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線上樂譜手寫辨識系統 

研究生：龔信嘉 指導教授：陳玲慧 博士 

國立交通大學多媒體工程研究所 

摘要 

 

本篇論文中我們提出了一個線上的樂譜手寫辨識系統。

樂譜是用來記錄樂曲的工具，作曲家常用其於創作與交流音

樂。論文中，我們使用與在紙上相同的書寫方法，利用多筆

劃組合出音樂符號。而筆劃的特徵有三種，高度，組成之基

本圖形以及方向，可用來辨識出此筆劃所屬類型，再將其組

合成所需要的音樂符號。本系統支援基本創作需要之全部音

樂符號，辨識率為 98.35%，並且提供方便及完善的樂譜修改

功能。 

索引詞：手寫、音樂符號、線上、筆劃 
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An Online Handwritten Recognition System of 

Music Score 

Student: Sin-Jia Gong  Advisor: Dr. Ling-Hwei Chen 

Institute of Multimedia and Engineering 

National Chiao Tung University 

 

Abstract 

In this thesis, we present an online handwritten system for music 

score recognition. Music score is used to record a music song. People 

often used to compose a music score on the sheet of paper. In our system, 

we propose the pen based writing method and use multi-strokes to form a 

music notation. We extract the height, shape and direction from a stroke 

as the features and recognize it as a symbol. Then the symbol is combined 

with other symbols to form a music notation. The system is robust for a 

general use and supports enough music notations for composition. The 

recognition rate is 98.35%.  

Index term: handwritten, music score, music notation, online, stroke 
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CHAPTER 1 

INTRODUCTION 

 

Music score is a handwritten or printed form of music notations, and it is often 

used in music composition and music representation. It consists of staff, clefs, notes, 

rests, and signatures …, etc.  

The common way to record a music score is to write the score on sheets of 

papers by pencil or pen. As the computer technology grows rapidly, Musicians use 

computer to aid their composition. In early period, optical music recognition (OMR) 

is used to recognize the music score which is scanned to an image. However, the error 

rate of OMR system is relatively high and the editing work of the music score is slow 

and tedious [1]. Due to the inconvenience of OMR, the online music editing system is 

proposed. The system can directly output the editing resultant to musicians. Besides, 

more convenient systems are rapidly developing for user to write on the tablet. One is 

the “point and click” system, such as MagicScore Maestro [2] and Allegro [3], which 

selects music notations from menus or icons. Hence, the system can directly input the 

music notations without recognizing them. Nevertheless, the input processes are 

tedious and complicated due to many pen and mouse movements [4]. 

In order to reduce the tedious input processes, gesture-based music score 

recognition systems are developed. Musicians could use specific gestures to represent 
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specific notations defined by systems. Forsberg et al. [5] proposed such a system 

which uses gesture and voice to input the music notations. In the gesture part, it 

combines Calligrapher system [6], Rubine’s gesture recognition system [7] and their 

recognizer to recognize the input gesture. The supported music notations are limited 

and are not sufficient for professional music editors, and some gestures are irrelative 

to the shapes of the corresponding music notations. This makes learning curve long 

and difficult. Anstice et al. [1] also proposed a gesture-based system called Presto. 

After that, Ng et al. [8] proposed an improved version denoted as Presto2, which 

improves both usability and speed of input, but the gestures in the system have little 

relation with the actual writing. The recognition accuracy of gesture-based system 

may be acceptable. However, in the gesture-based systems, users must learn and 

remember these miscellaneous gestures. Therefore, the gesture-based system is often 

very constraining for the user. 

Instead of learning miscellaneous gestures, pen-based handwritten systems are 

developed to catch the human writing styles. The characteristic of pen-based systems 

is that the writing styles is as the same as on sheets of papers. There are several 

methods proposed, like neural network, context-free grammar and SVM. In 2003, 

George et al. [4] proposed such a system with artificial neural networks. They used a 

multi-layer perception to learn music notations and extract the features. The inputs of 
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these handwriting systems are natural and direct for users, but the error rate may be 

alarmingly high. Subsequently, music notations can be recognized by the trained 

neural networks. Taubman et al. [9] proposed a handwritten music recognition system 

based on statistical moments. Nevertheless, the current system is not stable and not 

robust enough for a general use. In 2005, Macé et al. [10] proposed a generic method 

which recognizes the music score by context-free grammars and lots of recognizers. 

Unfortunately, the user must follow the writing orders and writing locations that are 

defined by professional musicians, and it is not friendly for the users that are not 

familiar with the music theory. Miyao and Maruyama [11] proposed a handwritten 

system based on time series data and image features. Their system uses dynamic 

programming and SVM algorithm to recognize handwritten music notations. However, 

only a small part of music notations is supported in the system. In other way, the 

system does not support modification operations, such as deleting or moving a 

notation, and this makes the system impractical.  

In this thesis, we propose an online handwritten recognition system of music 

score which utilizes the input stroke properties, including the height, the shape and the 

direction. With these properties, we build a pen based system with high recognition 

rate. The system also supports enough music notations and intuitional modification 

operations for general use. 
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The rest of the thesis is structured as follows. Chapter 2 describes the strokes 

used in the system. The proposed recognition method is discussed in Chapter 3. The 

proposed method has been evaluated by experiments as reported in Chapter 4. The 

final chapter closes the thesis with conclusion and future researches. 
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CHAPTER 2 

STROKE DATABASE 

 

A stroke is a collection of points from pen-down to pen-up. A music notation or 

notation is the basic unit to record music, including staff, clefs, notes, rests, and 

signatures …, etc. When we are writing, there are some notations we cannot write in a 

single stroke, like natural or sharp. We have to write multiple strokes to represent a 

notation. In other way, some notations have innumerable dots, heads, or flags, and we 

cannot assure the exacted strokes in these notations. In a word, a notation could be 

considered as a collection of many strokes, and a stroke is a basic input unit in the 

system. In our system, as a new stroke is written, it would be recognized as a 

meaningful symbol. The system collect the symbols inputted in previous time, and try 

to convert them to a meaningful notation. Here, we divide the strokes into 17 kinds of 

symbol categories, as shown in Table 2.1.  

In Table 2.1(1), categories (1) to (6) are called “simple symbols, “ which means 

that they could be recognized quickly by some extreme properties, like the stroke 

length. The others are called “complex symbols,” which means they need to extract 

the features and be classified by the complex symbol classifier which will be 

elaborated in the next section. 

In our database, we obtained the strokes using a WACOM digital tablet written 
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by 14 users. The users are not expert musicians and do not have any knowledge about 

the music theory. They write the strokes for all symbols on the digital tablet and the 

staff is pre-drawn on the screen. Each gap on staff is 25 pixels. For robustness, the 

procedure would be carried out at least 1000 times to each user. 

 

 

Table 2.1 Supported symbols (continued).  

    

(1) Dot 

 

(2) HLine (3) VLine (4) Slash (Flag) 

    

(5) UHook (Flag) 

 

(6) GClef (7) FClefArc (8) Flat 

   

(9) NaturalRt 

 

(10) LCheck (11) StUHook 

  

(12) WHead (13) BHead 
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Table 2.2 shows all the supported music notations in this system. There are four 

types of notations supported. Table 2.2(a) is bar line which is used to separate the bars. 

Table 2.2(b) shows two examples of group which is a beam note formed by grouping 

several notes with filled head using a horizontal beam. Table 2.2(c) is the 

determinable note which consists of fixed number of symbols. Table 2.2(d) shows 

some uncertain notes with innumerable symbols, such as dot, flag...etc. 

 

 

Table 2.1 Supported symbols.  

    

(14) WRest (15) HRest (16) QRest (17) 8Rest 

Table 2.2 Supported music notations (continued).  

 

 (a) Bar line  

    

 

(b) Group     
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Table 2.2 Supported music notations.  

 

 (c) Determinable note 

     

(d) Uncertain note 
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CHAPTER 3 

THE PROPOSED METHOD 

 

In this system, we recognize the input stroke as a symbol and then combine the 

symbol with other symbols to form a music notation.  

The flow diagram of the symbol recognition is shown in Fig. 3.1. The whole 

process consists of 4 major phases: preprocessing, simple symbol classifier, feature 

extraction and complex symbol classifier. In the preprocessing phase, the noise and 

variety in the stroke would be eliminated. In the simple symbol classifier, the stroke 

with extreme properties would be recognized as a symbol and output as the result. If 

the stroke in the simple classifier is not recognized, it would be processed in the next 

phase. In the feature extraction phase, height, shape and direction are extracted from 

the stroke as features. In the complex symbol recognition phase, based on the 

extracted features, the stroke would be recognized as a symbol by the decision tree. In 

the decision tree, some similarity measures are provided to determine the most similar 

symbol in the database. 

 

 

Fig. 3.1 Flow diagram of the symbol recognition. 
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After the symbol recognition, the notation recognition is conducted. Based on the 

semantic information, the output symbol would be combined with other existed 

symbols to form a notation. Finally, the system outputs the printed music notation and 

puts it at the exact location on staff. 

 

3.1 Preprocessing 

There are some problems after sampling the stroke. First, the stroke captured by 

the digital tablet tends to contain some noises which make the stroke jagged. Second, 

the stroke is sampled from the digital tablet by the fixed time interval, so the writing 

speed would affect the captured stroke. Finally, as pen-up and pen-down, there are 

some slips occurred which is caused by the user. In order to reduce the noise and 

variety in the stroke, we apply the preprocessing, including smoothing filter, gap filter 

and slipped segment remover. 

 

3.1.1 Smoothing filter 

The reason why a stroke jagged is that some errors occurred in the digital tablet 

or the unstable state the user is writing in. In order to eliminate these jags, we apply 

Gaussian filter [12] to make the stroke more smooth and keep the global information 

of corners in the stroke. 
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For every point (x(t),y(t)), we smooth the stroke by 
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3.1.2 Gap filter 

Because the digital tablet samples points with a fixed time interval, the writing 

speed makes the distances between two points to be different. There would be some 

gaps in the stroke. These gaps would affect the curvature detection in later process. 

Fig. 3.2(a) is an example of writing with different speed. In order to compensate these 

gaps, we interpolate some new points between two adjacent points.  

For each two adjacent points, let dx be the x difference between the two points, 

dy be the y difference between the two points. Then if max(dx,dy)>1, we interpolate 

max(dx,dy) points between them by linear interpolation. Fig. 3.2(b) shows the result 

of applying the process of the interpolation to Fig. 3.2(a). 
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3.1.3 Slipped segment remover 

Slips are the action that user’s pen move to the unexpected direction on the 

digital tablet. In the beginning and ending to write a stroke, it is easy to generate 

surplus slipped segments. The circles in Fig. 3.3 show the slipped segments of a 

stroke. We could remove slipped segments by detecting whether the length of the first 

segment or the last segment in a stroke is shorter than a given threshold.  

 

 

  

(a) (b) 

 

Fig. 3.2 An example of gap filter. (a) The original stroke with writing speed from 

 fast to slow. (b) The stroke after the process of the interpolation. 

 

Fig. 3.3 An example of slipped segments in a stroke. 
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In order to eliminate the slipped segments, the first step is to find the candidates 

of slipped segments. Along a stroke, there usually exist some points with local 

extrema of curvature between the slipped segment and the others. To get these points, 

we first define dominant points as follows: (a) points corresponding to the local 

extrema of curvature; and (b) pen-up and pen-down points. Li and Hall proposed a 

method [13] to find dominant points in a stroke using a support region based on 8 

ways chain codes which is shown in Fig. 3.4. Here, this method is adopted to find all 

dominant points in a stroke. Then we divide the stroke into several segments by 

dominant points. The first segment and last one are the candidates of the slipped 

segments. If the length of the candidate is less than a threshold, it is a slipped segment 

and would be removed. The threshold is set as half of the gap’s height on staff in 

music score. Fig. 3.5 shows that there are five dominant points found in Fig. 3.3 and 

four segments are obtained. The first and the last segments are slipped ones. 

 

 

Fig. 3.4 8 ways chain codes. 
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3.2 Simple symbol classifier 

By observing the 17 kinds of symbols, we find that some symbols can be 

classified quickly by the extreme properties. We call these symbols as simple symbols, 

including Dot, the straight line of HLine, VLine, the straight line of Slash, the straight 

line of UHook and GClef. Here, we will discuss how to classify simple symbols. 

Among all symbols, the length of GClef is longest obviously. By this property, 

we could easily recognize a stroke as a GClef symbol if the length of the stroke is 

longer than the length threshold. The length threshold is set as 12 times gap’s height. 

 By observing the width and the height of a symbol, the Dot symbol has the 

smallest width and the smallest height in symbols. Therefore, the stroke would be 

recognized as a Dot symbol if the width and the height of the stroke are both shorter 

than a given threshold. The threshold is set as half of gap’s height on staff. 

To classify if a stroke is a straight line, a linearity measure is defined as

 

1

2

3

4

 

Fig. 3.5 An example of five dominant points in a stroke. 
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linearity =  (2)

 

where L denotes the length of the stroke. G() denotes Euclidean distance. P(s) 

denotes the starting point of the stroke and P(e) denotes the ending point of the stroke. 

Fig 3.6 illustrates an example of the linearity. If a stroke is a straight line, the linearity 

should approach to 1. Thus, if the linearity is smaller than the threshold, 1.07, we 

consider the stroke as a straight line and recognize it as HLine, VLine, Slash or 

UHook according to its slope. Once the stroke is recognized as a simple symbol, it 

would be output and exit the symbol recognition.  

 

 

 

3.3 Feature extraction 

If a stroke is not classified as a simple symbol, we will do feature extraction from 

the stroke. Here, we take three kinds of features: height, shape and direction. 

 

 

 Fig. 3.6 An example of linearity of a stroke. 
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3.3.1 Height 

Notations in music theory have height limitation. Since notations are formed by 

symbols, symbols also have the height limitation. In Fig. 3.7, the height of FClefArc 

must be at least 2 times gap’s height on staff, and the height of WHead must be less 

than 2 times gap’s height. We could extract the height of a stroke as a feature for 

rough classification. 

 

 

3.3.2 Shape 

As described in Section 3.1.3, each stroke will be divided into several segments. 

Every segment has its special shape. Fig. 3.8 shows that a stroke consists of two 

segments with a vertical line and a slash. The number of shapes would be useful for 

classifying stroke. There are 7 kinds of basic shapes shown in Table 3.1. These shapes 

are horizontal line, vertical line, slash, backslash, clockwise curve, counter-clockwise 

curve and circle. Here, the horizontal line, vertical line, slash and backslash are 

roughly called “straight line.” The clockwise curve, counter-clockwise curve and 

  

(a) (b) 

 

Fig.3.7 Two examples of heights of symbols on staff. (a) FClefArc. (b) WHead. 
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circle are roughly called “curve.” 

 

 

 

 

By the linearity and slopes mentioned in Section 3.2, we could determine if a 

segment is a horizontal line, vertical line, slash or backslash. If the segment does not 

belong to straight line, it may be a clockwise curve, a counter-clockwise curve, or a 

circle. Fig. 3.9 shows the clockwise curve, the counter-clockwise curve and the circle. 

 

Fig. 3.8 An example for the shape feature of a stroke. 

Table 3.1 The 7 basic shapes. (1) Horizontal line. (2) Vertical line. (3) Slash.  

 (4) Backslash. (5) Clockwise curve. (6) Counter-clockwise curve.  

 (7) Circle. 

 

       

(1) (2) (3) (4) (5) (6) (7) 
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The difference between the straight line and the curve is that the curve changes 

its direction very often. For each three adjacent points of a clockwise curve, the 

direction change from the previous point to the next point tends to be right direction. 

The direction change of the counter-clock curve tends to be left direction. The straight 

line has no direction change. Fig. 3.10 shows the direction changes in clockwise curve, 

counter-clockwise curve, and straight line. We could accumulate the direction change 

value to detect what kind of curve the segment is like. Based on the 8 way chain codes, 

the accumulated direction change value v is calculated by 

    

 

,))1(),((cost
1

∑
=

−=
n

i

icicv  (3)

 

where i denotes the ith point in the segment. n denotes the number of points in the 

segment. c(i) denotes the chain code of the ith point in the segment. “cost” denotes the 

cost between two chain codes, which is shown in Table 3.2. 

   

(a) (b) (c) 

 

Fig. 3.9 Examples of curve segments. (a) Clockwise curve. (b) Counter-clockwise  

 curve. (c) Circle. 
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In the cost table, the values are defined by 2 cases which are explained as 

follows: 

1. If the current chain code is the same as the previous one, it means that 

they go toward the same direction and the direction change value is 0.  

   

(a) (b) (c) 

 

Fig. 3.10 Examples of the direction changes. (a) Clockwise curve.  

 (b)Counter-clockwise curve. (c) Straight line. 

Table 3.2 The cost between two chain codes. 

 

c(i)\c(i-1)  0  1  2  3  4  5  6  7  

0  0  -1  -1  -1  -1  1  1  1  

1  1  0  -1  -1  -1  -1  1  1  

2  1  1  0  -1  -1  -1  -1  1  

3  1  1  1  0  -1  -1  -1  -1  

4  1  1  1  1  0  -1  -1  -1  

5  -1  1  1  1  1  0  -1  -1  

6  -1  -1  1  1  1  1  0  -1  

7  -1  -1  -1  1  1  1  1  0  
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2. Otherwise, it means that the direction has been changed. We assign the 

direction change value +1 as they are toward the clockwise direction, and 

-1 as the counter-clockwise direction. 

Then we classify each segment based on the accumulated direction change. If 

v>0, the segment is a clockwise curve. If v<0, it is a counter-clockwise curve. 

Furthermore, if |v|>5, it means that the curve changes its direction frequently and the 

segment is classified as a circle. 

The last step is to calculate the number of every kind of shapes in the stroke. The 

vector of dimension 7 containing numbers of seven shapes is viewed as a shape 

feature. 

 

3.3.3 Direction 

The direction is the sequence of writing direction in time order, and it could 

reflect the writing style of a symbol. Fig. 3.11 shows the stroke with two writing 

directions, one is south and the other is east-north. The direction extracted from the 

stroke could help us clarify the difference among some symbols with similar shapes. 

For example, Fig. 3.12 shows two strokes with the same shape feature, but their 

direction features are different. We use the 8 way chain codes to represent the 

direction. We could extract the direction by eliminating the duplicate chain codes in 
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the same direction. For example, if the chain code sequence of a stroke is 

(444444400111), the (4, 0, 1) is the direction feature. Note that the dimensions of the 

direction features of different strokes may be different. 

 

 

 

 

3.4 Complex symbol classifier 

Symbols except simple symbols are complex symbols. Features extracted from a 

stroke, including height, shape and direction, are taken for complex symbol matching 

at this phase. 

 

Fig. 3.11 An example of direction feature in a stroke. 

 

(a)  

 

(b)  

 

Fig. 3.12 An example of two strokes with the same shape feature, but 

 different direction features. (a)WRest with direction feature (4, 2,  

 0). (b)HRest with direction feature (0, 2, 4). 
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Based on these three features, we construct three classifiers separately, including 

height classifier, shape classifier and direction classifier. Because some symbols in 

some classifiers are similar and are hard to separate them, we build a three level 

decision tree, which is shown in Fig. 3.13, to deal with this problem. The first level is 

the height classifier which roughly classifies symbols by the height feature. The 

second is the shape classifier which classifies symbols by the shape feature. The third 

level is the direction classifier which classifies symbols by the direction feature and 

outputs the recognized result. 

 

 

 

3.4.1 Height classifier 

The heights of printed music notations are ruled by the music theory. Because the 

 

 

Fig. 3.13 A decision tree. 
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music notations are formed by symbols, symbols also have the height limitations in 

writing. By a height threshold, some symbols will be considered as high and some 

will be considered as low. However, due to the writing distortion, some symbols 

sometimes will be considered as in the high, sometimes low. We consider these 

symbols with unsure heights as variant. Fig. 3.14 shows the symbols in the low group, 

the high group, and the variant group.  

 

 

 

In the height classifier, we use 2 times gap’s height on staff as a threshold to 

classify symbols into the high group and the low group. Fig. 3.15(a) shows the low 

group in the height classifier. Fig 3.15(b) shows the high group in the height group. 

 

(a) Low 

 

(b) High 

 

(c) Variant 

 

Fig. 3.14 Three groups in height. (a) Low group. (b) High group. (c) Variant  

group. 
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The symbols surrounded by the dotted line and originally belonging to the variant 

group will be handled later. 

 

 

 

When a new stroke is coming, this classifier classifies the stroke to the high 

group or low group based on the height feature. 

 

3.4.2 Shape classifier 

In this stage, we group symbols with similar shape features. Fig. 3.16 shows the 

groups with similar shape features. The shape difference, SD, between two shape 

 

(a) Low group 

 

(b) High group 

 

Fig. 3.15 Two groups in the height classifier. (a) Low group. (b) High group. 
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features is defined as follows: 

 

  

where S1 is the vector of the shape feature 1. S2 is the vector of the shape feature 2. 

As a new stroke is coming, the classifier could measure the shape distance 

between the stroke and the shape templates in each group and applies KNN to find the 

group with the nearest distance. In H1 of Fig 3.16(b), there is only one possible 

symbol in the group, which will be output directly without further processing. 

 

 

,)()(
7

1

22∑
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(a) 

 

Fig. 3.16 Groups in the shape classifier. (a) For low group. (b) For high group. 

 (continued). 
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3.4.3 Direction classifier 

In the third level of the decision tree, we would find most likely symbol 

according to the direction feature. We measure the distance between the direction 

feature of the stroke and the direction templates in database. Because the direction 

features are variable in dimension, the distance measure could be considered as the 

string matching problem. We apply the dynamic programming to obtain the distance. 

Let {a1, a2,.., aI} denotes the direction feature and {bk1, bk2,…, bkJ} denotes the 

kth template in database. The accumulated distance gk(i,j) is calculated as follows: 

 

 

High

H1 H2 H3
 

(b) 

 

Fig. 3.16 Groups in the shape classifier. (a) For low group. (b) For high group. 
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Initial values:
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Recurrence formula: 
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where the difference is the chain code difference between chain code ai and chain 

code bkj. The difference is defined in Table 3.3.  

 

 

 

Using above formula, the distance, gk(I,J), is calculated. After examining the 

distances with all templates, we find the symbol with the nearest distance and output 

Table 3.3 Difference between two chain codes. 

 

ai \bkj 0  1  2  3  4  5  6  7  

0 0  1  2  3 4 3 2 1  

1 1  0  1 2 3 4 3 2 

2 2  1  0  1 2 3 4 3 

3 3  2 1  0  1 2 3 4 

4 4 3 2 1  0  1 2 3 

5 3 4 3 2 1  0  1 2 

6 2 3 4 3 2 1  0  1 

7 1 2 3 4 3  2 1  0  
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the symbol as the recognized result. 

 

3.5 Notation recognition 

After a stroke is recognized as a symbol, the notation recognizer will be 

conducted by combining symbols. The output symbol will be combined with 

previously recognized and unused symbols to form a notation based on the semantic 

information. There are 3 levels in the notation recognition. In the bar level, those 

unused symbols would be combined to form a bar line. In the note level, those unused 

symbols would be combined to form a note. In the group level, some specific notes 

would be grouped together. The other part of notation recognition is modification 

operation. It provides the deleting, editing and moving operations which can be used 

in the three levels. 

 

3.6.1 Bar level 

In music theory, a bar is a container containing notes, and a bar line is used to 

separate bars. In our system, the bar would be constructed automatically to hint the 

user. We combine unused symbols to form a bar line in the bar level. In each bar, the 

pseudo borders of the bar are pre-drawn in our system. We define the head and the 

end of the bar as the reactive area for combining symbols separately. Fig 3.17 shows 
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the reactive areas in a bar. By the shape of bar lines, we define the components in 

Table 3.4 to describe how to form a bar line. When a new coming symbol falls in one 

of these reactive areas, we would combine the new symbol and the existed symbols in 

the area and check whether the combined one matches the sets in Table 3.4. If yes, 

update the bar line; otherwise, the symbol would be sent to the note level. 

 

 

 

 

3.6.2 Note level 

Notes are used to represent the relative duration and pitch of a sound in the music 

score. Symbols are combined to form a note in this level. By the composition of a 

 

Fig. 3.17 The reactive areas in a bar. 

Table 3.4 List of bar line with the set of components forming them. 

 

Bar line name  Component 

Single bar line (   )  1 VLine 

Double bar line (   )  2 VLines 

End bar line (   )  3 VLines 

Repeat sign line(   )  1 Dot, 0 or more VLines 
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note in music theory, there are three types of notes: determinable, uncertain and 

incomplete. Determinable note means that the numbers of symbols in it are fixed. The 

uncertain note means there are innumerable dots, heads, or flags in it. The incomplete 

note is a part of a certain note and recorded as a temporary note in this system. Fig. 

3.18 shows that a sharp, which is a determinable note, has two VLines and two 

HLines exactly. Fig. 3.19 shows that a Note with filled head would be added by some 

hooks or dots. Fig. 3.20 shows an incomplete note which only has a filled head.  

 

 

 

 

 

 

When a new symbol is coming to this level, we would search the nearest 

uncertain or incomplete note. We do not have to search the determinable note, because 

 

Fig. 3.18 An example of the determinable note. 

 

Fig. 3.19 Some examples of the uncertain notes. 

 

 

Fig. 3.20 An example of the incomplete note. 
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it is impossible to add more symbols to it. If the distance to the nearest note is too 

large, we would construct a new empty incomplete note, and add the new symbol to it. 

Then check the symbols with rules in Table 3.5 [11], which consists of three cases as 

follows: 

1. If we find a match in the table, then update the note and set its type. 

2. If we could not find a match in the table, and the set of symbols is a subset of 

a note, then we add the symbol to the note and set its type to be incomplete. 

3. If we could not find a match and the set of symbols is not a subset of a note, 

then the new symbol would be discarded. 

 

 

Table 3.5 List of notes with the set of symbols forming them (continued). 

 

Note name Type Components 

FClef (   ) Determinable 2 Dots, 1 FClefArc  

Determinable 1 FClefArc  

Sharp (   ) Determinable 2 HLines, 2 VLines 

Determinable 2 Slashes, 2 VLines 

Determinable 1 HLine, 1 Slash, 2 VLines  

Determinable 2 UHooks, 2 VLines  

Determinable 1 HLine, 1 UHook, 2 VLines 

Determinable 1 Slash, 1 UHook, 2 VLines 

GClef (   ) Determinable 1 GClef  

Natural (   ) Determinable 1 LCheck, 1 NaturalRt  

1 LCheck, 1 8Rest 

Flat (   ) Determinable 1 Flat  
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Fig. 3.21 shows the examples of the three cases. In Fig. 3.21(a), a NaturalRt is 

combined with an LCheck to form a Natural note which is determinable. In Fig. 

3.21(b), a LCheck symbol is added to an empty note. Since it is a subset of Natural 

and may become a Natural in the future, the note is set as an incomplete note. In Fig. 

Table 3.5 List of notes with the set of symbols forming them. 

 

Note name Type Components 

Whole note  

(e.g.,   ,   ,   )  

Uncertain 0 or more Dot(s), 1 or more WHead(s) 

Half note  

(e.g.,  ,  ,   ) 

Uncertain 0 or more Dot(s), 1 VLine, 1 or more 

WHead(s)  

Note with filled head 

(e.g.,  ,  ,   ,   ) 

Uncertain 1 or more BHead(s), 0 or more Dot(s), 

0 or more UHook(s), 1 VLine, 0 or 

more Slash(es)  

Uncertain 1 or more BHead(s), 0 or more Dot(s), 

0 or more Slash(es), 1 VLine, 0 or 

more UHook (s) 

Uncertain 1 or more BHead(s), 0 or more Dot(s), 

1 StUHook, 0 or more Uhook(s), 0 or 

more Slash(es) 

Uncertain 1 or more BHead(s), 0 or more Dot(s), 

1 Lcheck, 0 or more Slash(es), 0 or 

more UHook(s) 

Whole rest  

(e.g.,  ,   ) 

Uncertain 0 or more Dot(s), 1 WRest  

Half rest  

(e.g.,  ,   ) 

Uncertain 0 or more Dot(s), 1 HRest  

Eight rest  

(e.g.,  ,   ,   ) 

Uncertain 1 8Rest, 0 or more Dot(s), 0 or more 

HLine(s) 

Quarter rest  

(e.g.,  ,    ) 

Uncertain 0 or more Dot(s), 1 QRest 
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3.21(c), an HLine symbol is added to a Note with a filled head. This action is illegal 

and the set of symbols doesn’t belong to any note. Since the HLine could not be used 

in the future, hence the HLine would be discarded.  

 

 

 

In order to keep the simplification of the system, when there are two incomplete 

notes existing in the meanwhile, we would only keep the latest note and delete the 

 

(a) 

        

(b) 

 

(c)  

Fig. 3.21 Some examples of combining symbols at the note level. (a) Case 1.  

 (b) Case 2. (c) Case 3. 
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other. Fig 3.22 shows an example. At first, there is an incomplete note existed in the 

system. Then the user writes a new stroke, and the distance between the stroke and the 

incomplete note is too large. After the symbol recognition, the stroke is recognized as 

a new symbol and applies the notation recognition. In the note level, because of the 

large distance, the system constructs a new incomplete note containing the new 

symbol. At this time, there are two incomplete notes existing. We would consider that 

the user wants give up the old incomplete note and writes another new notation. 

Hence the old incomplete note would be deleted. 

 

 

 

For recording the pitch, some notes have to be located at the corresponding line 

or space on staff. These notes are Sharp, Natural, Flat, Whole note, Half note and 

Note with filled head. Fig. 3.23 shows some of these notes with pitch corresponding 

to line 2. We proposed a method to obtain the pitch of these notes. First, because the 

pitch on staff is related to the y-axis, we project all points of the note to the y-axis, 

 

Fig. 3.22 An example of deleting an incomplete note. 
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and calculate the number of the projected points for each y-value. Fig. 3.24 shows a 

Sharp projected to y-axis. Then we apply the threshold which is defined for each note 

separately. The number of projected points on y which is below the threshold would 

be set to zero. Finally, we obtain an interval contains all non-zero values on y. The 

lines or spaces in the interval are the candidates for the pitch, and next we would 

determine the most possible one. We get the middle point, my, of the interval and 

define a window of size t, which is less than a half height of a space. If there is a line 

existing between my-t and my+t, the line is considered as the pitch of the note; 

otherwise, the space where my falls would be the pitch of the note. In Fig. 3.25(a), we 

could see that no line falls between my-t and my+t, so the pitch of the sharp is the 

space i. Fig. 3.25(b) shows another example that a line falls between my-t and my+t, 

and the pitch of the sharp is line i. 

 

 

 

Fig. 3.23 Some examples for the pitches of notes corresponding to line 2. (a) Sharp.  

 (b) Natural. (c) Flat. (d) Whole note. (e) Half note. (f) Note with filled head. 
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Fig. 3.24 An example of a sharp projected to y-axis. 

 

(a) 

 

 

(b) 

 

Fig. 3.25 Some examples of pitch detection. (a) The pitch on the space. (b) 

The pitch on the line. 
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3.6.3 Group level 

In music theory, when two or more notes with filled head and flags appear 

successively, we could group them using a beam to replace the flags. When playing 

the music score, the notes with beam should be more connected than non-beamed 

notes. As writing, users always draw a horizontal line across the notes to represent the 

grouping action. In the group level, we group the notes to form a beamed note. Steps 

for grouping are presented as follows: 

1. We define the HLine symbol as the signal to group the notes by the 

common practice. If the new coming symbol is HLine, go to step 2; 

otherwise, reject the symbol. 

2. Only the Note with filled head could be grouped in the music theory, and 

the accidental notes, like Sharp, Flat and Natural could be ignored. In the 

range where the HLine symbol covers along the x-axis, check whether 

the notes are valid. 

3. The system would detect the time duration of each Note with filled head 

and draw the appropriate beam. In the meanwhile, all the flags on the 

notes would be removed.  

If the grouped notes are quarter notes, we would consider the user forces to 

group the notes, and they would be converted to eighth notes automatically. Fig 3.26 
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shows an example which indicates how notes are grouped by the three steps. 

 

 

For those notes grouped, we also support to add more beams on these notes. By 

the common practice, the user only write a HLine on the notes where he would like to 

add a beam, the system would draw a new beam and update the time durations of 

these notes covered by the HLine. Fig. 3.27 shows an example of adding a new beam 

to a grouped note. 

 

 

3.6.4 Modification operation 

In this stage, we introduce the modification operations for editing the music 

score. In the past, few systems provide the easy-using modification operations. They 

just use buttons as the modification operations on the screen for users to click. The 

input method is like the “point and click” based systems which is mentioned in 

 

Fig. 3.26 An example of group note. 

 

Fig. 3.27 An example of adding a beam to a grouped note. 
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previous chapter. For users, this is not intuitional at all. Instead of buttons, we take the 

advantage of pen based input method and provide some gestures for the modification 

operations. 

We define two horizontal lines which are higher and lower than the music score, 

called “border lines.” The border lines are the writing borders in the system. The area 

between two border lines is called “writing area,” and the other areas are called 

“deleting area.” Fig. 3.28 shows these lines and areas. Writing in the writing area is 

valid, or it is an illegal operation. The concept of the modification operations contains 

two points: (1) if we want to move the location or pitch of a note, we could drag parts 

of a notation or whole notation to the destination directly. (2) If we want to delete 

some parts of the notation or the whole one, just drag it to the deleting area. 

 

 

In Table 3.6, we list all the modification operations supported in the system and 

the details of these operations. The arrow line is the trajectory of the modification 

operation. 

 

Fig. 3.28 The border line, writing area and deleting area in the system. 
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Table 3.6 List of the supported modification operation (continued). 

 

Modification operation Example 

Move a beam note: Drag the beam 

and move to the destination. 

  

Move a note: Drag the note and 

move to the destination.  

 

Modify the pitch of a note: Drag the 

note and move to the desired line or 

space. 

 

Modify the pitch of a note with 

heads: Drag the head of the note and 

move to the desired line or space. 

  

Delete a bar line: Drag the bar line to 

the deleting area. 

  

Separate a group of notes: Drag the 

beam to the deleting area. 
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3.5 Database reduction 

The database consists of a lot of templates. To compare the feature with every 

template is very inefficient. If we could reduce the number of templates, the 

consuming time would be reduced. The problem is how to obtain the representative 

Table 3.6 List of the supported modification operation. 

 

Delete a note: Drag the note to the 

deleting area. 

 

 

Delete a dot of a note: Drag the dot 

of the note to the deleting area. 

  

Delete a flag of a note: Drag the flag 

of the note to the deleting area. 

   

Delete a head of a note: Drag the 

head of the note to the deleting area. 

  

Delete some of notes: Draw a line 

across these notes which will be 

deleted and drag to the deleting area. 
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templates and discard the others. The clustering methods, like K-Means, are proposed 

to solve this problem. However, we do not know the distribution of the templates and 

could not assign the number of initial seeds exactly. So, we applied MBSAS 

(Modified Sequential Algorithmic Scheme) [14] to clustering templates which 

automatically determinates the number of initial seeds. 

In our databases, we train the shape feature and the direction feature separately. 

The training process is applied to every symbol separately. Finally, for each symbol, 

we obtain the representative templates. 
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CHAPTER 4 

EXPERIEMENT RESULT 

 

Experiments are conducted to evaluate the performance of the proposed method. 

13801 strokes, collected form 14 distinct writers, are used to test our algorithm. 6509 

out of 13801 are taken as the training data. The remaining 7292 strokes are the testing 

data. Every stroke in the testing data is examined by symbol recognition. Finally, we 

could get the most similar symbol of the stroke as the output. In our experiments, a 

notebook (Intel T2300 CPU; only single cpu used; 1.66GHz; 1GB memory) and a 

digital tablet are used. 

In order to measure the performance, we define the “precision” as follows:  

,
IncorrectCorrect

Correct
Precision

+
=  (7) 

The precision for each symbol is shown in Table 4.1. The average precision for 

the symbols of our method is 98.35%, which is better than 97.54% of Miyao- 

Maruyama’s method [11]. 
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From the misclassified strokes, we find that the misclassification is due to that 

some users do not have any domain knowledge about the music theory, and they are 

not familiar with writing music notations. Sometimes they ignore the detail about the 

difference between symbols, like the curvature or the corners in a stroke. It makes 

some strokes ambiguous as trying to recognize. For example, if the user ignores the 

curvature between the slash and circle in BHead, the stroke is easily to be recognized 

as a WHead. 

Table 4.1 Precision of each symbol. 

 

Symbol name  Our method (%) 

Miyao- Maruyama’s 

method(%) 

Dot 100.00 99.73 

HLine 97.73 87.31 

VLine 100.00 100.00 

Slash 96.52 96.52 

UHook 100.00 93.85 

GClef 98.80 99.71 

FClefArc 98.55 93.68 

LCheck 99.71 90.81 

NatureRt 97.87 100.00 

Flat 98.69 100.00 

WHead 98.46 97.49 

BHead 96.70 99.85 

StUHook 96.90 99.78 

WRest 99.72 99.72 

HRest 100.00 100.00 

QRest 96.41 99.70 

8Rest 95.88 100.00 

Average 98.35 97.54 
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For the misclassified strokes, we provide the semantic correction to correct the 

mistakes. There are two rules defined in note level of notation recognition. First, 

while a WHead is misclassified to BHead and combine with a Half note, the system 

would convert BHead to WHead and do the combination. Second, while a BHead is 

misclassified to WHead and combine with Note with filled head, the system would 

convert WHead to BHead and do the combination. By the semantic correction, the 

precisions of WHead and BHead raise to 99.48% and 99.38%. 

The total time of processing the 7292 testing data is about 157.38 seconds. Thus, 

the average processing time is about 0.0216 seconds per stroke. This is faster than 

Miyao-Maruyama’s method which takes 0.0731 seconds per stroke by a PC (Pentium 

4 CPU; 1.8GHz; 512MB memory). Thus, a user takes less waiting time while writing. 

Furthermore, our method is more suitable to migrate to the handheld devices with 

touched screen which have low computing power, and the user could compose a 

music score everywhere. 

 

 

 

 

 



 46

CHAPTER 5 

CONCLUSION 

 

The study proposed a method for recognizing music score by the properties of 

strokes. A stroke is recognized as a symbol and the symbol is combined with other 

symbols to form a music notation. Firstly, the preprocessing is applied to eliminate 

distortion in the stroke. Next, the stroke could be recognized as a simple symbol by 

the simple symbol classifier. If not, three feature extraction methods are performed on 

the stroke, and then the complex symbol classifier is applied. A decision tree with 

three classifiers is used to recognize the stroke to a complex symbol. Finally, the 

output symbol is combined with nearby symbols by rules in three levels and output a 

music notation. Both recognition rate and recognition speed of our method is better 

than those of existing method.  

This system is robust enough for a general use. It provides all the common music 

notations and easy-using modification operations. Furthermore, music score playing 

function is supported for users to listen to the melody while they are editing the music 

score. Users are able to compose a complete music score by this system. 

The future works are as follows: 
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• Multi-strokes input: in the proposed system, a stroke is considered as an 

input at a time. If the system supports the multi-strokes in a single input, the 

user could take less time waiting for the recognition. 

• More symbols supported: The symbols are related to the writing styles of the 

notation. In this system, we support 17 kinds of symbols. The more 

symbols supported means the more ways to write a notation. 

• More uncommon used notations supported: The common used music 

notations are supported, but some notations only used in a specific purpose 

are not included in the system, like C Clef ..., etc. In the future, these 

notations would be added to the system, and the system would be suitable 

for professional use. 

• Semantic hint: When the music score is illegal to the music theory, the 

system would show hints to the user. It is very useful for the users who are 

not familiar with music theory. 
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