. In eatly. period, optical music recognition (OMR)

is used to recognize the music score|which is scanned to an image. However, the error

rate of OMR system is relatively highland the editing-work of the music score is slow

and tedious [1]. Due to the inconvenience of OMR, the online music editing system is

proposed. The system can directly output the editing resultant to musicians. Besides,

more convenient systems are rapidly developing for user to write on the tablet. One is

the “point and click” system, such as MagicScore Maestro [2] and Allegro [3], which

selects music notations from menus or icons. Hence, the system can directly input the

music notations without recognizing them. Nevertheless, the input processes are

tedious and complicated due to many pen and mouse movements [4].

In order to reduce the tedious input processes, gesture-based music score

recognition systems are developed. Musicians could use specific gestures to represent



specific notations defined by systems. Forsberg er al. [5] proposed such a system

which uses gesture and voice to input the music notations. In the gesture part, it

combines Calligrapher system [6], Rubine’s gesture recognition system [7] and their

recognizer to recognize the input gesture. The supported music notations are limited

and are not sufficient for professional music editors, and some gestures are irrelative

to the shapes of the corresponding music notations. This makes learning curve long

and difficult. Anstice et al. [1] also proposed a gesture-based system called Presto.

After that, Ng et al. [8] proposed an improved version denoted as Presto2, which

improves both usability and speed;of input, but the gestures in the system have little

relation with the actual writing. The recognition aceuracy of gesture-based system

may be acceptable. However, inthe.'gesture-based systems, users must learn and

remember these miscellaneous gestures. Therefore, the gesture-based system is often

very constraining for the user.

Instead of learning miscellaneous gestures, pen-based handwritten systems are

developed to catch the human writing styles. The characteristic of pen-based systems

is that the writing styles is as the same as on sheets of papers. There are several

methods proposed, like neural network, context-free grammar and SVM. In 2003,

George et al. [4] proposed such a system with artificial neural networks. They used a

multi-layer perception to learn music notations and extract the features. The inputs of



these handwriting systems are natural and direct for users, but the error rate may be

alarmingly high. Subsequently, music notations can be recognized by the trained

neural networks. Taubman et al. [9] proposed a handwritten music recognition system

based on statistical moments. Nevertheless, the current system is not stable and not

robust enough for a general use. In 2005, Macé et al. [10] proposed a generic method

which recognizes the music score by context-free grammars and lots of recognizers.

Unfortunately, the user must follow the writing orders and writing locations that are

defined by professional musicians, and it is not friendly for the users that are not

familiar with the music theory. Miyao and Maruyama [11] proposed a handwritten

system based on time series data and image: features. Their system uses dynamic

programming and SVM algorithm to"recognize handwritten music notations. However,

only a small part of music notations is supported in the system. In other way, the

system does not support modification operations, such as deleting or moving a

notation, and this makes the system impractical.

In this thesis, we propose an online handwritten recognition system of music

score which utilizes the input stroke properties, including the height, the shape and the

direction. With these properties, we build a pen based system with high recognition

rate. The system also supports enough music notations and intuitional modification

operations for general use.



The rest of the thesis is structured as follows. Chapter 2 describes the strokes

used in the system. The proposed recognition method is discussed in Chapter 3. The

proposed method has been evaluated by experiments as reported in Chapter 4. The

final chapter closes the thesis with conclusion and future researches.



CHAPTER 2

STROKE DATABASE

A stroke is a collection of points from pen-down to pen-up. A music notation or

notation is the basic unit to record music, including staff, clefs, notes, rests, and

signatures ..., etc. When we are writing, there are some notations we cannot write in a

single stroke, like natural or sharp. We have to write multiple strokes to represent a

notation. In other way, some notations have innumerable dots, heads, or flags, and we

cannot assure the exacted strokes in these notations. In a word, a notation could be

considered as a collection of many [strokes, and. a stroke is a basic input unit in the

system. In our system, as a mew stroke is writteny it would be recognized as a

meaningful symbol. The system collect the symbols inputted in previous time, and try

to convert them to a meaningful notation. Here, we divide the strokes into 17 kinds of

symbol categories, as shown in Table 2.1.

In Table 2.1(1), categories (1) to (6) are called “simple symbols, “ which means

that they could be recognized quickly by some extreme properties, like the stroke

length. The others are called “complex symbols,” which means they need to extract

the features and be classified by the complex symbol classifier which will be

elaborated in the next section.

In our database, we obtained the strokes using a WACOM digital tablet written



by 14 users. The users are not expert musicians and do not have any knowledge about
the music theory. They write the strokes for all symbols on the digital tablet and the
staff is pre-drawn on the screen. Each gap on staff is 25 pixels. For robustness, the

procedure would be carried out at least 1000 times to each user.

Table 2.1 Supported symbols (continued).

= | )

(1) Dot (2) HLine (3) VLine (4) Slash (Flag)
(5) UHook (Flag) (6) GClef (7) FClefArc (8) Flat
(9) NaturalRt (10) LCheck (11) StUHook

O DO @ O

(12) WHead (13) BHead




Table 2.1 Supported symbols.

ST v

(14) WRest (15) HRest (16) QRest (17) 8Rest

Table 2.2 shows all the supported music notations in this system. There are four
types of notations supported. Table 2.2(a) is bar line which is used to separate the bars.
Table 2.2(b) shows two examples of group which is a beam note formed by grouping
several notes with filled head using a. horizontal beam. Table 2.2(c) is the
determinable note which consists of fixed number of symbols. Table 2.2(d) shows

some uncertain notes with innumerable symbols, suchras dot, flag...etc.

Table 2.2 Supported music notations (continued).

(a) Bar line

(b) Group

ie— o




Table 2.2 Supported music notations.

(c) Determinable note

i . h

(d) Uncertain note




CHAPTER 3

THE PROPOSED METHOD

In this system, we recognize the input stroke as a symbol and then combine the

symbol with other symbols to form a music notation.

The flow diagram of the symbol recognition is shown in Fig. 3.1. The whole

process consists of 4 major phases: preprocessing, simple symbol classifier, feature

extraction and complex symbol classifier. In the preprocessing phase, the noise and

variety in the stroke would be eliminated.. In the simple symbol classifier, the stroke

with extreme properties would be récognized as.a symbol and output as the result. If

the stroke in the simple classifier is not-recognized, it-would be processed in the next

phase. In the feature extraction phase; height; shape and direction are extracted from

the stroke as features. In the complex symbol recognition phase, based on the

extracted features, the stroke would be recognized as a symbol by the decision tree. In

the decision tree, some similarity measures are provided to determine the most similar

symbol in the database.

Simple No Complex
Input |  Pre- [, symg o] < Classified? Feature |, sym%ol >Matched
stroke | processing . extraction . symbol
classifier classifier

T

Fig. 3.1 Flow diagram of the symbol recognition.



After the symbol recognition, the notation recognition is conducted. Based on the
semantic information, the output symbol would be combined with other existed
symbols to form a notation. Finally, the system outputs the printed music notation and

puts it at the exact location on staff.

3.1 Preprocessing

There are some problems after sampling the stroke. First, the stroke captured by
the digital tablet tends to contain some noises which make the stroke jagged. Second,
the stroke is sampled from the digital tablet by the fixed time interval, so the writing
speed would affect the captured;stroke. Finally, as pen-up and pen-down, there are
some slips occurred which is caused: by the“user. IJn order to reduce the noise and
variety in the stroke, we apply the preprocessing, including smoothing filter, gap filter

and slipped segment remover.

3.1.1 Smoothing filter

The reason why a stroke jagged is that some errors occurred in the digital tablet
or the unstable state the user is writing in. In order to eliminate these jags, we apply
Gaussian filter [12] to make the stroke more smooth and keep the global information

of corners in the stroke.

10



For every point (x(¢),y(¢)), we smooth the stroke by

x(1)'= D wx(), y(1)'= D w,y(), (1)

i=30 i=—30
where
8_20'2
Wi=— 2, o=11
30 _g
Zj:—30'e
3.1.2 Gap filter

Because the digital tablet samples points with a fixed time interval, the writing

speed makes the distances between two points to be.different. There would be some

gaps in the stroke. These gaps-would affect the curvature detection in later process.

Fig. 3.2(a) is an example of writing'with.differént speed. In order to compensate these

gaps, we interpolate some new points between two adjacent points.

For each two adjacent points, let dx be the x difference between the two points,

dy be the y difference between the two points. Then if max(dx,dy)>1, we interpolate

max(dx,dy) points between them by linear interpolation. Fig. 3.2(b) shows the result

of applying the process of the interpolation to Fig. 3.2(a).

11



(2) (b)

Fig. 3.2 An example of gap filter. (a) The original stroke with writing speed from

fast to slow. (b) The stroke after the process of the interpolation.

3.1.3 Slipped segment remover

Slips are the action that user’s pen moye. to the unexpected direction on the
digital tablet. In the beginning and ending to.writea stroke, it is easy to generate
surplus slipped segments. The circles in Fig: 33 show the slipped segments of a
stroke. We could remove slipped segments by detecting whether the length of the first

segment or the last segment in a stroke is shorter than a given threshold.

o,

Fig. 3.3 An example of slipped segments in a stroke.

12



In order to eliminate the slipped segments, the first step is to find the candidates

of slipped segments. Along a stroke, there usually exist some points with local

extrema of curvature between the slipped segment and the others. To get these points,

we first define dominant points as follows: (a) points corresponding to the local

extrema of curvature; and (b) pen-up and pen-down points. Li and Hall proposed a

method [13] to find dominant points in a stroke using a support region based on 8

ways chain codes which is shown in Fig. 3.4. Here, this method is adopted to find all

dominant points in a stroke. Then we divide the stroke into several segments by

dominant points. The first segment and last ‘one are the candidates of the slipped

segments. If the length of the candidate is less than'a threshold, it is a slipped segment

and would be removed. The threshold ‘is set“as half of the gap’s height on staff in

music score. Fig. 3.5 shows that there are five dominant points found in Fig. 3.3 and

four segments are obtained. The first and the last segments are slipped ones.

7 1
6« >
5 v 3
4

Fig. 3.4 8 ways chain codes.

13



O

Fig. 3.5 An example of five dominant points in a stroke.

3.2 Simple symbol classifier

By observing the 17 kinds of symbols, we find that some symbols can be
classified quickly by the extreme properties. We call these symbols as simple symbols,
including Dot, the straight line of HLin¢, VLine;.the straight line of Slash, the straight
line of UHook and GClef. Here; we will-discuss how to classify simple symbols.

Among all symbols, the length/of GClef is-longest obviously. By this property,
we could easily recognize a stroke as a GClef symbol if the length of the stroke is
longer than the length threshold. The length threshold is set as 12 times gap’s height.

By observing the width and the height of a symbol, the Dot symbol has the
smallest width and the smallest height in symbols. Therefore, the stroke would be
recognized as a Dot symbol if the width and the height of the stroke are both shorter

than a given threshold. The threshold is set as half of gap’s height on staff.

To classify if a stroke is a straight line, a linearity measure is defined as

14



L
G(P(s),P(e))’

linearity = 2)

where L denotes the length of the stroke. G() denotes Euclidean distance. P(s)
denotes the starting point of the stroke and P(e) denotes the ending point of the stroke.
Fig 3.6 illustrates an example of the linearity. If a stroke is a straight line, the linearity
should approach to 1. Thus, if the linearity is smaller than the threshold, 1.07, we
consider the stroke as a straight line and recognize it as HLine, VLine, Slash or
UHook according to its slope. Once the stroke is recognized as a simple symbol, it

would be output and exit the symbol recognition.

P(e)

P(s)

Fig. 3.6 An example of linearity of a stroke.

3.3 Feature extraction
If a stroke is not classified as a simple symbol, we will do feature extraction from

the stroke. Here, we take three kinds of features: height, shape and direction.

15



3.3.1 Height

Notations in music theory have height limitation. Since notations are formed by
symbols, symbols also have the height limitation. In Fig. 3.7, the height of FClefArc
must be at least 2 times gap’s height on staff, and the height of WHead must be less
than 2 times gap’s height. We could extract the height of a stroke as a feature for

rough classification.

O

(a) (b)

Fig.3.7 Two examples of heights of symbols on staff. (a) FClefArc. (b) WHead.

3.3.2 Shape

As described in Section 3.1.3, each stroke will be divided into several segments.
Every segment has its special shape. Fig. 3.8 shows that a stroke consists of two
segments with a vertical line and a slash. The number of shapes would be useful for
classifying stroke. There are 7 kinds of basic shapes shown in Table 3.1. These shapes
are horizontal line, vertical line, slash, backslash, clockwise curve, counter-clockwise
curve and circle. Here, the horizontal line, vertical line, slash and backslash are

roughly called “straight line.” The clockwise curve, counter-clockwise curve and

16



circle are roughly called “curve.”

Fig. 3.8 An example for the shape feature of a stroke.

Table 3.1 The 7 basic shapes. (1) Horizontal line. (2) Vertical line. (3) Slash.

(4) Backslash. (5) Clockwise curve. (6) Counter-clockwise curve.

(7) Circle.
— /N D € O
(1) (2) (3) 4) (5) (6) (7)

By the linearity and slopes mentioned in Section 3.2, we could determine if a

segment is a horizontal line, vertical line, slash or backslash. If the segment does not

belong to straight line, it may be a clockwise curve, a counter-clockwise curve, or a

circle. Fig. 3.9 shows the clockwise curve, the counter-clockwise curve and the circle.

17



(a) (b) (c)

Fig. 3.9 Examples of curve segments. (a) Clockwise curve. (b) Counter-clockwise

curve. (c) Circle.

The difference between the straight line and the curve is that the curve changes
its direction very often. For each three adjacent points of a clockwise curve, the
direction change from the previous point-to-the next point tends to be right direction.
The direction change of the counter-clock‘curve tends=to be left direction. The straight
line has no direction change. Fig. 3:10 shows the direction changes in clockwise curve,
counter-clockwise curve, and straight line. We could accumulate the direction change
value to detect what kind of curve the segment is like. Based on the 8 way chain codes,

the accumulated direction change value v is calculated by
v="> cost(c(i),c(i—1)), 3)
i=1

where i denotes the ith point in the segment. n denotes the number of points in the
segment. c(i) denotes the chain code of the ith point in the segment. “cost” denotes the

cost between two chain codes, which is shown in Table 3.2.

18



Currentgﬂ;} \ Current T Current

(a) (b) (©

Fig. 3.10 Examples of the direction changes. (a) Clockwise curve.

(b)Counter-clockwise curve. (c) Straight line.

Table 3.2 The cost between two chain codes.

c\@l) O 1 2 3 4 5 6 7

oj0 -1 -1 -1 -1 1 1 1

rfr o -1 -1 -1 -1 1 1

In the cost table, the values are defined by 2 cases which are explained as

follows:

1. If the current chain code is the same as the previous one, it means that

they go toward the same direction and the direction change value is 0.

19



2. Otherwise, it means that the direction has been changed. We assign the

direction change value +1 as they are toward the clockwise direction, and

-1 as the counter-clockwise direction.

Then we classify each segment based on the accumulated direction change. If

v>0, the segment is a clockwise curve. If v<0, it is a counter-clockwise curve.

Furthermore, if [vI>5, it means that the curve changes its direction frequently and the

segment is classified as a circle.

The last step is to calculate the number of every kind of shapes in the stroke. The

vector of dimension 7 containing numbers of seven shapes is viewed as a shape

feature.

3.3.3 Direction

The direction is the sequence of writing direction in time order, and it could

reflect the writing style of a symbol. Fig. 3.11 shows the stroke with two writing

directions, one is south and the other is east-north. The direction extracted from the

stroke could help us clarify the difference among some symbols with similar shapes.

For example, Fig. 3.12 shows two strokes with the same shape feature, but their

direction features are different. We use the 8 way chain codes to represent the

direction. We could extract the direction by eliminating the duplicate chain codes in
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the same direction. For example, if the chain code sequence of a stroke is
(444444400111), the (4, 0, 1) is the direction feature. Note that the dimensions of the

direction features of different strokes may be different.

/

Fig. 3.11 An example of direction feature in a stroke.

Fig. 3.12 An example of two strokes with the same shape feature, but
different direction features. (a)WRest with direction feature (4, 2,
0). (b)HRest with direction feature (0, 2, 4).

3.4 Complex symbol classifier
Symbols except simple symbols are complex symbols. Features extracted from a
stroke, including height, shape and direction, are taken for complex symbol matching

at this phase.
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Based on these three features, we construct three classifiers separately, including
height classifier, shape classifier and direction classifier. Because some symbols in
some classifiers are similar and are hard to separate them, we build a three level
decision tree, which is shown in Fig. 3.13, to deal with this problem. The first level is
the height classifier which roughly classifies symbols by the height feature. The
second is the shape classifier which classifies symbols by the shape feature. The third
level is the direction classifier which classifies symbols by the direction feature and

outputs the recognized result.

m & Height — -

&— Shape —>

& Direction—»

Fig. 3.13 A decision tree.

3.4.1 Height classifier

The heights of printed music notations are ruled by the music theory. Because the
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music notations are formed by symbols, symbols also have the height limitations in

writing. By a height threshold, some symbols will be considered as high and some

will be considered as low. However, due to the writing distortion, some symbols

sometimes will be considered as in the high, sometimes low. We consider these

symbols with unsure heights as variant. Fig. 3.14 shows the symbols in the low group,

the high group, and the variant group.

(a) Low (b) High

(c) Variant

Fig. 3.14 Three groups in height. (a) Low group. (b) High group. (c) Variant
group.

In the height classifier, we use 2 times gap’s height on staff as a threshold to

classify symbols into the high group and the low group. Fig. 3.15(a) shows the low

group in the height classifier. Fig 3.15(b) shows the high group in the height group.
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The symbols surrounded by the dotted line and originally belonging to the variant

group will be handled later.

(b) High group

Fig. 3.15 Two groups in the height classifier. (a) Low group. (b) High group.

When a new stroke is coming, this classifier classifies the stroke to the high

group or low group based on the height feature.

3.4.2 Shape classifier
In this stage, we group symbols with similar shape features. Fig. 3.16 shows the

groups with similar shape features. The shape difference, SD, between two shape
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features is defined as follows:

SD =" \S1G)* - S2(i)*, )

where S/ is the vector of the shape feature 1. S2 is the vector of the shape feature 2.
As a new stroke is coming, the classifier could measure the shape distance

between the stroke and the shape templates in each group and applies KNN to find the

group with the nearest distance. In H1 of Fig 3.16(b), there is only one possible

symbol in the group, which will be output directly without further processing.

Low

L1 L2 L3 L4
(a)

Fig. 3.16 Groups in the shape classifier. (a) For low group. (b) For high group.

(continued).
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High

H1 H2 H3

(b)

Fig. 3.16 Groups in the shape classifier. (a) For low group. (b) For high group.

3.4.3 Direction classifier

In the third level of the “decision tree,” we would find most likely symbol

according to the direction feature. We measure the distance between the direction

feature of the stroke and the direction templates in database. Because the direction

features are variable in dimension, the distance measure could be considered as the

string matching problem. We apply the dynamic programming to obtain the distance.

Let {a;, ay,.., a;} denotes the direction feature and {by;, byo,..., by} denotes the

kth template in database. The accumulated distance gi(i,j) is calculated as follows:
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Initial values:

g, 0,00=0
gk(l’o)'zoo b (5)
gk (O’ .]) =0

Recurrence formula:

g, H=min(g, (i —1,j—1),g,G-1 ), g, j—1) ©

+ differnece(a,, bkj ),
where the difference is the chain code difference between chain code a; and chain

code by;. The difference is defined in Table 3.3.

Table 3.3 Difference between two chain codes.

a\y, 001 2 3 4 5 6 7

o o 1 2 3 4 3 2 1
1 Jj1r 0 1 2 3 4 3 2

Using above formula, the distance, gi(I,J), is calculated. After examining the

distances with all templates, we find the symbol with the nearest distance and output
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the symbol as the recognized result.

3.5 Notation recognition

After a stroke is recognized as a symbol, the notation recognizer will be
conducted by combining symbols. The output symbol will be combined with
previously recognized and unused symbols to form a notation based on the semantic
information. There are 3 levels in the notation recognition. In the bar level, those
unused symbols would be combined to form a bar line. In the note level, those unused
symbols would be combined to form a note. In the group level, some specific notes
would be grouped together. The'other part-of notation recognition is modification
operation. It provides the deleting;: editing and“moving operations which can be used

in the three levels.

3.6.1 Bar level

In music theory, a bar is a container containing notes, and a bar line is used to
separate bars. In our system, the bar would be constructed automatically to hint the
user. We combine unused symbols to form a bar line in the bar level. In each bar, the
pseudo borders of the bar are pre-drawn in our system. We define the head and the

end of the bar as the reactive area for combining symbols separately. Fig 3.17 shows
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the reactive areas in a bar. By the shape of bar lines, we define the components in

Table 3.4 to describe how to form a bar line. When a new coming symbol falls in one

of these reactive areas, we would combine the new symbol and the existed symbols in

the area and check whether the combined one matches the sets in Table 3.4. If yes,

update the bar line; otherwise, the symbol would be sent to the note level.

Bar
L L1
Reactive Reactive
area area

Fig. 3.17 The reactive areas in a bar.

Table 3.4 List of bar line with the set of components forming them.

Bar line name Component

Single bar line ( | ) 1 VLine

Double bar line ( |l ) 2 VLines

End bar line ( Il ) 3 VLines

Repeat sign line( :|I ) 1 Dot, 0 or more VLines
3.6.2 Note level

Notes are used to represent the relative duration and pitch of a sound in the music

score. Symbols are combined to form a note in this level. By the composition of a
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note in music theory, there are three types of notes: determinable, uncertain and

incomplete. Determinable note means that the numbers of symbols in it are fixed. The

uncertain note means there are innumerable dots, heads, or flags in it. The incomplete

note is a part of a certain note and recorded as a temporary note in this system. Fig.

3.18 shows that a sharp, which is a determinable note, has two VLines and two

HLines exactly. Fig. 3.19 shows that a Note with filled head would be added by some

hooks or dots. Fig. 3.20 shows an incomplete note which only has a filled head.

Fig. 3.18 An example of the determinable note.

;DA

Fig. 3.19 Some examples of the uncertain notes.

Fig. 3.20 An example of the incomplete note.

When a new symbol is coming to this level, we would search the nearest

uncertain or incomplete note. We do not have to search the determinable note, because

30



it is impossible to add more symbols to it. If the distance to the nearest note is too

large, we would construct a new empty incomplete note, and add the new symbol to it.

Then check the symbols with rules in Table 3.5 [11], which consists of three cases as

follows:

1. If we find a match in the table, then update the note and set its type.

2. If we could not find a match in the table, and the set of symbols is a subset of

a note, then we add the symbol to the note and set its type to be incomplete.

3. If we could not find a match and the set of symbols is not a subset of a note,

then the new symbol would be discarded.

Table 3.5 List of notes with the set of symbols forming them (continued).

Note name Type Components

FClef (9:) Determinable | 2 Dots, 1 FClefArc
Determinable | 1 FClefArc

Sharp ( # ) Determinable | 2 HLines, 2 VLines
Determinable | 2 Slashes, 2 VLines
Determinable | 1 HLine, 1 Slash, 2 VLines
Determinable | 2 UHooks, 2 VLines
Determinable | 1 HLine, 1 UHook, 2 VLines
Determinable | 1 Slash, 1 UHook, 2 VLines

GClef ( é ) Determinable | 1 GClef

Natural ( h ) Determinable | 1 LCheck, 1 NaturalRt

1 LCheck, 1 8Rest
Flat ( I) ) Determinable | 1 Flat

31



Table 3.5 List of notes with the set of symbols forming them.

Note name Type Components
Whole note Uncertain 0 or more Dot(s), 1 or more WHead(s)
(eg, ©,8.9)
Half note Uncertain 0 or more Dot(s), 1 VLine, 1 or more
(e.g., J , é, J ) WHead(s)
Note with filled head Uncertain 1 or more BHead(s), 0 or more Dot(s),
(e.g.,J , J, J , oh ) 0 or more UHook(s), 1 VLine, O or
more Slash(es)
Uncertain 1 or more BHead(s), 0 or more Dot(s),
0 or more Slash(es), 1 VLine, O or
more UHook (s)
Uncertain 1 or more BHead(s), 0 or more Dot(s),

1 StUHook, 0 or more Uhook(s), O or

more Slash(es)

Uncertain 1 or more BHead(s), 0 or more Dot(s),
1 Lcheck, 0 or more Slash(es), 0 or
more UHook(s)
Whole rest Uncertain 0 or more Dot(s), 1 WRest
(e.g.,”,"™")
Half rest Uncertain 0 or more Dot(s), 1 HRest
(.2 mm> mme)
Eight rest Uncertain 1 8Rest, 0 or more Dot(s), 0 or more
(e.g., 7 , 7 , ‘7 ) HLine(s)
Quarter rest Uncertain 0 or more Dot(s), 1 QRest

g, & &)

Fig. 3.21 shows the examples of the three cases. In Fig. 3.21(a), a NaturalRt is

combined with an LCheck to form a Natural note which is determinable. In Fig.

3.21(b), a LCheck symbol is added to an empty note. Since it is a subset of Natural

and may become a Natural in the future, the note is set as an incomplete note. In Fig.
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3.21(c), an HLine symbol is added to a Note with a filled head. This action is illegal

and the set of symbols doesn’t belong to any note. Since the HLine could not be used

in the future, hence the HLine would be discarded.

Determinable
_>
time
(D 2
(a)
Possible be Natural
Set as “incomplete”
e
time
(H 2
(b)
HLine
Discard

‘ the HLine

)

time

()
Fig. 3.21 Some examples of combining symbols at the note level. (a) Case 1.
(b) Case 2. (c) Case 3.

In order to keep the simplification of the system, when there are two incomplete

notes existing in the meanwhile, we would only keep the latest note and delete the
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other. Fig 3.22 shows an example. At first, there is an incomplete note existed in the

system. Then the user writes a new stroke, and the distance between the stroke and the

incomplete note is too large. After the symbol recognition, the stroke is recognized as

a new symbol and applies the notation recognition. In the note level, because of the

large distance, the system constructs a new incomplete note containing the new

symbol. At this time, there are two incomplete notes existing. We would consider that

the user wants give up the old incomplete note and writes another new notation.

Hence the old incomplete note would be deleted.

Create a new

Incomplete Distance is too large Delete incomplete note
note
- L / - L
> time
) @ (€)

Fig. 3.22 An example of deleting an incomplete note.

For recording the pitch, some notes have to be located at the corresponding line

or space on staff. These notes are Sharp, Natural, Flat, Whole note, Half note and

Note with filled head. Fig. 3.23 shows some of these notes with pitch corresponding

to line 2. We proposed a method to obtain the pitch of these notes. First, because the

pitch on staff is related to the y-axis, we project all points of the note to the y-axis,
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and calculate the number of the projected points for each y-value. Fig. 3.24 shows a
Sharp projected to y-axis. Then we apply the threshold which is defined for each note
separately. The number of projected points on y which is below the threshold would
be set to zero. Finally, we obtain an interval contains all non-zero values on y. The
lines or spaces in the interval are the candidates for the pitch, and next we would
determine the most possible one. We get the middle point, my, of the interval and
define a window of size ¢, which is less than a half height of a space. If there is a line
existing between my-t and my+t, the line is considered as the pitch of the note;
otherwise, the space where my falls"would be the pitch of the note. In Fig. 3.25(a), we
could see that no line falls betwéen my-t and my+z, so the pitch of the sharp is the
space i. Fig. 3.25(b) shows another example that a line falls between my-t and my+t,

and the pitch of the sharp is line i.

Line 5
Line 4
Line 3 :
Line 2 ﬂ

Line 1

O &
(c) (d) (e) ()

AVl

~
o
~— =

(a)

Fig. 3.23 Some examples for the pitches of notes corresponding to line 2. (a) Sharp.
(b) Natural. (c¢) Flat. (d) Whole note. (e) Half note. (f) Note with filled head.
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i interval
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321

Fig. 3.24 An example of a sharp projected to y-axis.

Line 1
. my-t
Space i my
. . my+t
Line 1+1
(2)
__/-—""_ JE——
Line i i —— Y
PR AN PR, my
Space i —FF——f — == mytt
Line i+1 \
(b)

Fig. 3.25 Some examples of pitch detection. (a) The pitch on the space. (b)
The pitch on the line.
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3.6.3 Group level

In music theory, when two or more notes with filled head and flags appear
successively, we could group them using a beam to replace the flags. When playing
the music score, the notes with beam should be more connected than non-beamed
notes. As writing, users always draw a horizontal line across the notes to represent the
grouping action. In the group level, we group the notes to form a beamed note. Steps
for grouping are presented as follows:

1. We define the HLine symbol as the signal to group the notes by the
common practice. If the new coming symbol is HLine, go to step 2;
otherwise, reject the symbol.

2. Only the Note withfilled"head“could be ‘grouped in the music theory, and
the accidental notes, like Sharp, Flat and Natural could be ignored. In the
range where the HLine symbol covers along the x-axis, check whether
the notes are valid.

3. The system would detect the time duration of each Note with filled head
and draw the appropriate beam. In the meanwhile, all the flags on the
notes would be removed.

If the grouped notes are quarter notes, we would consider the user forces to

group the notes, and they would be converted to eighth notes automatically. Fig 3.26
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shows an example which indicates how notes are grouped by the three steps.

[ | time

Fig. 3.26 An example of group note.

For those notes grouped, we also support to add more beams on these notes. By
the common practice, the user only write a HLine on the notes where he would like to
add a beam, the system would draw a_new, beam and update the time durations of
these notes covered by the HLine. Fig. 3:27-shows an example of adding a new beam

to a grouped note.

Fig. 3.27 An example of adding a beam to a grouped note.

3.6.4 Modification operation

In this stage, we introduce the modification operations for editing the music
score. In the past, few systems provide the easy-using modification operations. They
just use buttons as the modification operations on the screen for users to click. The

input method is like the “point and click” based systems which is mentioned in
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previous chapter. For users, this is not intuitional at all. Instead of buttons, we take the

advantage of pen based input method and provide some gestures for the modification

operations.

We define two horizontal lines which are higher and lower than the music score,

called “border lines.” The border lines are the writing borders in the system. The area

between two border lines is called “writing area,” and the other areas are called

“deleting area.” Fig. 3.28 shows these lines and areas. Writing in the writing area is

valid, or it is an illegal operation. The concept of the modification operations contains

two points: (1) if we want to move;the location ot pitch of a note, we could drag parts

of a notation or whole notation to the destination’ directly. (2) If we want to delete

some parts of the notation or the?whole'one; just drag'it to the deleting area.

Deleting area

Border line —

Staff _— Writing area

Border line —

Deleting area

Fig. 3.28 The border line, writing area and deleting area in the system.

In Table 3.6, we list all the modification operations supported in the system and

the details of these operations. The arrow line is the trajectory of the modification

operation.
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Table 3.6 List of the supported modification operation (continued).

Modification operation

Example

Move a beam note: Drag the beam
and move to the destination.

i

Move a note: Drag the note and
move to the destination.

Modify the pitch of a note: Drag the
note and move to the desired line or
space.

Modify the pitch of a note with
heads: Drag the head of the note and
move to the desired line or space.

Delete a bar line: Drag the bar line to
the deleting area.

Separate a group of notes: Drag the
beam to the deleting area.
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Table 3.6 List of the supported modification operation.

Delete a note: Drag the note to the 4
deleting area. E—
L/
. —
Delete a dot of a note: Drag the dot
of the note to the deleting area. N I
&
Delete a flag of a note: Drag the flag
of the note to the deleting area.
Y Y
Delete a head of a note: Drag the
head of the note to the deleting area. —t —
—_— _> —_—
y Y B
\
Delete some of notes: Draw a line /)‘
across these notes which will be /
deleted and drag to the deleting area. ) S
e

3.5 Database reduction

The database consists of a lot of templates. To compare the feature with every

template is very inefficient. If we could reduce the number of templates, the

consuming time would be reduced. The problem is how to obtain the representative
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templates and discard the others. The clustering methods, like K-Means, are proposed
to solve this problem. However, we do not know the distribution of the templates and
could not assign the number of initial seeds exactly. So, we applied MBSAS
(Modified Sequential Algorithmic Scheme) [14] to clustering templates which
automatically determinates the number of initial seeds.

In our databases, we train the shape feature and the direction feature separately.
The training process is applied to every symbol separately. Finally, for each symbol,

we obtain the representative templates.
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CHAPTER 4

EXPERIEMENT RESULT

Experiments are conducted to evaluate the performance of the proposed method.

13801 strokes, collected form 14 distinct writers, are used to test our algorithm. 6509

out of 13801 are taken as the training data. The remaining 7292 strokes are the testing

data. Every stroke in the testing data is examined by symbol recognition. Finally, we

could get the most similar symbol of the stroke as the output. In our experiments, a

notebook (Intel T2300 CPU; only single cpu used; 1.66GHz; 1GB memory) and a

digital tablet are used.

In order to measure the performance, we define the “precision” as follows:

.. Correct
Precision = ; @)
Correct + Incorrect

The precision for each symbol is shown in Table 4.1. The average precision for

the symbols of our method is 98.35%, which is better than 97.54% of Miyao-

Maruyama’s method [11].
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Table 4.1 Precision of each symbol.

Miyao- Maruyama’s

Symbol name Our method (%) method(%)
Dot 100.00 99.73
HLine 97.73 87.31
VLine 100.00 100.00
Slash 96.52 96.52
UHook 100.00 93.85
GClef 98.80 99.71
FClefArc 98.55 93.68
LCheck 99.71 90.81
NatureRt 97.87 100.00
Flat 98.69 100.00
WHead 98.46 97.49
BHead 96.70 99.85
StUHook 96.90 99.78
WRest 99.72 99.72
HRest 100.00 100.00
QRest 96.41 99.70
8Rest 95.88 100.00
Average 98.35 97.54

From the misclassified strokes, we find that the misclassification is due to that

some users do not have any domain knowledge about the music theory, and they are

not familiar with writing music notations. Sometimes they ignore the detail about the

difference between symbols, like the curvature or the corners in a stroke. It makes

some strokes ambiguous as trying to recognize. For example, if the user ignores the

curvature between the slash and circle in BHead, the stroke is easily to be recognized

as a WHead.
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For the misclassified strokes, we provide the semantic correction to correct the

mistakes. There are two rules defined in note level of notation recognition. First,

while a WHead is misclassified to BHead and combine with a Half note, the system

would convert BHead to WHead and do the combination. Second, while a BHead is

misclassified to WHead and combine with Note with filled head, the system would

convert WHead to BHead and do the combination. By the semantic correction, the

precisions of WHead and BHead raise to 99.48% and 99.38%.

The total time of processing the 7292 testing data is about 157.38 seconds. Thus,

the average processing time is about 0.0216 seconds per stroke. This is faster than

Miyao-Maruyama’s method which takes 0.0731 seconds per stroke by a PC (Pentium

4 CPU; 1.8GHz; 512MB memory). Thus, a‘user takes less waiting time while writing.

Furthermore, our method is more suitable to migrate to the handheld devices with

touched screen which have low computing power, and the user could compose a

music score everywhere.
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CHAPTER 5

CONCLUSION

The study proposed a method for recognizing music score by the properties of

strokes. A stroke is recognized as a symbol and the symbol is combined with other

symbols to form a music notation. Firstly, the preprocessing is applied to eliminate

distortion in the stroke. Next, the stroke could be recognized as a simple symbol by

the simple symbol classifier. If not, three feature extraction methods are performed on

the stroke, and then the complex symbol classifier is applied. A decision tree with

three classifiers is used to recognize the stroke to-a complex symbol. Finally, the

output symbol is combined with'nearbysymbols by /rules in three levels and output a

music notation. Both recognition rate and recognition speed of our method is better

than those of existing method.

This system is robust enough for a general use. It provides all the common music

notations and easy-using modification operations. Furthermore, music score playing

function is supported for users to listen to the melody while they are editing the music

score. Users are able to compose a complete music score by this system.

The future works are as follows:
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Multi-strokes input: in the proposed system, a stroke is considered as an
input at a time. If the system supports the multi-strokes in a single input, the
user could take less time waiting for the recognition.

More symbols supported: The symbols are related to the writing styles of the
notation. In this system, we support 17 kinds of symbols. The more
symbols supported means the more ways to write a notation.

More uncommon used notations supported: The common used music
notations are supported, but some notations only used in a specific purpose
are not included in the:system, like C_Clef ..., etc. In the future, these
notations would be added to the system; and the system would be suitable
for professional use.

Semantic hint: When the music score is illegal to the music theory, the
system would show hints to the user. It is very useful for the users who are

not familiar with music theory.
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