

i

有全方位監控之多輛電腦視覺自動車的

最佳安全巡邏之研究

研究生：陳倖嘉 指導教授：蔡文祥 教授

國立交通大學多媒體工程研究所

摘要

本論文提出利用多輛視覺型自動車執行安全巡邏工作的系統。我們假設巡邏

環境的地板形狀是由矩形區塊所組成，並採用兩輛裝設有攝影機的自動車，以及

兩部固定於天花板的魚眼鏡頭攝影機做為實驗平台。我們提出了一項獲取未知環

境資訊的方法，可得到組成環境的所有矩形區域、導航自動車的轉折點、每組監

控點間的距離與巡邏路徑。利用這些資訊可使自動車在航行時，不會與牆壁產生

擦撞。另外，針對相機校正的問題，我們亦提出一項結合影像內插的點對應方法，

利用多組二維影像與三維真實空間的對應點與影像內插法，去求得點在扭曲影像

中的實際正確位置。此外，為了提高相機校正的精準度，我們也提出一項快速求

取多組對應點的方法。藉由這些方法，我們可利用固定於天花板上的俯視攝影機

來學習自動車相對於監控物品的位置與朝向，並利用此資訊來執行安全巡邏的工

作。再者，我們也用俯視攝影機來定位與監控自動車的移動行為。而為了使得本

系統有較好效益，我們則提出一項具有優化隨機與工作量平衡特性的路徑規劃方

法，來分配巡邏路徑給各自動車，縮短完成每輪巡邏工作所花費的時間，進而提

高環境中的安全程度。最後，由於本系統中所採用的自動車數量不只一台，所以

我們提出了即時避碰的技巧，根據可能產生碰撞的路線狀況，自動產生可行駛的

避碰路線。實驗結果證明我們所提出的這些方法是可行而且有效的。

ii

A Study on Optimal Security Patrolling by Multiple Vision-Based

Autonomous Vehicles with Omni-Monitoring

Student: Hsing-Chia Chen Advisor: Prof. Wen-Hsiang Tsai, Ph. D.

Institute of Multimedia Engineering, College of Computer Science

National Chiao Tung University

ABSTRACT
A multiple vision-based vehicle system for security patrolling in an indoor

environment, whose floor shape is composed of rectangular regions, is proposed. Two

autonomous vehicles controllable by wireless communication and equipped with

cameras, as well as two cameras with fish-eye lenses fixed on the ceiling, are used as

a test bed. To acquire information of an unknown environment, an

environment-information calculation method is proposed for obtaining all rectangular

regions composing the floor shape of the environment, the turning points for

navigation, all distances between monitored objects, and the patrolling paths. These

data enable the vehicles to navigate without collisions with walls. Also, a

point-correspondence technique integrated with an image interpolation method is

proposed for camera calibration. By a technique of finding corresponding points in

2-D image and 3-D global spaces as well as an image interpolation method, the

correct positions of interesting feature points can be obtained from the warped images

captured by the cameras with fish-eye lenses. Besides, a faster point-correspondence

technique is proposed to obtain abundant corresponding points that yield better

calibration accuracy. With this camera calibration technique, the cameras on the

iii

ceiling can be utilized to learn the poses of the vehicles with respect to monitored

objects. Also, the vehicles are taught where and in which direction to perform the

security monitoring task, in which the position information is used to guide the

vehicles. Additionally, the top-view cameras can also be utilized to locate the vehicles

and monitor vehicle activities in the navigation phase. An optimal randomized and

load-balanced path planning method is proposed as well, which requires shorter time

to accomplish object monitoring in one session and provides higher degrees of

patrolling security. Because the number of the vehicles used in this study is more than

one, a real-time collision avoidance technique is also proposed. According to the state

of path-intersecting, feasible alternative paths for the vehicles can be obtained. Good

experimental results show the flexibility and feasibility of the proposed methods for

the application of multiple-vehicle security patrolling.

iv

ACKNOWLEDGEMENTS

I am in hearty appreciation of the continuous guidance, discussions, support, and

encouragement received from my advisor, Dr. Wen-Hsiang Tsai, not only in the

development of this thesis, but also in every aspect of my personal growth.

Thanks are due to Mr. Chih-Jen Wu, Mr. Che-Wei Lee, Miss Shung-Yung Tsai,

Mr. Guan-Lin Huang, and Mr. Jiun-Tsung Wang for their valuable discussions,

suggestions, and encouragement. Appreciation is also given to the colleagues of the

Computer Vision Laboratory in the Institute of Computer Science and Engineering at

National Chiao Tung University for their suggestions and help during my thesis study.

Finally, I also extend my profound thanks to my family for their lasting love,

care, and encouragement. I dedicate this dissertation to my beloved parents.

v

CONTENTS
ABSTRACT..ii

ACKNOWLEDGEMENTS ...iv

CONTENTS..v

LIST OF FIGURES ...vii

LIST OF TABLES..x

Chapter 1 Introduction..1
1.1 Motivation of Study ...1
1.2 Survey of Related Studies ..2
1.3 Overview of Proposed Approach ...4
1.4 Contributions..8
1.5 Thesis Organization ...9

Chapter 2 System Configuration and Navigation Principles...............................10
2.1 Introduction..10
2.2 System Configuration ..12

2.2.1 Hardware configuration ..14
2.2.2 Software configuration..17

2.3 Learning Principle and Proposed Process..17
2.4 Vehicle Guidance Principle and Proposed Process..................................20

Chapter 3 Learning Strategies for Navigation by Semi-automatic Driving22
3.1 Ideas of Proposed Techniques Used in Learning22
3.2 Calibration of Top-View Omni-Cameras with Fish-Eye Lenses23

3.2.1 Review of Conventional Camera Calibration Technique24
3.2.2 Proposed Calibration Technique ...25

3.3 Information for Security Patrolling..32
3.3.1 Proposed techniques of learning patrolling environment32
3.3.2 Learning of poses of vehicles with respect to monitored objects41

Chapter 4 Security Patrolling by Multiple Vehicle Navigation............................45
4.1 Introduction to Concepts in Proposed Systems45

4.1.1 Randomized patrolling..45
4.1.2 Optimal path..46
4.1.3 Load balance ...46
4.1.4 Top-view omni-monitoring...46
4.1.5 Path correction by top-view monitoring omni-camera47

vi

4.2 Proposed Techniques Used in Patrolling ...48
4.2.1 Optimal randomized patrolling paths for all vehicles.......................48
4.2.2 Guidance of vehicles by localization and monitoring using top-view

omni-cameras..52
4.2.3 Avoiding collisions between vehicles ...63

4.3 Detailed Process for Security Patrolling by Vehicle Navigation63
Chapter 5 Planning of Optimal Randomized Patrolling Paths for Vehicles.......68

5.1 Introduction..68
5.2 Calculation of Paths between Monitoring Points by Dijkstra’s Algorithm

..69
5.2.1 Review of Dijkstra’s algorithm...69
5.2.2 Proposed technique for generation of partial patrolling paths70

5.3 Calculation of Optimal Randomized Patrolling Paths by Finding
Hamiltonian Paths...76

5.3.1 Review of Traveling-Salesman Problem (TSP)................................76
5.3.2 Proposed technique for generation of complete patrolling paths......77

Chapter 6 Collision Avoidance between Vehicles ..81
6.1 Introduction..81
6.2 Detection of Collisions ..81
6.3 Proposed Collision Avoidance Techniques ..82

6.3.1 Collision avoidance on intersecting paths...82
6.3.2 Collision avoidance on non-intersecting paths89

Chapter 7 Experimental Results and Discussions...95
7.1 Experimental Results of Simulation of Patrolling95
7.2 Experimental Results of Patrolling in Real Environment......................101
7.3 Discussions ..108

Chapter 8 Conclusions and Suggestions for Future Works 110
8.1 Conclusions.. 110
8.2 Suggestions for Future Works.. 112

References ... 114

vii

LIST OF FIGURES
Figure 1.1 Flowchart of learning process of proposed system.5
Figure 1.2 Flowchart of navigation of proposed system..7
Figure 2.1 The vehicle used in this study is equipped with a camera. (a) A perspective

view of the vehicle. (b) A front view of the vehicle. (c) A side view of the
vehicle. ... 11

Figure 2.2 The vehicle system used in this study. (a) A Pioneer 3-DX vehicle. (b) A
WiBox. (c) An Axis 207MW camera. ..13

Figure 2.3 Structure of proposed system. ..15
Figure 2.4 The camera system used in this study. (a) A perspective view of the camera.

(b) A front view of the camera. (c) A left-side view of the camera..........16
Figure 2.5 Flowchart of proposed learning process...19
Figure 2.6 Flowchart of proposed navigation process. ..21
Figure 3.1 Calculating quadratic curves. ...27
Figure 3.2 Finding all corresponding points. ...29
Figure 3.3 Point I in a distortion image. ..30
Figure 3.4 A relation between the image taken by the omni-camera and the global

space...31
Figure 3.5 Intersections of L and the boundaries of the area.33
Figure 3.6 Setting a line segment l...34
Figure 3.7 Scanning the line segment l to the left..35
Figure 3.8 Scanning the line segment l to the right. ..35
Figure 3.9 The right part of points a and b is not an inner range.................................36
Figure 3.10 The right part of points a and b is an inner range.....................................37
Figure 3.11 A patrolling area..37
Figure 3.12 The first rectangular region. ...38
Figure 3.13 The second rectangular region..38
Figure 3.14 The third rectangular region. ..38
Figure 3.15 The fourth rectangular region. ..39
Figure 3.16 The fifth rectangular region..39
Figure 3.17 The sixth rectangular region. ..39
Figure 3.18 The seventh rectangular region...40
Figure 3.19 All turning points in the area. ...41
Figure 3.20 User interface of learning MPs...42
Figure 3.21 Before localizing the vehicle. ...42
Figure 3.22 Localizing the vehicle...43
Figure 3.23 The vehicle in front of a monitored object. ..44

viii

Figure 4.1 A flowchart of determining all paths for vehicles.52
Figure 4.2 Coordinate systems used in this study. (a) ICS (b)GCS (c)VCS................54
Figure 4.3 Vehicle localization from a top-view omni-camera....................................55
Figure 4.4 A background image taken by a top-view omni-camera.57
Figure 4.5 A foreground taken by a top-view omni-camera.57
Figure 4.6 Finding the position of a vehicle. (a) A binary image which is part of the

image shown in Figure 4.3. (b) Erosion of (a) with a square mask. (c)
Dilation of (b) with a square mask. (d) The connected component of (c)
and the computed centroid (the white circle)...58

Figure 4.7 Illustration of direction angles of the vehicle. ..60
Figure 4.8 Flowchart of localizing and monitoring vehicles.62

Figure 4.9 A direction angle θV. (a) Left (0 vθ π≤ ≤). (b)Right (- 0vπ θ≤ ≤)............64

Figure 4.10 The relation between θ and θV. ...64
Figure 4.11 Flowchart of Navigation and monitoring tasks.67
Figure 5.1 A patrolling environment. ...72
Figure 5.2 The graph G from Figure 5.1..72
Figure 5.3 The first cycle. ..73
Figure 5.4 The second cycle. ...73
Figure 5.5 The third cycle. ...74
Figure 5.6 The fourth cycle..74
Figure 5.7 The fifth cycle...75
Figure 5.8 The sixth cycle..75
Figure 5.9 The seventh cycle. ..76
Figure 5.10 A patrolling environment. ...78
Figure 5.11 A complete undirected graph G = (V, E). ...79
Figure 6.1 An intersection I on the paths of two vehicles..83
Figure 6.2 Passing point P is in the outer region. ..85
Figure 6.3 The alternative path is not feasible. ..85
Figure 6.4 The alternative path is not feasible. ..86
Figure 6.5 An included angle θ between V G and V P.89
Figure 6.6 Alternative paths at a non-intersecting state. ..90
Figure 6.7 The passing point P is too far. ..91
Figure 6.8 A passing point P at a non-intersecting state. ...92
Figure 6.9 P is too far...92
Figure 6.10 P2 is not in the rectangular region R. ..93
Figure 7.1 A simulated patrolling environment. ..96
Figure 7.2 Path planning for the two vehicles in a session..97

ix

Figure 7.3 Path planning for the two vehicles in the next session.98
Figure 7.4 Collision avoidance of non-intersecting paths. ..100
Figure 7.5 Collision avoidance of intersecting paths...101
Figure 7.6 The view of the first top-view omni-camera. ...103
Figure 7.7 The view of the second top-view omni-camera..105
Figure 7.8 The security patrolling task. (a) Images captured in the learning phase. (b)

Images captured in the navigation phase. ..106
Figure 7.9 The security patrolling task. (a) Images captured in the learning phase. (b)

Images captured in the navigation phase. (continued)...........................107

x

LIST OF TABLES
Table 5.1 Distances and passing turning points between every pair of monitoring

points..78
Table 7.1 The table of time comparisons where O and X means conducted or not,

respectively. ...99
Table 7.2 Mechanical errors of the vehicle. ...102
Table 7.3 Errors of the first top-view omni-camera...104
Table 7.4 Errors of the second top-view omni-camera. ...105

1

Chapter 1
Introduction

1.1 Motivation of Study

Applications of intelligent robots are increasing gradually. An autonomous

vacuum cleaner is a famous instance. The autonomous vehicle used in this research is

also a robot, but it can only move. In order to add more ability to it, the vehicle is

equipped with a camera. With the camera and its movement, the view of the vehicle is

extended to a wider range. Such a kind of vision-based autonomous vehicle can

perform more complicated tasks, such as security patrolling. It also can replace human

beings to do dangerous or dreary works, for example, unknown object clipping,

interoffice document delivering, etc.

A traditional security surveillance system is passive and restricted by its fixed

position. The autonomous vehicle utilized to assist a security surveillance system can

send an alert message to the security center actively when it detects an abnormal state.

This provides more efficient and reliable security protection.

Security patrolling by multiple vision-based autonomous vehicles is more

efficient than by one, because less time is taken to complete one session of patrolling

all monitored objects. An additional advantage is that the shorter time interval

between two objects patrolled increases the degree of security.

To have more benefits, a good planning of patrolling paths for all autonomous

vehicles is important. Randomization, optimization, and load balancing are three

critical principles that influence path planning. Autonomous vehicles patrolling

2

randomly make thieves have no idea about when an object is not monitored by any

vehicle. Optimal paths and load balances among all vehicles can decrease the time for

all monitored objects to be patrolled once.

In order that an autonomous vehicle can carry out the patrolling task without any

manpower, it has to be guided smartly. Ideas of learning artificial landmarks or

specific scene features in the environment and locating the vehicle by landmark or

feature matching have been developed intensively in the past decade. But most of

them are restricted to be applicable in ideal environments, such as pure-colored

backgrounds. Therefore, a top-view omni-camera with a fish-eye lens is utilized in

this study to widen the applicable environment. The camera not only can locate

autonomous vehicles but also can check ceaselessly whether they are still under

control.

As a summary, our research goal in this study is to develop an autonomous

vehicle security patrolling system with the following capabilities:

1. navigating automatically in environments whose floor shape is composed of

rectangular regions;

2. monitoring and locating autonomous vehicles by top-view omni-cameras;

3. avoiding collisions between vehicles;

4. patrolling randomly; and

5. planning optimal paths and balanced loads for all autonomous vehicles.

1.2 Survey of Related Studies

In order to make autonomous vehicles navigate along a correct path, the vehicle

location is the most vital information. Traditionally, an autonomous vehicle is

3

equipped with an odometer to measure the current location of the vehicle. However,

the vehicle usually suffers from incremental mechanic errors. Thus we need a

technique of vehicle location estimation to correct the mechanic error in the

navigation session.

For vehicle calibration, the geometric shapes of object boundaries [1, 2] or those

labeled by users are utilized frequently [3, 4]. Furthermore, natural landmarks, such as

house corners [5, 6], and the SIFT features of images [7] are also used in the

techniques of vehicle calibration. In recent years, techniques of integrating laser range

finders with conventional imaging devices have been proposed [8, 9].

In this study, a top-view omni-camera with a fish-eye lens is utilized to locate an

autonomous vehicle. The camera must be calibrated before being used. Traditionally,

we must calculate intrinsic and extrinsic parameters of the camera in order to obtain a

projection matrix for transforming points between 2-D image and 3-D global spaces.

A point-correspondence technique integrated with an image interpolation method is

proposed, which is inspired by a technique coming from Lai and Tsai [10]. Because

the camera is equipped with a fish-eye lens, images captured by it are warped. Winters

and Santo-Victor [11] proposed a method for calibrating warped panoramic images.

However, we can obtain a correct coordinate point directly by the camera calibration

technique proposed by us.

Path planning is an important topic for the security patrolling by multiple

vehicles. Many methods for this aim have been proposed in [12, 13, 14]. Besides, load

balancing among all vehicles also need to be paid attention. Hert and Richards [15]

proposed a method of using a polygon partitioning algorithm to achieve this objective.

In this study, we propose a technique of calculating optimal and load-balanced paths

in terms of some guidance points where vehicles perform security monitoring tasks.

The idea of using guidance points comes from a learning method proposed by Chen

4

and Tsai [16]. While vehicles navigate, collisions between vehicles must be avoided.

Some methods [17, 18, 19] have been proposed to produce collision-free paths. To

carry out optimal patrolling, we use the concept of the traveling salesman problem

(TSP). Some methods for solving the TSP can be found in [20, 21, 22].

1.3 Overview of Proposed Approach
In this study, it is desired to develop a multiple vision-based autonomous vehicle

system for security patrolling in an environment whose floor shape is composed of

rectangular regions. In order to achieve this purpose, information about the

environment, monitoring positions, and vehicle localization is quiet important.

Therefore, some methods which can assist to acquire all of the above information are

proposed and are roughly described in following. With such information, a technique

which makes multiple vision-based autonomous vehicles navigate on correct paths

without collisions and perform assigned security patrolling tasks is proposed. We

divide the work conducted by the system into two phases: the learning phase and the

navigation phase. They are illustrated in Figure 1.1 and Figure 1.2, respectively.

The learning phase consists of five steps to obtain the information about the

environment, monitoring positions, and vehicle localization. The first step is

calibrating cameras. In this study, there is no need to calculate all parameters of a

camera. We propose another camera calibration technique which utilizes a pattern

with some symbols labeled manually or with some natural landmarks, and obtains all

corresponding points between 2-D image and 3-D global spaces. To obtain

corresponding points faster, we propose additionally a technique of calculating the

5

intersections of some quadratic curves, followed by using an interpolation method to

obtain the global-space position of each point in a camera image.

Start of Learning

 Calibrating
Cameras

Corners of
Patrolling Area

Learning
Vehicle Poses w.r.t.
Monitored Objects

Calculating
Area Information

Calculating Distances
between

Monitoring Points

Distances
between

Monitoring Points

Paths
between

Monitoring Points

Collecting
Information

End of Learning

Patrolling
Information

Corresponding
Points between

2-D and 3-D

Rectangle
Regions

Turning
Points

Vehicle Poses

Start of Patrolling

Learning Phase

Figure 1.1 Flowchart of learning process of proposed system.

The second step is calculating area information, in which we take all corners of

the patrolling area in the clockwise order as input, and find all rectangular regions and

turning points by a method proposed in this study. The rectangular regions and turning

6

points can prevent autonomous vehicles from colliding with walls in the environment.

The third step is learning vehicle poses with respect to monitored objects. While

autonomous vehicles are patrolling, they must know where and in which direction to

perform a security monitoring task. Therefore, an autonomous vehicle is driven to all

positions where there are some monitored objects. Then, we point out the position of

the autonomous vehicle in the image of a top-view omni-camera manually. We call

the position a monitoring point in the sequel. For the direction, we utilize two

positions of the vehicle to obtain a directional vector.

The fourth step is calculating distance between each pair of monitoring points.

Because not all pairs of monitoring points are in the same rectangular region, an

autonomous vehicle might not be able to navigate in a straight line between two

monitoring points which are in different regions individually. Therefore, we propose a

method for calculating the distance between any pair of monitoring points according

to the information of rectangular regions, turning points, and positions of monitoring

points obtained from the second and third steps of the learning phase described above.

The distance is a critical factor that influences the decisions of patrolling paths. In

addition, if two monitoring points belong to different regions, some turning points,

which assist vehicles in moving from one monitoring point to the other without

colliding with walls, are also recorded.

The final step of the learning phase is collecting information. All corresponding

points between 2-D image and 3-D global spaces, rectangular regions, turning points,

vehicle poses (including positions and directions), and navigational information

between all pairs of monitoring points are collected to form a database. With all

information in the database, autonomous vehicles will be able to perform the security

patrolling task successfully.

7

End of Learning

Patrolling
Information

Start of Patrolling

Planning
Patrolling Paths

Security
Patrolling

Monitoring
Tasks

Locating
Vehicles

Avoiding
Collisions

Navigation Phase

Figure 1.2 Flowchart of navigation of proposed system.

In the navigation phase, at first patrolling paths for all autonomous vehicles are

decided according to the data obtained from the learning phase. For path planning, we

propose a method for calculating optimal paths randomly with each monitoring point

on these paths appearing only once. It means that all monitoring points are reached

once in one patrolling session. With the path so planned, every autonomous vehicle

can perform the security patrolling task at all monitoring points. When every

autonomous vehicle completes traversing the assigned path, new patrolling paths are

decided again.

Because of the existence of the mechanic errors of autonomous vehicles, it is

important to locate all the autonomous vehicles in every session of patrolling. In this

study, we propose a method of using a top-view omni-camera to do this job. Because

the camera is fixed on the ceiling, we can obtain the absolute positions of vehicles

8

from the images captured by the camera. When the position of an autonomous vehicle

is obtained, the odometer value and direction angle of the vehicle can be corrected.

The camera can also monitor whether autonomous vehicles are still under control. If

not, the system will send an alert message to the security center and stop all vehicles.

In this study, two autonomous vehicles are utilized for conducting experiments of

security patrolling. Hence, there may be collisions between them in patrolling sessions.

To solve this problem, the odometer values of the vehicles are utilized to obtain the

information about whether they are too close. The reason why the values of odometers

are adopted is that these values may be corrected constantly by the top-view

omni-cameras. As soon as the distance between the two vehicles is too close, a

technique proposed in the study can make a change in paths to avoid the collision at

once.

In summary, multiple vision-based autonomous vehicles can carry out security

patrolling in environments whose floor shapes are composed of rectangular regions

without collisions. By the top-view omni-cameras, autonomous vehicles can navigate

along correct paths without collisions and whether the vehicles are still navigating

normally also can be monitored. The patrolling paths are planned to be optimal and

random. The loads of all autonomous vehicles are balanced. All of the above proposed

techniques will bring a lot of merits for the application under investigation, namely,

security patrolling by multiple autonomous vehicles.

1.4 Contributions

The main contributions of this study are summarized in the following.

(1) An environment-information aqusition method for collision avoidance between

9

the vehicles and walls is proposed.

(2) A point-correspondence technique integrated with an image interpolation method

for camera calibration is proposed.

(3) A faster point-correspondence technique is proposed.

(4) A vehicle-pose learning method for performing the security monitoring task,

which is to take pictures of monitored objects as defined in this study, and

guiding the vehicles is proposed.

(5) An optimal method for randomized and load-balanced path planning is proposed.

(6) A vehicle localization and monitoring method by the top-view omni-cameras is

proposed.

(7) A real-time collision avoidance technique between two vehicles is proposed.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, we describe

the system configuration of the vehicles used as a test bed in this study, as well as the

principle of vehicle learning and guidance. In Chapter 3, the proposed techniques for

camera calibration, acquiring information about environments, and patrolling tasks are

described. In Chapter 4, the proposed methods for performing security patrolling and

using top-view omni-cameras to localize and monitor vehicles are described. In

Chapter 5, the proposed method for planning paths that are optimal, random, and

load-balanced for all autonomous vehicles is described. In Chapter 6, the proposed

method for collision avoidance between vehicles in patrolling sessions is described.

Some experimental results are shown in Chapter 7. Finally, some conclusions and

suggestions for future works are given in Chapter 8.

10

Chapter 2
System Configuration and
Navigation Principles

2.1 Introduction

For security surveillance, the utilization of a vision-based autonomous vehicle is

good for saving manpower. The vehicle is dexterous, with its moving ability

increasing the view range of security surveillance. Besides, it can also monitor lower

or hidden objects that may be under a table or in a cabinet.

In this study, two autonomous vehicles are used to perform the security patrolling

task and each of them is equipped with a camera, as shown in Figure 2.1, though the

proposed methods are general for any number of vehicles. Because the autonomous

vehicles suffer from accumulation of mechanical errors, two cameras with fish-eye

lenses, called top-view omni-cameras in the sequel, are installed on the ceiling. By the

two cameras, autonomous vehicles can be located and controlled to navigate along

correct paths. Between all on-board equipments and the user, some control and

communication tools are required. The entire system configuration including

hardware equipment and software are described in Section 2.2.

Before all autonomous vehicles carry out the security patrolling task, a learning

stage is necessary, in which the vehicles are taught where to go, what to do, and how

to avoid collision with walls. The process to obtain all information that makes

autonomous vehicles be able to accomplish the task assignment is described in

11

Section 2.3.

The phase in which autonomous vehicles carry out security patrolling is called

the navigation phase in this study. In Section 2.4, we will describe the vehicle

guidance principle and the process of performing the monitoring task in the

navigation phase.

(a)

Figure 2.1 The vehicle used in this study is equipped with a camera. (a) A perspective

view of the vehicle. (b) A front view of the vehicle. (c) A side view of the

vehicle.

12

 (b) (c)

Figure 2.1 The vehicle used in this study is equipped with a camera. (a) A perspective

view of the vehicle. (b) A front view of the vehicle. (c) A side view of the

vehicle. (continued)

2.2 System Configuration

In this study, the vehicle system used as a test bed is composed of a Pioneer 3-DX

vehicle made by MobileRobots Inc., a WiBox made by Lantronix, and an Axis

207MW camera made by AXIS, as shown in Figure 2.2. The Axis 207MW camera,

called the camera system, not only is one part of the vehicle system but also plays an

important role of monitoring and locating vehicles. Because the whole system, called

the control system, is controlled by users remotely, some wireless communication

equipment is necessary. All the details of the above equipments are described in

Section 2.2.1.

In order to develop the desired security surveillance system, we also need

software that provides some commands and control interfaces. Besides, we also

13

provide an interface for users to control the vehicles and cameras. All the above

utilities are described in Section 2.2.2.

(a)

 (b) (c)

Figure 2.2 The vehicle system used in this study. (a) A Pioneer 3-DX vehicle. (b) A
WiBox. (c) An Axis 207MW camera.

14

2.2.1 Hardware configuration

The entire structure of the vehicle system used in this study is shown in Figure

2.3. There are three principal parts: vehicle system, camera system, and control

system.

In the vehicle system, the Pioneer 3-DX vehicle is a 44cm×38cm×22cm

aluminum body with two 19cm wheels and a caster. It can reach a speed of 1.6 meters

per second on flat floors, and climb grades of 25o and sills of 2.5cm. At slower speeds

it can carry payloads up to 23 kg. The payloads include additional batteries and all

accessories. By three 12V rechargeable lead-acid batteries, the vehicle can run 18-24

hours if the batteries are fully charged initially. A control system embedded in the

vehicle makes the user’s commands able to control the vehicle to move forward or

backward or to turn around. The system can also return some status parameters of the

vehicle to the user.

To show the advantage of the mobile vehicle, a wireless connection between a

user and the vehicle is necessary. A WiBox is used to communicate with the vehicle by

RS-232, so the user has the ability of remotely controlling the vehicle over a network

from anywhere.

In the camera system, an Axis 207MW camera has the dimension of

85×55×40mm (3.3”×2.2”×1.6”), not including the antenna, and the weight of 190g

(0.42 lb), not including the power supply, as shown in Figure 2.4. The maximum

resolution of images is up to 1280×1024 pixels. In our experiment, the resolution of

320×240 pixels is used by the camera fixed on the vehicle and that of 640×480 pixels

is used by the one fixed on the ceiling. Both of their frame rates are up to 15 fps. By

wireless networks (IEEE 802.11b and 802.11g), captured images can be transmitted to

users at speeds up to 54 Mbit/s. Each camera used in this study is equipped with a

15

fish-eye lens that will expend the field of view.

Camera System
Control System

Vehicle System

Camera System

RS-232Fixed on

Axis 207MW
Camera

Axis 207MW
Camera

Access Point

Pioneer 3-DX
Vehicle

WiBox

Computer

Figure 2.3 Structure of proposed system.

In the control system, a notebook PC is used to integrate the entire security

patrolling system. With access points, all status information from vehicles and

16

cameras can be delivered to the user by wireless networks. The PC produces some

commands according to these data. By the same way, vehicles can receive the

commands from the control system and perform corresponding actions. In other

words, an access point is a communication medium among the three systems.

(a)

 (b) (c)

Figure 2.4 The camera system used in this study. (a) A perspective view of the camera.
(b) A front view of the camera. (c) A left-side view of the camera.

17

2.2.2 Software configuration

ARIA (Advanced Robotics Interface Application) provided by MobileRobots, Inc.

is an API (application programming interface) that assists developers in

communicating with the embedded system of the vehicle, either using a serial or

TCP/IP connection. It is a powerful object-oriented toolkit and usable under Linux or

Win32 OS in C++. Therefore, we use the Borland C++ builder as the development

tool in our experiments to control the vehicles by ARIA. The lowest-level data and

other information of the vehicle can also be retrieved easily by means of the ARIA

interface.

About Axis 207MW camera controlling, the AXIS Company also provides a

development tool called AXIS Media Control SDK. Using the Media Control ActiveX

component from SDK, we can preview the image of the camera’s view and capture

the current image data. It is also convenient for users to use it to develop any function

with the images grabbed from the camera as input.

2.3 Learning Principle and Proposed
Process

Because the patrolling environment is unknown, a learning strategy is necessary.

For the purpose of learning all knowledge that makes the vehicles accomplish the

mission successfully, we develop a learning interface for users. The entire learning

process is shown in Figure 2.5.

In this study, data having to be recorded are camera-related, object-related, and

18

area-related ones. The camera-related data are obtained from a camera calibration

process. In this study, we don’t use the traditional camera calibration method to find a

projective matrix for coordinate transformation. Instead, some landmarks on a pattern

are utilized to acquire corresponding points between 2-D image and 3-D global spaces.

For the camera fixed to ceilings in this system, the pattern is just the patrolling floor

and the landmarks on it are just the corners of rectangular-shaped tiles. A user points

some landmarks in the image by the user interface with a mouse, and corresponding

points in the global space are calculated. Because each camera, used in our system, is

equipped with a fish-eye lens, images captured by them are warped. Therefore, we use

a bilinear interpolation method to translate coordinates in images into global space by

these corresponding points.

The object-related data are used to teach vehicles where to go and which

direction to face when they perform the patrolling task. We drive a vehicle to the

position where the vehicle can observe the monitored object and then record it as a

monitoring point (MP) according to the image of a top-view omni-camera. For the

purpose of learning the direction with respect to the object, we control the vehicle to

face the object and let it move forward for a short distance. By the two positions of

the vehicle (nodes), the direction angle can be obtained.

The area-related data are about the environment where the vehicles patrol. An

assumption made in this system is that the floor shape of the environment is

composed of rectangular regions. At first, a user must key in corners in the clockwise

order manually, and then all rectangular regions will be obtained. There might exist

some pairs of MPs not belonging to an identical rectangular region, between which a

vehicle cannot move straightly. Therefore, some points, called turning points, are

necessary and they can be obtained by processing all the rectangular regions. With

these turning points, the distances of all pairs of MPs can be calculated and which

19

turning points between two MPs are passed by can also be recorded.

Start of Learning

Pointing
Landmarks

Calculating
Curve Lines and

Intersections

Corresponding
Points between

2-D and 3-D

Corners of
Patrolling Area

Calculating
Rectangle
Regions

Rectangle
Regions

Turning
Points

Calculating
Turning
Points

Calculating Distances
between

Monitored Points

Distances and Paths
between

Monitored Points

Driving Vehicle
 to Face

Monitored Objects

Learning
Vehicle Poses

Localizing
Vehicles

Vehicle
Poses

Learning
Data

Saving Data
into Storage

End of Learning

Camera
Calibration

Patrolling
Area

Monitored
Objects

Navigation
Information

Figure 2.5 Flowchart of proposed learning process.

After all the data are obtained, they are saved into some text files. These files are

then used in the navigation phase more than once.

20

2.4 Vehicle Guidance Principle and
Proposed Process

When the learning job has been done, all vehicles can start to perform the

security patrolling task. The entire guidance process proposed in this study is shown

in Figure 2.6.

At first, the system reads all files that are obtained from the learning phase and

contain information about the environment, autonomous vehicles, and monitored

objects. According to the distances between all pairs of MPs, this system then plans

random paths for each autonomous vehicle. If all differences between the paths of two

vehicles do not exceed a threshold value which ensures the loads of all autonomous

vehicles being balanced, the security patrolling task can be carried out.

Because autonomous vehicles suffer from accumulation of mechanical errors, we

need to locate them constantly. When a vehicle runs a fixed length of distance, it must

be located by the top-view omni-cameras. By the values of the vehicles’ odometers,

this system calculates the centroid of each vehicle from an image captured by a

top-view omni-camera. The other function of the camera is to monitor vehicles to see

whether they are still under control. If any vehicle loses control of its action, the

system will stop all vehicles and send an alarm message to the user. Otherwise, the

odometer of the vehicle is corrected and then the vehicle proceeds to move to its goal

node.

While the vehicles are carrying out the security patrolling, there could be

collisions between vehicles. Therefore, the detection of collisions is necessary. This

system computes the distance between two vehicles in every cycle of a fixed time

duration and determines if they are too close. If true, the paths of the vehicles will be

21

changed.

Start Security Patrol

Read Files

Plan Paths for
Vehicles

Conform
Rules

No

Move a
Distance to

Goal

Yes

Adjust Vehicle
Direction

Image of
Monitored

Object

Image
Database

Yes

Patrol all
Monitored Points

Yes

No

Detect
Collision

Arrive
Monitored Point

Change
Path

Yes

No
Calculate Vehicle

Position
in Image

Find
Vehicle

Localize
Vehicle PoseYes

No

Stop all Vehicles
and

Send Alarm Message

Patrolling
Paths

Collision
Avoidance

Monitored
Tasks

Vehicle
Localization

Run a
Timer

No

Figure 2.6 Flowchart of proposed navigation process.

A mission for the autonomous vehicles in this system is to take pictures of all the

monitored objects during the navigation process. As a vehicle goes to a MP, it means

that the vehicle will be in front of a monitored object. Therefore, the direction of the

vehicle must be adjusted to face the object. Then the camera equipped on the vehicle

takes a picture at the moment. The picture is transmitted to the control system by the

wireless network and saved into an image file. When all the vehicles have

accomplished their own patrolling paths, one cycle of security patrolling is finished.

Then, the system will plan another set of new random paths for all the autonomous

vehicles again.

22

Chapter 3
Learning Strategies for Navigation by
Semi-automatic Driving

3.1 Ideas of Proposed Techniques Used
in Learning

In this study, two cameras with fish-eye lenses fixed on ceilings are utilized to

locate and monitor all autonomous vehicles. Before the use of the cameras, they must

be calibrated. For this purpose, we propose in this study a point-correspondence

technique integrated with an image interpolation method without conducting the

conventional task of calculating the projection matrix for transforming points between

2-D image and 3-D global spaces. At first, by a mouse a user points out some

landmarks in an image of a calibration target which is selected to be the tile pattern on

the floor of our experimental environment. The landmarks we use in this study are the

crossing points of the grid formed by the tile pattern. Such crossing points for use as

corresponding points are abundant which yield better calibration accuracy in the

proposed point-correspondence technique for camera calibration. The detail is

described in Section 3.2.

In an environment where autonomous vehicles navigate, it is indispensable to use

some turning points in the navigation path to ensure no collision between the vehicles

and the walls. To compute the turning points, the corner points of the walkable area

are first utilized to acquire all rectangular regions within the entire area. Each region

23

is then represented by its upper-left and lower-right points. With these points, the

system can judge whether the vehicles can move straightly between any pair of nodes

where the vehicles visit (including the turning points). If two nodes belong to different

regions, the vehicle will be guided to pass some turning points. In other words, the

turning point is a medium that enables the vehicles to navigate between any pair of

nodes without incurring collisions with the walls. Therefore, a turning point is

selected to be the intersection of the centerlines of two overlapping regions or the

center of the overlapping boundary of two adjacent ones. The details of the proposed

techniques about processing rectangular regions and computing turning points are

described in Section 3.3.1.

Additionally, to take the pictures of monitored objects by cameras equipped on

the autonomous vehicles, all nodes and directions with respect to the objects must be

recorded. In this study, a learning technique is proposed to guide vision-based

vehicles to capture pictures at suitable spots and directions. Two top-view

omni-cameras are used. The process is described in detail in Section 3.3.2.

3.2 Calibration of Top-View
Omni-Cameras with Fish-Eye
Lenses

Each camera used in this study is equipped with a fish-eye lens. All images

captured by the camera are warped. So the traditional camera calibration method of

obtaining a global-space point via a projection-based transformation cannot be

utilized directly; the cameras must be calibrated by another method, as mentioned

24

previously. For this, we propose a point-correspondence technique integrated with an

image interpolation method. By the way, it is noted that the correct coordinates in the

global space can be obtained from a warped image directly, as done in this study.

3.2.1 Review of Conventional Camera
Calibration Technique

In general, a projection matrix is utilized in conventional methods to do the job

of camera calibration. There are two kinds of parameters in the matrix, which must be

calibrated, namely, the intrinsic and the extrinsic parameters. The intrinsic

parameters do not depend on the position and orientation of a camera in the global

space and include the focal length f, the image center point (u0, v0), the aspect ratio (Sx,

Sy), and the skew error θs of the camera. Because the coordinate system of a camera

and the global space may not be the same, the extrinsic parameters related to the

rotation angle θ and the translation vector (, ,)x y zt t t of the camera must be

calibrated.

Based on the intrinsic and extrinsic parameters, the relation between points in

2-D image and 3-D global spaces may be described by Eq. (3.1) below [23], where

the point (u, v)T is in the image coordinate system and the point (x, y, z)T is in the

global coordinate system:

25

0

0

transformation transformation
matrix of matrix of

1 intrinsic parameters extrinsic parameters
1

cos sin 0
cot 0

s
 0 / sin 0

0 0 1 0

x
x x s

y s

x
u

y
v

z

t
S f S f u

S f v

θ θ
θ
θ

⎛ ⎞
⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎜ ⎟

⎝ ⎠
−

−⎛ ⎞
⎜ ⎟≡ ⎜ ⎟
⎜ ⎟
⎝ ⎠

in cos 0
.

0 0 1
0 0 0 0 1

y

z

x
t y
t z

θ θ
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (3.1)

3.2.2 Proposed Calibration Technique

In the proposed calibration technique, we divide the patrolling area on the floor

of the environment into multiple grids at first and all corners of them are called

reference points. These points are the crossing points of the boundaries of the

rectangular-shaped tiles on the floor. For every reference point, both of its coordinates

in an image and in the global space must be recorded, describing a pair of

corresponding points between the image and the global spaces.

In order to acquire more corresponding points faster, we calculate all quadratic

curves in the image of the patrolling floor area, of which the intersections are exactly

the desired reference points. Note that because the images are captured by the cameras

equipped with fish-eye lenses, a straight line in the global space appears as a quadratic

curve in the image. Therefore, the technique is feasible. A quadratic curve can be

calculated by three points at least. This property is utilized to find all curves.

More specifically, we use a minimum mean-square-error (MMSE) method to

calculate all the curves. Assume that a curve L is to be computed, which includes

three parameters a, b, c. If points (x1, y1), (x2, y2), ..., (xn, yn) belong to the curve L, we

may acquire n curves which can be represented as a matrix in the form of Aw b= , as

26

shown in Eq. (3.2) below:

2
1 1 2 2

2
11 1

2
22 2

2

: , (,), (,), ..., (,)

1
1

where , , .

1

n n

nn n

L y a bx cx x y x y x y L

Aw b

yx x
a

yx x
A w b b

c
yx x

= + + ∈

⇒ =

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥= = =⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥ ⎣ ⎦⎣ ⎦

(3.2)

The vector w can be computed by the MMSE criterion, that is,

2() [| - |];

ˆ arg min ().
w

J w E b Aw

w J w

=

=
 (3.3)

Through a series of simplifications from Eq. (3.3), we can acquire a result as

ˆ()T TA A w A b= . (3.4)

If all 1 2, , ..., nx x x are not equal, the matrix TA A is invertible and Eq. (3.4) can be

solved to be:

-1ˆ () .T Tw A A A b= (3.5)

Therefore, the curve L may be computed to be

2

2

:
ˆ [1] .

L y a bx cx
x x w

= + +

=
 (3.6)

Before calculating a curve, a user has to input the index of the curve and indicate

that the curve is horizontal or vertical. As a curve is obtained, the pixels passed by the

curve must record the index of the curve. The process of acquiring all quadratic

curves is described as Algorithm 3.1 below. An example is shown in Figure 3.1 which

is a result of acquiring some horizontal and vertical quadratic curves by the algorithm

and each curve is calculated by four points on it.

27

Algorithm 3.1 Calculating a quadratic curve.

Input: An image I, the number n of points needed to calculate a curve, the index k of

the curve, and being horizontal or vertical for the curve.

Output: Pixels passed by the quadratic curve.

Steps:

Step 1. Point out n points on the curve in the image I.

Step 2. Calculate the curve by the MMSE criterion as described previously.

Step 3. Record index k and the property of being horizontal or vertical into the

table of pixels passed by the curve.

Figure 3.1 Calculating quadratic curves.

When all curves are obtained, we check all pixels in the image. If a pixel is

passed both by a vertical curve and by a horizontal one, the pixel is taken to be one of

the reference points. The width and height of a grid in the global space are also taken

as input by the user. According to the lengths and the total numbers of horizontal and

vertical curves, the coordinates of all reference points in the global space can be

28

obtained. The entire process of acquiring all corresponding points between the image

and global spaces is described as Algorithm 3.2 below. A result of finding all

corresponding points from the image of one top-view omni-camera is shown in Figure

3.2.

Algorithm 3.2 Acquiring corresponding points between 2-D image and 3-D global

spaces.

Input: An image I, the total number nx of vertical curves, the total number ny of

horizontal curves, and the width w and height h of a grid in the global space.

Output: The coordinates of all corresponding points.

Steps:

Step 1. Repeat Algorithm 3.1 until enough curves are obtained.

Step 2. Find all intersections from the result of Step 1 and record their

coordinates in the image coordinate system.

Step 3. Calculate all coordinates, with respect to the intersections obtained from

Step 2, in the global coordinate system according to nx, ny, w and h, and

then record them.

29

Figure 3.2 Finding all corresponding points.

With the corresponding points, a bilinear interpolation method is used in this

study to obtain the global-space coordinates with respect to the points in the warped

image. Some assumptions involved are shown in Figure 3.3. The points

(1) (1)(1) (1), , ,ij i j i j i jP P P P+ + + + are the corners of the grid which point I belongs to. The

lines L0, L1, L2 and L3 are straight lines through these corners. Mh is the line passing

through point I and its slope is the mean of those of line L1 and line L3. Mv is the line

passing through point I and its slope is the mean of those of line L0 and line L2. The

points q and r are the intersections of Mh with L0 and L2, respectively. The points s and

t are the intersections of Mv with L1 and L3, respectively.

30

Pij

Pi(j+1)

P(i+1)j

P(i+1)(j+1)

L0

L1

L2

L3 t

s

r
q I

Mh

Mv

Figure 3.3 Point I in a distortion image.

For a point in a warped image, we must judge which grid the point belongs to

and calculate Mh, Mv, q, r, s and t. The ratios of distances are utilized to obtain the

global-space coordinates with respect to the point. The equation is Eq. (3.7) below:

(,)_
(,)
(,) _ .
(,)

k ij

k ij

d q IX X unit width
d q r
d s IY Y unit height
d s t

= + ×

= + ×
 (3.7)

The points (,)k kG X Y and (,)ij ij ijQ X Y are in the global space with respect to

point I and point ijP , respectively. The lengths unit_width and unit_height are the

widths and the heights of a grid in the global space, respectively. The distance

(,)d q I is the length from point q to point I. A graphic illustration is shown in Figure

3.4 and the process of acquiring the coordinates in the global space is described as

Algorithm 3.3.

31

x

yImage

ijP (+1)i jP

(+1)(+1)i jP(+1)i jP

(,)ij ij ijQ X Y= (1)i jQ +

(1)(1)i jQ + +(1)i jQ +

X

Y

I

(,)G X Yk k=

Mh

Mv

 unit_width

 unit_height

Global Space

(1) (1) (1)(1) (1)(1) (1) (1)

(,) (,) (,) (,)

ij ij i j i j i j i j i j i j

d q r qr d q I qI d s t st d s I

P Q P Q

I

Q

G

Q

I

P

s

P+ + + + + + + +↔ ↔ ↔ ↔

=

↔

= = =

s

r

t

q

Figure 3.4 A relation between the image taken by the omni-camera and the global
space.

Algorithm 3.3 Computation of coordinates in the global space.

Input: A point I in a warped image, the coordinates of all corresponding points, the

width unit_width and the height unit_height of a grid in the global space.

Output: The coordinates of the point G in global space with respect to the point I.

Steps:

Step 1. Judge which grid point I belongs to.

Step 2. Calculate lines L0, L1, L2 and L3 that are the straight lines through the

corners of the grid to which point I belongs, as illustrated by Figure 3.3.

32

Step 3. Calculate line Mh that passes through point I with its slope being the mean

of those of line L1 and line L3.

Step 4. Calculate line Mv that passes through point I with its slope being the mean

of those of line L0 and line L2

Step 5. Calculate points q and r that are the intersections of line Mh and the edges

of the grid.

Step 6. Calculate points s and t that are the intersections of line Mv and the edges

of the grid.

Step 7. Calculate point (,)k kG X Y by the following equation:

(,)_ ;
(,)

(,)_ .
(,)

k ij

k ij

d q IX X unit width
d q r

d s IY Y unit height
d s t

= + ×

= + ×

Annotate that point (,)ij ij ijQ X Y is in the global space with respect to

point ijP in the warped image.

3.3 Information for Security Patrolling

3.3.1 Proposed techniques of learning
patrolling environment

Information about the patrolling environment includes rectangular regions, which

the floor shape is composed of, and the turning points among the regions. To find all

rectangular regions, a user must key in all the corners of the patrolling area in the

clockwise order. Because each point in the area belongs to one rectangular region at

33

least, a vertical line, called scanning line, is utilized to check whether some points in

the vertical line do not belong to one region at least. If yes, another new rectangular

region will be found for the points. The entire process and details are described as

Algorithm 3.4 below.

Algorithm 3.4 Finding all rectangular regions.

Input: All corners of the patrolling area.

Output: All rectangular regions of the patrolling area.

Steps:

Step 1. Set a vertical line L through the leftmost corner of the patrolling area and

scan the area from left to right.

Step 2. Find the intersections of L and the boundaries of the area, and record them.

Record the corners of the boundary merely, if there is an overlap between

L and the boundary.

See the example shown in the following, where points a, b and c recorded.

Figure 3.5 Intersections of L and the boundaries of the area.

Step 3. Divide these intersections into groups from top to down with each group

including two points.

34

See the example of Step 2 above for an illustration, where two groups (a,

b) and (b, c) are obtained.

Step 4. Judge where to set a line segment l.

Step 4.1. Check whether the right part of a group is the inner range of the

patrolling area and a rectangular region in the range has not been found.

If yes, go to Step 4.2; else, continue to check the next group.

Annotate that the technique of checking whether the right part of a group

is the inner range of the patrolling area is described in Algorithm 3.5.

Step 4.2. Set l in the following way.

Step 4.2.1. Shift the middle point M of the group one pixel to the right.

Step 4.2.2. Extend M along a vertical direction until colliding with the

boundaries, where the line l is set.

See the example shown in the following, where line de is l mentioned

above.

a

b

c

Region1

()
2

a bM +
=

d

e

Figure 3.6 Setting a line segment l.

Step 5. Continue scanning the line segment l to the left until colliding with the

boundary of the patrolling area.

See the example shown in the following.

35

scanning

l

Region1

Figure 3.7 Scanning the line segment l to the left.

Step 6. Continue scanning the line segment l to the right until colliding with the

boundary of the patrolling area.

See the example shown in Step 5, where Region2 was obtained.

scanning

l

Region2

Region1

Figure 3.8 Scanning the line segment l to the right.

Step 7. Continue scanning the vertical line L to the right and repeat Step 2 until L

reaches the rightmost boundary of the patrolling area.

Algorithm 3.5 Judging an inner range.

Input: All corners C of the patrolling area, and two points P whose x-coordinates are

36

the same.

Output: An indication whether the right part of P is an inner range of the patrolling

area.

Steps:

Step1. Calculate the middle point M of the two points P.

Step2. Shift M one pixel to the right.

Step3. Set a vertical line LM through point M.

Step4. Check the numbers of intersections of the line LM and the boundary.

If both the number of the upper part and that of the lower one of M are odd

and either part does not include an overlapping line, it is decided that the

right part of P is an inner range of the patrolling area.

See the graphic illustration shown in the following.

Case 1: the right part of points a and b is not an inner range of the

patrolling area.

1(,)x y

2(,)x y

1 2(1,)
2

y yM x +
+

a

b

c

L

Figure 3.9 The right part of points a and b is not an inner range.

Case 2: the right part of points b and c is an inner range of the patrolling

area.

37

1(,)x y

2(,)x y

1 2(1,)
2

y yM x +
+

a

b

c

L

Figure 3.10 The right part of points a and b is an inner range.

Now, we show a result of Algorithm 3.4. A patrolling area is shown in Figure

3.11. The total number of rectangular regions in the patrolling area is seven and they

are shown in Figure 3.12 through Figure 3.18 step by step.

Figure 3.11 A patrolling area.

According to these rectangular regions, we can compute all desired turning

points. If two regions are overlapping or adjacent, we can obtain a turning point. The

point is the intersection of two vertical and horizontal centerlines of the regions. The

process of finding all turning points is described as Algorithm 3.6 and the result in the

patrolling area of Figure 3.11 is shown in Figure 3.19. The eight circles in Figure 3.19

are exactly the turning points, in which each blue one is the center of the overlapping

38

boundary of two adjacent regions.

Region1

Figure 3.12 The first rectangular region.

Region2

Figure 3.13 The second rectangular region.

Region3

Figure 3.14 The third rectangular region.

39

Region4

Figure 3.15 The fourth rectangular region.

Region5

Figure 3.16 The fifth rectangular region.

Region6

Figure 3.17 The sixth rectangular region.

40

Region7

Figure 3.18 The seventh rectangular region.

Algorithm 3.6 Finding all turning points.

Input: All rectangular regions R in an area.

Output: All turning points.

Steps:

Step1. Take a pair of overlapping or adjacent regions from the set R.

If the two regions are overlapping, go to Step2; else, go to Step4.

Step2. Calculate all vertical and horizontal centerlines of the two regions.

Step3. Find an intersection within these centerlines, which is exactly a turning

point of the area.

Step4. Calculate the center of overlapping boundary, which is exactly a turning

point of the area.

Step5. Repeat Step 1 until all regions in R have been checked.

41

Figure 3.19 All turning points in the area.

3.3.2 Learning of poses of vehicles with
respect to monitored objects

To learn the poses of autonomous vehicles with respect to monitored objects, we

designed a user interface, as shown in Figure 3.20. The image in the interface is the

real-time view of the camera installed on an autonomous vehicle.

Before learning, a vehicle is parked at the origin of the global space. Because the

vehicle suffers from mechanic errors, a user must constantly locate it by the top-view

omni-cameras in the period of the learning phase. We can use a joystick or the buttons

in the user interface to control the moves of the vehicle. As the vehicle has moved a

short distance, the user must press the “Localize” button in the interface. For an

example, Figure 3.21 shows a situation that the vehicle is ready to be located. After

the user presses the “Localize” button, the system will calculate the centroid of the

vehicle in the image captured by a top-view omni-camera. Then, the centroid is

transformed from the image space into the global space and the odometer value of the

42

vehicle is corrected by the coordinates of the resulting point.

Figure 3.20 User interface of learning MPs.

Figure 3.21 Before localizing the vehicle.

In Figure 3.22, the green component is the vehicle and a white circle in the

component is its centroid. The entire detail of the technique is described in Section

4.2.2.

43

For the direction with respect to monitored objects, we utilize two points to

obtain the direction vector. First, we drive the vehicle to the front of a monitored

object, leaving a sufficient distance between the vehicle and the object. At the moment,

we adjust the orientation of the vehicle by the image in the user interface. As the

monitored object appears at the center of the image, we locate the vehicle by pressing

the “Localize” button. Furthermore, we move the vehicle forward a short distance and

press the “Learn MP and Direction” button. For the example shown in Figure 3.23,

the safe deposit labeled by a red rectangle is a monitored object and the vehicle faces

the object. The detail process is described as Algorithm 3.7.

Figure 3.22 Localizing the vehicle.

44

Figure 3.23 The vehicle in front of a monitored object.

Algorithm 3.7 Learning poses of vehicles with respect to monitored objects.

Input: The position P of the vehicle in front of a monitored object.

Output: The pose of the vehicle with respect to the object.

Steps:

Step 1. Drive the vehicle to the position P.

Step 2. Let the vehicle face the object.

Step 3. Localize the vehicle.

Step 4. Move the vehicle forward a short distance.

Step 5. Localize the vehicle again and save its pose.

45

Chapter 4
Security Patrolling by Multiple
Vehicle Navigation

4.1 Introduction to Concepts in
Proposed Systems

In the study, we use multiple vision-based autonomous vehicles to perform

security patrolling. To obtain more benefits, there must be ideal path planning for all

vehicles. By an optimal randomization technique proposed in this study and described

in this chapter, these patrolling paths have the properties of randomization,

optimization, and load balancing within all vehicles. Furthermore, two cameras with

fish-eye lenses are utilized to localize and monitor all the vehicles. All concepts of the

above are described in following five sections.

4.1.1 Randomized patrolling

The patrolling path of every autonomous vehicle is produced to be random.

Random paths are good for security surveillance. Because a fixed path will reveal

where a vehicle is located at a fixed moment, thieves can, by such observation, invade

and steal those valuable objects which are not guarded by any vehicle at the time. To

randomize a patrolling path, all nodes (MPs) in the path with respect to monitored

46

objects are chosen randomly. Furthermore, if the time interval between two patrollings

of a monitored object is smaller, the security of the objects will be raised. Therefore,

each node (MP) is just chosen once in a patrolling session.

4.1.2 Optimal path

After the nodes of a patrolling path are determined, the order of passing these

nodes is computed. To decrease the time taken to accomplish security patrolling in

one patrolling session, the distance of each path must be made to be the shortest. A

method for this purpose by finding the Hamiltonian path is utilized and the detail of

determining all patrolling paths is described in Chapter 5.

4.1.3 Load balance

To obtain more benefits of using multiple autonomous vehicles to perform the

security patrolling, the loads for all vehicles must be balanced. We set a threshold

parameter to restrict the differences of the patrolling distances. After all patrolling

paths are produced, we check whether the differences of these paths are acceptable

according to the threshold; if not, the nodes of all paths must be chosen afresh.

4.1.4 Top-view omni-monitoring

In this study, two cameras are fixed on the ceiling and each of them is equipped

47

with a fish-eye lens. That is the reason why the camera is called a top-view monitoring

omni-camera. At times, there may be some unexpected problems with the vehicles,

such as not complying with the user command. The cameras can overlook the

patrolling area and so control all actions of the vehicles. If one vehicle is not under

control, all vehicles will be stopped. And then the system will send an alarm message

to the control center.

4.1.5 Path correction by top-view
monitoring omni-camera

Autonomous vehicles used in this study are subject to accumulation of mechanic

errors, so they must be localized periodically. About vehicle localizations, house

corners, geometric shapes, and object features all may be utilized to localize the

vehicle. For the vehicle localization technique proposed in this study, the top-view

omni-cameras are utilized. Because the cameras are fixed, images acquired by them

are good for analyzing the actual positions of the vehicles. The entire detail of vehicle

localization is described in Section 4.2.2.

48

4.2 Proposed Techniques Used in
Patrolling

4.2.1 Optimal randomized patrolling
paths for all vehicles

All patrolling paths planned by algorithms proposed in this study have three

properties: randomization, optimization, and load balancing. Let the total number of

autonomous vehicles and monitoring positions (MPs) be nv and nm, respectively. In

the proposed method for generating random patrolling paths, we divide all MPs into

nv groups randomly. Assume that the number of chosen MPs for the i-th vehicle is ni,

so that the numbers can be represented as (n1, n2, ..., nnv). Each ni must satisfy two

conditions as listed in the following.

Condition 1:

 n1 + n2 + ...+ nnv = nm − nv

Condition 2:

 , 1, 2, ...,m v m v
i v

v v

n n n nTvalue n Tvalue i n
n n

⎢ ⎥ ⎡ ⎤− −
− ≤ ≤ + =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎢ ⎥

where Tvalue is an adjustable parameter. Because nv MPs are patrolled by nv vehicles

at the end of the t-th session, there is no need to visit the nv MPs again in the (t + 1)-th

session. That is the reason why “nm − nv” is included in Condition 1. Additionally, the

purpose of Condition 2 is to achieve load balancing among all vehicles. Because we

set a threshold parameter T to restrict the differences of the patrolling distances, each

49

ni dose not have to be equal to the mean m v

v

n n
n

⎡ ⎤−
⎢ ⎥
⎢ ⎥

 or m v

v

n n
n

⎢ ⎥−
⎢ ⎥
⎣ ⎦

. Therefore, we add

the parameter Tvalue to obtain an upper bound “ m v

v

n n
n

⎡ ⎤−
⎢ ⎥
⎢ ⎥

+Tvalue” and a lower

bound “ m v

v

n n Tvalue
n

⎢ ⎥−
−⎢ ⎥

⎣ ⎦
” for all ni. The parameters Tvalue and T are adjustable. If

they are smaller, the time taken to determine all patrolling paths is larger, but the loads

of all vehicles will be more balanced.

The state of choosing MPs for all vehicles can be represented as

(1 2 11

1 2

..., ,..., m v nm v m v v

nv

n n n n nn n n n n
n n nC C C −− − − − −− − −).

The combination n
kC is the number of picking k MPs from n MPs randomly, defined

as

!
!(-)!

n
k

n nC
k k n k

⎛ ⎞
≡ ≡⎜ ⎟

⎝ ⎠
. (4.1)

For example, assume that the number of MPs is “thirteen”, the number of vehicles is

“three”, and the parameter Tvalue is “one”. By Condition 1, “ten MPs” need be

divided into “three groups.” Besides, the number of each group has an upper bound of

“five” and a lower bound of “two” by Condition 2. The three states of the numbers of

MPs chosen for three vehicles are shown in following.

(1) (5,3,2)

(2) (4,4,2)

(3) (4,3,3)

For state (1), the number of the combination is 10 5 2
5 3 2*C C C∗ =2520. For state (2), the

50

number of the combination is
10 6 2
4 4 2*

2!
C C C∗ =1575. For state (3), the number of the

combination is
10 6 3
4 3 3*

2!
C C C∗ =2100. Hence, the total number of combinations is

2520+1575+2100=6195. It means that the total number of the states of choosing MPs

for the vehicles randomly is 6195 and the probability of choosing the same state in

two continuous sessions is 1
6195

.

As long as one group of MPs is determined, we calculate next a path passing all

of the MPs under the constraint that the distance of the path is the shortest. The MPs

are the positions where vehicles perform the security monitoring task, and every MP

is just passed one time in this path. In other words, the requirement is that one vehicle

passes each MP once (once and only once) and takes the shortest time to accomplish

the route. The problem is equal to the traveling salesman problem (TSP) and the detail

to solve it for our application of this study is described in Section 5.2.

To solve the problem by the idea of the TSP, the information of the distance

between each pair of MPs is needed. In this study, the floor shape of a vehicle

patrolling environment is assumed to be composed of rectangular regions. There may

be two MPs which do not belonging to the same region. If two MPs are in different

regions, the vehicle might not be able to move along a straight path between them

without hitting obstacles. To obtain the distance between every pair of MPs, we must

judge whether one pair of MPs belong to an identical rectangular region. If yes, the

distance of this pair is the straight distance between them; else, the straight path

between them must be abandoned and a new path with multiple line segments should

be planned using some turning points obtained in the learning phase. Because the

between-MP distance is desired to be the shortest, it can be figured out that the

distance may be computed by the Dijkstra’s algorithm. The detail for the solution of

this problem is described in Section 5.1.

51

In the proposed system, the reason why each MP is just passed one time is that it

is wished to patrol these monitored objects uniformly in time. That is, the difference

between the biggest and the smallest times of MPs passed at any moment is desired to

be one or zero. In this sense, each MP will have been visited t times at the end of the

t-th session of security patrolling. And then the system will calculate new patrolling

paths for the next session. A flowchart is illustrated in Figure 4.1, and the detail of

obtaining the patrolling paths is described as an algorithm in the following.

Algorithm 4.1 Calculating all patrolling paths.

Input: MPs, the number nm of MPs, the number nv of vehicles, the points Ps where

the MPs are patrolled by all vehicles at the end of the front session, the distance

between every pair of MPs, threshold parameters T and Tvalue.

Output: Optimal patrolling paths for the vehicles.

Steps:

Step 1. Divide the number “nm − nv” into nv groups according to the following

conditions randomly and list all states, such as (n1, n2, ..., nnv).

 Condition 1:

 n1 + n2 + ...+ nnv

 Condition 2:

 , 1, 2, ...,m v m v
i v

v v

n n n nTvalue n Tvalue i n
n n

⎢ ⎥ ⎡ ⎤− −
− ≤ ≤ + =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎢ ⎥

Step 2. Choose MPs, not including Ps, randomly according to the numbers (n1,

n2, ..., nnv).

Step 3. Calculate every patrolling path passing all chosen MPs such that the

distance of the path is the shortest.

Step 4. Check whether all distance differences between each pair of paths

52

conform to the threshold parameter T. If yes, the paths are determined.

Else, repeat Step 1.

The MPs which
vehicles stop at in

the last cycle

Start to
calculate paths

Divide the number of
remaining MPs into

nv groups

Numbers of
all groups

(n1 , n2 , … , nnv)

Choose the remaining MPs
according to ni randomly

(i=1,..,nv)

 Chosen MPs
(C1 , C2 , … , Cnv)

Calculate the shortest paths
of all groups

Distances
between

MPs

nv paths

Within
threshold T

Finish
calculating paths

Yes

No

Figure 4.1 A flowchart of determining all paths for vehicles.

4.2.2 Guidance of vehicles by
localization and monitoring using
top-view omni-cameras

Before introducing the proposed scheme for guidance of vehicles, we take an

53

illustration of all coordinate systems used in the system. They are the image

coordinate system, the global coordinate system, and the vehicle coordinate system.

By these coordinate systems, it is easily to know the position of a vehicle. The

definitions of the three coordinate systems are described in the following and a

graphic illustration is shown in Figure 4.2.

(1) The image coordinate system (ICS, denoted as u-v):

The coordinate system is used for the image acquired by the top-view

omni-cameras fixed on the ceiling, in which the u-v plane is parallel to the

floor where vehicles navigate. If the image is displayed in the user interface,

the positive direction of the u-axis is from left to right and the positive

direction of the v-axis is from top to bottom. The origin uvO is the upper

left corner of the image.

(2) The global coordinate system (GCS, denoted as X-Y):

This coordinate system is in the 3-D global space where the vehicles

navigate. Because the top-view omni-cameras are fixed on the ceiling, the

distance between each camera and the floor of the global space is fixed.

Besides, we only need to know where the vehicles are located at nay

moment, so there are merely two axes in the coordinate system. To simplify

related computations, the positive directions of the X- and Y-axes are the

same as the u- and v-axes in the CCS, respectively. The origin XYO is the

upper left corner of the patrolling environment.

(3) The vehicle coordinate system (VCS, denoted as x-y):

In this system, the x-y plane is also parallel to the floor. The positive

directions of the x- and y- axes are the front direction and the leftward

direction of the vehicle, respective. The origin of the VCS is where the

vehicle starts its navigation.

54

For vehicle localization, the position and the direction angle of a vehicle must be

calibrated after the vehicle moves a fixed distance because the vehicle is subject to

accumulation of mechanic errors. In the proposed system, a top-view omni-camera is

utilized to acquire the current location of the vehicle. To reduce the cycle time of the

navigation session, we only calculate a region, whose center is the odometer value of

the vehicle and whose width is a parameter W, to find out the centroid of the vehicle

in the image. By the way, the negative influence of noise is also decreased. As an

example, the black region with a red rectangle frame shown in Figure 4.3 is the range

of calculation.

u

v Image

ICS

uvO

(a)

X

Y

GCS

XYO

x

y

VCS

xyO

 (b) (b)

Figure 4.2 Coordinate systems used in this study. (a) ICS (b)GCS (c)VCS

55

Before all vehicles perform the patrolling task, the top-view omni-cameras

capture an image of the floor without vehicles and unnecessary objects as a

background. An example of background images is shown in Figure 4.4. Because the

number of the cameras used in the study is more than one, when a vehicle needs to be

located, the system must judge which camera will do the job according to the

odometer value of the vehicle. We translate the coordinate of the vehicle from the

VCS into the GCS and then judge the camera view which includes the vehicle.

Figure 4.3 Vehicle localization from a top-view omni-camera.

To acquire the position of the vehicle, the camera must capture the current image

as a foreground. An example of foreground image is shown in Figure 4.5.

By subtracting the foreground from the background, we can obtain all

differences in the two images. Because there is a lot of noise in the patrolling

environment, such as light variations, we set an appropriate threshold parameter

T_Diff to threshold the difference image to eliminate noise. If the difference value of a

pixel is larger than the parameter T_Diff, the pixel will be recorded as “1”; else it will

56

be recorded as “0”. At the end, we will obtain a binary image B_IM. Furthermore, we

apply consecutively two methods of morphology to decrease the interference of noise.

One is erosion and the other is dilation. The equations of them are described in the

following where A and B are sets in Z2 and all elements of them are zero (false) or one

(true); B̂ is the complement of the set B and its origin is z:

ˆ{ | () }zA B z B A⊕ = ∩ ≠ ∅ ; (4.2)

{ | () }zA B z B AΘ = ⊆ . (4.3)

We denote the dilation of A by B by A B⊕ for which if there is at least one element

overlap between B̂ and A, then z is set true. The result of dilation is using B as a

mask translated by z over the set A. The erosion of A by B is denoted A BΘ for which

if B is contained in A, then z is set true. The result of erosion is also using B as a mask

translated by z over the set A.

As we obtain a binary image B_IM, the noise which is smaller or bigger than the

vehicle too much can be eliminated by the method of erosion using some squares as

the mask. For example, given a binary image A composed of the square D of size 1

pixel on the side and a mask B also being a square of size 3 pixels on the side, erosion

of A by B results in the square D being eliminated.

After erosion, we can perform the method of dilation to repair some holes in the

range of the shape of the vehicle. By the way, if the shape of the vehicle can be more

complete, then the obtained position will also be more precise.

57

Figure 4.4 A background image taken by a top-view omni-camera.

Figure 4.5 A foreground taken by a top-view omni-camera.

As the next step, we use the method of connected component labeling. If the

number of components is larger than one, it is necessary to find out the one

component which is much like the shape of the vehicle by the number of the pixels in

the component. Furthermore, if no component is found, the state is that there is one

58

vehicle which is not under control, for which the system will send a message to the

control center. When only one component is detected, we calculate the centroid of the

component, which is exactly the position of the vehicle in the CCS. The position then

is transformed into one in the GCS by the point-correspondence technique integrated

with an image interpolation method described in Section 3.2.2. For Figure 4.3, the

result of finding the position of a vehicle is shown in Figure 4.6. The entire detail is

described as Algorithm 4.2.

 (a) (b)

 (c) (d)
Figure 4.6 Finding the position of a vehicle. (a) A binary image which is part of the

image shown in Figure 4.3. (b) Erosion of (a) with a square mask. (c)
Dilation of (b) with a square mask. (d) The connected component of (c)
and the computed centroid (the white circle).

Algorithm 4.2 Calculating the position, in the GCS, of a vehicle by top-view

omni-cameras.

Input: A background image Back_IM, the odometer value of the vehicle Va, the

width W of the calculation range, and a threshold parameter T_Diff

59

Output: The position, in the GCS, of the vehicle.

Steps:

Step 1. Judge which camera will do the job to calculate the centroid of the vehicle

by Va.

Step 2. Capture a foreground image Foer_IM by the camera determined from

Step 1.

Step 3. Translate Back_IM and Foer_IM into gray images Back_GaIM and

Foer_GaIM.

Step 4. Subtract Foer_GaIM from Back_GaIM, in a region whose center is Va

and whose width is W, to obtain another image D.

Step 5. Acquire a binary image Bi_IM.

In the binary image Bi_IM, “1” means that this pixel in the image D is

bigger than T_Diff.

Step 6. Perform erosion of Bi_IM with a square mask and to obtain a new image

Ero_IM.

Step 7. Perform dilation of Ero_IM with a square mask to obtain a new image

Dila_IM.

Step 8. Find out one connected component Co_comp in Dila_IM.

Step 9. Calculate the centroid c of the component Co_comp.

Step 10. Translate c into one in the GCS.

Because vehicle navigation must utilize the direction angle of the vehicle, it is

important to ensure the accuracy of the direction angle. The reason why the direction

angle must be corrected is illustrated in Figure 4.7. A vehicle starts at point O and

moves forward a distance. The position B is desired, but the vehicle arrives at position

A.

At the moment, the direction angle of the vehicle is recorded as zero. In reality,

the correct value is θ1. Because the vehicle suffers from mechanic errors, a user’s

command to move the vehicle straightly for a distance will result in a curved

60

trajectory. In this study, we utilize two continuous correct positions to acquire a

direction angle, such as θ2 in Figure 4.7, and the detail is described in Section 4.3.

Because the distance between two continuous localizations is short, the curve path is

close to a straight line. We can correct the direction angle of the vehicle by θ2. Finally,

the detail of localizing and monitoring vehicles is described as Algorithm 4.3 and the

flowchart of the entire process is shown in Figure 4.8.

O

B

A

1θ

2θ

Figure 4.7 Illustration of direction angles of the vehicle.

Algorithm 4.3 Vehicle localization and monitoring.

Input: A background image IM_ Back, the odometer value of a vehicle Va, and a

threshold parameter T_Loss.

Output: Location of the vehicle.

Steps:

61

Step 1. Determine which camera needs to do the job of vehicle localization by

Va.

Step 2. Capture the foreground image IM_Fore by the camera.

Step 3. Calculate the centroid c of the vehicle in one image using IM_ Back and

IM_Fore.

Step 4. Check whether the point c is found.

If yes, go to Step 6.

Step 5. Check whether the number of cycle times not finding the vehicle is more

than T_Loss.

If yes, the system sends an alarm message to the security center and stops

all vehicles.

Else, move the vehicle toward the goal.

Step 6. Translate the point c into one in the GCS and correct the odometer value

of the vehicle by the point.

Step 7. Check whether the correct position of the vehicle is found in two

continuous cycles of navigation.

If yes, the two continuous correct positions are utilized to calculate the

direction angle, and take the angle value to replace the original direction

angle of the vehicle.

62

Start to localize

Choose a camera
to do the job

Odometer
value

Capture the
current image

Foreground
image

Calculate the
centroid c of the

vehicle

Background
image

Translate c into one
in the GCS

Find c

Correct the
odometer value

Lose the control
of vehicles

Yes

Send an alarm
message and stop

all vehicles

Finish the job

No

Find c in two
continuous times

Calculate the
direction angleYes

Direction
angle

Correct the
direction angle
of the vehicle

No

Yes

No

Position

Direction
Angle Monitoring

Figure 4.8 Flowchart of localizing and monitoring vehicles.

63

4.2.3 Avoiding collisions between
vehicles

Because the vehicles are located constantly by the top-view omni-cameras, the

odometer values can be utilized to avoid collisions among vehicles. The system sets a

timer to detect whether two vehicles are too close. If yes, their patrolling paths are

changed by calculating some passing points and inserting them into the original path.

By these passing points, the distance between the two vehicles can be drawn apart.

The detail about the proposed collision avoiding technique is described in Chapter 6.

4.3 Detailed Process for Security
Patrolling by Vehicle Navigation

In the navigation phase, the vehicles navigate along assigned patrolling paths by

arriving at each node orderly. The types of nodes on a path include monitoring point,

turning point, and passing point. Assume that N is the set of nodes on a patrolling path

and that an element ni in N means the i-th node passed by a vehicle. If a point m = (mx,

my) is the current position of a vehicle, we can utilize the goal node ni = (,)i ix y , where

the vehicle wants to arrive at, to acquire a direction vector iW . The equation is shown

in Eq. (4.3). The direction angle θV of a vehicle is an included angle between the

current direction vector of the vehicle and the positive direction of the x-axis in the

VCS, as shown in Figure 4.9.

We calculate an acute angle θ by the cosine formula and utilize the angle to

obtain θV in the following way:

64

(1) If the direction vector iW belongs to the first quadrant, θV = θ.

(2) If the direction vector iW belongs to the second quadrant, θV = 180°-θ.

(3) If the direction vector iW belongs to the third quadrant, θV = -180°+θ.

(4) If the direction vector iW belongs to the fourth quadrant, θV = -θ.

The relation between θ and θV is shown in Figure 4.10.

x

y
2
π

-
2
π

0(-)π π
Vθ

0 vθ π≤ ≤

Turn Left

x

y
2
π

-
2
π

0(-)π π

Vθ

0vπ θ− ≤ ≤

Turn Right

 (a) (b)

Figure 4.9 A direction angle θV. (a) Left (0 vθ π≤ ≤). (b)Right (- 0vπ θ≤ ≤).

Ⅰ(+,+)Ⅱ(-,+)

Ⅲ(-,-) Ⅳ(+,-)

θ

180 -Vθ θ= ° Vθ θ=

-180 +Vθ θ= ° -Vθ θ=

(,)i x yW w w=

θ θ

θ
x

y

(,)i x yW w w=

(,)i x yW w w=

(,)i x yW w w=

Current position Goal node

Figure 4.10 The relation between θ and θV.

65

The acute angle θ is an included angle between the direction vector iW and the

x-axis in the VCS, and the equation is shown in Eq. (4.4). If one element of iW is

negative, it will be transformed into positive one. As the direction angle θV is obtained,

the difference between θV and the original direction angle θodo is exactly the rotation

angle θturn.

The proposed system utilizes nodes to guide the vehicles. By the current node

and the goal node, we can obtain the direction vector iW and then the rotation angle

θturn. The vehicles turn to the angle θturn and move forward. Such actions enable

vehicles to arrive at the goal node. In the period of navigation, the vehicles must be

located constantly. Therefore, we set a distance parameter d. When one vehicle has

moved the distance d, it must be located. Furthermore, if the vehicle arrives at a goal

node which is a monitoring point, the direction angle of the vehicle must be adjusted

as one θmoni obtained in the learning phase and then performs the security monitoring

task. The algorithm is shown in the following and the flowchart is shown in Figure

4.11.

Algorithm 4.4 Navigation and monitoring tasks.

Input: The current position m = (mx, my), the goal node ni = (,)i ix y , and distance

parameter d.

Output: The vehicle moves the distance d toward the goal node.

Steps:

Step 1. Locate the vehicle including correcting the position and the direction

angle.

Step 2. Calculate the direction vector iW from the node m to the node ni by the

66

following equation:

x i x
i

y i y

w x m
W

w y m
−⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
. (4.3)

Step 3. Transform iW into
'

iW each element of which is the absolute value

with respect to the element in iW .

Step 4. Calculate the acute angle θ by the following equation:
'

()i iabW Ws= ;
'

-1
'

(1,0)cos ()
| || (1,0) |

i

i

W
W

θ •
= .

(4.4)

Step 5. Calculate the direction angle θV by the following rules.

(1) If the direction vector iW belongs to the first quadrant, θV = θ.

(2) If the direction vector iW belongs to the second quadrant, θV = 180°-θ.

(3) If the direction vector iW belongs to the third quadrant, θV = -180°+θ.

(4) If the direction vector iW belongs to the fourth quadrant, θV = -θ.

Step 6. Calculate the rotation angle as θturn = θV − θodo.

Step 7. Turn the vehicle leftward for the angle θturn.

Step 8. Check whether the distance d is bigger than the distance between the

current node and the goal node.

If yes, the vehicle moves the distance d forward.

Else, the vehicle moves to the goal node.

Step 9. Check whether the vehicle arrives at a monitoring point.

If no, perform this Algorithm 4.4 again.

Step 10. Read the direction angle θmoni at the monitoring point.

Step 11. Calculate the rotation angle as θturn = θmoni - θodo.

Step 12. Turn the vehicle leftward for the angle θturn.

Step 13. Perform the security monitoring task.

Step 14. Read the next goal node and perform this Algorithm 4.4 again.

67

Figure 4.11 Flowchart of Navigation and monitoring tasks.

68

Chapter 5
Planning of Optimal Randomized
Patrolling Paths for Vehicles

5.1 Introduction

In the proposed system, patrolling paths are designed to be optimal, random, and

load-balanced for all autonomous vehicles in the senses mentioned previously. All

monitoring points on these paths are chosen randomly. Because some monitoring

points might belong to different rectangular regions, the turning points are utilized to

enable the vehicles to move between any pair of monitoring points without collisions

with walls. To optimize the patrolling paths, all distances between monitoring points

must be the shortest. Therefore, we calculate the distances by Dijkstra’s algorithm.

The detail is described in Section 5.2.

To patrol all monitored objects uniformly, each monitoring point appears only

once in one patrolling session. With all distances between pairs of monitoring points,

we utilize the idea of the traveling salesman problem to obtain the optimal patrolling

paths, as mentioned previously. In such a way, all autonomous vehicles can take

shorter time to accomplish the security patrolling task in each session. The detail is

described in Section 5.3.

69

5.2 Calculation of Paths between
Monitoring Points by Dijkstra’s
Algorithm

5.2.1 Review of Dijkstra’s algorithm

Dijkstra’s algorithm can be adopted to solve a single-source shortest-paths

problem on a weighted, directed graph G = (V, E), in which V is the set of vertices and

E is the set of edges. The algorithm is only feasible for the case that all edge weights

are nonnegative. By the algorithm, the shortest paths and weights from a source s to

other vertices can be obtained. In the algorithm, there are three symbol definitions:

(1) w(u, v) represents the weight of the edge (u, v);

(2) d[v] represents the shortest-path estimate from the source s to the vertex v;

and

(3) π[v] represents the predecessor of v in the shortest path from the source s to

the vertex v.

The main concept is that the all sub-paths of the shortest path are also the

shortest paths. Therefore, it uses the technique of relaxation [24] by a triangle

inequality. The process is to check constantly whether the shortest path to v can be

improved by going through u. If yes, then update d[v] and π[v]. Dijkstra’s algorithm

[24] is shown below.

70

Algorithm 5.1 Dijkstra’s algorithm.

Input: A directed graph G including vertices V and edges E, all weights with respect

to edges E, a source s, and an empty set S.

Output: The shortest paths and weights from s to other vertices.

Steps:

Step 1. Set all d[v] = ∞ and all π[v] = nil.

Step 2. Set d[s] = 0.

Step 3. Find out vertex u whose shortest-path estimate d[u] is the smallest.

Step 4. Put the vertex u into the set S.

Step 5. Find out all vertices v which are adjacent to the vertex u from E and

which are not in the set S.

Step 6. Check whether d[v] > d[u] + w(u, v).

If yes, update d[v] = d[u] + w(u, v) and π[v] = u.

Step 7. Repeat Step 3 if the set S do not contain all vertices V.

5.2.2 Proposed technique for
generation of partial patrolling paths

To calculate the distance between every pair of monitoring points, we adopt

Dijkstra’s algorithm. At first, we check whether two monitoring points belong to an

identical rectangular region. If yes, the distance between them is set equal to the

straight line distance; else, we calculate the shortest path by passing through some

turning points without colliding with walls.

To meet the assumptions in Dijkstra’s algorithm, the patrolling environment is

taken to be a directed graph G. All turning points and monitoring points are regarded

71

as the set V of vertices in the graph G. If there is a rectangular region which two

turning points belong to or which both of a turning point and a monitoring point

belong to, then there exists an edge between the two and it is taken to be one element

of the set E of edges in the graph G. The directions of all edges are two-way. The

straight line distances of all edges in the set E are the set W of weights.

To calculate the shortest path between two monitoring points which belong to

different regions, we set one of the two points as a source point and the other as an

end point, at first. By Dijkstra’s algorithm, the shortest path from the source point to

the end point can be obtained and its weight is exactly the distance between them. The

algorithm of processing all pairs of monitoring points is described in following.

Algorithm 5.2 Computing distances between two monitoring points.

Input: Rectangular regions R, monitoring points, and turning points.

Output: All the shortest distances and paths between all pairs of monitoring points.

Steps:

Step 1. Produce the set V which is composed of all monitoring points and turning

points.

Step 2. Produce the set E, in which every element means that it connects two

points which belong to an identical rectangular region.

Step 3. Produce the set W, in which each element is the straightly line distance

with respect to the edge in the set E.

Step 4. Check whether two monitoring points Mi and Mj belong to an identical

region.

If yes, the distance between them is exactly the straightly line distance

and repeat Step 4 until the distances between all pairs of monitoring

points are obtained.

Else, perform Dijkstra’s algorithm with the source point Mi and the end

72

point Mj.

Step 5. Record the weight and the order of the turning points passed by from the

source point Mi and the end point Mj, according to the result from

Dijkstra’s algorithm.

Step 6. Repeat Step 4 until the distances between all pairs of monitoring points

are obtained.

As an example, a patrolling environment is shown in Figure 5.1, in which there

are five rectangular regions, five turning points N1 through N5, and two monitoring

points M1 and M2.

Figure 5.1 A patrolling environment.

Because M1 and M2 belong to different rectangular regions, the distance between

them is calculated by Dijkstra’s algorithm. Before performing the algorithm, we

transform the patrolling environment into a graph G = (V, E), as shown in Figure 5.2.

The set V contains N1 through N5 and M1 through M2; the set E includes all the black

lines which are two-way. M1 is the source point and M2 is the end point.

Figure 5.2 The graph G from Figure 5.1.

The results of each process are shown in Figure 5.3 through Figure 5.9 step by

73

step. Because M1 is the source point, it has the smallest distance from the source point

in the first cycle.

N1

N2 N3

N4

N5

M1 M2

4

13

11

2

1.5

3

8

9
8

v M1 M2 N1 N2 N3 N4 N5
d[v] 0 ∞ ∞ ∞ ∞ ∞ ∞
π[v] nil nil nil nil nil nil

Figure 5.3 The first cycle.

In the second cycle, N1 has the smallest distance within non-chosen vertices.

Therefore, the shortest path for the source point is M1 N1 and the distance is 11.

N1

N2 N3

N4

N5

M1 M2

4

13

11

2

1.5

3

8

9
8

v M1 M2 N1 N2 N3 N4 N5

d[v] 0 ∞ 11 ∞ ∞ ∞ ∞
π[v] nil M1 nil nil nil nil

Figure 5.4 The second cycle.

In the third cycle, N2 has the smallest distance within the non-chosen vertices.

Therefore, the shortest path for the source point is M1 N1 N2 and the distance is

15.

In the fourth cycle, N3 has the smallest distance within non-chosen vertices.

Therefore, the shortest path for the source point is M1 N1 N2 N3 and the

74

distance is 28.

N1

N2 N3

N4

N5

M1 M2

4

13

11

2

1.5

3

8

9
8

v M1 M2 N1 N2 N3 N4 N5

d[v] 0 ∞ 11 15 ∞ ∞ ∞
π[v] nil M1 N1 nil nil nil

Figure 5.5 The third cycle.

N1

N2 N3

N4

N5

M1 M2

4

13

11

2

1.5

3

8

9
8

v M1 M2 N1 N2 N3 N4 N5

d[v] 0 ∞ 11 15 28 ∞ ∞
π[v] nil M1 N1 N2 nil nil

Figure 5.6 The fourth cycle.

In the fifth cycle, N5 has the smallest distance within the non-chosen vertices.

Therefore, the shortest path for the source point is M1 N1 N2 N3 N5 and the

distance is 29.5.

In the sixth cycle, N4 has the smallest distance within the non-chosen vertices.

Therefore, the shortest path for the source point is M1 N1 N2 N3 N4 and the

distance is 30.

75

N1

N2 N3

N4

N5

M1 M2

4

13

11

2

1.5

3

8

9
8

v M1 M2 N1 N2 N3 N4 N5
d[v] 0 37 11 15 28 30 29.5
π[v] N3 M1 N1 N2 N3 N3

Figure 5.7 The fifth cycle.

N1

N2 N3

N4

N5

M1 M2

4

13

11

2

1.5

3

8

9
8

v M1 M2 N1 N2 N3 N4 N5
d[v] 0 37 11 15 28 30 29.5
π[v] N3 M1 N1 N2 N3 N3

Figure 5.8 The sixth cycle.

In the seventh cycle, M2 has the smallest distance within the non-chosen vertices.

Therefore, the shortest path for the source point is M1 N1 N2 N3 M2 and the

distance is 37. Finally, the distance between the pair of monitoring points M1 and M2

is exactly 37. Furthermore, the path from M1 to M2 is M1 N1 N2 N3 M2 and

the path from M2 to M1 is M2 N3 N2 N1 M1. All results of the above

derivations must be recorded.

76

N1

N2 N3

N4

N5

M1
M2

4

13

11

2

1.5

3

8

9
8

v M1 M2 N1 N2 N3 N4 N5
d[v] 0 37 11 15 28 30 29.5
π[v] N3 M1 N1 N2 N3 N3

Figure 5.9 The seventh cycle.

5.3 Calculation of Optimal
Randomized Patrolling Paths by
Finding Hamiltonian Paths

5.3.1 Review of Traveling-Salesman
Problem (TSP)

The definition of the traveling-salesman problem is that a salesman must visit n

cities and wishes to visit each city exactly once with the minimum cost. Furthermore,

he finishes at the city where he starts from. The problem involves a complete

undirected graph G = (V, E), in which the set V contains all n cities, the set E contains

all edges of any pair of vertices, and there is a nonnegative cost c(u, v) associated with

each edge (u, v) in the set E, and may be modeled as a search of a Hamiltonian cycle

77

within G with the minimum cost.

The traveling-salesman problem is NP-complete, so it cannot be solved by a

polynomial-time algorithm. Many methods have been proposed to speed up the

process, such as genetic local search [21], distributed branch-and-bound search [22],

annealing-based heuristic search [23], etc. However, the number of the monitoring

points in the experiment of this study is not too large. So we adopt an exhaustive

search method (or called a brute-force method), whose time complexity is O(n!) with

inputs of size n, to find an optimal solution in all combinatorial states.

5.3.2 Proposed technique for
generation of complete patrolling
paths

Because every monitoring point is visited only once in a session, we transform

the path planning proposed into the traveling-salesman problem. Some assumptions

are made:

(1) all monitoring points are contained in a set V;

(2) each pair of vertices in the set V has an edge between them and all edges

are contained in a set E;

(3) a complete undirected graph G is composed of the set V and the set E; and

(4) a cost c(u, v) associated with the edge (u, v) is the distance between the

monitoring points u and v.

If two monitoring points belong to different rectangular regions, the distance between

them is calculated by Dijkstra’s algorithm described in Section 5.2; else, it is the

78

straight line distance.

As an example, a patrolling environment is shown in Figure 5.10, in which M1

through M4 are monitoring points, and N1 through N5 are turning points. Furthermore,

each black edge connects two points which are in an identical rectangular region and

each blue edge connects two monitoring points which are also in the same one. All

distances between pairs of monitoring points and turning points passed by them are

recorded in a table, as shown in Table 5.1.

N1

N2 N3

N4

N5

M1 M2

4

13

11

2

1.5

3

8

9
8

M3
1.5

5.5
M4

2
9

10.5

11

13

5
5.5

12

Figure 5.10 A patrolling environment.

Then, we transform the graph in Figure 5.10 into another, as shown in Figure

5.11.With the complete undirected graph G and all costs associated with the edges, we

can find an optimal patrolling path. Because the vehicles do not return to the start

position in this study, the path is exactly a Hamiltonian path with the minimum cost.

The result of Figure 5.11 starting at M1 is M1 M3 M4 M2. And then integrating

the information of Table 5.1 into the path, we get the final result as M1 M3 M4

 N4 M2. The algorithm of generating an optimal patrolling path is shown below.

Table 5.1 Distances and passing turning points between every pair of monitoring
points.

 M1 M2 M3 M4

M1 37 13 16.5

79

M2
N1 N2 N3

(M1 M2)
 25.5 18.5

M3
N4 N2

(M2 M3)
 5

M4
N1

(M1 M4)
N4

(M2 M4)

M1
M2

M3

M4

13

37

16.5

25.5

18.5
5

Figure 5.11 A complete undirected graph G = (V, E).

Algorithm 5.3 Generation of an optimal patrolling path.

Input: All monitoring points, a table T containing all distances and passing turning

points between all pairs of monitoring points, and a position P where the vehicle

starts at.

Output: An optimal patrolling path from P.

Steps:

Step 1. Read the distance between each pair of monitoring points from T and each

of them is exactly the cost c(u, v) associated with the edge (u, v) .

Step 2. Find a Hamiltonian path with the minimum cost from P in the patrolling

environment containing all MPs.

Step 3. Merge turning points into the Hamiltonian path obtained from Step 2, by

Table T.

In this study, the number of vehicles used to perform the patrolling task is more

than one. Therefore, all monitoring points are divided randomly into groups for each

80

vehicle to patrol. The rule of choosing monitoring points randomly has been described

in Section 4.2.1. By performing Algorithm 5.3 individually, the optimal randomized

patrolling paths for all vehicles can be obtained. However, we set a threshold

parameter T to restrict the differences of the patrolling distances for the property of

load balancing among vehicles. If the condition is not satisfied, all monitoring points

will be chosen and Algorithm 5.3 performed again.

81

Chapter 6
Collision Avoidance between Vehicles

6.1 Introduction

In this study, an assumption made is that no unexpected obstacle exists in the

patrolling environment. However, the security patrolling task is performed by multiple

vehicles, it is necessary to ensure no collision among vehicles. Many methods about

collision avoidance among multiple vehicles have been proposed, such as by cell

decomposition [18], using a probabilistic model [19], or based on multilayered

cellular automata architecture [20], etc.

Because only two vehicles are used in the experiment of this study, we can solve

the problem by keeping a fixed distance Dis between two vehicles. If the distance

between the vehicles is smaller than Dis, their patrolling paths must be changed. By

the way, it is noted that collision avoidance between the vehicles is real-time and this

is good for the property of random patrolling paths. Furthermore, the calculating time

is short. If the number of the vehicles is more than two, the collision avoidance

technique will need more consideration and this can be one of the further works.

6.2 Detection of Collisions

Because vehicles are located constantly by the top-view omni-cameras, the

odometer values are credible. Therefore, the values are utilized to compute the

82

distance between two vehicles in every cycle of a fixed time duration. If they are too

close, their paths will be changed by inserting some passing points. By these points,

the distance between the two vehicles can be drawn apart.

For collisions, there are two different states. We only consider the section of the

assigned patrolling path from the current positions to the goals, turning points or

monitoring points, where the vehicles are moving to. If the two sections have an

intersection, this state is called path-intersecting; else, it is the state of

non-path-intersecting. The proposed collision avoidance techniques are described in

Section 6.3.

6.3 Proposed Collision Avoidance
Techniques

6.3.1 Collision avoidance on
intersecting paths

In the state of path-intersecting, we let the two vehicles keeping a fixed distance.

Assume that the first vehicle is at position V11 = (x11, y11) and the other is at position

V21 = (x21, y21). Additionally, assume that they are moving to the goals G1 = (gx1, gy1)

and G2 = (gx2, gy2), respectively. At first, we calculate the intersection I in the two

paths by the parametric forms. Each parametric form with respect to the path from the

current position to the goal is shown in Eq. (6.1) below:

83

1 11 1 11

1 11 1 11

2 21 2 21

2 21 2 21

-
* for vehicle1;

-

-
* for vehicle2;

-
where 0 , 1.

x x gx x
r

y y gy y

x x gx x
s

y y gy y
r s

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

≤ ≤

(6.1)

The point I can be obtained by solving the simultaneous equations of “x1 = x2” and “y1

= y2”. Then, assume that the distance between V11 and I is smaller than the distance

between V21 and I, as shown in Figure 6.1, and so the path of the second vehicle must

be changed.

1G

2G

11V

12V

21V

22V

CI

'
21V

Dis

Figure 6.1 An intersection I on the paths of two vehicles.

Because the first vehicle moves along the original path, we can forecast the

position V12 = (x12, y12) at the next moment. If the velocity of the vehicle is vel and the

time interval of calculating the distance between vehicles is t, then V12 can be

calculated by Eq. (6.2) below:

12 11 1 11

2 2
12 11 1 111 11 1 11

-
* .

-(-) (-)

x x gx xvol t
y y gy ygx x gy y

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∗
= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

+⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (6.2)

Because the vehicles must keep a distance Dis to each other, we can say that the

passing point V22 of the second vehicle is on a circle C whose center is V12 and whose

84

radius is Dis. To calculate V22, we must acquire the projection point V21’ of V21 on the

circle C, at first. The reason is that the distance between V21 and V22 is desired to be

not too long. So we utilize an included angle θ between V21’ and V22 on C to acquire

V22, in which C and V21’ can be represented as follows:

2 2 2
12 12

'
21 2 21' 21

21 '
21 2 2121

: (-) (-)

-
* , where .

-

C x x y y Dis

x gx xx
V s s

y gy yy

+ =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = + ∈ℜ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

 (6.3)

Therefore, the projection point V21’ can be calculated by Eq. (6.4) as follows:

2 2 2
21 2 21 12 21 2 21 12((-) -) ((-) -) .x gx x s x y gx x s y Dis+ + + = (6.4)

As long as the value s is solved, V21’ is obtained. Then, we calculate the angle θ21’ of

V21’ from the positive direction of the x-axis. Because C can also be represented as Eq.

(6.5) below, we can calculate θ21’ by Eq. (6.6) below:

12 12: (*cos , *sin)C x Dis y Disφ φ+ + ; (6.5)

' '
21 12 21

'
' 21 12
21

*cos

-where cos().

x x Dis

x xarc
Dis

θ

θ

= +

=
 (6.6)

Because the included angle between V21’ and V22 is restricted to be θ, V22 is one of the

points a or b as shown in Eq. (6.7), called candidate passing points:

'
12 21

'
12 21

'
12 21

'
12 21

cos()
*

sin()

cos()
*

sin()

x
a Dis

y

x
b Dis

y

θ θ
θ θ

θ θ
θ θ

⎛ ⎞+⎛ ⎞
= + ⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎝ ⎠

⎛ ⎞−⎛ ⎞
= + ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠

 (6.7)

Furthermore, it is desired that the distance between V22 and G1 is bigger. The

reason is that the distance between the two vehicles can be drawn apart. Therefore, if

85

point a is closer to G1 than point b, V22 will be exactly the point b. As the passing

point V22 is obtained, the patrolling path of the second vehicle is changed from V21

G2 to V21 V22 G2.

It is possible that the alternative path may exceed the walkable range. If this is

the case, then the path must be changed again. In general, there are three unallowable

states:

(1) the passing point P is in the outer region as shown in Figure 6.2;

V G
Walkable Region

R

P

P1 P2

Figure 6.2 Passing point P is in the outer region.

(2) the path from the current position V to the passing point P exceeds the

walkable range as shown in Figure 6.3; and

Walkable Region

V G
Walkable Region

R

P

P1 P2

Figure 6.3 The alternative path is not feasible.

(3) the path from the passing point P to the goal G exceeds the walkable range

as shown in Figure 6.4.

86

Walkable Region

V G
Walkable Region

R

P

P1 P2

Figure 6.4 The alternative path is not feasible.

For these states, the rectangular region which the passing point P belongs to is

not equal to the one R which both V and G belong to. Therefore, we calculate the

intersections of the region R and the alternative path V P G. Finally, the

patrolling path is taken to be V P1 P2 G. The algorithm of checking and

finding a feasible alternative patrolling path is shown in the following.

Algorithm 6.1 Checking and finding a feasible alternative patrolling path.

Input: All rectangular regions Re, the passing point P, the front point F (the current

position V or another passing point) of P, and the goal G.

Output: A feasible alternative patrolling path.

Steps:

Step 1. Find the rectangular region R, which both F and G belong to, from Re.

Step 2. Check whether the rectangular region, which the passing point belongs to,

is identical to R.

If yes, the alternative patrolling path is F P G.

Else, go to Step 3.

Step 3. Calculate the intersections, P1 and P2, of the region R and the alternative

path F P G.

87

Then, the alternative patrolling path is F P1 P2 G.

Additionally, after the time interval t, the system must check whether an

intersection is still on the paths of the two vehicles again. If yes, the patrolling path of

the second vehicle will be changed again. The entire process is described as

Algorithm 6.2.

Algorithm 6.2 Computing an alternative path for an intersecting state.

Input: The current position V11 = (x11, y11) and the goal G1 = (gx1, gy1) of the first

vehicle, the current position V21 = (x21, y21) and the goal G2 = (gx2, gy2) of the

second vehicle, a fixed length Dis between the two vehicles, the velocity vel of the

vehicles, the time interval t of calculating the distance between the vehicles, and the

included angle θ between the current position and the passing point.

Output: A alternative patrolling path for one vehicle.

Steps:

Step 1. Calculate the intersection I in the two paths V11 G1 and V21 G2.

Step 2. Judge which vehicle should change its path.

If d(V11, I) < d(V21, I), the path of the second vehicle must be changed.

Else, the path of the first vehicle must be changed.

Assume that the path of the second vehicle must be changed in the

following steps.

Step 3. Forecast the position V12 of V11 at the next moment by the following

equation:

 12 11 1 11

2 2
12 11 1 111 11 1 11

-
* .

-(-) (-)

x x gx xvol t
y y gy ygx x gy y

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∗
= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

+⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Step 4. Calculate the projection point V21’ of V21 on the circle C whose center is

88

V12 and whose radius is Dis by the following equation:

2 2 2
12 12

'
21 2 21' 21

21 '
21 2 2121

: (-) (-)

-
* , where .

-

C x x y y Dis

x gx xx
V s s

y gy yy

+ =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = + ∈ℜ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

The above equations lead to

 2 2 2
21 2 21 12 21 2 21 12((-) -) ((-) -)x gx x s x y gy y s y Dis+ + + = .

Step 5. Calculate the angle θ21’ of V21’ from the positive direction of the x-axis by

the following equation:

 12 12
' ' '

21 21 21

: (*cos , *sin);

(,).

C x Dis y Dis

V x y

φ φ+ +

=

The above equations lead to:
' '

21 12 21
'

' 21 12
21

*cos ;

- cos().

x x Dis

x xarc
Dis

θ

θ

= +

=

Step 6. Calculate candidate passing points a and b in the following way, in which

the included angle between V21’ and the candidate passing points is θ:

'
12 21

'
12 21

'
12 21

'
12 21

cos()
;

sin()

cos()
.

sin()

x
a Dis

y

x
b Dis

y

θ θ
θ θ

θ θ
θ θ

⎛ ⎞+⎛ ⎞
= + ⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎝ ⎠

⎛ ⎞−⎛ ⎞
= + ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠

Step 7. Determine the passing point in the following way:

if (a, G1) < (b, G1), point b is the passing point.

Then the path of the second vehicle is taken to be V21 b G2.

Step 8. Check whether the alternative path is feasible by Algorithm 6.1.

If not, the new alternative path will be obtained from Algorithm 6.1.

89

6.3.2 Collision avoidance on
non-intersecting paths

In this state, both paths of the two vehicles must be changed. Each passing point

is on the perpendicular bisector l of the path from a current position V = (x1, y1) to a

goal G = (x2, y2). Because it is desired to draw apart the distance between the two

vehicles quickly, the included angle between the paths V G and V turning point

P = (p1, p2) is set by a parameter θ. Therefore, the distance between P and C, which is

the midpoint of line segment V and G, is:

tan
2

VG θ∗ . (6.8)

A graphic illustration is shown in Figure 6.5.

V G

P

θ

 perpendicular
bisector l

C
w

Figure 6.5 An included angle θ between V G and V P.

The directional vector w of l is perpendicular to the one of path V G, so it is:

1 2

1 2

-(-)
.

-
y y

w
x x

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (6.9)

Then, l can be represented as:

1 2 1 2

1 2 1 2

-(-)1 * ,
(-)2

where .

x x y yx
s

y y x xy
s

+⎛ ⎞ ⎛ ⎞⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∈ℜ

 (6.10)

90

Because P is on the perpendicular bisector l and the distance between C and P is

computed by Eq. (6.8), P can be represented by Eq. (6.11) below, in which a and b are

in the different sides of path V G, respectively:

1 2 1 2

2 2
1 2 1 21 2 1 2

1 2 1 2

2 2
1 2 1 21 2 1 2

-(-)1 * tan- ;
-2 2* (-) (-)

or
-(-)1 * tan .

-2 2* (-) (-)

x x y yVGa
y y x xx x y y

x x y yVGb
y y x xx x y y

θ

θ

+⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

+⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 (6.11)

For each path of the vehicles, there are two candidates to choose as a passing point.

The condition of choosing passing points for the vehicles is that the distance between

chosen passing points is the longest within all combinations of the candidates. See an

example shown in the following.

 perpendicular
bisector l1

1V

1G
1a

1b
θ

 perpendicular
bisector l2

2V

2G

2a2b

θ

The first vehicle

The second vehicle

Figure 6.6 Alternative paths at a non-intersecting state.

Points a1 and b1 are the candidates for the first vehicle and points a2 and b2 are

the ones for the second vehicle. All states of choosing candidates are (a1, a2), (a1, b2),

(b1, a2), and (b1, b2), in which the distance between a1 and a2 is the shortest. So, a1 and

a2 are the passing points for the first and the second vehicles, respectively; the

alternative paths for the two vehicles are V1 a1 G1 and V2 a2 G2.

Additionally, because the included angle between the two paths from the current

91

position V to the goal G and to the passing point P is restricted by a parameter θ, the

distance between P and path V G may be too long. Therefore, we set a fixed

distance D between them. If the distance between P and path V G is larger than D,

we translate the line segment l connecting V and G along a perpendicular direction

toward the passing point P, such as shown in Figure 6.7, in which l is exactly the

translation line.

V

P

G

1P 2P

D θ

translation line l

w

Figure 6.7 The passing point P is too far.

The translation line l can be represented as:

2 2
1 2 1 2 1 2 1 2

2 2
1 2 1 2 1 2 1 2

1 2 1 2

(-) - (-) * (-) (-)
or

(-) - (-) - * (-) (-)

, if : (-) - (-) .

y y x x x y D x x y y d

y y x x x y D x x y y d

VG y y x x x y d

∗ ∗ = + +

∗ ∗ = + +

∗ ∗ =

 (6.12)

Then, we calculate the intersections, P1 and P2, of path V P G and line l.

Therefore, the new alternative path is V P1 P2 G. Furthermore, it is necessary

to check whether the path is feasible by Algorithm 6.1, and then the final alternative

path can be obtained. See an example shown in Figure 6.8 through Figure 6.10 for

illustration.

In the example, two vehicles are too close and paths of them are non-intersecting.

Here, we only see the state of one vehicle, as shown in Figure 6.8. P is the passing

92

point, but the point is too far from line segmentVG . Therefore, we translate VG a

distance D toward P, and then the translation line l can be obtained, as shown in

Figure 6.9.

V

P

G

Rectangular Region
R

 perpendicular
bisector l

Figure 6.8 A passing point P at a non-intersecting state.

V

P

G
1P

2P

D

translation line l

Rectangular Region
R

Figure 6.9 P is too far.

After calculating two intersections of l and V P G, the new alternative path

is V P1 P2 G. For P1 and P2, it is necessary to check whether they are feasible

by Algorithm 6.1. Because the rectangular region which P2 belongs to is different

from the one R which both the current position V and the goal G belong to, as shown

in Figure 6.10.

93

V

G
1P

2P

θ

21P 22P

Figure 6.10 P2 is not in the rectangular region R.

Hence, we calculate the intersections of P1 P2 G and R, and then the

alternative path becomes V P1 P21 P22 G. The processing of computing a

alternative path at a non-intersecting state is shown as Algorithm 6.3 below.

Algorithm 6.3 Computing an alternative path for a non-intersecting case.

Input: The current position V1 = (x11, y11) and the goal G1 = (x12, y12) of the first

vehicle, the current position V2 = (x21, y21) and the goal G2 = (x22, y22) of the second

vehicle, the restricted distance D between a passing point and the original path V1

G1 or V2 G2, and the included angle θ between the original path and the path

from the current position to the passing point.

Output: The alternative paths for the two vehicles.

Steps:

Step 1. Calculate two candidates of passing points for the first vehicle (a1 and b1)

and the second vehicle (a2 and b2) by the following equation:

94

11 12 11 12
1 2 2

11 12 11 1211 12 11 12

11 12 11 12
1 2 2

11 12 11 1211 12 11 12

21 22
2

21 22 21 2

-(-)1 * tan-
-2 2* (-) (-)

-(-)1 * tan
-2 2* (-) (-)

1 * tan-
2 2* (-

x x y yVGa
y y x xx x y y

x x y yVGb
y y x xx x y y

x x VGa
y y x x

θ

θ

θ

+⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

+⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

+⎛ ⎞
= ⎜ ⎟+⎝ ⎠

21 22

2 2
21 222 21 22

21 22 21 22
2 2 2

21 22 21 2221 22 21 22

-(-)
-) (-)

-(-)1 * tan
-2 2* (-) (-)

y y
x xy y

x x y yVGb
y y x xx x y y

θ

⎛ ⎞
⎜ ⎟

+ ⎝ ⎠

+⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

Step 2. Determine the passing points for the two vehicles in the following way.

Step 2.1. Calculate all distances of the four combinations (a1, a2), (a1, b2),

(b1, a2), and (b1, b2).

Step 2.2. Choose the least distance from Step 2.1 and the combination is

exactly the passing points for the two vehicles.

Step 2.3. Insert the passing point into the original path for each vehicle.

Step 3. Check whether the distance between the passing point P and the original

path is larger than D, for each vehicle.

If yes, calculate the intersections of the translation line l and the

alternative path, in which the distance between l and the original path is

D; and then, replace P by the intersections.

Step 4. Check whether every alternative path is feasible by Algorithm 6.1.

If not, obtain the new alternative path from Algorithm 6.1.

95

Chapter 7
Experimental Results and
Discussions

In this chapter, we show some experimental results of the proposed security

patrolling system by two ways. The first is the result of optimal randomized patrolling

paths and collision avoidance between vehicles shown by a simulation using programs

written in the Borland C++ builder; it is described in Section 7.1. The other is the

result of an actual environment in the Computer Vision Laboratory, Department of

Computer Science, National Chiao Tung University, and it is described in Section 7.2.

7.1 Experimental Results of Simulation
of Patrolling

In this simulation, we create a patrolling environment whose floor shape is

composed of four rectangular regions, as shown in Figure 7.1, in which Obj. 0

through Obj.6 are monitoring points.

We utilize the rectangular regions to calculate all the turning points and the

distance between each pair of monitoring points, and then save the data into some text

files. By reading the files, they can be used again. Furthermore, the threshold to

restrict the differences between the patrolling distances needs to be keyed in to the

user interface, as shown in Figure 7.1, marked by a red frame. All patrolling paths are

random, optimal, and load balanced among vehicles. See an example shown in Figure

7.2, in which the first vehicle starts its navigation at Obj. 4 (M4) and the second

96

vehicle starts at Obj. 1 (M1).

Figure 7.1 A simulated patrolling environment.

Among all monitoring points, M0, M3, M4, and M6 are chosen by the first

vehicle; M1, M2, and M5 are chosen by the second. The obtained optimal paths are

M4 M6 M3 M0 and M1 M2 M5. According to the record of turning

points passed by between each pair of monitoring points, obtained in the learning

phase, the actual paths are M4 M6 N3 M3 N1 M0 and M1 M2 N2

 N3 M5 for the two vehicles, as shown by red and green dotted lines in Figure 7.2.

Furthermore, the distances of the paths are 1633.22 and 1081.56. Because the

difference of the distances is smaller than the threshold 800, set by the user, the two

paths are accepted. In this session, the two vehicles end at M0 and M5, respectively,

so the positions are the starts for them in the next patrolling session, for which, the

new path planning is shown in Figure 7.3.

97

Figure 7.2 Path planning for the two vehicles in a session.

M0, M2, M3, and M4 are chosen by the first vehicle; M1, M5 and M6 are chosen

by the second. The obtained optimal paths are M0 M2 M3 M4 and M5 M6

 M1; the actual paths are M0 N1 M2 M3 M4 and M5 M6 N3 N2

 M1 for the two vehicles, as shown by the red and green dotted lines in Figure 7.3.

Furthermore, the distances of the paths are 1175.41 and 1262.25 and they are also

accepted.

To show the advantage of our system, we compare the times needed for different

control factors, as shown in Table 7.1. If the property of randomization is an essential

condition, the average time in one session taken by using one vehicle is nearly double

of that taken by using two vehicles. This result tells us that the system for multiple

98

vehicles can bring more benefits. Besides, if the number of vehicles is the same, an

optimal patrolling path will take less time than a non-optimal path.

Figure 7.3 Path planning for the two vehicles in the next session.

For collision avoidance, if the distance between two vehicles is too close, the

paths of the vehicles will be changed. The states of non-intersecting paths are shown

in Figure 7.4, in which red and green lines are the original paths of the vehicles.

Because the first obtained passing points, red and green circles, are too far from the

original path or exceed the walkable regions, the blue circles are calculated. The

dotted lines are exactly the feasible alternative paths for the vehicles. Besides, the

final passing points belong to the rectangular region which the original path also

belongs to.

99

Table 7.1 The table of time comparisons where O and X means conducted or not,
respectively.

Number

of

Vehicles

Randomization Optimization

Average Time

(second /

one session)

Saved Time /

Original Time

(%)

1 O O 39.4 -

1 O X 31.6 19.8

2 O O 19.7 50.0

2 O X 13.5 65.7

For collision avoidance of the path-intersecting case, one example is shown in Figure

7.5. Because the second vehicle is closer to the intersection than the first one, the path

of the first vehicle must be changed. The black circles a and b are the candidates of

passing points. Because b is farther from the goal of the second vehicle, b is chosen.

However, the rectangular region which b belongs to is different from the one which

the original path belongs to. The blue circle is the final passing point to be chosen,

and the red dotted line is the alternative path for the first vehicle.

100

Figure 7.4 Collision avoidance of non-intersecting paths.

101

Figure 7.5 Collision avoidance of intersecting paths.

7.2 Experimental Results of Patrolling
in Real Environment

The real environment for this experiment is an open space area in our laboratory.

Because autonomous vehicles used in the study suffer from accumulation of

mechanical errors, two top-view omni-cameras are utilized to locate and monitor the

vehicles.

While collecting data for Table 7.2, we drive the vehicle to random places and

record the values of the actual positions and the odometer. The total moved distance,

passing twenty position points, is 4818.40 centimeters and the average error rate

without calibration by tow-view cameras between the actual positions and the

102

odometer values is 8.86%. Furthermore, the reason why the errors do not increase is

that turning of the vehicle also incurs errors, so the errors might cancel one another by

left and right turnings.

Table 7.2 Mechanical errors of the vehicle.

(1)Actual Position (2)Odometer Value
No.

x y x y

Error

(| (1) (2) |
(1)
−)

1 47.6 7.4 45.9 7.4 0.035

2 163.4 32.2 160.7 34.2 0.020

3 272.3 35.2 269.3 41.1 0.024

4 382.2 29.8 378.8 40.9 0.030

5 399 85.3 392.8 97.3 0.033

6 304.5 115.5 299.2 124.2 0.031

7 546.6 52 546.9 79.8 0.051

8 799.9 145.2 786.6 197.9 0.067

9 505.1 204.3 491.6 228 0.050

10 267.4 198.2 256.8 192.8 0.036

11 717.3 195.2 691.8 274.6 0.112

12 353.8 193.5 335.9 201.8 0.049

13 789.8 37.2 791.2 138.2 0.128

14 573.5 139.7 557.4 175 0.066

15 631.6 82 630.9 138.9 0.089

16 329.7 177.6 316.2 104.5 0.198

17 746.6 103.2 721.9 208.6 0.144

18 213 46 292.9 106.5 0.460

19 635.8 203.3 574.9 243.8 0.110

20 523 97.4 543 94 0.038

Additionally, we also record the errors of the two top-view omni-cameras. The

image in Figure 7.6 is the view of the first camera and we calculate the positions of all

circles in the image.

 In Table 7.3, we calculate the errors between the actual positions and the

positions in the image. From the values, we know that the errors of those points,

103

which is farther from the view center of the camera, is bigger. However, the average

error rate with calibration is only 3.86% and all points are independent. Therefore, the

vehicles are located by the cameras such that the vehicles do not suffer from

accumulation of mechanical errors anymore. About the second camera, the view and

the errors are shown in Figure 7.7 and Table 7.4, in which the average error rate with

calibration is 2.51 %.

Figure 7.6 The view of the first top-view omni-camera.

Furthermore, the task of security patrolling includes the work of capturing the

pictures of some monitored objects. By the top-view omni-cameras to locate the

vehicles periodically in the patrolling session, the vehicles can accomplish the mission

with the information of the positions and the orientations with respect to the objects,

obtained in the learning phase. In the following, we show some results of images

taken by the vehicles. Some monitored objects are in the center of the images, as

shown in Figure 7.8(a). The images, captured by the vehicles in the patrolling session,

with respect to the ones in Figure 7.8(a) are shown in Figure 7.8(b).

104

Table 7.3 Errors of the first top-view omni-camera.

(1)Actual Position (2)Image Position
No.

X y x y

Error

(| (1) (2) |
(1)
− %)

1 61 30.5 52.89 28.56 0.122

2 122 30.5 113.62 28.68 0.068

3 183 30.5 174.53 30.5 0.046

4 244 30.5 238.19 30.5 0.024

5 305 30.5 303.48 30.58 0.005

6 366 30.5 368.11 27.17 0.011

7 30.5 91.5 15.25 99.13 0.177

8 91.5 91.5 80.61 93.68 0.086

9 152.5 91.5 141.74 95.15 0.064

10 213.5 91.5 207.4 93.43 0.028

11 274.5 91.5 271.6 91.65 0.010

12 335.5 91.5 337.19 93.19 0.007

13 396.5 91.5 400.31 91.5 0.009

14 213.5 152.5 205.47 156.39 0.034

15 274.5 152.5 270.22 154.21 0.015

16 335.5 152.5 335.86 155.89 0.009

17 396.5 152.5 397.27 156.36 0.009

18 244 213.5 239.39 217.91 0.020

19 305 213.5 302.22 217.84 0.014

20 366 213.5 367.24 220.12 0.016

In Figure 7.8, the difference between each pair of images is smaller. It tells us

that the proposed vehicle-pose learning strategy and the proposed vehicle localization

technique are good for the vehicles to perform the security patrolling task.

105

Figure 7.7 The view of the second top-view omni-camera.

Table 7.4 Errors of the second top-view omni-camera.

Actual Position Image Position
No.

x y x y

Error

(| (1) (2) |
(1)
− cm)

1 488 30.5 484.88 23.73 0.109
2 549 30.5 542.84 23.49 0.074
3 610 30.5 608.29 24.17 0.035
4 671 30.5 671.32 24.42 0.025
5 732 30.5 736.11 24.35 0.024
6 793 30.5 796.44 23.47 0.021
7 457.5 91.5 456.75 87.34 0.044
8 518.5 91.5 516.22 87.75 0.034
9 579.5 91.5 575.82 86.18 0.036
10 640.5 91.5 637.75 87.95 0.019
11 701.5 91.5 703.29 86.42 0.019
12 762.5 91.5 766.8 85.91 0.020
13 823.5 91.5 824.58 86.1 0.014
14 457.5 152.5 454.96 150.7 0.020
15 518.5 152.5 514.43 152.5 0.023
16 579.5 152.5 574.83 149.27 0.027
17 640.5 152.5 640.64 149.46 0.012
18 701.5 152.5 703.11 150.98 0.007

106

Actual Position Image Position

19 762.5 152.5 764.38 150.99 0.007
20 823.5 152.5 824.02 149.14 0.008
21 427 213.5 429.35 215.86 0.016
22 488 213.5 485.81 213.63 0.010
23 549 213.5 543.7 212.1 0.022
24 610 213.5 606.87 212.05 0.012
25 671 213.5 671.08 211.9 0.005
26 732 213.5 735.21 212.23 0.009

 (a) (b)

Figure 7.8 The security patrolling task. (a) Images captured in the learning phase. (b)

Images captured in the navigation phase.

107

 (a) (b)

Figure 7.9 The security patrolling task. (a) Images captured in the learning phase. (b)

Images captured in the navigation phase. (continued)

108

7.3 Discussions

The proposed system utilizes multiple vision-based autonomous vehicles to

perform the security patrolling task. For this purpose, some monitoring points are

utilized to guide the vehicles. By the way, there are more applications of the

monitoring points, such as providing various services. Every monitoring point can be

regarded, for example, as a business service point in which there are some customers.

If the environment is a restaurant, the apparatus of showing menu can be equipped on

the vehicles, and then the vehicles can move to each service point along assigned

optimal paths to ask what dishes or services are needed. If the environment is a

company, the vehicles also can be utilized to deliver documents or messages in each

service point. Furthermore, if a walkable area can be divided into many ranges, in

which each is within the controllable view of the vehicle, we may transform every

range into a node such that the vehicles can arrive at anywhere in it to do some actions,

such as detecting whether an unknown person has invaded with optimal randomized

paths.

However, there are still some problems in the system. If an object appears next to

the vehicle suddenly, the top-view omni-cameras will not have the ability to find out

the vehicle. To solve the problem, it might be necessary to add information of color

and sample models of the vehicles to this system. Furthermore, the vehicles are not on

a plane, so the vehicle localization accuracy is affected by the heights of the vehicles.

If the vehicle is taller and farther from the top-view omni-cameras, the error between

the obtained centroid and the actual position of the vehicle will be large. However, we

might be able to add an obvious mark on the center of the top of the vehicle. By

finding the mark, the correct position can also be obtained. Finally, the proposed

real-time collision avoidance technique between vehicles is feasible for two vehicles.

109

If the total number of vehicles is larger than two, we will need to consider the

influence of passing points for the third vehicle. The problem is worth for future

research.

110

Chapter 8
Conclusions and Suggestions for
Future Works

8.1 Conclusions

In this study, we utilize multiple vision-based autonomous vehicles to develop a

security patrolling system in an environment whose floor shape is composed of

rectangular regions. We have proposed several techniques and adopt some algorithms

which are summarized in the following.

(1) An environment-information calculation method has been proposed, by which we

can obtain all rectangular regions, which form the floor shape of the patrolling

environment, the turning points, and then all between-MP distances and paths.

The turning points are utilized to enable the vehicles to move between any pair

of MPs without collisions with the walls. With the turning points, we adopt

Dijkstra’s algorithm to obtain the shortest between-MP distances and paths

between the two MPs which belong to the different regions.

(2) A point-correspondence technique integrated with an image interpolation

method for camera calibration has been proposed. In this study, we don’t use the

traditional projection-based transformation. Instead, a grid pattern is used as the

calibration target and corresponding points between 2-D image and 3-D global

spaces are utilized. For the warped images captured by the top-view

omni-cameras, the correct coordinate positions can be obtained by the

111

corresponding points and the use of an image interpolation method.

(3) A faster point-correspondence technique has been proposed. Because more

corresponding points will yield better calibration accuracy, we adopt a minimum

mean square error (MMSE) method to calculate quadratic curves and abundant

cross points, in the image captured by the top-view omni-camera, can be

obtained. Each cross point and its coordinates in the global space, obtained by an

interpolation method, are exactly one pair of point correspondences.

(4) A vehicle-pose learning method has proposed, by which the vehicles are taught

where and in which direction to perform the security monitoring task, which is to

take pictures of monitored objects as defined in this study. Furthermore, the

learned positions can be utilized to guide the vehicles.

(5) An optimal method for randomized and load-balanced path planning has been

proposed, in which each MP is just passed once such that monitored objects can

be patrolled uniformly. Additionally, the difference of the numbers of assigned

MPs for all vehicles is smaller and a threshold distance is set to restrict the

difference between path distances, so that the loads of all vehicles can be

balanced. According to the numbers of assigned MPs, the MPs are chosen

randomly, and then the system calculate the shortest paths with each MP on these

paths appearing only once by the concept of the TSP.

(6) A vehicle localization and monitoring method has been proposed. Because the

vehicles suffer from mechanic errors, we utilize the top-view omni-cameras to

locate them in this study. By the odometer values of the vehicles, we can

calculate the centroids of the vehicles in the image. After the centroids are

transformed into the global space, the odometer values are corrected by the

coordinates of the resulting points. Besides, the directional angles of the vehicles

also must be corrected, in which two continuous correct position points are

112

utilized to do the job. Additionally, the cameras have the ability to monitor

vehicles to see whether they are still under control. If any vehicle loses control of

its action, the system will send an alarm message to the security center and stop

all vehicles.

(7) A real-time collision avoidance technique between two vehicles has been

proposed. By the odometer values, the system computes the distance between

two vehicles in every cycle of a fixed-time duration and determines whether they

are too close. If yes, the feasible alternative paths of the vehicles will be obtained

by two different kinds of states, path-intersecting or non-path-intersecting.

The experimental results shown in the previous chapters have revealed the feasibility

of the proposed system.

8.2 Suggestions for Future Works

The proposed strategies and methods, as mentioned previously, have been

implemented on a vehicle system with multiple vision-based autonomous vehicles.

According to this study, in the following we make several suggestions and point out

some related interesting issues, which are worth further investigation in the future:

(1) using a pen-tilt-zoom camera equipped on the vehicle to capture clearer images,

and then extracting features of the images to detect whether monitored objects

still exist;

(2) adding the capability to detect more danger conditions;

(3) adding the capability of warning users immediately through cell phones or

electronic mails;

(4) adding the capability of voice control when users want to issue navigation orders

113

to the vehicle;

(5) improving the real-time collision avoidance technique to be suitable for more

vehicles; and

(6) improving the accuracy of finding the centroid of the vehicle.

114

References
[1] I. Fukui, “TV image processing to determine the position of a robot vehicle,”

Pattern Recognition, vol. 14, pp. 101-109, 1981.

[2] Betke M and Gurvits L, “Mobile robot localization using landmarks,” IEEE

Transactions on Robotics and Automation, vol. 13, no 2, pp 251-263,Apr., 1997.

[3] M. J. Magee and J. K. Aggarwal, “Determining the position of a robot using a

single calibration object,” IEEE Conference on Robotics, pp. 57-62, Atlanta,

Georgia, USA, May 1983.

[4] J. Huang, C. Zhao, Y. Ohtake, H. Li, and Q. Zhao, “Robot position identification

using specially designed landmarks,” Proceedings of 2006 IEEE Conference on

Instrumentation and Measurement Technology, Italy, Apr., 2006.

[5] H. L. Chou and W. H. Tsai “A new approach to robot location by house corners,”

Pattern Recognition, vol. 19, pp. 439-451, 1986.

[6] K. L. Chiang and W. H. Tsai, “Vision-based autonomous vehicle guidance in

indoor environments using odometer and house corner location information,”

Proceedings of 2006 IEEE International Conference on Intelligent Information

Hiding and Multimedia Signal Processing, pp. 415-418, USA, Dec. 18-20, 2006.

[7] K. C. Chen and W. H. Tsai, “A study on autonomous vehicle navigation by 2D

object image matching and 3D computer vision analysis for indoor security

patrolling applications,” Proceedings of 2007 Conference on Computer Vision,

Graphics and Image Processing, Miaoli, Taiwan, June, 2007.

[8] D. Cobzas, H. Zhang, and M. Jagersand, “Image-based localization with

depth-enhanced image map,” Proceedings of IEEE International Conference on

Robotics and Automation (ICRA 2003), pp. 1570-1575, Taipei, Taiwan, 2003.

[9] P. Biber, H. Andreasson, T. Duckett, and A. Schilling, ”3D modeling of indoor

115

environments by a mobile robot with a laser scanner and panoramic camera,”

Proceedings of IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS 2004), Sendai, Japan, Sept. 28 - Oct. 2, 2004.

[10] C. C. Lai and W. H. Tsai, “A study on automatic indoor navigation techniques for

vision-based mini-vehicle with off-line environment learning capability,”

Proceedings of 2003 Conference on Computer Vision, Graphics and Image

Processing, Kinmen, Taiwan, June, 2003.

[11] N. Winters and J. Santos-Victor, “Mobile robot navigation using omni-directional

vision,” Proceedings of. 3rd Irish Machine Vision and Image Processing

Conference (IMVlP'99), Dublin, Ireland, 1999.

[12] L. E. Kavraki, J. C. Latombe, P. vestka, and M. H. Overmars, “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces,” IEEE

Transactions on Robotics and Automation, vol. 12, no. 4, Aug., 1996.

[13] R. Kimmel, N. Kiryati, and A. M. Bruckstein, "Multivalued distance maps for

motion planning on surfaces with moving obstacles," IEEE Transactions on

Robotics and Automation, vol. 14, no. 3, pp. 427-436, June, 1998.

[14] Y. Mezouar and F. Chaumette, “Path planning for robust image-based control,”

IEEE Transactions on Robotics and Automation, vol. 18, no. 4, Aug., 2002.

[15] S. Hert and B. Richards, “Multiple-Robot Motion Planning = Parallel Processing

+ Geometry,” Springer-Verlag, pp. 195-215, London, UK, 2000.

[16] M. C. Chen and W. H. Tsai “Vision-based security patrolling in indoor

environments using autonomous vehicles,” Proceedings of 2005 Conference on

Computer Vision, Graphics and Image Processing, Taipei, Taiwan, Aug., 2005.

[17] D. Parsons and J. Canny, "A motion planner for multiple mobile robots," IEEE

International Conference on Robotics and Automation, vol. 1, pp. 8-13, May

13-18, 1990.

116

[18] M. Bennewitz and W. Burgard, “Coordinating the motions of multiple mobile

robots using a probabilistic Model,” Proceedings of the International Symposium

on Intelligent Robotic Systems (SIRS), England, 2000.

[19] F. M. Marchese and M. D. Negro, ” Path-Planning for Multiple Generic-shaped

Mobile Robots with MCA,” Springer-Verlag Ed., vol. 3993, pp 264-271, Berlin,

Heidelberg(D), May, 2006.

[20] N.L.J. Ulder, E. H. L. Aarts, H. J. Bandelt, P. J. M. Van Laarhoven, and E. Pesch,

“Genetic local search algorithms for the traveling salesman problem,” Springer,

Parallel Problem Solving from Nature––Proceedings of 1st Workshop , vol. 496,

pp. 109-116, Berlin, Germany, 1991.

[21] S. Tschoke,R. Lubling, and B .Monien, “Solving the Traveling Salesman

Problem with a Distributed Branch-and-Bound Algorithm on a 1024 Processor

Network,” Proceedings of International Parallel Processing Symposium, April

25-28, 1995, pp. 182-189.

[22] J. W. Pepper, B. L. Golden, and E. A. Wasil, “Solving the traveling salesman

problem with annealing-based heuristics: A computational study,” IEEE

Transactions on Systems, Man, and Cybernetics, vol. 32, no. 1, Jan., 2002.

[23] D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach, Prentice Hall,

Upper Saddle River, New Jersey, USA, 2002.

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms, 2nd edition. MIT Press, Cambridge, 2001.

