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摘要 

本論文提出利用多輛視覺型自動車執行安全巡邏工作的系統。我們假設巡邏

環境的地板形狀是由矩形區塊所組成，並採用兩輛裝設有攝影機的自動車，以及

兩部固定於天花板的魚眼鏡頭攝影機做為實驗平台。我們提出了一項獲取未知環

境資訊的方法，可得到組成環境的所有矩形區域、導航自動車的轉折點、每組監

控點間的距離與巡邏路徑。利用這些資訊可使自動車在航行時，不會與牆壁產生

擦撞。另外，針對相機校正的問題，我們亦提出一項結合影像內插的點對應方法，

利用多組二維影像與三維真實空間的對應點與影像內插法，去求得點在扭曲影像

中的實際正確位置。此外，為了提高相機校正的精準度，我們也提出一項快速求

取多組對應點的方法。藉由這些方法，我們可利用固定於天花板上的俯視攝影機

來學習自動車相對於監控物品的位置與朝向，並利用此資訊來執行安全巡邏的工

作。再者，我們也用俯視攝影機來定位與監控自動車的移動行為。而為了使得本

系統有較好效益，我們則提出一項具有優化隨機與工作量平衡特性的路徑規劃方

法，來分配巡邏路徑給各自動車，縮短完成每輪巡邏工作所花費的時間，進而提

高環境中的安全程度。最後，由於本系統中所採用的自動車數量不只一台，所以

我們提出了即時避碰的技巧，根據可能產生碰撞的路線狀況，自動產生可行駛的

避碰路線。實驗結果證明我們所提出的這些方法是可行而且有效的。 
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ABSTRACT 
A multiple vision-based vehicle system for security patrolling in an indoor 

environment, whose floor shape is composed of rectangular regions, is proposed. Two 

autonomous vehicles controllable by wireless communication and equipped with 

cameras, as well as two cameras with fish-eye lenses fixed on the ceiling, are used as 

a test bed. To acquire information of an unknown environment, an 

environment-information calculation method is proposed for obtaining all rectangular 

regions composing the floor shape of the environment, the turning points for 

navigation, all distances between monitored objects, and the patrolling paths. These 

data enable the vehicles to navigate without collisions with walls. Also, a 

point-correspondence technique integrated with an image interpolation method is 

proposed for camera calibration. By a technique of finding corresponding points in 

2-D image and 3-D global spaces as well as an image interpolation method, the 

correct positions of interesting feature points can be obtained from the warped images 

captured by the cameras with fish-eye lenses. Besides, a faster point-correspondence 

technique is proposed to obtain abundant corresponding points that yield better 

calibration accuracy. With this camera calibration technique, the cameras on the 



 
 

iii

ceiling can be utilized to learn the poses of the vehicles with respect to monitored 

objects. Also, the vehicles are taught where and in which direction to perform the 

security monitoring task, in which the position information is used to guide the 

vehicles. Additionally, the top-view cameras can also be utilized to locate the vehicles 

and monitor vehicle activities in the navigation phase. An optimal randomized and 

load-balanced path planning method is proposed as well, which requires shorter time 

to accomplish object monitoring in one session and provides higher degrees of 

patrolling security. Because the number of the vehicles used in this study is more than 

one, a real-time collision avoidance technique is also proposed. According to the state 

of path-intersecting, feasible alternative paths for the vehicles can be obtained. Good 

experimental results show the flexibility and feasibility of the proposed methods for 

the application of multiple-vehicle security patrolling. 
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Chapter 1  
Introduction 

1.1 Motivation of Study 

Applications of intelligent robots are increasing gradually. An autonomous 

vacuum cleaner is a famous instance. The autonomous vehicle used in this research is 

also a robot, but it can only move. In order to add more ability to it, the vehicle is 

equipped with a camera. With the camera and its movement, the view of the vehicle is 

extended to a wider range. Such a kind of vision-based autonomous vehicle can 

perform more complicated tasks, such as security patrolling. It also can replace human 

beings to do dangerous or dreary works, for example, unknown object clipping, 

interoffice document delivering, etc. 

A traditional security surveillance system is passive and restricted by its fixed 

position. The autonomous vehicle utilized to assist a security surveillance system can 

send an alert message to the security center actively when it detects an abnormal state. 

This provides more efficient and reliable security protection. 

Security patrolling by multiple vision-based autonomous vehicles is more 

efficient than by one, because less time is taken to complete one session of patrolling 

all monitored objects. An additional advantage is that the shorter time interval 

between two objects patrolled increases the degree of security. 

To have more benefits, a good planning of patrolling paths for all autonomous 

vehicles is important. Randomization, optimization, and load balancing are three 

critical principles that influence path planning. Autonomous vehicles patrolling 
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randomly make thieves have no idea about when an object is not monitored by any 

vehicle. Optimal paths and load balances among all vehicles can decrease the time for 

all monitored objects to be patrolled once. 

In order that an autonomous vehicle can carry out the patrolling task without any 

manpower, it has to be guided smartly. Ideas of learning artificial landmarks or 

specific scene features in the environment and locating the vehicle by landmark or 

feature matching have been developed intensively in the past decade. But most of 

them are restricted to be applicable in ideal environments, such as pure-colored 

backgrounds. Therefore, a top-view omni-camera with a fish-eye lens is utilized in 

this study to widen the applicable environment. The camera not only can locate 

autonomous vehicles but also can check ceaselessly whether they are still under 

control. 

As a summary, our research goal in this study is to develop an autonomous 

vehicle security patrolling system with the following capabilities: 

1. navigating automatically in environments whose floor shape is composed of 

rectangular regions; 

2. monitoring and locating autonomous vehicles by top-view omni-cameras; 

3. avoiding collisions between vehicles; 

4. patrolling randomly; and 

5. planning optimal paths and balanced loads for all autonomous vehicles. 

1.2 Survey of Related Studies 

In order to make autonomous vehicles navigate along a correct path, the vehicle 

location is the most vital information. Traditionally, an autonomous vehicle is 
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equipped with an odometer to measure the current location of the vehicle. However, 

the vehicle usually suffers from incremental mechanic errors. Thus we need a 

technique of vehicle location estimation to correct the mechanic error in the 

navigation session. 

For vehicle calibration, the geometric shapes of object boundaries [1, 2] or those 

labeled by users are utilized frequently [3, 4]. Furthermore, natural landmarks, such as 

house corners [5, 6], and the SIFT features of images [7] are also used in the 

techniques of vehicle calibration. In recent years, techniques of integrating laser range 

finders with conventional imaging devices have been proposed [8, 9]. 

In this study, a top-view omni-camera with a fish-eye lens is utilized to locate an 

autonomous vehicle. The camera must be calibrated before being used. Traditionally, 

we must calculate intrinsic and extrinsic parameters of the camera in order to obtain a 

projection matrix for transforming points between 2-D image and 3-D global spaces. 

A point-correspondence technique integrated with an image interpolation method is 

proposed, which is inspired by a technique coming from Lai and Tsai [10]. Because 

the camera is equipped with a fish-eye lens, images captured by it are warped. Winters 

and Santo-Victor [11] proposed a method for calibrating warped panoramic images. 

However, we can obtain a correct coordinate point directly by the camera calibration 

technique proposed by us. 

Path planning is an important topic for the security patrolling by multiple 

vehicles. Many methods for this aim have been proposed in [12, 13, 14]. Besides, load 

balancing among all vehicles also need to be paid attention. Hert and Richards [15] 

proposed a method of using a polygon partitioning algorithm to achieve this objective. 

In this study, we propose a technique of calculating optimal and load-balanced paths 

in terms of some guidance points where vehicles perform security monitoring tasks. 

The idea of using guidance points comes from a learning method proposed by Chen 
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and Tsai [16]. While vehicles navigate, collisions between vehicles must be avoided. 

Some methods [17, 18, 19] have been proposed to produce collision-free paths. To 

carry out optimal patrolling, we use the concept of the traveling salesman problem 

(TSP). Some methods for solving the TSP can be found in [20, 21, 22]. 

1.3 Overview of Proposed Approach 
In this study, it is desired to develop a multiple vision-based autonomous vehicle 

system for security patrolling in an environment whose floor shape is composed of 

rectangular regions. In order to achieve this purpose, information about the 

environment, monitoring positions, and vehicle localization is quiet important. 

Therefore, some methods which can assist to acquire all of the above information are 

proposed and are roughly described in following. With such information, a technique 

which makes multiple vision-based autonomous vehicles navigate on correct paths 

without collisions and perform assigned security patrolling tasks is proposed. We 

divide the work conducted by the system into two phases: the learning phase and the 

navigation phase. They are illustrated in Figure 1.1 and Figure 1.2, respectively. 

The learning phase consists of five steps to obtain the information about the 

environment, monitoring positions, and vehicle localization. The first step is 

calibrating cameras. In this study, there is no need to calculate all parameters of a 

camera. We propose another camera calibration technique which utilizes a pattern 

with some symbols labeled manually or with some natural landmarks, and obtains all 

corresponding points between 2-D image and 3-D global spaces. To obtain 

corresponding points faster, we propose additionally a technique of calculating the 
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intersections of some quadratic curves, followed by using an interpolation method to 

obtain the global-space position of each point in a camera image. 

Start of Learning

 Calibrating 
Cameras

Corners of 
Patrolling Area

Learning
Vehicle Poses w.r.t. 
Monitored Objects

Calculating 
Area Information

Calculating Distances
between

Monitoring Points

Distances
between

Monitoring Points

Paths
between

Monitoring Points

Collecting 
Information

End of Learning

Patrolling 
Information

Corresponding 
Points between

2-D and 3-D

Rectangle 
Regions

Turning
Points

Vehicle Poses

Start of Patrolling

Learning Phase

 

Figure 1.1 Flowchart of learning process of proposed system. 
 

The second step is calculating area information, in which we take all corners of 

the patrolling area in the clockwise order as input, and find all rectangular regions and 

turning points by a method proposed in this study. The rectangular regions and turning 
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points can prevent autonomous vehicles from colliding with walls in the environment.  

The third step is learning vehicle poses with respect to monitored objects. While 

autonomous vehicles are patrolling, they must know where and in which direction to 

perform a security monitoring task. Therefore, an autonomous vehicle is driven to all 

positions where there are some monitored objects. Then, we point out the position of 

the autonomous vehicle in the image of a top-view omni-camera manually. We call 

the position a monitoring point in the sequel. For the direction, we utilize two 

positions of the vehicle to obtain a directional vector. 

The fourth step is calculating distance between each pair of monitoring points. 

Because not all pairs of monitoring points are in the same rectangular region, an 

autonomous vehicle might not be able to navigate in a straight line between two 

monitoring points which are in different regions individually. Therefore, we propose a 

method for calculating the distance between any pair of monitoring points according 

to the information of rectangular regions, turning points, and positions of monitoring 

points obtained from the second and third steps of the learning phase described above. 

The distance is a critical factor that influences the decisions of patrolling paths. In 

addition, if two monitoring points belong to different regions, some turning points, 

which assist vehicles in moving from one monitoring point to the other without 

colliding with walls, are also recorded. 

The final step of the learning phase is collecting information. All corresponding 

points between 2-D image and 3-D global spaces, rectangular regions, turning points, 

vehicle poses (including positions and directions), and navigational information 

between all pairs of monitoring points are collected to form a database. With all 

information in the database, autonomous vehicles will be able to perform the security 

patrolling task successfully. 
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Figure 1.2 Flowchart of navigation of proposed system. 
 

In the navigation phase, at first patrolling paths for all autonomous vehicles are 

decided according to the data obtained from the learning phase. For path planning, we 

propose a method for calculating optimal paths randomly with each monitoring point 

on these paths appearing only once. It means that all monitoring points are reached 

once in one patrolling session. With the path so planned, every autonomous vehicle 

can perform the security patrolling task at all monitoring points. When every 

autonomous vehicle completes traversing the assigned path, new patrolling paths are 

decided again. 

Because of the existence of the mechanic errors of autonomous vehicles, it is 

important to locate all the autonomous vehicles in every session of patrolling. In this 

study, we propose a method of using a top-view omni-camera to do this job. Because 

the camera is fixed on the ceiling, we can obtain the absolute positions of vehicles 



 
 

8

from the images captured by the camera. When the position of an autonomous vehicle 

is obtained, the odometer value and direction angle of the vehicle can be corrected. 

The camera can also monitor whether autonomous vehicles are still under control. If 

not, the system will send an alert message to the security center and stop all vehicles. 

In this study, two autonomous vehicles are utilized for conducting experiments of 

security patrolling. Hence, there may be collisions between them in patrolling sessions. 

To solve this problem, the odometer values of the vehicles are utilized to obtain the 

information about whether they are too close. The reason why the values of odometers 

are adopted is that these values may be corrected constantly by the top-view 

omni-cameras. As soon as the distance between the two vehicles is too close, a 

technique proposed in the study can make a change in paths to avoid the collision at 

once. 

In summary, multiple vision-based autonomous vehicles can carry out security 

patrolling in environments whose floor shapes are composed of rectangular regions 

without collisions. By the top-view omni-cameras, autonomous vehicles can navigate 

along correct paths without collisions and whether the vehicles are still navigating 

normally also can be monitored. The patrolling paths are planned to be optimal and 

random. The loads of all autonomous vehicles are balanced. All of the above proposed 

techniques will bring a lot of merits for the application under investigation, namely, 

security patrolling by multiple autonomous vehicles. 

1.4 Contributions 

The main contributions of this study are summarized in the following. 

(1) An environment-information aqusition method for collision avoidance between 
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the vehicles and walls is proposed. 

(2) A point-correspondence technique integrated with an image interpolation method 

for camera calibration is proposed. 

(3) A faster point-correspondence technique is proposed. 

(4) A vehicle-pose learning method for performing the security monitoring task, 

which is to take pictures of monitored objects as defined in this study, and 

guiding the vehicles is proposed. 

(5) An optimal method for randomized and load-balanced path planning is proposed. 

(6) A vehicle localization and monitoring method by the top-view omni-cameras is 

proposed. 

(7) A real-time collision avoidance technique between two vehicles is proposed. 

1.5 Thesis Organization 

The remainder of this thesis is organized as follows. In Chapter 2, we describe 

the system configuration of the vehicles used as a test bed in this study, as well as the 

principle of vehicle learning and guidance. In Chapter 3, the proposed techniques for 

camera calibration, acquiring information about environments, and patrolling tasks are 

described. In Chapter 4, the proposed methods for performing security patrolling and 

using top-view omni-cameras to localize and monitor vehicles are described. In 

Chapter 5, the proposed method for planning paths that are optimal, random, and 

load-balanced for all autonomous vehicles is described. In Chapter 6, the proposed 

method for collision avoidance between vehicles in patrolling sessions is described. 

Some experimental results are shown in Chapter 7. Finally, some conclusions and 

suggestions for future works are given in Chapter 8. 
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Chapter 2  
System Configuration and 
Navigation Principles 

2.1 Introduction 

For security surveillance, the utilization of a vision-based autonomous vehicle is 

good for saving manpower. The vehicle is dexterous, with its moving ability 

increasing the view range of security surveillance. Besides, it can also monitor lower 

or hidden objects that may be under a table or in a cabinet.  

In this study, two autonomous vehicles are used to perform the security patrolling 

task and each of them is equipped with a camera, as shown in Figure 2.1, though the 

proposed methods are general for any number of vehicles. Because the autonomous 

vehicles suffer from accumulation of mechanical errors, two cameras with fish-eye 

lenses, called top-view omni-cameras in the sequel, are installed on the ceiling. By the 

two cameras, autonomous vehicles can be located and controlled to navigate along 

correct paths. Between all on-board equipments and the user, some control and 

communication tools are required. The entire system configuration including 

hardware equipment and software are described in Section 2.2. 

Before all autonomous vehicles carry out the security patrolling task, a learning 

stage is necessary, in which the vehicles are taught where to go, what to do, and how 

to avoid collision with walls. The process to obtain all information that makes 

autonomous vehicles be able to accomplish the task assignment is described in 
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Section 2.3. 

The phase in which autonomous vehicles carry out security patrolling is called 

the navigation phase in this study. In Section 2.4, we will describe the vehicle 

guidance principle and the process of performing the monitoring task in the 

navigation phase. 

 
(a) 

Figure 2.1 The vehicle used in this study is equipped with a camera. (a) A perspective 

view of the vehicle. (b) A front view of the vehicle. (c) A side view of the 

vehicle. 
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                 (b)                              (c) 

Figure 2.1 The vehicle used in this study is equipped with a camera. (a) A perspective 

view of the vehicle. (b) A front view of the vehicle. (c) A side view of the 

vehicle. (continued) 

2.2 System Configuration 

In this study, the vehicle system used as a test bed is composed of a Pioneer 3-DX 

vehicle made by MobileRobots Inc., a WiBox made by Lantronix, and an Axis 

207MW camera made by AXIS, as shown in Figure 2.2. The Axis 207MW camera, 

called the camera system, not only is one part of the vehicle system but also plays an 

important role of monitoring and locating vehicles. Because the whole system, called 

the control system, is controlled by users remotely, some wireless communication 

equipment is necessary. All the details of the above equipments are described in 

Section 2.2.1. 

In order to develop the desired security surveillance system, we also need 

software that provides some commands and control interfaces. Besides, we also 
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provide an interface for users to control the vehicles and cameras. All the above 

utilities are described in Section 2.2.2. 

 
(a) 

  

                    (b)                            (c) 

Figure 2.2 The vehicle system used in this study. (a) A Pioneer 3-DX vehicle. (b) A 
WiBox. (c) An Axis 207MW camera. 
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2.2.1 Hardware configuration 

The entire structure of the vehicle system used in this study is shown in Figure 

2.3. There are three principal parts: vehicle system, camera system, and control 

system.  

In the vehicle system, the Pioneer 3-DX vehicle is a 44cm×38cm×22cm 

aluminum body with two 19cm wheels and a caster. It can reach a speed of 1.6 meters 

per second on flat floors, and climb grades of 25o and sills of 2.5cm. At slower speeds 

it can carry payloads up to 23 kg. The payloads include additional batteries and all 

accessories. By three 12V rechargeable lead-acid batteries, the vehicle can run 18-24 

hours if the batteries are fully charged initially. A control system embedded in the 

vehicle makes the user’s commands able to control the vehicle to move forward or 

backward or to turn around. The system can also return some status parameters of the 

vehicle to the user. 

To show the advantage of the mobile vehicle, a wireless connection between a 

user and the vehicle is necessary. A WiBox is used to communicate with the vehicle by 

RS-232, so the user has the ability of remotely controlling the vehicle over a network 

from anywhere. 

In the camera system, an Axis 207MW camera has the dimension of 

85×55×40mm (3.3”×2.2”×1.6”), not including the antenna, and the weight of 190g 

(0.42 lb), not including the power supply, as shown in Figure 2.4. The maximum 

resolution of images is up to 1280×1024 pixels. In our experiment, the resolution of 

320×240 pixels is used by the camera fixed on the vehicle and that of 640×480 pixels 

is used by the one fixed on the ceiling. Both of their frame rates are up to 15 fps. By 

wireless networks (IEEE 802.11b and 802.11g), captured images can be transmitted to 

users at speeds up to 54 Mbit/s. Each camera used in this study is equipped with a 
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fish-eye lens that will expend the field of view. 

Camera System
Control System

Vehicle System

Camera System

RS-232Fixed on

Axis 207MW 
Camera

Axis 207MW 
Camera

Access Point

Pioneer 3-DX 
Vehicle

WiBox

Computer

 

Figure 2.3 Structure of proposed system. 
 

In the control system, a notebook PC is used to integrate the entire security 

patrolling system. With access points, all status information from vehicles and 
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cameras can be delivered to the user by wireless networks. The PC produces some 

commands according to these data. By the same way, vehicles can receive the 

commands from the control system and perform corresponding actions. In other 

words, an access point is a communication medium among the three systems. 

 

(a) 

  
                      (b)                      (c) 

Figure 2.4 The camera system used in this study. (a) A perspective view of the camera. 
(b) A front view of the camera. (c) A left-side view of the camera. 
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2.2.2 Software configuration 

ARIA (Advanced Robotics Interface Application) provided by MobileRobots, Inc. 

is an API (application programming interface) that assists developers in 

communicating with the embedded system of the vehicle, either using a serial or 

TCP/IP connection. It is a powerful object-oriented toolkit and usable under Linux or 

Win32 OS in C++. Therefore, we use the Borland C++ builder as the development 

tool in our experiments to control the vehicles by ARIA. The lowest-level data and 

other information of the vehicle can also be retrieved easily by means of the ARIA 

interface. 

About Axis 207MW camera controlling, the AXIS Company also provides a 

development tool called AXIS Media Control SDK. Using the Media Control ActiveX 

component from SDK, we can preview the image of the camera’s view and capture 

the current image data. It is also convenient for users to use it to develop any function 

with the images grabbed from the camera as input. 

2.3 Learning Principle and Proposed 
Process 

Because the patrolling environment is unknown, a learning strategy is necessary. 

For the purpose of learning all knowledge that makes the vehicles accomplish the 

mission successfully, we develop a learning interface for users. The entire learning 

process is shown in Figure 2.5.  

In this study, data having to be recorded are camera-related, object-related, and 



 
 

18

area-related ones. The camera-related data are obtained from a camera calibration 

process. In this study, we don’t use the traditional camera calibration method to find a 

projective matrix for coordinate transformation. Instead, some landmarks on a pattern 

are utilized to acquire corresponding points between 2-D image and 3-D global spaces. 

For the camera fixed to ceilings in this system, the pattern is just the patrolling floor 

and the landmarks on it are just the corners of rectangular-shaped tiles. A user points 

some landmarks in the image by the user interface with a mouse, and corresponding 

points in the global space are calculated. Because each camera, used in our system, is 

equipped with a fish-eye lens, images captured by them are warped. Therefore, we use 

a bilinear interpolation method to translate coordinates in images into global space by 

these corresponding points. 

The object-related data are used to teach vehicles where to go and which 

direction to face when they perform the patrolling task. We drive a vehicle to the 

position where the vehicle can observe the monitored object and then record it as a 

monitoring point (MP) according to the image of a top-view omni-camera. For the 

purpose of learning the direction with respect to the object, we control the vehicle to 

face the object and let it move forward for a short distance. By the two positions of 

the vehicle (nodes), the direction angle can be obtained. 

The area-related data are about the environment where the vehicles patrol. An 

assumption made in this system is that the floor shape of the environment is 

composed of rectangular regions. At first, a user must key in corners in the clockwise 

order manually, and then all rectangular regions will be obtained. There might exist 

some pairs of MPs not belonging to an identical rectangular region, between which a 

vehicle cannot move straightly. Therefore, some points, called turning points, are 

necessary and they can be obtained by processing all the rectangular regions. With 

these turning points, the distances of all pairs of MPs can be calculated and which 
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turning points between two MPs are passed by can also be recorded. 
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Figure 2.5 Flowchart of proposed learning process. 

 

After all the data are obtained, they are saved into some text files. These files are 

then used in the navigation phase more than once. 
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2.4 Vehicle Guidance Principle and 
Proposed Process 

When the learning job has been done, all vehicles can start to perform the 

security patrolling task. The entire guidance process proposed in this study is shown 

in Figure 2.6. 

At first, the system reads all files that are obtained from the learning phase and 

contain information about the environment, autonomous vehicles, and monitored 

objects. According to the distances between all pairs of MPs, this system then plans 

random paths for each autonomous vehicle. If all differences between the paths of two 

vehicles do not exceed a threshold value which ensures the loads of all autonomous 

vehicles being balanced, the security patrolling task can be carried out. 

Because autonomous vehicles suffer from accumulation of mechanical errors, we 

need to locate them constantly. When a vehicle runs a fixed length of distance, it must 

be located by the top-view omni-cameras. By the values of the vehicles’ odometers, 

this system calculates the centroid of each vehicle from an image captured by a 

top-view omni-camera. The other function of the camera is to monitor vehicles to see 

whether they are still under control. If any vehicle loses control of its action, the 

system will stop all vehicles and send an alarm message to the user. Otherwise, the 

odometer of the vehicle is corrected and then the vehicle proceeds to move to its goal 

node. 

While the vehicles are carrying out the security patrolling, there could be 

collisions between vehicles. Therefore, the detection of collisions is necessary. This 

system computes the distance between two vehicles in every cycle of a fixed time 

duration and determines if they are too close. If true, the paths of the vehicles will be 
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changed. 
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Figure 2.6 Flowchart of proposed navigation process. 

 

A mission for the autonomous vehicles in this system is to take pictures of all the 

monitored objects during the navigation process. As a vehicle goes to a MP, it means 

that the vehicle will be in front of a monitored object. Therefore, the direction of the 

vehicle must be adjusted to face the object. Then the camera equipped on the vehicle 

takes a picture at the moment. The picture is transmitted to the control system by the 

wireless network and saved into an image file. When all the vehicles have 

accomplished their own patrolling paths, one cycle of security patrolling is finished. 

Then, the system will plan another set of new random paths for all the autonomous 

vehicles again. 
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Chapter 3  
Learning Strategies for Navigation by 
Semi-automatic Driving 

3.1 Ideas of Proposed Techniques Used 
in Learning 

In this study, two cameras with fish-eye lenses fixed on ceilings are utilized to 

locate and monitor all autonomous vehicles. Before the use of the cameras, they must 

be calibrated. For this purpose, we propose in this study a point-correspondence 

technique integrated with an image interpolation method without conducting the 

conventional task of calculating the projection matrix for transforming points between 

2-D image and 3-D global spaces. At first, by a mouse a user points out some 

landmarks in an image of a calibration target which is selected to be the tile pattern on 

the floor of our experimental environment. The landmarks we use in this study are the 

crossing points of the grid formed by the tile pattern. Such crossing points for use as 

corresponding points are abundant which yield better calibration accuracy in the 

proposed point-correspondence technique for camera calibration. The detail is 

described in Section 3.2. 

In an environment where autonomous vehicles navigate, it is indispensable to use 

some turning points in the navigation path to ensure no collision between the vehicles 

and the walls. To compute the turning points, the corner points of the walkable area 

are first utilized to acquire all rectangular regions within the entire area. Each region 
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is then represented by its upper-left and lower-right points. With these points, the 

system can judge whether the vehicles can move straightly between any pair of nodes 

where the vehicles visit (including the turning points). If two nodes belong to different 

regions, the vehicle will be guided to pass some turning points. In other words, the 

turning point is a medium that enables the vehicles to navigate between any pair of 

nodes without incurring collisions with the walls. Therefore, a turning point is 

selected to be the intersection of the centerlines of two overlapping regions or the 

center of the overlapping boundary of two adjacent ones. The details of the proposed 

techniques about processing rectangular regions and computing turning points are 

described in Section 3.3.1. 

Additionally, to take the pictures of monitored objects by cameras equipped on 

the autonomous vehicles, all nodes and directions with respect to the objects must be 

recorded. In this study, a learning technique is proposed to guide vision-based 

vehicles to capture pictures at suitable spots and directions. Two top-view 

omni-cameras are used. The process is described in detail in Section 3.3.2. 

3.2 Calibration of Top-View 
Omni-Cameras with Fish-Eye 
Lenses 

Each camera used in this study is equipped with a fish-eye lens. All images 

captured by the camera are warped. So the traditional camera calibration method of 

obtaining a global-space point via a projection-based transformation cannot be 

utilized directly; the cameras must be calibrated by another method, as mentioned 
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previously. For this, we propose a point-correspondence technique integrated with an 

image interpolation method. By the way, it is noted that the correct coordinates in the 

global space can be obtained from a warped image directly, as done in this study. 

3.2.1 Review of Conventional Camera 
Calibration Technique 

In general, a projection matrix is utilized in conventional methods to do the job 

of camera calibration. There are two kinds of parameters in the matrix, which must be 

calibrated, namely, the intrinsic and the extrinsic parameters. The intrinsic 

parameters do not depend on the position and orientation of a camera in the global 

space and include the focal length f, the image center point (u0, v0), the aspect ratio (Sx, 

Sy), and the skew error θs of the camera. Because the coordinate system of a camera 

and the global space may not be the same, the extrinsic parameters related to the 

rotation angle θ and the translation vector ( , , )x y zt t t  of the camera must be 

calibrated.  

Based on the intrinsic and extrinsic parameters, the relation between points in 

2-D image and 3-D global spaces may be described by Eq. (3.1) below [23], where 

the point (u, v)T is in the image coordinate system and the point (x, y, z)T is in the 

global coordinate system: 
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 (3.1) 

3.2.2 Proposed Calibration Technique 

In the proposed calibration technique, we divide the patrolling area on the floor 

of the environment into multiple grids at first and all corners of them are called 

reference points. These points are the crossing points of the boundaries of the 

rectangular-shaped tiles on the floor. For every reference point, both of its coordinates 

in an image and in the global space must be recorded, describing a pair of 

corresponding points between the image and the global spaces. 

In order to acquire more corresponding points faster, we calculate all quadratic 

curves in the image of the patrolling floor area, of which the intersections are exactly 

the desired reference points. Note that because the images are captured by the cameras 

equipped with fish-eye lenses, a straight line in the global space appears as a quadratic 

curve in the image. Therefore, the technique is feasible. A quadratic curve can be 

calculated by three points at least. This property is utilized to find all curves. 

More specifically, we use a minimum mean-square-error (MMSE) method to 

calculate all the curves. Assume that a curve L is to be computed, which includes 

three parameters a, b, c. If points (x1, y1), (x2, y2), ..., (xn, yn) belong to the curve L, we 

may acquire n curves which can be represented as a matrix in the form of Aw b= , as 
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shown in Eq. (3.2) below: 
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(3.2) 

The vector w  can be computed by the MMSE criterion, that is,  

2( ) [| - | ];

ˆ arg min ( ).
w

J w E b Aw

w J w

=

=
 (3.3) 

Through a series of simplifications from Eq. (3.3), we can acquire a result as  

ˆ( )T TA A w A b= . (3.4) 

If all 1 2, , ..., nx x x  are not equal, the matrix TA A  is invertible and Eq. (3.4) can be 

solved to be: 

-1ˆ ( ) .T Tw A A A b=  (3.5) 

Therefore, the curve L may be computed to be 

2

2

:
ˆ       [1 ] .

L y a bx cx
x x w

= + +

=
 (3.6) 

Before calculating a curve, a user has to input the index of the curve and indicate 

that the curve is horizontal or vertical. As a curve is obtained, the pixels passed by the 

curve must record the index of the curve. The process of acquiring all quadratic 

curves is described as Algorithm 3.1 below. An example is shown in Figure 3.1 which 

is a result of acquiring some horizontal and vertical quadratic curves by the algorithm 

and each curve is calculated by four points on it. 
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Algorithm 3.1 Calculating a quadratic curve. 

Input: An image I, the number n of points needed to calculate a curve, the index k of 

the curve, and being horizontal or vertical for the curve.  

Output: Pixels passed by the quadratic curve. 

Steps: 

Step 1. Point out n points on the curve in the image I. 

Step 2. Calculate the curve by the MMSE criterion as described previously. 

Step 3. Record index k and the property of being horizontal or vertical into the 

table of pixels passed by the curve.  

 

 
Figure 3.1 Calculating quadratic curves. 

 

When all curves are obtained, we check all pixels in the image. If a pixel is 

passed both by a vertical curve and by a horizontal one, the pixel is taken to be one of 

the reference points. The width and height of a grid in the global space are also taken 

as input by the user. According to the lengths and the total numbers of horizontal and 

vertical curves, the coordinates of all reference points in the global space can be 
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obtained. The entire process of acquiring all corresponding points between the image 

and global spaces is described as Algorithm 3.2 below. A result of finding all 

corresponding points from the image of one top-view omni-camera is shown in Figure 

3.2. 

Algorithm 3.2 Acquiring corresponding points between 2-D image and 3-D global 

spaces. 

Input: An image I, the total number nx of vertical curves, the total number ny of 

horizontal curves, and the width w and height h of a grid in the global space.  

Output: The coordinates of all corresponding points. 

Steps: 

Step 1. Repeat Algorithm 3.1 until enough curves are obtained. 

Step 2. Find all intersections from the result of Step 1 and record their 

coordinates in the image coordinate system. 

Step 3. Calculate all coordinates, with respect to the intersections obtained from 

Step 2, in the global coordinate system according to nx, ny, w and h, and 

then record them. 
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Figure 3.2 Finding all corresponding points. 

 

With the corresponding points, a bilinear interpolation method is used in this 

study to obtain the global-space coordinates with respect to the points in the warped 

image. Some assumptions involved are shown in Figure 3.3. The points 

( 1) ( 1)( 1) ( 1), , ,ij i j i j i jP P P P+ + + +  are the corners of the grid which point I belongs to. The 

lines L0, L1, L2 and L3 are straight lines through these corners. Mh is the line passing 

through point I and its slope is the mean of those of line L1 and line L3. Mv is the line 

passing through point I and its slope is the mean of those of line L0 and line L2. The 

points q and r are the intersections of Mh with L0 and L2, respectively. The points s and 

t are the intersections of Mv with L1 and L3, respectively. 
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Figure 3.3 Point I in a distortion image. 
 

For a point in a warped image, we must judge which grid the point belongs to 

and calculate Mh, Mv, q, r, s and t. The ratios of distances are utilized to obtain the 

global-space coordinates with respect to the point. The equation is Eq. (3.7) below: 

( , )_
( , )
( , ) _ .
( , )

k ij

k ij

d q IX X unit width
d q r
d s IY Y unit height
d s t

= + ×

= + ×
 (3.7) 

The points ( , )k kG X Y  and ( , )ij ij ijQ X Y  are in the global space with respect to 

point I and point ijP , respectively. The lengths unit_width and unit_height are the 

widths and the heights of a grid in the global space, respectively. The distance 

( , )d q I  is the length from point q to point I. A graphic illustration is shown in Figure 

3.4 and the process of acquiring the coordinates in the global space is described as 

Algorithm 3.3. 
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Figure 3.4 A relation between the image taken by the omni-camera and the global 
space. 

 

Algorithm 3.3 Computation of coordinates in the global space. 

Input: A point I in a warped image, the coordinates of all corresponding points, the 

width unit_width and the height unit_height of a grid in the global space.   

Output: The coordinates of the point G in global space with respect to the point I. 

Steps: 

Step 1. Judge which grid point I belongs to. 

Step 2. Calculate lines L0, L1, L2 and L3 that are the straight lines through the 

corners of the grid to which point I belongs, as illustrated by Figure 3.3. 
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Step 3. Calculate line Mh that passes through point I with its slope being the mean 

of those of line L1 and line L3. 

Step 4. Calculate line Mv that passes through point I with its slope being the mean 

of those of line L0 and line L2 

Step 5. Calculate points q and r that are the intersections of line Mh and the edges 

of the grid.  

Step 6. Calculate points s and t that are the intersections of line Mv and the edges 

of the grid.  

Step 7. Calculate point ( , )k kG X Y  by the following equation: 

   

( , )_ ;
( , )

( , )_ .
( , )

k ij

k ij

d q IX X unit width
d q r

d s IY Y unit height
d s t

= + ×

= + ×
 

Annotate that point ( , )ij ij ijQ X Y  is in the global space with respect to 

point ijP  in the warped image. 

 

3.3 Information for Security Patrolling 

3.3.1 Proposed techniques of learning 
patrolling environment 

Information about the patrolling environment includes rectangular regions, which 

the floor shape is composed of, and the turning points among the regions. To find all 

rectangular regions, a user must key in all the corners of the patrolling area in the 

clockwise order. Because each point in the area belongs to one rectangular region at 
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least, a vertical line, called scanning line, is utilized to check whether some points in 

the vertical line do not belong to one region at least. If yes, another new rectangular 

region will be found for the points. The entire process and details are described as 

Algorithm 3.4 below. 

Algorithm 3.4 Finding all rectangular regions. 

Input: All corners of the patrolling area.   

Output: All rectangular regions of the patrolling area. 

Steps: 

Step 1. Set a vertical line L through the leftmost corner of the patrolling area and 

scan the area from left to right. 

Step 2. Find the intersections of L and the boundaries of the area, and record them.

Record the corners of the boundary merely, if there is an overlap between 

L and the boundary. 

See the example shown in the following, where points a, b and c recorded. 

 
Figure 3.5 Intersections of L and the boundaries of the area. 

 

Step 3. Divide these intersections into groups from top to down with each group 

including two points. 



 
 

34

See the example of Step 2 above for an illustration, where two groups (a, 

b) and (b, c) are obtained. 

Step 4. Judge where to set a line segment l.  

Step 4.1. Check whether the right part of a group is the inner range of the 

patrolling area and a rectangular region in the range has not been found. 

If yes, go to Step 4.2; else, continue to check the next group.  

Annotate that the technique of checking whether the right part of a group 

is the inner range of the patrolling area is described in Algorithm 3.5. 

Step 4.2. Set l in the following way. 

Step 4.2.1. Shift the middle point M of the group one pixel to the right. 

Step 4.2.2. Extend M along a vertical direction until colliding with the 

boundaries, where the line l is set. 

See the example shown in the following, where line de  is l mentioned 

above. 

a

b

c

Region1

( )
2

a bM +
=

d

e
 

Figure 3.6 Setting a line segment l. 

 

Step 5. Continue scanning the line segment l to the left until colliding with the 

boundary of the patrolling area. 

See the example shown in the following. 
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Figure 3.7 Scanning the line segment l to the left. 

 

Step 6. Continue scanning the line segment l to the right until colliding with the 

boundary of the patrolling area. 

See the example shown in Step 5, where Region2 was obtained. 

scanning

l

Region2

Region1

 
Figure 3.8 Scanning the line segment l to the right. 

 

Step 7. Continue scanning the vertical line L to the right and repeat Step 2 until L 

reaches the rightmost boundary of the patrolling area. 

Algorithm 3.5 Judging an inner range. 

Input: All corners C of the patrolling area, and two points P whose x-coordinates are 
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the same. 

Output: An indication whether the right part of P is an inner range of the patrolling 

area. 

Steps: 

Step1. Calculate the middle point M of the two points P. 

Step2. Shift M one pixel to the right. 

Step3. Set a vertical line LM through point M. 

Step4. Check the numbers of intersections of the line LM and the boundary. 

If both the number of the upper part and that of the lower one of M are odd 

and either part does not include an overlapping line, it is decided that the 

right part of P is an inner range of the patrolling area. 

See the graphic illustration shown in the following. 

Case 1: the right part of points a and b is not an inner range of the 

patrolling area. 

1( , )x y

2( , )x y

1 2( 1, )
2

y yM x +
+

a

b

c

L

 

Figure 3.9 The right part of points a and b is not an inner range. 

 

Case 2: the right part of points b and c is an inner range of the patrolling 

area. 
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Figure 3.10 The right part of points a and b is an inner range. 

 

 

Now, we show a result of Algorithm 3.4. A patrolling area is shown in Figure 

3.11. The total number of rectangular regions in the patrolling area is seven and they 

are shown in Figure 3.12 through Figure 3.18 step by step. 

 
Figure 3.11 A patrolling area. 

 

According to these rectangular regions, we can compute all desired turning 

points. If two regions are overlapping or adjacent, we can obtain a turning point. The 

point is the intersection of two vertical and horizontal centerlines of the regions. The 

process of finding all turning points is described as Algorithm 3.6 and the result in the 

patrolling area of Figure 3.11 is shown in Figure 3.19. The eight circles in Figure 3.19 

are exactly the turning points, in which each blue one is the center of the overlapping 
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boundary of two adjacent regions. 

 

Region1

 
Figure 3.12 The first rectangular region. 

 

Region2

 
Figure 3.13 The second rectangular region. 

 

Region3

 
Figure 3.14 The third rectangular region. 
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Region4

 
Figure 3.15 The fourth rectangular region. 

 

Region5

 
Figure 3.16 The fifth rectangular region. 

 

Region6

 
Figure 3.17 The sixth rectangular region. 
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Region7

 
Figure 3.18 The seventh rectangular region. 

 

Algorithm 3.6 Finding all turning points. 

Input: All rectangular regions R in an area.   

Output: All turning points. 

Steps: 

Step1. Take a pair of overlapping or adjacent regions from the set R. 

If the two regions are overlapping, go to Step2; else, go to Step4. 

Step2. Calculate all vertical and horizontal centerlines of the two regions. 

Step3. Find an intersection within these centerlines, which is exactly a turning 

point of the area. 

Step4. Calculate the center of overlapping boundary, which is exactly a turning 

point of the area. 

Step5. Repeat Step 1 until all regions in R have been checked. 
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Figure 3.19 All turning points in the area. 

3.3.2 Learning of poses of vehicles with 
respect to monitored objects 

To learn the poses of autonomous vehicles with respect to monitored objects, we 

designed a user interface, as shown in Figure 3.20. The image in the interface is the 

real-time view of the camera installed on an autonomous vehicle. 

Before learning, a vehicle is parked at the origin of the global space. Because the 

vehicle suffers from mechanic errors, a user must constantly locate it by the top-view 

omni-cameras in the period of the learning phase. We can use a joystick or the buttons 

in the user interface to control the moves of the vehicle. As the vehicle has moved a 

short distance, the user must press the “Localize” button in the interface. For an 

example, Figure 3.21 shows a situation that the vehicle is ready to be located. After 

the user presses the “Localize” button, the system will calculate the centroid of the 

vehicle in the image captured by a top-view omni-camera. Then, the centroid is 

transformed from the image space into the global space and the odometer value of the 
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vehicle is corrected by the coordinates of the resulting point. 

 
Figure 3.20 User interface of learning MPs. 

 

 
Figure 3.21 Before localizing the vehicle. 

 

In Figure 3.22, the green component is the vehicle and a white circle in the 

component is its centroid. The entire detail of the technique is described in Section 

4.2.2. 
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For the direction with respect to monitored objects, we utilize two points to 

obtain the direction vector. First, we drive the vehicle to the front of a monitored 

object, leaving a sufficient distance between the vehicle and the object. At the moment, 

we adjust the orientation of the vehicle by the image in the user interface. As the 

monitored object appears at the center of the image, we locate the vehicle by pressing 

the “Localize” button. Furthermore, we move the vehicle forward a short distance and 

press the “Learn MP and Direction” button. For the example shown in Figure 3.23, 

the safe deposit labeled by a red rectangle is a monitored object and the vehicle faces 

the object. The detail process is described as Algorithm 3.7. 

 
Figure 3.22 Localizing the vehicle. 
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Figure 3.23 The vehicle in front of a monitored object. 

 

Algorithm 3.7 Learning poses of vehicles with respect to monitored objects. 

Input: The position P of the vehicle in front of a monitored object.   

Output: The pose of the vehicle with respect to the object. 

Steps: 

Step 1. Drive the vehicle to the position P.  

Step 2. Let the vehicle face the object. 

Step 3. Localize the vehicle. 

Step 4. Move the vehicle forward a short distance. 

Step 5. Localize the vehicle again and save its pose. 
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Chapter 4  
Security Patrolling by Multiple 
Vehicle Navigation 

4.1 Introduction to Concepts in 
Proposed Systems 

In the study, we use multiple vision-based autonomous vehicles to perform 

security patrolling. To obtain more benefits, there must be ideal path planning for all 

vehicles. By an optimal randomization technique proposed in this study and described 

in this chapter, these patrolling paths have the properties of randomization, 

optimization, and load balancing within all vehicles. Furthermore, two cameras with 

fish-eye lenses are utilized to localize and monitor all the vehicles. All concepts of the 

above are described in following five sections.  

4.1.1 Randomized patrolling 

The patrolling path of every autonomous vehicle is produced to be random. 

Random paths are good for security surveillance. Because a fixed path will reveal 

where a vehicle is located at a fixed moment, thieves can, by such observation, invade 

and steal those valuable objects which are not guarded by any vehicle at the time. To 

randomize a patrolling path, all nodes (MPs) in the path with respect to monitored 
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objects are chosen randomly. Furthermore, if the time interval between two patrollings 

of a monitored object is smaller, the security of the objects will be raised. Therefore, 

each node (MP) is just chosen once in a patrolling session. 

4.1.2 Optimal path 

After the nodes of a patrolling path are determined, the order of passing these 

nodes is computed. To decrease the time taken to accomplish security patrolling in 

one patrolling session, the distance of each path must be made to be the shortest. A 

method for this purpose by finding the Hamiltonian path is utilized and the detail of 

determining all patrolling paths is described in Chapter 5. 

4.1.3 Load balance 

To obtain more benefits of using multiple autonomous vehicles to perform the 

security patrolling, the loads for all vehicles must be balanced. We set a threshold 

parameter to restrict the differences of the patrolling distances. After all patrolling 

paths are produced, we check whether the differences of these paths are acceptable 

according to the threshold; if not, the nodes of all paths must be chosen afresh.  

4.1.4 Top-view omni-monitoring 

In this study, two cameras are fixed on the ceiling and each of them is equipped 
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with a fish-eye lens. That is the reason why the camera is called a top-view monitoring 

omni-camera. At times, there may be some unexpected problems with the vehicles, 

such as not complying with the user command. The cameras can overlook the 

patrolling area and so control all actions of the vehicles. If one vehicle is not under 

control, all vehicles will be stopped. And then the system will send an alarm message 

to the control center. 

4.1.5 Path correction by top-view 
monitoring omni-camera 

Autonomous vehicles used in this study are subject to accumulation of mechanic 

errors, so they must be localized periodically. About vehicle localizations, house 

corners, geometric shapes, and object features all may be utilized to localize the 

vehicle. For the vehicle localization technique proposed in this study, the top-view 

omni-cameras are utilized. Because the cameras are fixed, images acquired by them 

are good for analyzing the actual positions of the vehicles. The entire detail of vehicle 

localization is described in Section 4.2.2. 
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4.2 Proposed Techniques Used in 
Patrolling 

4.2.1 Optimal randomized patrolling 
paths for all vehicles 

All patrolling paths planned by algorithms proposed in this study have three 

properties: randomization, optimization, and load balancing. Let the total number of 

autonomous vehicles and monitoring positions (MPs) be nv and nm, respectively. In 

the proposed method for generating random patrolling paths, we divide all MPs into 

nv groups randomly. Assume that the number of chosen MPs for the i-th vehicle is ni, 

so that the numbers can be represented as (n1, n2, ..., nnv). Each ni must satisfy two 

conditions as listed in the following. 

Condition 1: 

   n1 + n2 + ...+ nnv = nm − nv 

Condition 2: 

   , 1, 2, ...,m v m v
i v

v v

n n n nTvalue n Tvalue i n
n n

⎢ ⎥ ⎡ ⎤− −
− ≤ ≤ + =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎢ ⎥
 

where Tvalue is an adjustable parameter. Because nv MPs are patrolled by nv vehicles 

at the end of the t-th session, there is no need to visit the nv MPs again in the (t + 1)-th 

session. That is the reason why “nm − nv” is included in Condition 1. Additionally, the 

purpose of Condition 2 is to achieve load balancing among all vehicles. Because we 

set a threshold parameter T to restrict the differences of the patrolling distances, each 
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ni dose not have to be equal to the mean m v

v

n n
n

⎡ ⎤−
⎢ ⎥
⎢ ⎥

 or m v

v

n n
n

⎢ ⎥−
⎢ ⎥
⎣ ⎦

. Therefore, we add 

the parameter Tvalue to obtain an upper bound “ m v

v

n n
n

⎡ ⎤−
⎢ ⎥
⎢ ⎥

+Tvalue” and a lower 

bound “ m v

v

n n Tvalue
n

⎢ ⎥−
−⎢ ⎥

⎣ ⎦
” for all ni. The parameters Tvalue and T are adjustable. If 

they are smaller, the time taken to determine all patrolling paths is larger, but the loads 

of all vehicles will be more balanced. 

The state of choosing MPs for all vehicles can be represented as 

( 1 2 11

1 2

..., ,..., m v nm v m v v

nv

n n n n nn n n n n
n n nC C C −− − − − −− − − ). 

The combination n
kC  is the number of picking k MPs from n MPs randomly, defined 

as 

!
!( - )!

n
k

n nC
k k n k

⎛ ⎞
≡ ≡⎜ ⎟

⎝ ⎠
. (4.1) 

For example, assume that the number of MPs is “thirteen”, the number of vehicles is 

“three”, and the parameter Tvalue is “one”. By Condition 1, “ten MPs” need be 

divided into “three groups.” Besides, the number of each group has an upper bound of 

“five” and a lower bound of “two” by Condition 2. The three states of the numbers of 

MPs chosen for three vehicles are shown in following. 

(1) (5,3,2) 

(2) (4,4,2) 

(3) (4,3,3) 

For state (1), the number of the combination is 10 5 2
5 3 2*C C C∗ =2520. For state (2), the 
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number of the combination is 
10 6 2
4 4 2*

2!
C C C∗ =1575. For state (3), the number of the 

combination is 
10 6 3
4 3 3*

2!
C C C∗ =2100. Hence, the total number of combinations is 

2520+1575+2100=6195. It means that the total number of the states of choosing MPs 

for the vehicles randomly is 6195 and the probability of choosing the same state in 

two continuous sessions is 1
6195

. 

As long as one group of MPs is determined, we calculate next a path passing all 

of the MPs under the constraint that the distance of the path is the shortest. The MPs 

are the positions where vehicles perform the security monitoring task, and every MP 

is just passed one time in this path. In other words, the requirement is that one vehicle 

passes each MP once (once and only once) and takes the shortest time to accomplish 

the route. The problem is equal to the traveling salesman problem (TSP) and the detail 

to solve it for our application of this study is described in Section 5.2. 

To solve the problem by the idea of the TSP, the information of the distance 

between each pair of MPs is needed. In this study, the floor shape of a vehicle 

patrolling environment is assumed to be composed of rectangular regions. There may 

be two MPs which do not belonging to the same region. If two MPs are in different 

regions, the vehicle might not be able to move along a straight path between them 

without hitting obstacles. To obtain the distance between every pair of MPs, we must 

judge whether one pair of MPs belong to an identical rectangular region. If yes, the 

distance of this pair is the straight distance between them; else, the straight path 

between them must be abandoned and a new path with multiple line segments should 

be planned using some turning points obtained in the learning phase. Because the 

between-MP distance is desired to be the shortest, it can be figured out that the 

distance may be computed by the Dijkstra’s algorithm. The detail for the solution of 

this problem is described in Section 5.1. 
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In the proposed system, the reason why each MP is just passed one time is that it 

is wished to patrol these monitored objects uniformly in time. That is, the difference 

between the biggest and the smallest times of MPs passed at any moment is desired to 

be one or zero. In this sense, each MP will have been visited t times at the end of the 

t-th session of security patrolling. And then the system will calculate new patrolling 

paths for the next session. A flowchart is illustrated in Figure 4.1, and the detail of 

obtaining the patrolling paths is described as an algorithm in the following. 

Algorithm 4.1 Calculating all patrolling paths. 

Input: MPs, the number nm of MPs, the number nv of vehicles, the points Ps where 

the MPs are patrolled by all vehicles at the end of the front session, the distance 

between every pair of MPs, threshold parameters T and Tvalue.  

Output: Optimal patrolling paths for the vehicles. 

Steps: 

Step 1. Divide the number “nm − nv” into nv groups according to the following 

conditions randomly and list all states, such as (n1, n2, ..., nnv). 

    Condition 1:   

      n1 + n2 + ...+ nnv 

    Condition 2:   

          , 1, 2, ...,m v m v
i v

v v

n n n nTvalue n Tvalue i n
n n

⎢ ⎥ ⎡ ⎤− −
− ≤ ≤ + =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎢ ⎥
 

Step 2. Choose MPs, not including Ps, randomly according to the numbers (n1, 

n2, ..., nnv). 

Step 3. Calculate every patrolling path passing all chosen MPs such that the 

distance of the path is the shortest.  

Step 4. Check whether all distance differences between each pair of paths 
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conform to the threshold parameter T. If yes, the paths are determined. 

Else, repeat Step 1. 

 

The MPs which 
vehicles stop at in 

the last cycle

Start to 
calculate paths

Divide the number of 
remaining MPs into 

nv groups

Numbers of 
all groups 

(n1 , n2 , … , nnv)   

Choose the remaining MPs 
according to ni randomly

(i=1,..,nv)

 Chosen MPs 
(C1 , C2 , … , Cnv)   

Calculate the shortest paths 
of all groups

Distances
between

MPs

nv paths  

Within 
threshold T

Finish 
calculating paths

Yes

No

 
Figure 4.1 A flowchart of determining all paths for vehicles. 

 

4.2.2 Guidance of vehicles by 
localization and monitoring using 
top-view omni-cameras 

Before introducing the proposed scheme for guidance of vehicles, we take an 



 
 

53

illustration of all coordinate systems used in the system. They are the image 

coordinate system, the global coordinate system, and the vehicle coordinate system. 

By these coordinate systems, it is easily to know the position of a vehicle. The 

definitions of the three coordinate systems are described in the following and a 

graphic illustration is shown in Figure 4.2. 

(1) The image coordinate system (ICS, denoted as u-v): 

The coordinate system is used for the image acquired by the top-view 

omni-cameras fixed on the ceiling, in which the u-v plane is parallel to the 

floor where vehicles navigate. If the image is displayed in the user interface, 

the positive direction of the u-axis is from left to right and the positive 

direction of the v-axis is from top to bottom. The origin uvO  is the upper 

left corner of the image. 

(2) The global coordinate system (GCS, denoted as X-Y): 

This coordinate system is in the 3-D global space where the vehicles 

navigate. Because the top-view omni-cameras are fixed on the ceiling, the 

distance between each camera and the floor of the global space is fixed. 

Besides, we only need to know where the vehicles are located at nay 

moment, so there are merely two axes in the coordinate system. To simplify 

related computations, the positive directions of the X- and Y-axes are the 

same as the u- and v-axes in the CCS, respectively. The origin XYO  is the 

upper left corner of the patrolling environment. 

(3) The vehicle coordinate system (VCS, denoted as x-y): 

In this system, the x-y plane is also parallel to the floor. The positive 

directions of the x- and y- axes are the front direction and the leftward 

direction of the vehicle, respective. The origin of the VCS is where the 

vehicle starts its navigation. 
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For vehicle localization, the position and the direction angle of a vehicle must be 

calibrated after the vehicle moves a fixed distance because the vehicle is subject to 

accumulation of mechanic errors. In the proposed system, a top-view omni-camera is 

utilized to acquire the current location of the vehicle. To reduce the cycle time of the 

navigation session, we only calculate a region, whose center is the odometer value of 

the vehicle and whose width is a parameter W, to find out the centroid of the vehicle 

in the image. By the way, the negative influence of noise is also decreased. As an 

example, the black region with a red rectangle frame shown in Figure 4.3 is the range 

of calculation. 

u

v Image

ICS

uvO

 
(a) 

X

Y

GCS

XYO

 

x

y

VCS

xyO

 
                  (b)                          (b) 

Figure 4.2 Coordinate systems used in this study. (a) ICS (b)GCS (c)VCS 
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Before all vehicles perform the patrolling task, the top-view omni-cameras 

capture an image of the floor without vehicles and unnecessary objects as a 

background. An example of background images is shown in Figure 4.4. Because the 

number of the cameras used in the study is more than one, when a vehicle needs to be 

located, the system must judge which camera will do the job according to the 

odometer value of the vehicle. We translate the coordinate of the vehicle from the 

VCS into the GCS and then judge the camera view which includes the vehicle. 

 

Figure 4.3 Vehicle localization from a top-view omni-camera. 
 

To acquire the position of the vehicle, the camera must capture the current image 

as a foreground. An example of foreground image is shown in Figure 4.5. 

By subtracting the foreground from the background, we can obtain all 

differences in the two images. Because there is a lot of noise in the patrolling 

environment, such as light variations, we set an appropriate threshold parameter 

T_Diff to threshold the difference image to eliminate noise. If the difference value of a 

pixel is larger than the parameter T_Diff, the pixel will be recorded as “1”; else it will 
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be recorded as “0”. At the end, we will obtain a binary image B_IM. Furthermore, we 

apply consecutively two methods of morphology to decrease the interference of noise. 

One is erosion and the other is dilation. The equations of them are described in the 

following where A and B are sets in Z2 and all elements of them are zero (false) or one 

(true); B̂  is the complement of the set B and its origin is z: 

ˆ{ | ( ) }zA B z B A⊕ = ∩ ≠ ∅ ; (4.2) 

{ | ( ) }zA B z B AΘ = ⊆ . (4.3) 

We denote the dilation of A by B by A B⊕  for which if there is at least one element 

overlap between B̂  and A, then z is set true. The result of dilation is using B as a 

mask translated by z over the set A. The erosion of A by B is denoted A BΘ  for which 

if B is contained in A, then z is set true. The result of erosion is also using B as a mask 

translated by z over the set A. 

As we obtain a binary image B_IM, the noise which is smaller or bigger than the 

vehicle too much can be eliminated by the method of erosion using some squares as 

the mask. For example, given a binary image A composed of the square D of size 1 

pixel on the side and a mask B also being a square of size 3 pixels on the side, erosion 

of A by B results in the square D being eliminated.  

After erosion, we can perform the method of dilation to repair some holes in the 

range of the shape of the vehicle. By the way, if the shape of the vehicle can be more 

complete, then the obtained position will also be more precise. 
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Figure 4.4 A background image taken by a top-view omni-camera. 

 

 

Figure 4.5 A foreground taken by a top-view omni-camera. 
 

As the next step, we use the method of connected component labeling. If the 

number of components is larger than one, it is necessary to find out the one 

component which is much like the shape of the vehicle by the number of the pixels in 

the component. Furthermore, if no component is found, the state is that there is one 
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vehicle which is not under control, for which the system will send a message to the 

control center. When only one component is detected, we calculate the centroid of the 

component, which is exactly the position of the vehicle in the CCS. The position then 

is transformed into one in the GCS by the point-correspondence technique integrated 

with an image interpolation method described in Section 3.2.2. For Figure 4.3, the 

result of finding the position of a vehicle is shown in Figure 4.6. The entire detail is 

described as Algorithm 4.2. 

         
                     (a)                       (b) 

         
                     (c)                       (d) 
Figure 4.6 Finding the position of a vehicle. (a) A binary image which is part of the 

image shown in Figure 4.3. (b) Erosion of (a) with a square mask. (c) 
Dilation of (b) with a square mask. (d) The connected component of (c) 
and the computed centroid (the white circle). 

 

Algorithm 4.2 Calculating the position, in the GCS, of a vehicle by top-view 

omni-cameras. 

Input: A background image Back_IM, the odometer value of the vehicle Va, the 

width W of the calculation range, and a threshold parameter T_Diff  
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Output: The position, in the GCS, of the vehicle. 

Steps: 

Step 1. Judge which camera will do the job to calculate the centroid of the vehicle 

by Va. 

Step 2. Capture a foreground image Foer_IM by the camera determined from 

Step 1. 

Step 3. Translate Back_IM and Foer_IM into gray images Back_GaIM and 

Foer_GaIM. 

Step 4. Subtract Foer_GaIM from Back_GaIM, in a region whose center is Va 

and whose width is W, to obtain another image D. 

Step 5. Acquire a binary image Bi_IM. 

In the binary image Bi_IM, “1” means that this pixel in the image D is 

bigger than T_Diff. 

Step 6. Perform erosion of Bi_IM with a square mask and to obtain a new image 

Ero_IM. 

Step 7. Perform dilation of Ero_IM with a square mask to obtain a new image 

Dila_IM. 

Step 8. Find out one connected component Co_comp in Dila_IM. 

Step 9. Calculate the centroid c of the component Co_comp. 

Step 10. Translate c into one in the GCS. 

 

Because vehicle navigation must utilize the direction angle of the vehicle, it is 

important to ensure the accuracy of the direction angle. The reason why the direction 

angle must be corrected is illustrated in Figure 4.7. A vehicle starts at point O and 

moves forward a distance. The position B is desired, but the vehicle arrives at position 

A. 

At the moment, the direction angle of the vehicle is recorded as zero. In reality, 

the correct value is θ1. Because the vehicle suffers from mechanic errors, a user’s 

command to move the vehicle straightly for a distance will result in a curved 
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trajectory. In this study, we utilize two continuous correct positions to acquire a 

direction angle, such as θ2 in Figure 4.7, and the detail is described in Section 4.3. 

Because the distance between two continuous localizations is short, the curve path is 

close to a straight line. We can correct the direction angle of the vehicle by θ2. Finally, 

the detail of localizing and monitoring vehicles is described as Algorithm 4.3 and the 

flowchart of the entire process is shown in Figure 4.8. 

O

B

A

1θ

2θ

 

Figure 4.7 Illustration of direction angles of the vehicle. 
 

Algorithm 4.3 Vehicle localization and monitoring. 

Input: A background image IM_ Back, the odometer value of a vehicle Va, and a 

threshold parameter T_Loss. 

Output: Location of the vehicle. 

Steps: 
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Step 1. Determine which camera needs to do the job of vehicle localization by 

Va. 

Step 2. Capture the foreground image IM_Fore by the camera. 

Step 3. Calculate the centroid c of the vehicle in one image using IM_ Back and 

IM_Fore.  

Step 4. Check whether the point c is found. 

If yes, go to Step 6.   

Step 5. Check whether the number of cycle times not finding the vehicle is more 

than T_Loss. 

If yes, the system sends an alarm message to the security center and stops 

all vehicles. 

Else, move the vehicle toward the goal. 

Step 6. Translate the point c into one in the GCS and correct the odometer value 

of the vehicle by the point. 

Step 7. Check whether the correct position of the vehicle is found in two 

continuous cycles of navigation. 

If yes, the two continuous correct positions are utilized to calculate the 

direction angle, and take the angle value to replace the original direction 

angle of the vehicle. 
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Figure 4.8 Flowchart of localizing and monitoring vehicles. 
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4.2.3 Avoiding collisions between 
vehicles 

Because the vehicles are located constantly by the top-view omni-cameras, the 

odometer values can be utilized to avoid collisions among vehicles. The system sets a 

timer to detect whether two vehicles are too close. If yes, their patrolling paths are 

changed by calculating some passing points and inserting them into the original path. 

By these passing points, the distance between the two vehicles can be drawn apart. 

The detail about the proposed collision avoiding technique is described in Chapter 6. 

4.3 Detailed Process for Security 
Patrolling by Vehicle Navigation 

In the navigation phase, the vehicles navigate along assigned patrolling paths by 

arriving at each node orderly. The types of nodes on a path include monitoring point, 

turning point, and passing point. Assume that N is the set of nodes on a patrolling path 

and that an element ni in N means the i-th node passed by a vehicle. If a point m = (mx, 

my) is the current position of a vehicle, we can utilize the goal node ni = ( , )i ix y , where 

the vehicle wants to arrive at, to acquire a direction vector iW . The equation is shown 

in Eq. (4.3). The direction angle θV of a vehicle is an included angle between the 

current direction vector of the vehicle and the positive direction of the x-axis in the 

VCS, as shown in Figure 4.9.  

We calculate an acute angle θ by the cosine formula and utilize the angle to 

obtain θV in the following way: 
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(1) If the direction vector iW  belongs to the first quadrant, θV = θ. 

(2) If the direction vector iW  belongs to the second quadrant, θV = 180°-θ. 

(3) If the direction vector iW  belongs to the third quadrant, θV = -180°+θ. 

(4) If the direction vector iW  belongs to the fourth quadrant, θV = -θ. 

The relation between θ and θV is shown in Figure 4.10. 
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                 (a)                               (b) 

Figure 4.9 A direction angle θV. (a) Left ( 0 vθ π≤ ≤ ). (b)Right ( - 0vπ θ≤ ≤ ). 
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Figure 4.10 The relation between θ and θV. 
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The acute angle θ is an included angle between the direction vector iW  and the 

x-axis in the VCS, and the equation is shown in Eq. (4.4). If one element of iW  is 

negative, it will be transformed into positive one. As the direction angle θV is obtained, 

the difference between θV and the original direction angle θodo is exactly the rotation 

angle θturn. 

The proposed system utilizes nodes to guide the vehicles. By the current node 

and the goal node, we can obtain the direction vector iW  and then the rotation angle 

θturn. The vehicles turn to the angle θturn and move forward. Such actions enable 

vehicles to arrive at the goal node. In the period of navigation, the vehicles must be 

located constantly. Therefore, we set a distance parameter d. When one vehicle has 

moved the distance d, it must be located. Furthermore, if the vehicle arrives at a goal 

node which is a monitoring point, the direction angle of the vehicle must be adjusted 

as one θmoni obtained in the learning phase and then performs the security monitoring 

task. The algorithm is shown in the following and the flowchart is shown in Figure 

4.11. 

Algorithm 4.4 Navigation and monitoring tasks. 

Input: The current position m = (mx, my), the goal node ni = ( , )i ix y , and distance 

parameter d.  

Output: The vehicle moves the distance d toward the goal node. 

Steps: 

Step 1. Locate the vehicle including correcting the position and the direction 

angle. 

Step 2. Calculate the direction vector iW  from the node m to the node ni by the 



 
 

66

following equation: 

x i x
i

y i y

w x m
W

w y m
−⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
. (4.3) 

Step 3. Transform iW  into 
'

iW  each element of which is the absolute value 

with respect to the element in iW . 

Step 4. Calculate the acute angle θ by the following equation: 
'

( )i iabW Ws= ; 
'

-1
'

(1,0)cos ( )
| || (1,0) |

i

i

W
W

θ •
= . 

(4.4) 

Step 5. Calculate the direction angle θV by the following rules. 

(1) If the direction vector iW  belongs to the first quadrant, θV = θ. 

(2) If the direction vector iW  belongs to the second quadrant, θV = 180°-θ. 

(3) If the direction vector iW  belongs to the third quadrant, θV = -180°+θ. 

(4) If the direction vector iW  belongs to the fourth quadrant, θV = -θ. 

Step 6. Calculate the rotation angle as θturn = θV  − θodo. 

Step 7. Turn the vehicle leftward for the angle θturn. 

Step 8. Check whether the distance d is bigger than the distance between the 

current node and the goal node. 

If yes, the vehicle moves the distance d forward. 

Else, the vehicle moves to the goal node. 

Step 9. Check whether the vehicle arrives at a monitoring point. 

If no, perform this Algorithm 4.4 again. 

Step 10. Read the direction angle θmoni at the monitoring point. 

Step 11. Calculate the rotation angle as θturn = θmoni - θodo. 

Step 12. Turn the vehicle leftward for the angle θturn. 

Step 13. Perform the security monitoring task. 

Step 14. Read the next goal node and perform this Algorithm 4.4 again. 
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Figure 4.11 Flowchart of Navigation and monitoring tasks. 
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Chapter 5  
Planning of Optimal Randomized 
Patrolling Paths for Vehicles 

5.1 Introduction 

In the proposed system, patrolling paths are designed to be optimal, random, and 

load-balanced for all autonomous vehicles in the senses mentioned previously. All 

monitoring points on these paths are chosen randomly. Because some monitoring 

points might belong to different rectangular regions, the turning points are utilized to 

enable the vehicles to move between any pair of monitoring points without collisions 

with walls. To optimize the patrolling paths, all distances between monitoring points 

must be the shortest. Therefore, we calculate the distances by Dijkstra’s algorithm. 

The detail is described in Section 5.2. 

To patrol all monitored objects uniformly, each monitoring point appears only 

once in one patrolling session. With all distances between pairs of monitoring points, 

we utilize the idea of the traveling salesman problem to obtain the optimal patrolling 

paths, as mentioned previously. In such a way, all autonomous vehicles can take 

shorter time to accomplish the security patrolling task in each session. The detail is 

described in Section 5.3. 
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5.2 Calculation of Paths between 
Monitoring Points by Dijkstra’s 
Algorithm 

5.2.1 Review of Dijkstra’s algorithm 

Dijkstra’s algorithm can be adopted to solve a single-source shortest-paths 

problem on a weighted, directed graph G = (V, E), in which V is the set of vertices and 

E is the set of edges. The algorithm is only feasible for the case that all edge weights 

are nonnegative. By the algorithm, the shortest paths and weights from a source s to 

other vertices can be obtained. In the algorithm, there are three symbol definitions: 

(1) w(u, v) represents the weight of the edge (u, v); 

(2) d[v] represents the shortest-path estimate from the source s to the vertex v; 

and 

(3) π[v] represents the predecessor of v in the shortest path from the source s to 

the vertex v. 

The main concept is that the all sub-paths of the shortest path are also the 

shortest paths. Therefore, it uses the technique of relaxation [24] by a triangle 

inequality. The process is to check constantly whether the shortest path to v can be 

improved by going through u. If yes, then update d[v] and π[v]. Dijkstra’s algorithm 

[24] is shown below. 
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Algorithm 5.1 Dijkstra’s algorithm. 

Input: A directed graph G including vertices V and edges E, all weights with respect 

to edges E, a source s, and an empty set S.  

Output: The shortest paths and weights from s to other vertices. 

Steps: 

Step 1. Set all d[v] = ∞ and all π[v] = nil. 

Step 2. Set d[s] = 0. 

Step 3. Find out vertex u whose shortest-path estimate d[u] is the smallest. 

Step 4. Put the vertex u into the set S. 

Step 5. Find out all vertices v which are adjacent to the vertex u from E and 

which are not in the set S. 

Step 6. Check whether d[v] > d[u] + w(u, v). 

If yes, update d[v] = d[u] + w(u, v) and π[v] = u. 

Step 7. Repeat Step 3 if the set S do not contain all vertices V. 

 

5.2.2 Proposed technique for 
generation of partial patrolling paths 

To calculate the distance between every pair of monitoring points, we adopt 

Dijkstra’s algorithm. At first, we check whether two monitoring points belong to an 

identical rectangular region. If yes, the distance between them is set equal to the 

straight line distance; else, we calculate the shortest path by passing through some 

turning points without colliding with walls. 

To meet the assumptions in Dijkstra’s algorithm, the patrolling environment is 

taken to be a directed graph G. All turning points and monitoring points are regarded 
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as the set V of vertices in the graph G. If there is a rectangular region which two 

turning points belong to or which both of a turning point and a monitoring point 

belong to, then there exists an edge between the two and it is taken to be one element 

of the set E of edges in the graph G. The directions of all edges are two-way. The 

straight line distances of all edges in the set E are the set W of weights. 

To calculate the shortest path between two monitoring points which belong to 

different regions, we set one of the two points as a source point and the other as an 

end point, at first. By Dijkstra’s algorithm, the shortest path from the source point to 

the end point can be obtained and its weight is exactly the distance between them. The 

algorithm of processing all pairs of monitoring points is described in following. 

Algorithm 5.2 Computing distances between two monitoring points. 

Input: Rectangular regions R, monitoring points, and turning points. 

Output: All the shortest distances and paths between all pairs of monitoring points. 

Steps: 

Step 1. Produce the set V which is composed of all monitoring points and turning 

points. 

Step 2. Produce the set E, in which every element means that it connects two 

points which belong to an identical rectangular region. 

Step 3. Produce the set W, in which each element is the straightly line distance 

with respect to the edge in the set E. 

Step 4. Check whether two monitoring points Mi and Mj belong to an identical 

region. 

If yes, the distance between them is exactly the straightly line distance 

and repeat Step 4 until the distances between all pairs of monitoring 

points are obtained. 

Else, perform Dijkstra’s algorithm with the source point Mi and the end 
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point Mj. 

Step 5. Record the weight and the order of the turning points passed by from the 

source point Mi and the end point Mj, according to the result from 

Dijkstra’s algorithm. 

Step 6. Repeat Step 4 until the distances between all pairs of monitoring points 

are obtained. 

 

As an example, a patrolling environment is shown in Figure 5.1, in which there 

are five rectangular regions, five turning points N1 through N5, and two monitoring 

points M1 and M2. 

 
Figure 5.1 A patrolling environment. 

 

Because M1 and M2 belong to different rectangular regions, the distance between 

them is calculated by Dijkstra’s algorithm. Before performing the algorithm, we 

transform the patrolling environment into a graph G = (V, E), as shown in Figure 5.2. 

The set V contains N1 through N5 and M1 through M2; the set E includes all the black 

lines which are two-way. M1 is the source point and M2 is the end point. 

 
Figure 5.2 The graph G from Figure 5.1. 

 

The results of each process are shown in Figure 5.3 through Figure 5.9 step by 
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step. Because M1 is the source point, it has the smallest distance from the source point 

in the first cycle. 

N1
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8

 

v M1 M2 N1 N2 N3 N4 N5 
d[v] 0 ∞ ∞ ∞ ∞ ∞ ∞ 
π[v]  nil nil nil nil nil nil 

 
Figure 5.3 The first cycle. 

 

In the second cycle, N1 has the smallest distance within non-chosen vertices. 

Therefore, the shortest path for the source point is M1  N1 and the distance is 11. 
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v M1 M2 N1 N2 N3 N4 N5 

d[v] 0 ∞ 11 ∞ ∞ ∞ ∞ 
π[v]  nil M1 nil  nil nil nil 

Figure 5.4 The second cycle. 
 

In the third cycle, N2 has the smallest distance within the non-chosen vertices. 

Therefore, the shortest path for the source point is M1  N1  N2 and the distance is 

15. 

In the fourth cycle, N3 has the smallest distance within non-chosen vertices. 

Therefore, the shortest path for the source point is M1  N1  N2  N3 and the 
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distance is 28. 
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v M1 M2 N1 N2 N3 N4 N5 

d[v] 0 ∞ 11 15 ∞ ∞ ∞ 
π[v]  nil M1 N1 nil nil nil 

Figure 5.5 The third cycle. 
 

N1

N2 N3

N4

N5

M1 M2

4

13

11

2

1.5

3

8

9
8

 
v M1 M2 N1 N2 N3 N4 N5 

d[v] 0 ∞ 11 15 28 ∞ ∞ 
π[v]  nil M1 N1 N2 nil nil 

Figure 5.6 The fourth cycle. 
 

In the fifth cycle, N5 has the smallest distance within the non-chosen vertices. 

Therefore, the shortest path for the source point is M1  N1  N2  N3  N5 and the 

distance is 29.5. 

In the sixth cycle, N4 has the smallest distance within the non-chosen vertices. 

Therefore, the shortest path for the source point is M1  N1  N2  N3  N4 and the 

distance is 30. 
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v M1 M2 N1 N2 N3 N4 N5 
d[v] 0 37 11 15 28 30 29.5 
π[v]  N3 M1 N1 N2 N3 N3 

Figure 5.7 The fifth cycle. 
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v M1 M2 N1 N2 N3 N4 N5 
d[v] 0 37 11 15 28 30 29.5 
π[v]  N3 M1 N1 N2 N3 N3 

Figure 5.8 The sixth cycle. 
 

In the seventh cycle, M2 has the smallest distance within the non-chosen vertices. 

Therefore, the shortest path for the source point is M1  N1  N2  N3  M2 and the 

distance is 37. Finally, the distance between the pair of monitoring points M1 and M2 

is exactly 37. Furthermore, the path from M1 to M2 is M1  N1  N2  N3  M2 and 

the path from M2 to M1 is M2  N3  N2  N1  M1. All results of the above 

derivations must be recorded. 



 
 

76

N1

N2 N3

N4

N5

M1
M2

4

13

11

2

1.5

3

8

9
8

 

v M1 M2 N1 N2 N3 N4 N5 
d[v] 0 37 11 15 28 30 29.5 
π[v]  N3 M1 N1 N2 N3 N3 

Figure 5.9 The seventh cycle. 
 

5.3 Calculation of Optimal 
Randomized Patrolling Paths by 
Finding Hamiltonian Paths 

5.3.1 Review of Traveling-Salesman 
Problem (TSP) 

The definition of the traveling-salesman problem is that a salesman must visit n 

cities and wishes to visit each city exactly once with the minimum cost. Furthermore, 

he finishes at the city where he starts from. The problem involves a complete 

undirected graph G = (V, E), in which the set V contains all n cities, the set E contains 

all edges of any pair of vertices, and there is a nonnegative cost c(u, v) associated with 

each edge (u, v) in the set E, and may be modeled as a search of a Hamiltonian cycle 
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within G with the minimum cost. 

The traveling-salesman problem is NP-complete, so it cannot be solved by a 

polynomial-time algorithm. Many methods have been proposed to speed up the 

process, such as genetic local search [21], distributed branch-and-bound search [22], 

annealing-based heuristic search [23], etc. However, the number of the monitoring 

points in the experiment of this study is not too large. So we adopt an exhaustive 

search method (or called a brute-force method), whose time complexity is O(n!) with 

inputs of size n, to find an optimal solution in all combinatorial states. 

5.3.2 Proposed technique for 
generation of complete patrolling 
paths 

Because every monitoring point is visited only once in a session, we transform 

the path planning proposed into the traveling-salesman problem. Some assumptions 

are made: 

(1) all monitoring points are contained in a set V; 

(2) each pair of vertices in the set V has an edge between them and all edges 

are contained in a set E; 

(3) a complete undirected graph G is composed of the set V and the set E; and 

(4) a cost c(u, v) associated with the edge (u, v) is the distance between the 

monitoring points u and v. 

If two monitoring points belong to different rectangular regions, the distance between 

them is calculated by Dijkstra’s algorithm described in Section 5.2; else, it is the 
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straight line distance. 

As an example, a patrolling environment is shown in Figure 5.10, in which M1 

through M4 are monitoring points, and N1 through N5 are turning points. Furthermore, 

each black edge connects two points which are in an identical rectangular region and 

each blue edge connects two monitoring points which are also in the same one. All 

distances between pairs of monitoring points and turning points passed by them are 

recorded in a table, as shown in Table 5.1. 
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Figure 5.10 A patrolling environment. 
 

Then, we transform the graph in Figure 5.10 into another, as shown in Figure 

5.11.With the complete undirected graph G and all costs associated with the edges, we 

can find an optimal patrolling path. Because the vehicles do not return to the start 

position in this study, the path is exactly a Hamiltonian path with the minimum cost. 

The result of Figure 5.11 starting at M1 is M1  M3  M4  M2. And then integrating 

the information of Table 5.1 into the path, we get the final result as M1  M3  M4 

 N4  M2. The algorithm of generating an optimal patrolling path is shown below. 

Table 5.1 Distances and passing turning points between every pair of monitoring 
points. 

 M1 M2 M3 M4 

M1  37 13 16.5 
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M2 
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Figure 5.11 A complete undirected graph G = (V, E). 

 

Algorithm 5.3 Generation of an optimal patrolling path. 

Input: All monitoring points, a table T containing all distances and passing turning 

points between all pairs of monitoring points, and a position P where the vehicle 

starts at. 

Output: An optimal patrolling path from P. 

Steps: 

Step 1. Read the distance between each pair of monitoring points from T and each 

of them is exactly the cost c(u, v) associated with the edge (u, v) . 

Step 2. Find a Hamiltonian path with the minimum cost from P in the patrolling 

environment containing all MPs. 

Step 3. Merge turning points into the Hamiltonian path obtained from Step 2, by 

Table T.  

 

In this study, the number of vehicles used to perform the patrolling task is more 

than one. Therefore, all monitoring points are divided randomly into groups for each 
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vehicle to patrol. The rule of choosing monitoring points randomly has been described 

in Section 4.2.1. By performing Algorithm 5.3 individually, the optimal randomized 

patrolling paths for all vehicles can be obtained. However, we set a threshold 

parameter T to restrict the differences of the patrolling distances for the property of 

load balancing among vehicles. If the condition is not satisfied, all monitoring points 

will be chosen and Algorithm 5.3 performed again. 
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Chapter 6  
Collision Avoidance between Vehicles 

6.1 Introduction 

In this study, an assumption made is that no unexpected obstacle exists in the 

patrolling environment. However, the security patrolling task is performed by multiple 

vehicles, it is necessary to ensure no collision among vehicles. Many methods about 

collision avoidance among multiple vehicles have been proposed, such as by cell 

decomposition [18], using a probabilistic model [19], or based on multilayered 

cellular automata architecture [20], etc. 

Because only two vehicles are used in the experiment of this study, we can solve 

the problem by keeping a fixed distance Dis between two vehicles. If the distance 

between the vehicles is smaller than Dis, their patrolling paths must be changed. By 

the way, it is noted that collision avoidance between the vehicles is real-time and this 

is good for the property of random patrolling paths. Furthermore, the calculating time 

is short. If the number of the vehicles is more than two, the collision avoidance 

technique will need more consideration and this can be one of the further works. 

6.2 Detection of Collisions 

Because vehicles are located constantly by the top-view omni-cameras, the 

odometer values are credible. Therefore, the values are utilized to compute the 
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distance between two vehicles in every cycle of a fixed time duration. If they are too 

close, their paths will be changed by inserting some passing points. By these points, 

the distance between the two vehicles can be drawn apart. 

For collisions, there are two different states. We only consider the section of the 

assigned patrolling path from the current positions to the goals, turning points or 

monitoring points, where the vehicles are moving to. If the two sections have an 

intersection, this state is called path-intersecting; else, it is the state of 

non-path-intersecting. The proposed collision avoidance techniques are described in 

Section 6.3. 

6.3 Proposed Collision Avoidance 
Techniques 

6.3.1 Collision avoidance on 
intersecting paths 

In the state of path-intersecting, we let the two vehicles keeping a fixed distance. 

Assume that the first vehicle is at position V11 = (x11, y11) and the other is at position 

V21 = (x21, y21). Additionally, assume that they are moving to the goals G1 = (gx1, gy1) 

and G2 = (gx2, gy2), respectively. At first, we calculate the intersection I in the two 

paths by the parametric forms. Each parametric form with respect to the path from the 

current position to the goal is shown in Eq. (6.1) below: 
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1 11 1 11

1 11 1 11

2 21 2 21

2 21 2 21

-
*  for vehicle1;

-

-
*  for vehicle2;

-
where 0 , 1.
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y y gy y
r s

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
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⎝ ⎠ ⎝ ⎠ ⎝ ⎠

≤ ≤

 
(6.1) 

The point I can be obtained by solving the simultaneous equations of “x1 = x2” and “y1 

= y2”. Then, assume that the distance between V11 and I is smaller than the distance 

between V21 and I, as shown in Figure 6.1, and so the path of the second vehicle must 

be changed. 

1G

2G

11V

12V

21V

22V

CI

'
21V

Dis

 
Figure 6.1 An intersection I on the paths of two vehicles. 

 

Because the first vehicle moves along the original path, we can forecast the 

position V12 = (x12, y12) at the next moment. If the velocity of the vehicle is vel and the 

time interval of calculating the distance between vehicles is t, then V12 can be 

calculated by Eq. (6.2) below: 

12 11 1 11

2 2
12 11 1 111 11 1 11

-
* . 

-( - ) ( - )

x x gx xvol t
y y gy ygx x gy y

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∗
= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

+⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (6.2) 

Because the vehicles must keep a distance Dis to each other, we can say that the 

passing point V22 of the second vehicle is on a circle C whose center is V12 and whose 
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radius is Dis. To calculate V22, we must acquire the projection point V21’ of V21 on the 

circle C, at first. The reason is that the distance between V21 and V22 is desired to be 

not too long. So we utilize an included angle θ between V21’ and V22 on C to acquire 

V22, in which C and V21’ can be represented as follows: 

2 2 2
12 12

'
21 2 21' 21

21 '
21 2 2121

: ( - ) ( - )

-
* ,  where .

-

C x x y y Dis

x gx xx
V s s

y gy yy

+ =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = + ∈ℜ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

 (6.3) 

Therefore, the projection point V21’ can be calculated by Eq. (6.4) as follows: 

2 2 2
21 2 21 12 21 2 21 12( ( - ) - ) ( ( - ) - ) .x gx x s x y gx x s y Dis+ + + =  (6.4) 

As long as the value s is solved, V21’ is obtained. Then, we calculate the angle θ21’ of 

V21’ from the positive direction of the x-axis. Because C can also be represented as Eq. 

(6.5) below, we can calculate θ21’ by Eq. (6.6) below:  

12 12: ( *cos , *sin )C x Dis y Disφ φ+ + ; (6.5) 

' '
21 12 21

'
' 21 12
21

*cos

-where  cos( ).

x x Dis

x xarc
Dis

θ

θ

= +

=
 (6.6) 

Because the included angle between V21’ and V22 is restricted to be θ, V22 is one of the 

points a or b as shown in Eq. (6.7), called candidate passing points: 

'
12 21

'
12 21

'
12 21

'
12 21

cos( )
*

sin( )

cos( )
*

sin( )

x
a Dis

y

x
b Dis

y

θ θ
θ θ

θ θ
θ θ

⎛ ⎞+⎛ ⎞
= + ⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎝ ⎠

⎛ ⎞−⎛ ⎞
= + ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠

 (6.7) 

Furthermore, it is desired that the distance between V22 and G1 is bigger. The 

reason is that the distance between the two vehicles can be drawn apart. Therefore, if 



 
 

85

point a is closer to G1 than point b, V22 will be exactly the point b. As the passing 

point V22 is obtained, the patrolling path of the second vehicle is changed from V21  

G2 to V21  V22  G2.  

It is possible that the alternative path may exceed the walkable range. If this is 

the case, then the path must be changed again. In general, there are three unallowable 

states: 

(1) the passing point P is in the outer region as shown in Figure 6.2; 

V G
Walkable Region

R

P

P1 P2

 
Figure 6.2 Passing point P is in the outer region. 

 

(2) the path from the current position V to the passing point P exceeds the 

walkable range as shown in Figure 6.3; and 

Walkable Region

V G
Walkable Region

R

P

P1 P2

 

Figure 6.3 The alternative path is not feasible. 
 

(3) the path from the passing point P to the goal G exceeds the walkable range 

as shown in Figure 6.4. 
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Figure 6.4 The alternative path is not feasible. 
 

For these states, the rectangular region which the passing point P belongs to is 

not equal to the one R which both V and G belong to. Therefore, we calculate the 

intersections of the region R and the alternative path V  P  G. Finally, the 

patrolling path is taken to be V  P1  P2  G. The algorithm of checking and 

finding a feasible alternative patrolling path is shown in the following. 

Algorithm 6.1 Checking and finding a feasible alternative patrolling path. 

Input: All rectangular regions Re, the passing point P, the front point F (the current 

position V or another passing point) of P, and the goal G. 

Output: A feasible alternative patrolling path. 

Steps: 

Step 1. Find the rectangular region R, which both F and G belong to, from Re. 

Step 2. Check whether the rectangular region, which the passing point belongs to, 

is identical to R. 

If yes, the alternative patrolling path is F  P  G. 

Else, go to Step 3. 

Step 3. Calculate the intersections, P1 and P2, of the region R and the alternative 

path F  P  G. 
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Then, the alternative patrolling path is F  P1  P2  G. 

Additionally, after the time interval t, the system must check whether an 

intersection is still on the paths of the two vehicles again. If yes, the patrolling path of 

the second vehicle will be changed again. The entire process is described as 

Algorithm 6.2. 

Algorithm 6.2 Computing an alternative path for an intersecting state. 

Input: The current position V11 = (x11, y11) and the goal G1 = (gx1, gy1) of the first 

vehicle, the current position V21 = (x21, y21) and the goal G2 = (gx2, gy2) of the 

second vehicle, a fixed length Dis between the two vehicles, the velocity vel of the 

vehicles, the time interval t of calculating the distance between the vehicles, and the 

included angle θ between the current position and the passing point.  

Output: A alternative patrolling path for one vehicle. 

Steps: 

Step 1. Calculate the intersection I in the two paths V11  G1 and V21  G2. 

Step 2. Judge which vehicle should change its path. 

If d(V11, I) < d(V21, I), the path of the second vehicle must be changed. 

Else, the path of the first vehicle must be changed. 

Assume that the path of the second vehicle must be changed in the 

following steps. 

Step 3. Forecast the position V12 of V11 at the next moment by the following 

equation: 

  12 11 1 11

2 2
12 11 1 111 11 1 11

-
* . 

-( - ) ( - )

x x gx xvol t
y y gy ygx x gy y

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∗
= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

+⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

Step 4. Calculate the projection point V21’ of V21 on the circle C whose center is 
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V12 and whose radius is Dis by the following equation: 

  

2 2 2
12 12

'
21 2 21' 21

21 '
21 2 2121

: ( - ) ( - )

-
* ,  where .

-

C x x y y Dis

x gx xx
V s s

y gy yy

+ =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = + ∈ℜ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

 

The above equations lead to 

    2 2 2
21 2 21 12 21 2 21 12( ( - ) - ) ( ( - ) - )x gx x s x y gy y s y Dis+ + + = . 

Step 5. Calculate the angle θ21’ of V21’ from the positive direction of the x-axis by 

the following equation: 

  12 12
' ' '

21 21 21

: ( *cos , *sin );

( , ).

C x Dis y Dis

V x y

φ φ+ +

=
 

The above equations lead to: 
' '

21 12 21
'

' 21 12
21

*cos ;

- cos( ).

x x Dis

x xarc
Dis

θ

θ

= +

=
 

Step 6. Calculate candidate passing points a and b in the following way, in which 

the included angle between V21’ and the candidate passing points is θ: 

  

'
12 21

'
12 21

'
12 21

'
12 21

cos( )
;

sin( )

cos( )
.

sin( )

x
a Dis

y

x
b Dis

y

θ θ
θ θ

θ θ
θ θ

⎛ ⎞+⎛ ⎞
= + ⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎝ ⎠

⎛ ⎞−⎛ ⎞
= + ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠

 

Step 7. Determine the passing point in the following way: 

if (a, G1) < (b, G1), point b is the passing point. 

Then the path of the second vehicle is taken to be V21  b  G2. 

Step 8. Check whether the alternative path is feasible by Algorithm 6.1. 

If not, the new alternative path will be obtained from Algorithm 6.1. 
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6.3.2 Collision avoidance on 
non-intersecting paths 

In this state, both paths of the two vehicles must be changed. Each passing point 

is on the perpendicular bisector l of the path from a current position V = (x1, y1) to a 

goal G = (x2, y2). Because it is desired to draw apart the distance between the two 

vehicles quickly, the included angle between the paths V  G and V  turning point 

P = (p1, p2) is set by a parameter θ. Therefore, the distance between P and C, which is 

the midpoint of line segment V and G, is: 

tan
2

VG θ∗ . (6.8) 

A graphic illustration is shown in Figure 6.5. 

V G

P

θ

 perpendicular 
bisector l

C
w

 

Figure 6.5 An included angle θ between V  G and V  P. 
 

The directional vector w  of l is perpendicular to the one of path V  G, so it is: 

1 2

1 2

-( - )
.

-
y y

w
x x

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (6.9) 

Then, l can be represented as: 

1 2 1 2

1 2 1 2

-( - )1 * ,
( - )2

where .

x x y yx
s

y y x xy
s

+⎛ ⎞ ⎛ ⎞⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∈ℜ

 (6.10) 
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Because P is on the perpendicular bisector l and the distance between C and P is 

computed by Eq. (6.8), P can be represented by Eq. (6.11) below, in which a and b are 

in the different sides of path V  G, respectively: 

1 2 1 2

2 2
1 2 1 21 2 1 2

1 2 1 2

2 2
1 2 1 21 2 1 2

-( - )1 * tan- ;
-2 2* ( - ) ( - )

or 
-( - )1 * tan .

-2 2* ( - ) ( - )

x x y yVGa
y y x xx x y y

x x y yVGb
y y x xx x y y

θ

θ

+⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

+⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 (6.11) 

For each path of the vehicles, there are two candidates to choose as a passing point. 

The condition of choosing passing points for the vehicles is that the distance between 

chosen passing points is the longest within all combinations of the candidates. See an 

example shown in the following. 

 perpendicular 
bisector l1

1V

1G
1a

1b
θ

 perpendicular 
bisector l2

2V

2G

2a2b

θ

The first vehicle

The second vehicle
 

Figure 6.6 Alternative paths at a non-intersecting state. 
 

Points a1 and b1 are the candidates for the first vehicle and points a2 and b2 are 

the ones for the second vehicle. All states of choosing candidates are (a1, a2), (a1, b2), 

(b1, a2), and (b1, b2), in which the distance between a1 and a2 is the shortest. So, a1 and 

a2 are the passing points for the first and the second vehicles, respectively; the 

alternative paths for the two vehicles are V1  a1  G1 and V2  a2  G2. 

Additionally, because the included angle between the two paths from the current 



 
 

91

position V to the goal G and to the passing point P is restricted by a parameter θ, the 

distance between P and path V  G may be too long. Therefore, we set a fixed 

distance D between them. If the distance between P and path V  G is larger than D, 

we translate the line segment l connecting V and G along a perpendicular direction 

toward the passing point P, such as shown in Figure 6.7, in which l is exactly the 

translation line. 

V

P

G

1P 2P

D θ

translation line l

w

 

Figure 6.7 The passing point P is too far. 
 

The translation line l can be represented as: 

2 2
1 2 1 2 1 2 1 2

2 2
1 2 1 2 1 2 1 2

1 2 1 2

( - ) - ( - ) * ( - ) ( - )
or

( - ) - ( - ) - * ( - ) ( - )

, if  :  ( - ) - ( - ) .

y y x x x y D x x y y d

y y x x x y D x x y y d

VG y y x x x y d

∗ ∗ = + +

∗ ∗ = + +

∗ ∗ =

 (6.12) 

Then, we calculate the intersections, P1 and P2, of path V P  G and line l. 

Therefore, the new alternative path is V P1  P2 G. Furthermore, it is necessary 

to check whether the path is feasible by Algorithm 6.1, and then the final alternative 

path can be obtained. See an example shown in Figure 6.8 through Figure 6.10 for 

illustration. 

In the example, two vehicles are too close and paths of them are non-intersecting. 

Here, we only see the state of one vehicle, as shown in Figure 6.8. P is the passing 
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point, but the point is too far from line segmentVG . Therefore, we translate VG  a 

distance D toward P, and then the translation line l can be obtained, as shown in 

Figure 6.9. 

 

V

P

G

Rectangular Region
R

 perpendicular 
bisector l

 
Figure 6.8 A passing point P at a non-intersecting state. 

 

V

P

G
1P

2P

D

translation line l

Rectangular Region
R

 
Figure 6.9 P is too far. 

 

After calculating two intersections of l and V  P  G, the new alternative path 

is V  P1  P2  G. For P1 and P2, it is necessary to check whether they are feasible 

by Algorithm 6.1. Because the rectangular region which P2 belongs to is different 

from the one R which both the current position V and the goal G belong to, as shown 

in Figure 6.10. 
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Figure 6.10 P2 is not in the rectangular region R. 

 

Hence, we calculate the intersections of P1  P2  G and R, and then the 

alternative path becomes V  P1  P21  P22  G. The processing of computing a 

alternative path at a non-intersecting state is shown as Algorithm 6.3 below. 

Algorithm 6.3 Computing an alternative path for a non-intersecting case. 

Input: The current position V1 = (x11, y11) and the goal G1 = (x12, y12) of the first 

vehicle, the current position V2 = (x21, y21) and the goal G2 = (x22, y22) of the second 

vehicle, the restricted distance D between a passing point and the original path V1  

G1 or V2  G2, and the included angle θ  between the original path and the path 

from the current position to the passing point. 

Output: The alternative paths for the two vehicles. 

Steps: 

Step 1. Calculate two candidates of passing points for the first vehicle (a1 and b1) 

and the second vehicle (a2 and b2) by the following equation: 
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Step 2. Determine the passing points for the two vehicles in the following way. 

Step 2.1. Calculate all distances of the four combinations (a1, a2), (a1, b2), 

(b1, a2), and (b1, b2). 

Step 2.2. Choose the least distance from Step 2.1 and the combination is 

exactly the passing points for the two vehicles. 

Step 2.3. Insert the passing point into the original path for each vehicle. 

Step 3. Check whether the distance between the passing point P and the original 

path is larger than D, for each vehicle. 

If yes, calculate the intersections of the translation line l and the 

alternative path, in which the distance between l and the original path is 

D; and then, replace P by the intersections. 

Step 4. Check whether every alternative path is feasible by Algorithm 6.1. 

If not, obtain the new alternative path from Algorithm 6.1. 

 



 
 

95

Chapter 7  
Experimental Results and 
Discussions 

In this chapter, we show some experimental results of the proposed security 

patrolling system by two ways. The first is the result of optimal randomized patrolling 

paths and collision avoidance between vehicles shown by a simulation using programs 

written in the Borland C++ builder; it is described in Section 7.1. The other is the 

result of an actual environment in the Computer Vision Laboratory, Department of 

Computer Science, National Chiao Tung University, and it is described in Section 7.2. 

7.1 Experimental Results of Simulation 
of Patrolling 

In this simulation, we create a patrolling environment whose floor shape is 

composed of four rectangular regions, as shown in Figure 7.1, in which Obj. 0 

through Obj.6 are monitoring points. 

We utilize the rectangular regions to calculate all the turning points and the 

distance between each pair of monitoring points, and then save the data into some text 

files. By reading the files, they can be used again. Furthermore, the threshold to 

restrict the differences between the patrolling distances needs to be keyed in to the 

user interface, as shown in Figure 7.1, marked by a red frame. All patrolling paths are 

random, optimal, and load balanced among vehicles. See an example shown in Figure 

7.2, in which the first vehicle starts its navigation at Obj. 4 (M4) and the second 
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vehicle starts at Obj. 1 (M1). 

 

Figure 7.1 A simulated patrolling environment. 
 

Among all monitoring points, M0, M3, M4, and M6 are chosen by the first 

vehicle; M1, M2, and M5 are chosen by the second. The obtained optimal paths are 

M4  M6  M3  M0 and M1 M2  M5. According to the record of turning 

points passed by between each pair of monitoring points, obtained in the learning 

phase, the actual paths are M4  M6  N3  M3  N1  M0 and M1 M2  N2 

 N3  M5 for the two vehicles, as shown by red and green dotted lines in Figure 7.2. 

Furthermore, the distances of the paths are 1633.22 and 1081.56. Because the 

difference of the distances is smaller than the threshold 800, set by the user, the two 

paths are accepted. In this session, the two vehicles end at M0 and M5, respectively, 

so the positions are the starts for them in the next patrolling session, for which, the 

new path planning is shown in Figure 7.3. 
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Figure 7.2 Path planning for the two vehicles in a session. 

 

M0, M2, M3, and M4 are chosen by the first vehicle; M1, M5 and M6 are chosen 

by the second. The obtained optimal paths are M0  M2  M3  M4 and M5 M6 

 M1; the actual paths are M0  N1  M2  M3  M4 and M5 M6  N3  N2 

 M1 for the two vehicles, as shown by the red and green dotted lines in Figure 7.3. 

Furthermore, the distances of the paths are 1175.41 and 1262.25 and they are also 

accepted. 

To show the advantage of our system, we compare the times needed for different 

control factors, as shown in Table 7.1. If the property of randomization is an essential 

condition, the average time in one session taken by using one vehicle is nearly double 

of that taken by using two vehicles. This result tells us that the system for multiple 



 
 

98

vehicles can bring more benefits. Besides, if the number of vehicles is the same, an 

optimal patrolling path will take less time than a non-optimal path. 

 
Figure 7.3 Path planning for the two vehicles in the next session. 

 

For collision avoidance, if the distance between two vehicles is too close, the 

paths of the vehicles will be changed. The states of non-intersecting paths are shown 

in Figure 7.4, in which red and green lines are the original paths of the vehicles. 

Because the first obtained passing points, red and green circles, are too far from the 

original path or exceed the walkable regions, the blue circles are calculated. The 

dotted lines are exactly the feasible alternative paths for the vehicles. Besides, the 

final passing points belong to the rectangular region which the original path also 

belongs to. 
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Table 7.1 The table of time comparisons where O and X means conducted or not, 
respectively. 

Number  

of 

Vehicles 

Randomization Optimization

Average Time 

(second /  

one session) 

Saved Time / 

Original Time 

(%) 

1 O O 39.4 - 

1 O X 31.6 19.8 

2 O O 19.7 50.0 

2 O X 13.5 65.7 

 

For collision avoidance of the path-intersecting case, one example is shown in Figure 

7.5. Because the second vehicle is closer to the intersection than the first one, the path 

of the first vehicle must be changed. The black circles a and b are the candidates of 

passing points. Because b is farther from the goal of the second vehicle, b is chosen. 

However, the rectangular region which b belongs to is different from the one which 

the original path belongs to. The blue circle is the final passing point to be chosen, 

and the red dotted line is the alternative path for the first vehicle.  
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Figure 7.4 Collision avoidance of non-intersecting paths. 

 



 
 

101

 
Figure 7.5 Collision avoidance of intersecting paths. 

 

7.2 Experimental Results of Patrolling 
in Real Environment  

The real environment for this experiment is an open space area in our laboratory. 

Because autonomous vehicles used in the study suffer from accumulation of 

mechanical errors, two top-view omni-cameras are utilized to locate and monitor the 

vehicles.  

While collecting data for Table 7.2, we drive the vehicle to random places and 

record the values of the actual positions and the odometer. The total moved distance, 

passing twenty position points, is 4818.40 centimeters and the average error rate 

without calibration by tow-view cameras between the actual positions and the 
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odometer values is 8.86%. Furthermore, the reason why the errors do not increase is 

that turning of the vehicle also incurs errors, so the errors might cancel one another by 

left and right turnings. 

Table 7.2 Mechanical errors of the vehicle. 

(1)Actual Position (2)Odometer Value 
No. 

x y x y 

Error 

( | (1) (2) |
(1)
− ) 

1 47.6 7.4 45.9 7.4 0.035 

2 163.4 32.2 160.7 34.2 0.020 

3 272.3 35.2 269.3 41.1 0.024 

4 382.2 29.8 378.8 40.9 0.030 

5 399 85.3 392.8 97.3 0.033 

6 304.5 115.5 299.2 124.2 0.031 

7 546.6 52 546.9 79.8 0.051 

8 799.9 145.2 786.6 197.9 0.067 

9 505.1 204.3 491.6 228 0.050 

10 267.4 198.2 256.8 192.8 0.036 

11 717.3 195.2 691.8 274.6 0.112 

12 353.8 193.5 335.9 201.8 0.049 

13 789.8 37.2 791.2 138.2 0.128 

14 573.5 139.7 557.4 175 0.066 

15 631.6 82 630.9 138.9 0.089 

16 329.7 177.6 316.2 104.5 0.198 

17 746.6 103.2 721.9 208.6 0.144 

18 213 46 292.9 106.5 0.460 

19 635.8 203.3 574.9 243.8 0.110 

20 523 97.4 543 94 0.038 

 

Additionally, we also record the errors of the two top-view omni-cameras. The 

image in Figure 7.6 is the view of the first camera and we calculate the positions of all 

circles in the image.  

    In Table 7.3, we calculate the errors between the actual positions and the 

positions in the image. From the values, we know that the errors of those points, 
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which is farther from the view center of the camera, is bigger. However, the average 

error rate with calibration is only 3.86% and all points are independent. Therefore, the 

vehicles are located by the cameras such that the vehicles do not suffer from 

accumulation of mechanical errors anymore. About the second camera, the view and 

the errors are shown in Figure 7.7 and Table 7.4, in which the average error rate with 

calibration is 2.51 %. 

 

Figure 7.6 The view of the first top-view omni-camera. 
 

Furthermore, the task of security patrolling includes the work of capturing the 

pictures of some monitored objects. By the top-view omni-cameras to locate the 

vehicles periodically in the patrolling session, the vehicles can accomplish the mission 

with the information of the positions and the orientations with respect to the objects, 

obtained in the learning phase. In the following, we show some results of images 

taken by the vehicles. Some monitored objects are in the center of the images, as 

shown in Figure 7.8(a). The images, captured by the vehicles in the patrolling session, 

with respect to the ones in Figure 7.8(a) are shown in Figure 7.8(b). 
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Table 7.3 Errors of the first top-view omni-camera. 

(1)Actual Position (2)Image Position 
No. 

X y x y 

Error 

( | (1) (2) |
(1)
− %) 

1 61 30.5 52.89 28.56 0.122 

2 122 30.5 113.62 28.68 0.068 

3 183 30.5 174.53 30.5 0.046 

4 244 30.5 238.19 30.5 0.024 

5 305 30.5 303.48 30.58 0.005 

6 366 30.5 368.11 27.17 0.011 

7 30.5 91.5 15.25 99.13 0.177 

8 91.5 91.5 80.61 93.68 0.086 

9 152.5 91.5 141.74 95.15 0.064 

10 213.5 91.5 207.4 93.43 0.028 

11 274.5 91.5 271.6 91.65 0.010 

12 335.5 91.5 337.19 93.19 0.007 

13 396.5 91.5 400.31 91.5 0.009 

14 213.5 152.5 205.47 156.39 0.034 

15 274.5 152.5 270.22 154.21 0.015 

16 335.5 152.5 335.86 155.89 0.009 

17 396.5 152.5 397.27 156.36 0.009 

18 244 213.5 239.39 217.91 0.020 

19 305 213.5 302.22 217.84 0.014 

20 366 213.5 367.24 220.12 0.016 

 

In Figure 7.8, the difference between each pair of images is smaller. It tells us 

that the proposed vehicle-pose learning strategy and the proposed vehicle localization 

technique are good for the vehicles to perform the security patrolling task. 
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Figure 7.7 The view of the second top-view omni-camera. 

 
Table 7.4 Errors of the second top-view omni-camera. 

Actual Position Image Position 
No. 

x y x y 

Error 

( | (1) (2) |
(1)
− cm) 

1 488 30.5 484.88 23.73 0.109 
2 549 30.5 542.84 23.49 0.074 
3 610 30.5 608.29 24.17 0.035 
4 671 30.5 671.32 24.42 0.025 
5 732 30.5 736.11 24.35 0.024 
6 793 30.5 796.44 23.47 0.021 
7 457.5 91.5 456.75 87.34 0.044 
8 518.5 91.5 516.22 87.75 0.034 
9 579.5 91.5 575.82 86.18 0.036 
10 640.5 91.5 637.75 87.95 0.019 
11 701.5 91.5 703.29 86.42 0.019 
12 762.5 91.5 766.8 85.91 0.020 
13 823.5 91.5 824.58 86.1 0.014 
14 457.5 152.5 454.96 150.7 0.020 
15 518.5 152.5 514.43 152.5 0.023 
16 579.5 152.5 574.83 149.27 0.027 
17 640.5 152.5 640.64 149.46 0.012 
18 701.5 152.5 703.11 150.98 0.007 



 
 

106

Actual Position Image Position 

19 762.5 152.5 764.38 150.99 0.007 
20 823.5 152.5 824.02 149.14 0.008 
21 427 213.5 429.35 215.86 0.016 
22 488 213.5 485.81 213.63 0.010 
23 549 213.5 543.7 212.1 0.022 
24 610 213.5 606.87 212.05 0.012 
25 671 213.5 671.08 211.9 0.005 
26 732 213.5 735.21 212.23 0.009 

 

     
 

     
 

                  (a)                              (b) 
 
Figure 7.8 The security patrolling task. (a) Images captured in the learning phase. (b) 

Images captured in the navigation phase. 
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                  (a)                              (b) 
 
Figure 7.9 The security patrolling task. (a) Images captured in the learning phase. (b) 

Images captured in the navigation phase. (continued) 
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7.3 Discussions 

The proposed system utilizes multiple vision-based autonomous vehicles to 

perform the security patrolling task. For this purpose, some monitoring points are 

utilized to guide the vehicles. By the way, there are more applications of the 

monitoring points, such as providing various services. Every monitoring point can be 

regarded, for example, as a business service point in which there are some customers. 

If the environment is a restaurant, the apparatus of showing menu can be equipped on 

the vehicles, and then the vehicles can move to each service point along assigned 

optimal paths to ask what dishes or services are needed. If the environment is a 

company, the vehicles also can be utilized to deliver documents or messages in each 

service point. Furthermore, if a walkable area can be divided into many ranges, in 

which each is within the controllable view of the vehicle, we may transform every 

range into a node such that the vehicles can arrive at anywhere in it to do some actions, 

such as detecting whether an unknown person has invaded with optimal randomized 

paths. 

However, there are still some problems in the system. If an object appears next to 

the vehicle suddenly, the top-view omni-cameras will not have the ability to find out 

the vehicle. To solve the problem, it might be necessary to add information of color 

and sample models of the vehicles to this system. Furthermore, the vehicles are not on 

a plane, so the vehicle localization accuracy is affected by the heights of the vehicles. 

If the vehicle is taller and farther from the top-view omni-cameras, the error between 

the obtained centroid and the actual position of the vehicle will be large. However, we 

might be able to add an obvious mark on the center of the top of the vehicle. By 

finding the mark, the correct position can also be obtained. Finally, the proposed 

real-time collision avoidance technique between vehicles is feasible for two vehicles. 
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If the total number of vehicles is larger than two, we will need to consider the 

influence of passing points for the third vehicle. The problem is worth for future 

research. 
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Chapter 8  
Conclusions and Suggestions for 
Future Works 

8.1 Conclusions 

In this study, we utilize multiple vision-based autonomous vehicles to develop a 

security patrolling system in an environment whose floor shape is composed of 

rectangular regions. We have proposed several techniques and adopt some algorithms 

which are summarized in the following. 

(1) An environment-information calculation method has been proposed, by which we 

can obtain all rectangular regions, which form the floor shape of the patrolling 

environment, the turning points, and then all between-MP distances and paths. 

The turning points are utilized to enable the vehicles to move between any pair 

of MPs without collisions with the walls. With the turning points, we adopt 

Dijkstra’s algorithm to obtain the shortest between-MP distances and paths 

between the two MPs which belong to the different regions. 

(2) A point-correspondence technique integrated with an image interpolation 

method for camera calibration has been proposed. In this study, we don’t use the 

traditional projection-based transformation. Instead, a grid pattern is used as the 

calibration target and corresponding points between 2-D image and 3-D global 

spaces are utilized. For the warped images captured by the top-view 

omni-cameras, the correct coordinate positions can be obtained by the 
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corresponding points and the use of an image interpolation method. 

(3) A faster point-correspondence technique has been proposed. Because more 

corresponding points will yield better calibration accuracy, we adopt a minimum 

mean square error (MMSE) method to calculate quadratic curves and abundant 

cross points, in the image captured by the top-view omni-camera, can be 

obtained. Each cross point and its coordinates in the global space, obtained by an 

interpolation method, are exactly one pair of point correspondences. 

(4) A vehicle-pose learning method has proposed, by which the vehicles are taught 

where and in which direction to perform the security monitoring task, which is to 

take pictures of monitored objects as defined in this study. Furthermore, the 

learned positions can be utilized to guide the vehicles. 

(5) An optimal method for randomized and load-balanced path planning has been 

proposed, in which each MP is just passed once such that monitored objects can 

be patrolled uniformly. Additionally, the difference of the numbers of assigned 

MPs for all vehicles is smaller and a threshold distance is set to restrict the 

difference between path distances, so that the loads of all vehicles can be 

balanced. According to the numbers of assigned MPs, the MPs are chosen 

randomly, and then the system calculate the shortest paths with each MP on these 

paths appearing only once by the concept of the TSP. 

(6) A vehicle localization and monitoring method has been proposed. Because the 

vehicles suffer from mechanic errors, we utilize the top-view omni-cameras to 

locate them in this study. By the odometer values of the vehicles, we can 

calculate the centroids of the vehicles in the image. After the centroids are 

transformed into the global space, the odometer values are corrected by the 

coordinates of the resulting points. Besides, the directional angles of the vehicles 

also must be corrected, in which two continuous correct position points are 
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utilized to do the job. Additionally, the cameras have the ability to monitor 

vehicles to see whether they are still under control. If any vehicle loses control of 

its action, the system will send an alarm message to the security center and stop 

all vehicles. 

(7) A real-time collision avoidance technique between two vehicles has been 

proposed. By the odometer values, the system computes the distance between 

two vehicles in every cycle of a fixed-time duration and determines whether they 

are too close. If yes, the feasible alternative paths of the vehicles will be obtained 

by two different kinds of states, path-intersecting or non-path-intersecting. 

The experimental results shown in the previous chapters have revealed the feasibility 

of the proposed system. 

8.2 Suggestions for Future Works 

The proposed strategies and methods, as mentioned previously, have been 

implemented on a vehicle system with multiple vision-based autonomous vehicles. 

According to this study, in the following we make several suggestions and point out 

some related interesting issues, which are worth further investigation in the future: 

(1) using a pen-tilt-zoom camera equipped on the vehicle to capture clearer images, 

and then extracting features of the images to detect whether monitored objects 

still exist; 

(2) adding the capability to detect more danger conditions; 

(3) adding the capability of warning users immediately through cell phones or 

electronic mails; 

(4) adding the capability of voice control when users want to issue navigation orders 
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to the vehicle; 

(5) improving the real-time collision avoidance technique to be suitable for more 

vehicles; and 

(6) improving the accuracy of finding the centroid of the vehicle. 
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