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Abstract

With the recent progress of display, capture device, and coding technologies, multi-view
video applications such as free viewpoint TV (FTV), free viewpoint video (FVV), and
stereoscopic video have been introduced to the public with growing interest. To achieve free
navigation of such applications, depth information is required along with the video data.
There have been many research activities in the area of depth estimation; however it still
poses us great challenge to estimate accurate depth map. In this paper, we use stereo camera
setting to estimate depth map in order to save the resources to be used in depth estimation and
propose a depth refinement algorithm for recovering bad depth pixels. The proposed
algorithm classifies the pixel-wise depth map into two categories, one is reliable and the other
is unreliable, followed by the depth refinement algorithm for those pixels with unreliable
depth values. Except for the depth refinement algorithm, we also propose a reliable weighted
view interpolation algorithm. At last, the refined depth map is evaluated by the quality of the

synthesized views subjectively and objectively.
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Chapter 1. Introduction

In recent years, since various multimedia services have become available and the
researches in the areas of three-dimensional (3D) displays, digital video broadcast and
computer vision algorithms have enormous progress, the demands for realistic multimedia
systems are growing rapidly. A number of 3D video technologies have been studied to satisfy
these demands. Among the related 3D video technologies, multi-view video is the key
technology for various applications, including free-viewpoint video (FVV), free-viewpoint
television (FTV), immersive teleconference, and 3DTV.

The traditional video is a two-dimensional (2D) medium and only provides a passive
way for viewers to observe the scene. However, FTV significantly extend the sensation of
classical 2D video, it is an innovative visual media that enables viewers to view a 3D scene by
freely changing their viewpoints as if they were there or/and provides a 3D depth impression
of a virtual scene. In such scenario, the viewers can experience the free viewpoint navigation
within the range covered by the shooting cameras. The ability of free navigation can be used

in a very wide range of application domain as shown in Table 1-1 [1].

Table 1-1: Applications of FTV [1]

Field Examples
TV/Broadcast
Entertainment Fixed media (eg. optical discs, solid state)

Personal cam-cording

Informational realistic visual quality game

interactive appreciation of sports, event, exhibition,
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and Expo

immersive photo album

advertisement interactive and realistic presentation

nature observation realistic bird watching, safari, undersea park
sightseeing immersive virtual sightseeing

museum interactive and realistic exhibition
art/content creation of new media art and digital content
video production interactive camera motions video production
archive multi-angle archive, living national treasures,

traditional entertainment

education interactive remote education
medicine realistic virtual examination, operation, education
security, surveillance realistic audio-visual surveillance for store, factory,

building, street, public facilities

transportation traffic monitoring at intersection, ITS

To achieve free navigation functionality, depth information is required in addition to
video signals. The data representation, which is often called video-plus-video is shown in
Figure 1-1. Figure 1-2 [1] shows an example of an FTV system that transmits multi-view
video with depth information. The content may be produced in a number of ways, e.g., with
multi-camera setup, depth cameras or 2D/3D conversion processes. At the receiver,
depth-image-based rendering could be performed to project the signal to various types of

displays.



Zifax

Znear

Figure 1-1: Video-plus-depth data representation.
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Figure 1-2: Example of an FTV system and data format [1].

Based on this configuration, the virtual view of arbitrary view angle can be synthesized
by color video data and depth maps providing a Z-value for each pixel. The visual quality of
the synthesized virtual view is highly related to the precision of the depth map. Depth map
can be generated by depth camera, however, such devices are not often seen and there are
certain restrictions for the devices to acquire the depth map at high resolution. Alternatively,
the depth map can be estimated by two or more videos captured at different angles
conventionally. There have been many researches of depth estimation; however there is still

room to improve the accuracy of depth map. There might be unreliable depth values around



the occluded area in the estimated depth map. These unreliable depth values are the main
cause of bad visual quality of the synthesized virtual views.

In order to raise the visual quality of synthesized virtual view, we propose a depth
refinement algorithm to correct the unreliable depth value in depth map before view synthesis
is carried out and a reliable/unreliable weighting interpolation function is proposed to be
included in the view synthesis algorithm [3] to further improve the visual quality of
synthesized virtual views.

The rest of this paper is organized as follows. In Chapter 2 we introduce the related
works of depth estimation and view synthesis. In Chapter 3 we describe our proposed depth
refinement algorithm, followed by Chapter 4, the simulation results and discussions. The

concluding remarks are presented in Chapter 5.



Chapter 2. Related Work

FTV was proposed to MPEG in 2002. There have been a lot of input documents for
establishing standardization of FTV since then, including depth estimation and view synthesis
algorithms. In this study, our focus is refining the estimated depth map to provide more
precise depth map for virtual view synthesis. In the following chapter we will introduce the
previous researches about depth estimation, including the method and tools that we adopt. The
previous researches about virtual view synthesis for multi-view video will be described in this

chapter also.

2.1 Depth Estimation

2.1.1 Stereo matching

For the last two decades, stereo matching has been a well-known 3D depth sensing
method [4]. Stereo matching is one of the most active research areas in computer vision and it
serves as an important step in many applications (e.g., view synthesis, image based rendering,
etc). The goal of stereo matching is to determine the disparity map between an image pair
taken from the same scene. Disparity describes the difference in location of the corresponding
pixels. However, occlusion area is a major challenge for the accurate computation of visual
correspondence. Occluded pixels are only visible in one image, so there is no corresponding

pixel in the other image.



V. Kolmogorov et al. [5] presented a method which properly addresses occlusions, while
preserving the advantages of graph cut algorithm. Graph cut algorithm is used to solve the
energy minimization problem in computer vision [6] [7]. J.Sun et al. [8] proposed another
method which uses a symmetric stereo model to handle occlusion in dense two-frame stereo.
It embeds the visibility constraint within an energy minimization framework, resulting in a
symmetric stereo model that treats left and right images equally. An iterative optimization
algorithm is used to approximate the minimum of the energy using belief propagation [9].

The occlusion problem can be alleviated by using multi-view images. There are several
algorithms using multi-view images as input to deal with the occlusion problem and obtain
more accurate depth map. Some of these depth estimation algorithms are described in the

following sub-sections.

2.1.2 Segment-based depth estimation

S. Lee et al. [10] proposed a method of depth map generation for multi-view video in
2008. This method is a segment-based approach and uses the 3D warping technique. It
assumes that the pixels in one segment shall have the same depth value. It employs “Mean
Shift based Image Segmentation” scheme in [11] to segment images. After image
segmentation, depth estimation is conducted to each segment. To generate the depth image for
the center view, both left and right views are considered simultaneously. Since the
conventional matching function MSE and MAD are not robust to illumination/color change
between cameras, they use self-adaptation dissimilarity measure as a matching function [12].
This function adds the absolute gradient difference term to the existing MAD term and uses a
weighting factor between MAD and MGRAD (mean gradient absolute difference). This

segment-based depth estimation method was added a refinement step using segment-based
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belief propagation to remove erroneous depth values [13].

2.1.3 Pixel-based depth estimation

M. Tanimoto et al. [14] proposed the pixel-based depth estimation method for FTV. The
disparities are estimated first and then they are transformed to depth. This is the method that
we utilize to generate initial per-pixel depth map.

The depth estimation method assumes that images captured from each camera are
rectified and the cameras are lined up at regular separations in horizontal direction. This
method estimates disparities first then it transforms the disparities to depth with the
relationship between depth and disparity. Figure 2-1 shows the relation between disparity and

depth.

gource origin of ray
M
depth 7 dlspirlty
d d
focallength f !
camera L camera C camera R

| I\ /I |

cammera interwval

Figure 2-1: Relation between disparity and depth [14].

From this figure, we can easily describe the relation between depth Z, camera interval I,

focal length f, and disparity d by the following equation:
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Because the camera parameters are given, the value of 7 and f are already known. Once the
disparity d is obtained, the depth Z can be derived from equation (1).

The disparity for each pixel is estimated by using stereo matching. It calculates the
matching score for each pixel in center view and each disparity value in a predefined range at
first. The matching score for a pixel in the center view at disparity d is derived by comparing
the intensity value of the pixel (x, y) in the center view against the pixel (x+d, y) in the left
view and the pixel (x-d, y) in the right view. Then graph cut algorithm is used to find the
appropriate disparities in a view.

After disparity estimation, the depth is derived from disparity and is stored as 8-bit
graylevel value with the graylevel O representing the furthest depth and the graylevel 255
specifying the nearest depth. The depth value Z of pixel (x, y) is transformed into the 8-bit
grayvalue v using the formula described in [15].

This depth estimation algorithm has been implemented in the reference software of depth

estimation that has been introduced in MPEG meeting [16].

2.1.4 Temporal consistency for depth estimation

Since the depth estimation method estimates the depth value frame by frame, the result
of depth has a low temporal consistency. The depth value of non-moving background often
changes frame by frame. Some algorithms are proposed to improve the temporal consistency
of depth map.

S. Lee et al. [17] proposed a depth estimation method to enhance the temporal
consistency by using a temporally weighted matching function to consider the previous depth
value. The whole procedure is the same as their previous research [10] except for the

-8-



matching function. The matching function refers to the depth value of the previous frame

when estimating the depth of the current frame. They add a new term C, (x,y,d) to the

temp

previous matching function. C,_  (x,y,d) isdefined by

temp

Ctemp(x’y’d):ﬂ’ld_Dprev(x’y)l (2)

where 4 represents the slope of the weighting function and D,,..(x, y) represents the depth
value of the pixel (x, y) in previous frame.

H. Yuan et al. [18] also proposed a depth estimation algorithm that considers mean
absolute gradient to enhance depth accuracy in depth discontinuous area. Except adding
gradient term in matching function, they based on [17] to propose their depth temporal

consistency preserving algorithm. They use a motion mask to decide whether the

Cenp (x,¥,d) term should be added in the matching function or not. The motion mask can be

derived by calculating MSE of a pixel. If a pixel is not determined as a motion pixel, the

Comp (x,y,d) term will be zero.

G. Bang et al. [19] proposed a depth estimation scheme that assumes the depth value of
the non-moving background doesn’t change frame by frame. It extracts non-moving
background by calculating frame difference value between current frame and previous frame.
When the calculated value is larger than some threshold, the pixel is considered as moving
pixel. The mean value of the entire frame difference is used as a threshold. For the fast
detection of non-moving background, a frame is divided into blocks. Each block evaluates the
cost of the non-moving background block using the derived threshold ¢4,. When the number
of moving pixel is below 10% of the whole pixels in a block, the block is considered as a
non-moving block. After dividing frame into non-moving background and moving foreground,

graph cut algorithm is used on these results respectively.



2.2 View Synthesis

As mentioned previously, free navigation functionality can be achieved by synthesizing
arbitrary viewpoint video when color video data and per-pixel depth data are obtained. View
synthesis is one of the important parts in FTV. The following section is the related work about
view synthesis, including the view synthesis algorithm that we used to evaluate our depth
refinement algorithm. Since we use the stereo camera setting to estimate depth map, the

researches which consider occluded regions will also be introduced in this section.

2.2.1 View synthesis algorithm

View Synthesis Reference Software (VSRS) [3] is the reference software we used to
synthesize virtual views. The view synthesis algorithm in VSRS maps the color image data
and depth map of reference viewpoint into the target viewpoint by using pixel mapping based
on 3D warping [20] or horizontal pixel shift. Here, the reference viewpoint means either the
left view or the right view and the target viewpoint means the arbitrary viewpoint between the

left view and the right view. The configuration of view synthesis is as follows [21]:

afsfslslsls] f:1-8 Infalalslsls

NL OL OR NR

Figure 2-2: Configuration of view synthesis [21].

OL and OR represent the viewpoint to be synthesized using neighboring views NL and NR.
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The block diagram of this algorithm is shown in Figure 2-3 [3]:

View Images in Depth Video in
Two Viewpoints Two Viewpoints

Left Original Right Onginal \

Ii ‘I e |
- e s

Original Left Original Right

Depth Mapping
to

Target Viewpoint

Target Depth
Filtering
by Median Filter

L] Texture J

Inpainting

]

Cutput

Figure 2-3: Block diagram of the view synthesis for VSRS [3].

In the view synthesis algorithm, the depth map of reference viewpoint is mapped into the
target viewpoint at first. The mapped depth map has hole area that has no information from
reference view. The small holes in the mapped depth map are filled by median filter. Then, the
color data is mapped into target viewpoint by using the filtered depth map. These steps are
applied to both left view and right view, there are two color images of target viewpoint are
obtained. Large holes in the mapped color image are filled by referring the other mapped
color image each other. After hole filling, two different mapped color images are blended

according to the ratio of left and right baseline distances. Inpainting is applied to the blended

-11 -



image in the final step.

Since the view synthesis algorithm employs 3D warping technique to generate virtual
views, the accuracy of depth map directly affects the quality of synthesized view. The depth
estimation result is still unstable around boundary and creates boundary noise. It is because of
the inaccurate depth value around the object boundary region. C. Lee and Y. S. Ho [22]
present a method of boundary filtering. The noise area is located near the boundary of objects
having hole. After detecting the hole area, the boundaries of background region are chosen.
Then replace the texture information of noise area with the alternative texture information at

the other reference view.

2.2.2 Improving view synthesis for multi-view video

There have been a lot of researches on depth estimation for multi-view video, but the
quality of the estimated depth map is still not good enough and the pixels with incorrect depth
value will cause some artifacts on the synthesized virtual views. J. Sung et al. [23] proposed a
method to detect the pixels with bad depth values, then find a better depth value for the pixels,
and replace the bad depth value with the better one.

The detection of pixels with bad depth is performed in the merging process of the view
synthesis reference software [3]. This detection algorithm is applied to the pixels that are
visible in the left and right view images simultaneously. The pixels that have bad depth value
in the virtual view image are detected by examining the difference between the two color
values and the difference between the two depth values.

The detected bad pixels are grouped by applying connected component analysis. Then
the proposed depth correction algorithm finds a depth offset value for a group of bad pixels. If

the depth value of the warped depth map is correct, the points that are mapped into left view

-12 -



and right view must be the same. The difference between left mapped point and right mapped
point is taken as the depth quality measure metric. The depth value which has smaller
difference is assumed to be good. The depth correction algorithm is based on this assumption.
The depth offset d,;will be added to the depth value d and the difference with new depth d’ =
d+d,y is calculated. The depth offset value is searched twice, one is searched for the depth
value of the warped left depth map LD’ and the other is searched for the depth value of the
warped right depth map RD’. The d” which has smaller difference will be the new depth value

for the bad depth pixel.

2.2.3 View synthesis for stereo vision

In the earlier researches of stereo vision, the presence of depth discontinuities and
occluded regions are the most notorious problems. There have been some algorithms
proposed to handle the occluded regions. D. Scharstein [24] proposed a method to deal with
partially occluded regions that are visible from only one camera and have unknown depth.
This method assigns explicit depth to the points in occluded regions. The detection of
occluded regions is to separately compute the two disparity maps d;> and d,;, which are
required by the view synthesis algorithm, and then to label those points as occluded whose
disparities disagree. The depth assignment has to rely on heuristics, as there are an infinite
number of possible depth interpretations. However, there are a number of choices: (a)
interpolating the depth values between the points of known depth, (b) assuming constant
depth, or (c) assuming constant depth gradient. Assuming constant depth (b) is easiest and
most stable, and has also produced good results in the experiments.

J. S. McVeigh et al. [25] also proposed a method to handle occluded regions. They

handle the synthesis from occluded regions by making best reasonable assumptions of the
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scene. These assumptions are that occluded regions have constant depth, and that this depth is
equal to the depth of the unoccluded region located on the appropriate side of the occlusion. If
the occlusion is visible in the left image, the appropriate side is to the left of the occlusion,
and vice versa for an occlusion in the right image. These assumptions, when valid, allow for
depth information to be inferred for occluded regions, resulting in accurate intermediate view

synthesis for these regions.
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Chapter 3. Proposed Depth Refinement

Algorithm

As mentioned in [23], the quality of estimated depth map is not perfect and bad depth
value will be a big impact to visual quality of synthesized virtual views. We propose an
algorithm to refine the incorrect depth value to provide a more precise depth map for
multi-view video synthesis.

In this chapter, we will describe our proposed depth refinement algorithm in detail. The
depth estimation methods mentioned in last chapter use the same camera setting which is used
in [21]. The configuration of depth estimation we use is not the same, and the different setting
will be described in section 3.1. The detail of our algorithm will be presented in the following
section. Except for the depth refinement algorithm, we also make a change in the view

synthesis process. The modified part of view synthesis will be described in the last section.

3.1 Camera Setting for Depth Estimation

3.1.1 Camera setting in related works

The camera setting for depth estimation methods [10] [14] [15] [17] [18] [19] is shown
in Figure 3-1. NL and NR are the views need depth map. D_NL and D_NR are the estimated
depth maps for view NL and view NR. Configuration in Figure 3-1 selects neighboring two
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views of NL and NR as reference views (e.g. a, b are the reference views for NL; c, d are the
reference views for NR). There is no rule of selecting reference views in depth estimation
process, the reference views can also be selected from two baseline distance ahead and two

baseline distance behind. This configuration is illustrated as Figure 3-2,

a b d

N/ N/ N/ \/ \/\/ WW N/ N/ N/ N/ N/ \/

\/ \/

D NL D_NR

Figure 3-1: Configuration of depth estimation.

D_NR
7 Y7 Y7 7 7 7 Y7 V7

NL

D_NL

Figure 3-2: Reference view selection from two camera baseline distance away.

In this camera setting, we need at least four cameras to estimate the depth map D_NL
and D_NR, just like Figure 3-2 illustrated. NL is the left reference view of NR and NR is the
right reference view of NL. If a view is at the left or right-most, this camera setting can not be
applied because the view at the left-most doesn’t have left reference view and the view at the
right-most doesn’t have the right reference view.
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3.1.2 Stereo camera setting

In order to avoid the edge-view problem of the depth estimation algorithms with the
camera setting in [21] where either the left-most or the right-most view has only one side of
reference view, we don’t use the same camera setting. We use the stereo camera setting which
means the view needed to estimate its depth map only uses the view at its left side or at its
right side as the reference view. This camera setting not only avoids the edge-view problem
but also decreases the number of reference views available for the depth estimation. The

stereo camera setting is shown in Figure 3-3.

N/ N/ N/ \ 7/ \/ N/ N/ N/

D_NL D_NR

Figure 3-3: Stereo camera setting for depth estimation.

Since we change the camera setting in depth estimation, the error function used in [14]
needs to be modified. The error function is modified as follows:
If the reference view is at left side, the error function is:
E(x,y,d)=E, (x,y,d) @)
Otherwise, if the reference view is at right side:
E(x,y,d) = E(x,y,d) (4)
where E(x,y,d) is the error function, E;(x,y,d) is the difference of intensity value between the
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current view and left view, and Ex(x,),d) is the difference of intensity value between the

current view and right view.

3.2 Depth Refinement Algorithm

In this section, the proposed algorithm will be described in detail. The flow chart of the
whole depth refinement process and also the reliable weighted view synthesis algorithm is
shown in Figure 3-4. The result of depth estimation using stereo camera setting is shown in
figure 3-5. The right view is the view 7 of the sequence “BookArrival” provided by HHI [26]
and the left view is the view 10 of that sequence. The right view and the left view mentioned
in this section represent the same viewpoint of the sequence “BookArrival”. The depth value
consistency of the two estimated depth map is checked first. Each pixel of the depth map will
be classified into two categories, one is reliable depth value pixel and the other is unreliable
depth value pixel. Then unreliable pixels are classified into covered and uncovered unreliable
depth value pixel. The covered unreliable depth value pixels will go through occlusion
detection to divide the unreliable area into occluded area and non-occluded area. The final
step is to refine these unreliable depth value pixels. The detail description of each step in the

depth refinement process is given below.
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Left View Right View

Depth Estimation [16]

N e

______________________________

Depth map of left view Depth map of right view
e N [ D
Depth Consistency Check Depth Consistency Check
(Section 3.2.1) (Section 3.2.1)
\ RN J
Uncovered - 4 ~N Y ~ Uncovered
Area Occlusion Detection Occlusion Detection Area
(Section 3.2.2) (Section 3.2.2)
\ RN J
\ 4 A 4
e N [ D
Depth Refinement Depth Refinement
g (Section 3.2.3) (Section 3.2.3) <
\ RN J

Refined depth map of left view‘ v Refined depth map of right view

al

Reliable Weighted View Synthesis
(Section 3.3)

A 4

Virtual View I

Figure 3-4: Flow chart of the proposed algorithms.
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(@) (b)
Figure 3-5: Results of depth estimation (BookArrival).
(a) Depth map of the left view, (b) Depth map of the right view

3.2.1 Depth consistency check

Most of the depth values of the estimated depth map are reliable which means the depth
values can be used in view synthesis process to find the correct pixel values in reference
views. Since the depth estimation method is to find the depth value that can minimize the
intensity difference, the depth value of some areas might be estimated incorrectly. These areas
include occluded area and uncovered area which are visible in one view but invisible in the
other view. These incorrectly estimated depth values are specified as unreliable depth values.
Only the unreliable depth values are needed for refinement, so we classify each depth map to
two categories first.

In this step, cross-checking is used to check whether the depth value of a pixel is reliable
or unreliable. Cross-checking for the left view computes the matchness of the pixel position
from the left view to the right view and then from the right view back to the left view based
on the corresponding depth map before refinement. A pixel is marked as unreliable if it maps
to a pixel that does not map back to it. The cross-checking for the right view is similar.
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Cross-checking is illustrated as Figure 3-6, d(x,y) is the depth value of pixel (x,y) and d(x’,y")

is the depth value of corresponding pixel (x’,y’).

Using d(x,y) to map to (x’,y")

Using d(x’,y’) to map to (x”,y")

Figure 3-6: Cross-checking procedure.

If the depth value of a pixel (x,y) is correct we can use the depth value of this pixel to
find the corresponding pixel (x’,y’) in the other view and use the depth value of the
corresponding pixel to map back. The remapped pixel (x”,y”) should be exactly the same as
pixel (x,y), theoretically. However, there exists some calculation error when rounding off pixel
position to the nearest integer pixel. Thus, we tolerate some error when performing
cross-checking. The results of the depth consistency check are shown in Figure 3-7. The
pixels classified into unreliable are marked as white and the pixels classified into reliable are
marked as black. The pixels marked as gray color are the pixels that can not find the
corresponding pixels in the other view, and those pixels are mapped to the position outside the
other view. These gray pixels are defined as “uncovered depth pixels” that are also unreliable

pixels since these pixels can not be remapped correctly.
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Figure 3-7: Results of depth consistency check.
(a) Depth consistency map of the left view, (b) Depth consistency map of the right view

3.2.2 Occlusion detection

From the results of depth consistency map, we can see that the unreliable areas include
not only occluded areas but also uncovered areas. By comparing the depth consistency map
and the original video data, some areas that have the similar texture are also classified into
unreliable. The areas marked by red lines in Figure 3-8 are examples of those areas with

similar texture.
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Figure 3-8: Similar texture areas.
(a) Original video data, (b) Depth consistency map

The refinement method for these similar texture areas is not the same as the method for
the occluded areas. Thus, the unreliable pixels need to be classified into occluded pixels and
non-occluded pixels further.

Since the matching function used in depth estimation is finding a depth value that
minimizes the intensity difference between the current pixel and the corresponding pixel. And
the occluded pixels are visible in one view but invisible in the other view. We assume that if a
pixel is occluded as illustrated in Figure 3-9, its depth value must be unreliable. If this depth
value is used to find the corresponding pixel in the other view, there is a good chance that the
depth value of the corresponding pixel is reliable. Based on this assumption and observation,
the occlusion detection determines a pixel to be in the occluded area if this pixel is unreliable
from the results of the depth consistency check and its corresponding pixel mapped by the
unreliable depth should be viewable in the other view and thus should be reliable according to

the cross-checking of the depth consistency.
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Figure 3-9: The occluded area in the left image can not be seen in the right image.

The occlusion detection can be expressed as follows:

for each pixel (x,y) of the depth consistency map

{
if(DC(x,y) == unreliable)
{
find the corresponding pixel (x’,y’) in the depth consistency map of the
other view using the depth value d(x,y)
if(DC’(x’,y’) == reliable)
marks this pixel (x,y) as occluded pixel
else
marks this pixel (x,y) as non-occluded pixel
}
}

DC(.): value of the depth consistency map of the current view
DC’(.): value of the depth consistency map of the other view

The following is the results of occlusion detection where white pixels are the occluded
area. The depth consistency map can remove these pixels and the rest of inconsistent pixels

belong to the non-occluded unreliable area.
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(a) (b)
Figure 3-10: The results of occlusion detection.
(a) Occluded area of the left view, (b) Occluded area of the right view

3.2.3 Depth refinement

After the previous steps, the unreliable depth value pixels are divided into three
categories. The refinement methods for different categories are similar. They are based on the
same idea, but there is a little bit difference between the refinement methods for each category.
The detail description of the refinement method is given below.

The main idea for the refinement step is finding the closest reliable depth value pixels
and using the depth value of these pixels to interpolate the depth value for the unreliable pixel.
Four-neighbor interpolation of the depth value is proposed here, which means the depth value
of the unreliable depth pixel is interpolated from the depth values of its top, bottom, left, and
right-nearest reliable depth pixels. If the unreliable depth pixel can not find reliable depth
pixel in one direction, the weighting factor for this direction is zero and the interpolated depth
value is calculated from the other directions.

Conventionally, the weighting factor for each direction is inversely proportional to the

distance from the unreliable depth pixel to the reliable depth pixel when applying
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interpolation function. We not only consider the inverse proportion of distance but also
consider the reliability of the found reliable depth pixel. The reason is when we use the depth
value of the reliable depth pixel to find the corresponding pixel in the other view, the depth
value of the corresponding pixel may not be reliable. If the found nearest reliable depth pixel
has such property, the reliability of this pixel should be lower than that of the pixel which has
reliable corresponding pixel. Thus, we propose a reliable weighted interpolation function. The

consideration of reliability can be illustrated as Figure 3-11.

a
b - [: Unreliable Area
c []: Reliable Area
; []: Reliable Area

> []: Reliable Area

Figure 3-11: Consideration of reliability.

In Figure 3-11, “a” and “c” indicate the reliable depth pixels that map to the unreliable
depth pixels in the other view; “b” and “d” indicate the reliable depth pixels that map to the
reliable pixels. Thus, reliability of top and left reliable depth pixels should be lower than right
and bottom reliable depth pixels.

Let WD1p, WDgowtom;, WDres, and WDriqn be the weighting factors calculated by the
distance from current unreliable depth pixel to the nearest reliable depth pixel in each

direction. The derivation of these distance weighting factors is described as follows.
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[E: Unreliable Area

[J: Reliable Area

[: Reliable Area

[: Reliable Area

Figure 3-12: Relation of unreliable depth pixel and four-neighbor reliable depth pixels.

In Figure 3-12, diop, dbosiom, diesi, aNd d,ign are the distance to the four closest reliable

pixels. The weighting factors for each direction is

WD _ QuOTop
Top —
QuOTop + QuoBottom = QuoLeft + QuORight
_ Quoy,,
WD Bottom .
QuOTop + QuoBottom + QuoLeft + QuoRight
(®)
WD _ QuoLeft
Left —
QuOTop + QuoBottom + QuoLeft + QuoRight
WD _ QuoRight
Right —
QuOTop + QuoBottam + QuOLeft + QuoRight
where Quopireciion 1S represented as
Q _ dtop ' dbottom ' dleft : dright 6
UO pjrection = d ( )

Direction

where “Direction” in lower index can be either Top, Bottom, Left, or Right.

Whignr and Wi, are the weighting values of high reliability reliable depth pixel and low
reliability reliable depth pixel, respectively. The calculation of proposed weighting factor for
each direction is described as follows:
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if the reliable depth pixel is found to have high reliability

WD '=WD

Direction

Direction WHighR (7)

else

WD '=WD

Direction

birecion " W iowr (8)
where “Direction” in lower index can be either Top, Bottom, Left, or Right.
Since the weighting factor for each direction is multiplied by Wiyigir OF Wiowr, the
summation of four weighting factors is not equal to 1. The weighting factor for each direction

should be rescaled so that their summation equals 1. The final weighting factors are shown

below:
WD, '
WDTOP": 1 1 Tap 1 1
WDTop +WDBottom +WDqut +WDRight
WD '
WD Bottom "= 1 :30"0’” ' '
WDTop +WDBottom +WDL5{/’Z +WDRight
“2) ©
WDLGﬂ ": 1 1 Leﬁ 1 1
. WDTop +WDBottom +WDqut +WDRight
WD, '
WDRl.gh[ "_ ' 'nght ' :
WDTop +WDBottom +WDLeft +WDRight
The depth value of unreliable depth pixel is interpolated by the following equation:
DUnreliable = DT()p ’ WDTop"+D301mm ’ WDBottom|'+DLe_fi ' WDLe_fill+DRight ’ WDRight" (10)

Here, Duwreiabies D1ops Dpotioms Diesiy @Nd Drigie are the depth values of unreliable depth
pixel, top reliable depth pixel, bottom reliable depth pixel, left reliable depth pixel, and right
reliable depth pixel, respectively.

The calculation of the interpolation weighting factors described above serves as the basis
of the proposed depth refinement algorithm with some modification for each of the uncovered
area and occluded area, respectively. The difference of each category is listed as following:

1. Non-occluded area
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The calculation of weighting factor and depth value interpolation can be used directly in
non-occluded area.

2. Occluded area

If a pixel is determined as an occluded pixel, its four-neighbor reliable depth pixels are
still searched first. Then the reliable depth pixels used to interpolate depth value of occluded
pixel are selected as the following.

The depth value is represented from 0 to 255, the smaller depth value means the pixel is
in the deeper depth plane. Thus, the object which has smaller depth value will be occluded by
the object which has larger depth value. The smallest depth value of the four-neighbor reliable
depth pixels is chosen as a reference to filter out the neighbor in the foreground. The
difference between this reference depth value and the depth value of reliable depth pixel in the
other directions is then calculated. If the difference of any direction is larger than a threshold,
the reliable depth pixel in this direction is considered as foreground and discarded. The depth
value filtering process is illustrated in Figure 3-13. With depth value filtering we can remove

the depth value of the foreground object.

Re: Reliable

Occ | Re Occ: Occluded

Figure 3-13: Depth value filtering.

After depth value filtering, the depth value of the occluded pixel is interpolated using the
same process as non-occluded area.

3. Uncovered area

-29-



Theoretically, for the pixels in the uncovered areas, we also have to find four-neighbor
reliable depth pixel. However, the uncovered area exists at the left side of the left view image
or exists at the right side of the right view image. There is only one side reference for each
pixel in uncovered areas. The uncovered pixels in left view only have reliable depth pixel at
right side and the uncovered pixels in right view only have reliable depth pixel at left side.
Therefore, the four-neighbor reliable depth pixel search can be reduced and the interpolation
can be removed in depth refining process for the uncovered pixels. This process is shown in
Figure 3-14. The uncovered pixel in left view copies the depth value of the right reliable depth
pixel as its depth value and the uncovered pixel in right view copies the depth value of the left

reliable depth pixel as its depth value.

nC

c
>
Asaaafnaaa

UnC: Uncovered area

Figure 3-14: Refinement of uncovered area.
Left: depth map of left view, Right: depth map of right view.

3.2.4 Results of depth refinement

The results of depth refinement algorithm are presented in Figure 3-15 to Figure 3-17.
The original depth map at the left side of each figure is generated by DERS [16] with

modified depth estimation error function. The depth map at the right side of each figure is the
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refined depth map.

Figure 3-15 shows the results of sequence BookArrival after applying depth refinement
algorithm, Figure 3-15(a) is the original depth map and Figure 3-15(b) is the refined depth
map. The depth values around the left boundary of the sitting man and the stone lion are

refined with the reasonable values. The uncovered area at left side is also refined with

reasonable guess.

(a) (b)
Figure 3-15: Results of sequence BookArrival after applying depth refinement algorithm.
(a) The original depth map of the left view, (b) The refined depth map of the left view

Figure 3-16 shows the results of depth refinement of sequence Lovebirdl. The quality of
depth map is not improved obviously because the unreliable depth pixels are not as many as
that in sequence BookArrival. The shape of the foreground is sharper after applying the
proposed method. Figure 3-16(a) is the original depth map, Figure 3-16(b) is the refined depth

map.
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(a) (b)
Figure 3-16: Results of sequence Lovebirdl after applying depth refinement algorithm.
(@) The original depth map of the left view, (b) The refined depth map of the left view

The results of depth refinement of sequence Newspaper are shown in Figure 3-17. The
quality of depth map is improved obviously, especially in uncovered areas. The improvement
will affect the quality of synthesized view significantly. The results of view synthesis are
discussed in the next chapter. Figure 3-17(a) is the original depth map, Figure 3-17(b) is the

refined depth map.

(b)
Figure 3-17: Results of sequence Newspaper after applying depth refinement algorithm.
(@) The original depth map of the right view, (b) The refined depth map of the right view
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3.3 Modified View Synthesis Algorithm

We have proposed a reliable weighted interpolation function in section 3.2. Similar idea
can be used in view synthesis process. The view synthesis algorithm in [3] will generate two
different mapped virtual images and then these two images are merged according to the ratio
of left and right baseline distances. The pixels in these two images can be mapped from
reliable depth pixels or from unreliable depth pixels. We can use the same reliable weighting
to recalculate the weighting factor for the image mapped from left view and the weighting
factor for the image mapped from right view. The original weighting factors for the mapped

image from left view WD,.; and the mapped image from right view WDy, are represented as

follows.
Dis p,
WD, = —— (11)
Dis, ot Dis Right
Dis,,,
WDRight = [ (12)

DlSLeﬂ + DZSRight

where Disgion and Disyp; are right baseline distance and left baseline distance, respectively.

If one of the mapped pixels is from reliable depth pixel and the other is from unreliable
depth pixel, WD;.; and WDgg, Of the view synthesis algorithm [3] are then modified by the
following description. The weighting value Wgignr and Wi,z used in the depth refinement
step can be used here. Wyignr and Wi,,.r are the weighting values of high reliability reliable
depth pixel and low reliability reliable depth pixel, respectively. WD;.; and WDg;g are
multiplied by Wiignr and Wi,z as follows:

for the mapped pixels from left view or right view

if the mapped pixel is from reliable depth pixel
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WDDirection ‘= WDDirection ’ WHighR (13)

else

WD '=WD

Direction

Direction WLowR (14)
where “Direction” in lower index can be either Left or Right.
The new weighting factors for the mapped pixels from left view and the mapped pixels

from right will be:

WD n__ WDRight '
LE{ﬁ - 1 1 (15)
WD Left +WD Right
wD, .'
WD i (16)

Right — WDLEﬁ |+WD 1

Right

The performance of this modification will be discussed in the next chapter.
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Chapter 4. Results of View Synthesis

The quality of the refined depth map will be evaluated by results of view synthesis. If the
refined depth map has better resolution, the synthesized virtual views shall also have better
quality. The simulation results will be compared subjectively and objectively. The subjective
comparison is presented in section 4.1 and the objective comparison is described in section
4.2. In objective results comparison, we will compare our method to [23]. The virtual views
generated by our method in section 4.1 and 4.2 are using the refined depth map and
synthesized by the reliable weighted view synthesis algorithm. Except for the comparison of
whole image, we emphasize the improvement of reliable weighted view synthesis in section
4.3.

The test sequences are from [26]. The reference views used to perform the depth
estimation and the synthesized views for the evaluation are listed in Table 4-1. The number of
synthesized frames is 100; all test sequences synthesize the same number of frames. The
original depth map in this chapter is the depth map generated by DERS [16] with modified

depth estimation error function.

Table 4-1: Test sequences and virtual views to be synthesized

Sequence Name Left Reference Right Reference Virtual Views
BookArrival View 10 View 7 View 8
Lovebirdl View 5 View 8 View 6
Newspaper View 4 View 6 View 5
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4.1 Subjective Results Comparison

The visual quality of refined depth map is shown in section 3.2. It shows that depth map
is more precise around object boundaries. The visual quality of synthesized virtual views
should be improved if the refined depth map is used. The visual quality improvement of

synthesized virtual views is exhibited in this section.

4.1.1 Results of BookArrival

Figure 4-1 to 4-4 shows the simulation results of sequence BookArrival. Figure 4-1 is the
result of frame number 58. Figure 4-1(a) is the original video data, 4-1(b) is the result
generated with original depth map and VSRS [3], 4-1(c) is the result generated with refined
depth map and proposed view synthesis algorithm. The green rectangle area is enlarged in
figure 4-2 to see the visual quality improvement clearly. Figure 4-2(b) is the green rectangle
area of figure 4-1(b), figure 4-2(c) is the green rectangle area of figure 4-1(c). The noises
around objects boundaries are removed and object in occluded area is synthesized more
correctly (e.g., the earphone in the left most red ellipse) when our method is applied. The
improved areas are highlighted with red ellipse. Figure 4-3 is the result of frame number 73.
Figure 4-3(a) is the original video data, 4-3(b) is the result generated with original depth map
and VSRS, 4-3(c) is the result generated with refined depth map and proposed view synthesis
algorithm. Figure 4-4(a), 4-4(b), and 4-4(c) are the green rectangle areas of figure 4-3(a),

4-3(b), and 4-4(c). The improved areas are also highlighted in figure 4-4.
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(b)
Figure 4-1: Experimental results of frame #58 of sequence BookArrival.
(@) Original video, (b) virtual view generated with original depth map and VSRS, (c) virtual
view generated with refined depth map and proposed view synthesis algorithm.
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Figure 4-2: Enlarged results from figure 4-1.

(b) ()
Figure 4-3: Experimental results of frame #73 of sequence BookArrival.
(@) Original video, (b) virtual view generated with original depth map and VSRS, (c) virtual
view generated with refined depth map and proposed view synthesis algorithm.
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Figure 4-4: Enlarged results from figure 4-3.

4.1.2 Results of Lovebirdl

The results of sequence Lovebirdl are shown in figure 4-5 to 4-8. The visual quality
around the boundaries of the foreground walking people is improved and the shapes of the
man and woman are sharper. Red ellipses highlight the improved areas. Figure 4-5 and 4-6 are
the results of frame number 6. Figure 4-7 and 4-8 are the results of frame number 35. The
arrangement of sub-figures is the same as the results of sequence BookArrival. Sub-figure (a)

is the original video data, (b) is the result generated from original depth map and VSRS, and
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(c) is the result generated from refined depth map and proposed view synthesis algorithm.
Figure 4-5 and 4-7 are the results of whole image, figure 4-6 and 4-8 are the enlarged results

from figure 4-5 and 4-7, respectively.

(b) (©
Figure 4-5: Experimental results of frame #6 of sequence Lovebird]l.
(a) Original video, (b) virtual view generated with original depth map and VSRS, (c) virtual
view generated with refined depth map and proposed view synthesis algorithm.
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Figure 4-6: Enlarged results from figure 4-5.
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(b) (©
Figure 4-7: Experimental results of frame #35 of sequence Lovebirdl.
(a) Original video, (b) virtual view generated with original depth map and VSRS, (c) virtual
view generated with refined depth map and proposed view synthesis algorithm.

Figure 4-8: Enlarged results from figure 4-7.
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4.1.3 Results of Newspaper

The same improvement of visual quality can be found in sequence Newspaper, the
boundaries of objects are clearer when proposed method is applied. The results are shown in
figure 4-9 and 4-10. Figure 4-9 is the results of frame number 0, the green rectangle areas in
figure 4-9 are enlarged in figure 4-10. Again, sub-figure (a) is the original video data, (b) is
the result generated from original depth map and VSRS, and (c) is the result generated from
refined depth map and proposed view synthesis algorithm. There is another noticeable
improvement in the synthesized image, our method has better quality of the red ellipse area.

This is because of our method refined the uncovered area of depth map.
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Figure 4-9: Experimental results of frame #0 of sequence Newspaper.
(a) Original video, (b) virtual view generated with original depth map and VSRS, (c) virtual
view generated with refined depth map and proposed view synthesis algorithm.

Figure 4-10: Enlarged results from figure 4-9.
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4.2 ODbjective Results Comparison

In this section, the results of objective comparison are obtained by PSNR and Peak
Signal to Perceptual Noise Ratio (PSPNR) tool. PSPNR is a tool for view synthesis quality
evaluation. There is a mode for excluding left-most and right-most N pixels in PSPNR
calculation. All sequences are tested with 100 frames and the results are averaged. We have
calculated the 30-pixels exclusion results and no pixel exclusion results. Both results will be
shown in the following description. The “DERS+VSRS” in the tables and figures stands for
the results of the DERS [16] with modified depth estimation error function and the view
synthesis tool VSRS [3], while “[23]” means the results from the original depth map and the
method described in [23]. “Proposed” is for the results of the proposed algorithm with

WHighR:O-75 and Wiowr=0.25.

4.2.1 Results of BookArrival

Table 4-2 shows 30 pixels excluded PSNR and PSPNR results of synthesized view 8 of
sequence BookArrival. The results are the average value of 100 frames. The test results of
30-pixel exclusion show that proposed method has 1.02dB improvement in PSNR and 2.45dB
improvement in S_PSPNR. Figure 4-11, 4-12, and 4-13 are PSNR of each frame, S_PSPNR
of each frame, and T_PSPNR of each frame, respectively. It shows that proposed method
improves quality of each frame of virtual view. The drop around frame number 30 is caused

by a man coming from right side.
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Table 4-2: PSNR and PSPNR results of virtual view 8 of sequence BookArrival (30 pixels

excluded).
N-pixel PSNR S _PSPNR T _PSPNR
exclusion | DERS+VSRS | [23] Proposed | DERS+VSRS | [23] Proposed | DERS+VSRS |  [23] Proposed
30-pixels
. 35.56 35.62 | 36.59 39.51 39.54 | 41.96 47.82 47.66 | 51.69
exclusion
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Figure 4-11: Frame PSNR of virtual view 8 of sequence BookArrival (30 pixels excluded).
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Figure 4-12: Frame S_PSPNR of virtual view 8 of sequence BookArrival (30 pixels

excluded).

- 46 -




BookArrival - Frame T-PSPNR (30 pixels excluded)
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Figure 4-13: Frame T_PSPNR of virtual view 8 of sequence BookArrival (30 pixels
excluded).

Table 4-3 shows no pixel excluded PSNR and PSPNR results of synthesized view 8 of
sequence BookArrival. All results are lower than 30 pixels exclusion because of the uncovered
areas at left side or right side in the depth map. Even though the test results of no exclusion
are lower than the results of 30 pixels exclusion, proposed method still has 1.58dB
improvement in PSNR and 2.20dB improvement in S_PSPNR. The amount of improvement
in PSNR is larger than the result of 30 pixels excluded PSNR. This is because proposed
method refines uncovered areas at left and right side of original depth map. Figure 4-14, 4-15,
and 4-16 are PSNR of each frame, S_PSPNR of each frame, and T_PSPNR of each frame,
respectively. The trends of curves in the figures are similar to the results of 30 pixels

exclusion.
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Table 4-3: PSNR and PSPNR results of virtual view 8 of sequence BookArrival (No pixel

excluded).
N-pixel PSNR S _PSPNR T _PSPNR
exclusion | DERS+VSRS | [23] Proposed | DERS+VSRS | [23] Proposed | DERS+VSRS |  [23] Proposed
No pixels
. 31.99 32.01 | 33.57 33.44 33.44 | 35.64 47.70 47.54 | 50.88
exclusion
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Figure 4-14: Frame PSNR of virtual view 8 of sequence BookArrival (No pixel excluded).
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Figure 4-15: Frame S_PSPNR of virtual view 8 of sequence BookArrival (No pixel excluded).
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BookArrival - Frame T-PSPNR (No pixel excluded)
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Figure 4-16: Frame T_PSPNR of virtual view 8 of sequence BookArrival (No pixel excluded).

4.2.2 Results of Lovebirdl

Table 4-4 shows 30 pixels excluded PSNR and PSPNR results of synthesized view 6 of

sequence Lovebirdl. The improvement in PSNR is 0.30dB and the improvement in S_PSPNR

is 0.72dB. Because refined depth map has a little improvement that is shown in section 3.2.3.

The improvement of quality of virtual view is not obvious as sequence BookArrival. Figure

4-17, 4-18, and 4-19 present the PSNR, S_PSPNR, and T_PSPNR frame by frame.

Table 4-4: PSNR and PSPNR results of virtual view 6 of sequence Lovebirdl (30 pixels

excluded).
N-pixel PSNR S _PSPNR T _PSPNR
exclusion | DERS+VSRS | [23] | Proposed | DERS+VSRS | [23] | Proposed | DERS+VSRS | [23] | Proposed
30-pixels
. 30.94 30.95 | 31.25 34.76 34.78 | 35.48 52.52 51.28 | 53.36
exclusion
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Lovebirdl - Frame PSNR (30 pixels excluded)
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Figure 4-17: Frame PSNR of virtual view 6 of sequence Lovebirdl (30 pixels excluded).
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Figure 4-18: Frame S_PSPNR of virtual view 6 of sequence Lovebirdl (30 pixels excluded).
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Lowvebirdl - Frame T-PSPNR (30 pixels excluded)
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Figure 4-19: Frame T_PSPNR of virtual view 6 of sequence Lovebirdl (30 pixels excluded).

Table 4-5 shows no pixel excluded PSNR and PSPNR results of synthesized view 6 of
sequence Lovebirdl. The improvement in PSNR is 0.27dB and the improvement in S_PSPNR

is 0.60dB. Figure 4-20, 4-21, and 4-22 present the PSNR, S_PSPNR, and T_PSPNR frame by

frame. The figures are similar to the results of 30 pixels exclusion.

Table 4-5: PSNR and PSPNR results of virtual view 6 of sequence Lovebirdl (No pixel

excluded).
N-pixel PSNR S _PSPNR T _PSPNR
exclusion | DERS+VSRS | [23] Proposed | DERS+VSRS | [23] Proposed | DERS+VSRS |  [23] Proposed
30-pixels
. 30.33 30.33 | 30.60 34.00 34.00 | 34.61 52.72 51.10 | 53.32
exclusion
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Lowvebirdl - Frame PSNR (No pixel excluded)
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Figure 4-20: Frame PSNR of virtual view 6 of sequence Lovebirdl (No pixel excluded).
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Figure 4-21: Frame S_PSPNR of virtual view 6 of sequence Lovebirdl (No pixel excluded).
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Lowvebirdl - Frame T-PSPNR (No pixel excluded)
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Figure 4-22: Frame T_PSPNR of virtual view 6 of sequence Lovebirdl (No pixel excluded).

4.2.3 Results of Newspaper

Table 4-6 shows 30 pixels excluded PSNR and PSPNR results of synthesized view 5 of
sequence Newspaper. The improvement in PSNR is 0.75dB and the improvement in
S PSPNR is 1.74dB. Figure 4-23, 4-24, and 4-25 present the PSNR, S PSPNR, and

T _PSPNR frame by frame. The results show that proposed method has a significant

improvement.

Table 4-6: PSNR and PSPNR results of virtual view 5 of sequence Newspaper (30 pixels

excluded).
N-pixel PSNR S _PSPNR T PSPNR
exclusion | DERS+VSRS | [23] Proposed | DERS+VSRS | [23] Proposed | DERS+VSRS |  [23] Proposed
30-pixels
. 30.98 30.99 | 33.74 34.34 34.35 | 36.07 47.86 47.49 | 46.96
exclusion
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Newspaper - Frame PSNR (30 pixels excluded)

33l —o— DERS+VSRS ||
—— [23]

—=—— Proposed

30.5

30

| |
0 10 20 30 40 50 60 70 80 90 100
Frame Number

Figure 4-23: Frame PSNR of virtual view 5 of sequence Newspaper (30 pixels excluded).
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Figure 4-24: Frame S_PSPNR of virtual view 5 of sequence Newspaper (30 pixels excluded).
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Newspaper - Frame T-PSPNR (30 pixels excluded)
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Figure 4-25: Frame T_PSPNR of virtual view 5 of sequence Newspaper (30 pixels excluded).

Table 4-7 shows no pixel excluded PSNR and PSPNR results of synthesized view 5 of

sequence Newspaper. The improvement in PSNR is 4.06dB and the improvement in

S _PSPNR is 6.68dB. Figure 4-26, 4-27, and 4-28 present the PSNR, S _PSPNR, and

T _PSPNR frame by frame. The results of depth refinement that shown in figure 3-13 can

explain the reason why PSNR and S_PSPNR have a huge improvement. The results of depth

refinement of uncovered depth pixels in the right reference view correct a large area of

unreliable depth. The calculation of PSNR and PSPNR is including all pixels in the image, the

bad depth values in the original depth map drop the results of PSNR and PSPNR.

Table 4-7: PSNR and PSPNR results of virtual view 5 of sequence Newspaper (No pixel

excluded).
N-pixel PSNR S _PSPNR T _PSPNR
exclusion | DERS+VSRS | [23] Proposed | DERS+VSRS | [23] Proposed | DERS+VSRS |  [23] Proposed
30-pixels
. 27.04 27.05 | 31.10 28.15 28.15 | 34.83 46.04 45.80 | 46.26
exclusion
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Newspaper - Frame PSNR (No pixel excluded)
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Figure 4-26: Frame PSNR of virtual view 5 of sequence Newspaper (No pixel excluded).
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Figure 4-27: Frame S_PSPNR of virtual view 5 of sequence Newspaper (No pixel excluded).
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Newspaper - Frame T-PSPNR (No pixel excluded)
T

—e— DERS+VSRS

’
N % ——[23]
—=—— Proposed

| | |
(0] 10 20 30 40 50 60 70 80 90 100
Frame Interval

Figure 4-28: Frame T_PSPNR of virtual view 5 of sequence Newspaper (No pixel excluded).

4.3 Improvement of Reliable Weighted View
Synthesis

In this section, the improvement of reliable weighted view synthesis will be emphasized.
We calculate average PSNRs of the pixels that apply reliable weighted view synthesis
algorithm to see the improvement clearly.

The improvement of the reliable weighted view synthesis can be seen in Table 4-8 where
the performance of the proposed depth refine algorithm with and without the proposed
reliable weighted view synthesis algorithm is shown. From the simulation results, the

improvement brought by the proposed algorithms is quite substantial.
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Table 4-8: Improvement of reliable weighted view synthesis algorithm

Sequence Name BookArrival Lovebirdl Newspaper
w/o reliable
o 31.161846 22.559836 26.400312
weighting
Avg. PSNR — =
with reliable
. 31.696880 22.833418 26.602564
weighting
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Chapter 5. Conclusion

5.1 Conclusion

FTV has been an interesting application of multi-view video in the recent years. Its
ability of free navigation can be achieved by using color video data and depth information.
The quality of depth map is an important factor of view synthesis. There are a lot of
researches to get the precise depth information nevertheless the there is still room to improve
the accuracy of the depth map. Bad depth values will cause artifacts on the synthesized views.
Hence, we proposed a depth refinement algorithm to correct the depth value of unreliable
depth pixels.

Based on the results of simulation, it shows that our proposed depth refinement
algorithm corrects the unreliable depth pixels with more precise depth value. The refined
depth map can be used to synthesize virtual views. The subjective quality and objective
quality of virtual views are both improved significantly. The proposed algorithm not only
makes boundaries of objects clearer and sharper but also removes many artifacts in the
synthesized view by detecting and correcting the unreliable depth pixels.

Except for the depth map refinement, we also proposed a view synthesis algorithm
considering the different weighting for the mapped pixels from reliable depth pixels and the
mapped pixels from unreliable depth pixels. The experimental results of section 4.3 show that
the pixels which apply this reliable weighted function have a noticeable improvement of
quality.

The proposed depth refinement algorithm and reliable weighted view synthesis algorithm
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both improve the quality of synthesized views. The better quality of synthesized views makes

the applications of FTV more practical.
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