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ABSTRACT

A multiple vision-based vehicle system for security patrolling in an indoor
environment, whose floor shape is composed of rectangular regions, is proposed. Two
autonomous vehicles controllable by wireless communication and equipped with
cameras, as well as two cameras with fish-eye lenses-fixed on the ceiling, are used as
a test bed. To acquire information--of ‘@an unknown environment, an
environment-information calculation method'ts proposed for obtaining all rectangular
regions composing the floor shape of the environment, the turning points for
navigation, all distances between monitored objects, and the patrolling paths. These
data enable the vehicles to navigate without collisions with walls. Also, a
point-correspondence technique integrated with an image interpolation method is
proposed for camera calibration. By a technique of finding corresponding points in
2-D image and 3-D global spaces as well as an image interpolation method, the
correct positions of interesting feature points can be obtained from the warped images
captured by the cameras with fish-eye lenses. Besides, a faster point-correspondence
technique is proposed to obtain abundant corresponding points that yield better

calibration accuracy. With this camera calibration technique, the cameras on the
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ceiling can be utilized to learn the poses of the vehicles with respect to monitored
objects. Also, the vehicles are taught where and in which direction to perform the
security monitoring task, in which the position information is used to guide the
vehicles. Additionally, the top-view cameras can also be utilized to locate the vehicles
and monitor vehicle activities in the navigation phase. An optimal randomized and
load-balanced path planning method is proposed as well, which requires shorter time
to accomplish object monitoring in one session and provides higher degrees of
patrolling security. Because the number of the vehicles used in this study is more than
one, a real-time collision avoidance technique is also proposed. According to the state
of path-intersecting, feasible alternative paths for the vehicles can be obtained. Good
experimental results show the flexibility and feasibility of the proposed methods for

the application of multiple-vehicle:security patrolling.
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Chapter 1
Introduction

1.1 Motivation of Study

Applications of intelligent robots are increasing gradually. An autonomous
vacuum cleaner is a famous instance. The autonomous vehicle used in this research is
also a robot, but it can only move. In order to add more ability to it, the vehicle is
equipped with a camera. With the camera and its movement, the view of the vehicle is
extended to a wider range. Such®a kind of vision-based autonomous vehicle can
perform more complicated tasks, such as security patrolling. It also can replace human
beings to do dangerous or dreary workssfor, example, unknown object clipping,
interoffice document delivering, etc:

A traditional security surveillance system is passive and restricted by its fixed
position. The autonomous vehicle utilized to assist a security surveillance system can
send an alert message to the security center actively when it detects an abnormal state.
This provides more efficient and reliable security protection.

Security patrolling by multiple vision-based autonomous vehicles is more
efficient than by one, because less time is taken to complete one session of patrolling
all monitored objects. An additional advantage is that the shorter time interval
between two objects patrolled increases the degree of security.

To have more benefits, a good planning of patrolling paths for all autonomous
vehicles is important. Randomization, optimization, and load balancing are three

critical principles that influence path planning. Autonomous vehicles patrolling
1



randomly make thieves have no idea about when an object is not monitored by any
vehicle. Optimal paths and load balances among all vehicles can decrease the time for
all monitored objects to be patrolled once.

In order that an autonomous vehicle can carry out the patrolling task without any
manpower, it has to be guided smartly. Ideas of learning artificial landmarks or
specific scene features in the environment and locating the vehicle by landmark or
feature matching have been developed intensively in the past decade. But most of
them are restricted to be applicable in ideal environments, such as pure-colored
backgrounds. Therefore, a top-view omni-camera with a fish-eye lens is utilized in
this study to widen the applicable environment. The camera not only can locate
autonomous vehicles but also can check ceaselessly whether they are still under
control.

As a summary, our research.goal in this study is to develop an autonomous
vehicle security patrolling system with-the-following capabilities:

1. navigating automatically ‘in environments whose floor shape is composed of

rectangular regions;

2. monitoring and locating autonomous vehicles by top-view omni-cameras;

3. avoiding collisions between vehicles;

4. patrolling randomly; and

5. planning optimal paths and balanced loads for all autonomous vehicles.

1.2 Survey of Related Studies

In order to make autonomous vehicles navigate along a correct path, the vehicle

location is the most vital information. Traditionally, an autonomous vehicle is
2



equipped with an odometer to measure the current location of the vehicle. However,
the vehicle usually suffers from incremental mechanic errors. Thus we need a
technique of vehicle location estimation to correct the mechanic error in the
navigation session.

For vehicle calibration, the geometric shapes of object boundaries [1, 2] or those
labeled by users are utilized frequently [3, 4]. Furthermore, natural landmarks, such as
house corners [5, 6], and the SIFT features of images [7] are also used in the
techniques of vehicle calibration. In recent years, techniques of integrating laser range
finders with conventional imaging devices have been proposed [8, 9].

In this study, a top-view omni-camera with a fish-eye lens is utilized to locate an
autonomous vehicle. The camera must be calibrated before being used. Traditionally,
we must calculate intrinsic and extfinsic parameters of the camera in order to obtain a
projection matrix for transforming points between 2-D image and 3-D global spaces.
A point-correspondence technique integrated-with /an image interpolation method is
proposed, which is inspired by a technique coming from Lai and Tsai [10]. Because
the camera is equipped with a fish-eye lens, images captured by it are warped. Winters
and Santo-Victor [11] proposed a method for calibrating warped panoramic images.
However, we can obtain a correct coordinate point directly by the camera calibration

technique proposed by us.

Path planning is an important topic for the security patrolling by multiple
vehicles. Many methods for this aim have been proposed in [12, 13, 14]. Besides, load
balancing among all vehicles also need to be paid attention. Hert and Richards [15]
proposed a method of using a polygon partitioning algorithm to achieve this objective.
In this study, we propose a technique of calculating optimal and load-balanced paths
in terms of some guidance points where vehicles perform security monitoring tasks.

The idea of using guidance points comes from a learning method proposed by Chen
3



and Tsai [16]. While vehicles navigate, collisions between vehicles must be avoided.
Some methods [17, 18, 19] have been proposed to produce collision-free paths. To
carry out optimal patrolling, we use the concept of the traveling salesman problem

(TSP). Some methods for solving the TSP can be found in [20, 21, 22].

1.3 Overview of Proposed Approach

In this study, it is desired to develop a multiple vision-based autonomous vehicle
system for security patrolling in an environment whose floor shape is composed of
rectangular regions. In order to achieve this purpose, information about the
environment, monitoring positions, and vehicle localization is quiet important.
Therefore, some methods which'can'assist to acquire all of the above information are
proposed and are roughly described in-following. With such information, a technique
which makes multiple vision-based autonomous vehicles navigate on correct paths
without collisions and perform assigned security patrolling tasks is proposed. We
divide the work conducted by the system into two phases: the learning phase and the
navigation phase. They are illustrated in Figure 1.1 and Figure 1.2, respectively.

The learning phase consists of five steps to obtain the information about the
environment, monitoring positions, and vehicle localization. The first step is
calibrating cameras. In this study, there is no need to calculate all parameters of a
camera. We propose another camera calibration technique which utilizes a pattern
with some symbols labeled manually or with some natural landmarks, and obtains all
corresponding points between 2-D image and 3-D global spaces. To obtain

corresponding points faster, we propose additionally a technique of calculating the



intersections of some quadratic curves, followed by using an interpolation method to

obtain the global-space position of each point in a camera image.

Learning Phase

Start of Learning
/l/
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Figure 1.1 Flowchart of learning process of proposed system.

The second step is calculating area information, in which we take all corners of
the patrolling area in the clockwise order as input, and find all rectangular regions and

turning points by a method proposed in this study. The rectangular regions and turning



points can prevent autonomous vehicles from colliding with walls in the environment.

The third step is learning vehicle poses with respect to monitored objects. While
autonomous vehicles are patrolling, they must know where and in which direction to
perform a security monitoring task. Therefore, an autonomous vehicle is driven to all
positions where there are some monitored objects. Then, we point out the position of
the autonomous vehicle in the image of a top-view omni-camera manually. We call
the position a monitoring point in the sequel. For the direction, we utilize two
positions of the vehicle to obtain a directional vector.

The fourth step is calculating distance between each pair of monitoring points.
Because not all pairs of monitoring points are in the same rectangular region, an
autonomous vehicle might not be able to navigate in a straight line between two
monitoring points which are in different regions individually. Therefore, we propose a
method for calculating the distance between any pair of monitoring points according
to the information of rectangular regionis;-turning points, and positions of monitoring
points obtained from the second and third steps of the learning phase described above.
The distance is a critical factor that influences the decisions of patrolling paths. In
addition, if two monitoring points belong to different regions, some turning points,
which assist vehicles in moving from one monitoring point to the other without
colliding with walls, are also recorded.

The final step of the learning phase is collecting information. All corresponding
points between 2-D image and 3-D global spaces, rectangular regions, turning points,
vehicle poses (including positions and directions), and navigational information
between all pairs of monitoring points are collected to form a database. With all
information in the database, autonomous vehicles will be able to perform the security

patrolling task successfully.
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Figure 1.2 Flowchart of navigation of proposed system.

In the navigation phase, at first-patrolling paths for all autonomous vehicles are
decided according to the data obtained from the learning phase. For path planning, we
propose a method for calculating optimal paths randomly with each monitoring point
on these paths appearing only once. It means that all monitoring points are reached
once in one patrolling session. With the path so planned, every autonomous vehicle
can perform the security patrolling task at all monitoring points. When every
autonomous vehicle completes traversing the assigned path, new patrolling paths are
decided again.

Because of the existence of the mechanic errors of autonomous vehicles, it is
important to locate all the autonomous vehicles in every session of patrolling. In this
study, we propose a method of using a top-view omni-camera to do this job. Because

the camera is fixed on the ceiling, we can obtain the absolute positions of vehicles



from the images captured by the camera. When the position of an autonomous vehicle
is obtained, the odometer value and direction angle of the vehicle can be corrected.
The camera can also monitor whether autonomous vehicles are still under control. If
not, the system will send an alert message to the security center and stop all vehicles.

In this study, two autonomous vehicles are utilized for conducting experiments of
security patrolling. Hence, there may be collisions between them in patrolling sessions.
To solve this problem, the odometer values of the vehicles are utilized to obtain the
information about whether they are too close. The reason why the values of odometers
are adopted is that these values may be corrected constantly by the top-view
omni-cameras. As soon as the distance between the two vehicles is too close, a
technique proposed in the study can make a change in paths to avoid the collision at
once.

In summary, multiple vision-based autonomous vehicles can carry out security
patrolling in environments whose floot-shapes.are composed of rectangular regions
without collisions. By the top-view:omni-cameras, autonomous vehicles can navigate
along correct paths without collisions and whether the vehicles are still navigating
normally also can be monitored. The patrolling paths are planned to be optimal and
random. The loads of all autonomous vehicles are balanced. All of the above proposed
techniques will bring a lot of merits for the application under investigation, namely,

security patrolling by multiple autonomous vehicles.

1.4 Contributions

The main contributions of this study are summarized in the following.

(1) An environment-information aqusition method for collision avoidance between
8



the vehicles and walls is proposed.

(2) A point-correspondence technique integrated with an image interpolation method
for camera calibration is proposed.

(3) A faster point-correspondence technique is proposed.

(4) A vehicle-pose learning method for performing the security monitoring task,
which is to take pictures of monitored objects as defined in this study, and
guiding the vehicles is proposed.

(5) An optimal method for randomized and load-balanced path planning is proposed.

(6) A vehicle localization and monitoring method by the top-view omni-cameras is
proposed.

(7) A real-time collision avoidance technique between two vehicles is proposed.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, we describe
the system configuration of the vehicles used as a test bed in this study, as well as the
principle of vehicle learning and guidance. In Chapter 3, the proposed techniques for
camera calibration, acquiring information about environments, and patrolling tasks are
described. In Chapter 4, the proposed methods for performing security patrolling and
using top-view omni-cameras to localize and monitor vehicles are described. In
Chapter 5, the proposed method for planning paths that are optimal, random, and
load-balanced for all autonomous vehicles is described. In Chapter 6, the proposed
method for collision avoidance between vehicles in patrolling sessions is described.
Some experimental results are shown in Chapter 7. Finally, some conclusions and

suggestions for future works are given in Chapter 8.
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Chapter 2
System Configuration and
Navigation Principles

2.1 Introduction

For security surveillance, the utilization of a vision-based autonomous vehicle is
good for saving manpower. The vehicle is dexterous, with its moving ability
increasing the view range of security suryeillance. Besides, it can also monitor lower
or hidden objects that may be under a tablgjot-in a cabinet.

In this study, two autonomous vehicles-are used to perform the security patrolling
task and each of them is equipped with 'a‘camera, as shown in Figure 2.1, though the
proposed methods are general for any number of vehicles. Because the autonomous
vehicles suffer from accumulation of mechanical errors, two cameras with fish-eye
lenses, called top-view omni-cameras in the sequel, are installed on the ceiling. By the
two cameras, autonomous vehicles can be located and controlled to navigate along
correct paths. Between all on-board equipments and the user, some control and
communication tools are required. The entire system configuration including
hardware equipment and software are described in Section 2.2.

Before all autonomous vehicles carry out the security patrolling task, a learning
stage is necessary, in which the vehicles are taught where to go, what to do, and how
to avoid collision with walls. The process to obtain all information that makes

autonomous vehicles be able to accomplish the task assignment is described in

10



Section 2.3.

The phase in which autonomous vehicles carry out security patrolling is called
the navigation phase in this study. In Section 2.4, we will describe the vehicle
guidance principle and the process of performing the monitoring task in the

navigation phase.

(a)

Figure 2.1 The vehicle used in this study is equipped with a camera. (a) A perspective

view of the vehicle. (b) A front view of the vehicle. (c) A side view of the

vehicle.
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(b) ()

Figure 2.1 The vehicle used in this study is equipped with a camera. (a) A perspective
view of the vehicle. (b) A front view of the vehicle. (¢) A side view of the

vehicle. (continued) "

A

2.2 System Configuration

In this study, the vehicle system used as a test bed is composed of a Pioneer 3-DX
vehicle made by MobileRobots Inc., a WiBox made by Lantronix, and an Axis
207MW camera made by AXIS, as shown in Figure 2.2. The Axis 207MW camera,
called the camera system, not only is one part of the vehicle system but also plays an
important role of monitoring and locating vehicles. Because the whole system, called
the control system, is controlled by users remotely, some wireless communication
equipment is necessary. All the details of the above equipments are described in
Section 2.2.1.

In order to develop the desired security surveillance system, we also need

software that provides some commands and control interfaces. Besides, we also
12



provide an interface for users to control the vehicles and cameras. All the above

utilities are described in Section 2.2.2.

(b) (c)
Figure 2.2 The vehicle system used in this study. (a) A Pioneer 3-DX vehicle. (b) A
WiBox. (c) An Axis 207MW camera.
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2.2.1 Hardware configuration

The entire structure of the vehicle system used in this study is shown in Figure
2.3. There are three principal parts: vehicle system, camera system, and control
system.

In the vehicle system, the Pioneer 3-DX vehicle is a 44cmx38cmx22cm
aluminum body with two 19cm wheels and a caster. It can reach a speed of 1.6 meters
per second on flat floors, and climb grades of 25° and sills of 2.5cm. At slower speeds
it can carry payloads up to 23 kg. The payloads include additional batteries and all
accessories. By three 12V rechargeable lead-acid batteries, the vehicle can run 18-24
hours if the batteries are fully charged initially. A control system embedded in the
vehicle makes the user’s commands able to control the vehicle to move forward or
backward or to turn around. The system can also return some status parameters of the
vehicle to the user.

To show the advantage of th¢ mobile vehicle, a wireless connection between a
user and the vehicle is necessary. A WiBox is used to communicate with the vehicle by
RS-232, so the user has the ability of remotely controlling the vehicle over a network
from anywhere.

In the camera system, an Axis 207MW camera has the dimension of
85x55x40mm (3.37x2.2”x1.6”), not including the antenna, and the weight of 190g
(0.42 1b), not including the power supply, as shown in Figure 2.4. The maximum
resolution of images is up to 1280x1024 pixels. In our experiment, the resolution of
320x240 pixels is used by the camera fixed on the vehicle and that of 640x480 pixels
is used by the one fixed on the ceiling. Both of their frame rates are up to 15 fps. By
wireless networks (IEEE 802.11b and 802.11g), captured images can be transmitted to

users at speeds up to 54 Mbit/s. Each camera used in this study is equipped with a
14



fish-eye lens that will expend the field of view.

Axis 207MW
Camera

Camera System

\\\\

\\\\\
¥

Axis 207MW
Camera

Camera System

| } -
Fixed on

Computer

5 Access Point
e
”

Pioneer 3-DX
Vehicle

Vehicle System

Figure 2.3 Structure of proposed system.

In the control system, a notebook PC is used to integrate the entire security

patrolling system. With access points, all status information from vehicles and

15



cameras can be delivered to the user by wireless networks. The PC produces some
commands according to these data. By the same way, vehicles can receive the
commands from the control system and perform corresponding actions. In other

words, an access point is a communication medium among the three systems.

(b) (©)

Figure 2.4 The camera system used in this study. (a) A perspective view of the camera.

(b) A front view of the camera. (c) A left-side view of the camera.

16



2.2.2 Software configuration

ARIA (Advanced Robotics Interface Application) provided by MobileRobots, Inc.
is an API (application programming interface) that assists developers in
communicating with the embedded system of the vehicle, either using a serial or
TCP/IP connection. It is a powerful object-oriented toolkit and usable under Linux or
Win32 OS in C++. Therefore, we use the Borland C++ builder as the development
tool in our experiments to control the vehicles by ARIA. The lowest-level data and
other information of the vehicle can also be retrieved easily by means of the ARIA
interface.

About Axis 207MW camera controlling, the AXIS Company also provides a
development tool called AXIS Media Control SDK. Using the Media Control ActiveX
component from SDK, we can=preview the image of the camera’s view and capture
the current image data. It is also-convenient-for.users to use it to develop any function

with the images grabbed from the camera as.input.

2.3 Learning Principle and Proposed
Process

Because the patrolling environment is unknown, a learning strategy is necessary.
For the purpose of learning all knowledge that makes the vehicles accomplish the
mission successfully, we develop a learning interface for users. The entire learning
process is shown in Figure 2.5.

In this study, data having to be recorded are camera-related, object-related, and
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area-related ones. The camera-related data are obtained from a camera calibration
process. In this study, we don’t use the traditional camera calibration method to find a
projective matrix for coordinate transformation. Instead, some landmarks on a pattern
are utilized to acquire corresponding points between 2-D image and 3-D global spaces.
For the camera fixed to ceilings in this system, the pattern is just the patrolling floor
and the landmarks on it are just the corners of rectangular-shaped tiles. A user points
some landmarks in the image by the user interface with a mouse, and corresponding
points in the global space are calculated. Because each camera, used in our system, is
equipped with a fish-eye lens, images captured by them are warped. Therefore, we use
a bilinear interpolation method to translate coordinates in images into global space by
these corresponding points.

The object-related data are;used to teach'.vehicles where to go and which
direction to face when they perform the patrolling task. We drive a vehicle to the
position where the vehicle can-obsetve-the -monitored object and then record it as a
monitoring point (MP) according to the image of a top-view omni-camera. For the
purpose of learning the direction with respect to the object, we control the vehicle to
face the object and let it move forward for a short distance. By the two positions of
the vehicle (nodes), the direction angle can be obtained.

The area-related data are about the environment where the vehicles patrol. An
assumption made in this system is that the floor shape of the environment is
composed of rectangular regions. At first, a user must key in corners in the clockwise
order manually, and then all rectangular regions will be obtained. There might exist
some pairs of MPs not belonging to an identical rectangular region, between which a
vehicle cannot move straightly. Therefore, some points, called turning points, are
necessary and they can be obtained by processing all the rectangular regions. With

these turning points, the distances of all pairs of MPs can be calculated and which
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turning points between two MPs are passed by can also be recorded.

Start of Learning
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Figure 2.5 Flowchart of proposed learning process.

After all the data are obtained, they are saved into some text files. These files are

then used in the navigation phase more than once.
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2.4 Vehicle Guidance Principle and
Proposed Process

When the learning job has been done, all vehicles can start to perform the
security patrolling task. The entire guidance process proposed in this study is shown
in Figure 2.6.

At first, the system reads all files that are obtained from the learning phase and
contain information about the environment, autonomous vehicles, and monitored
objects. According to the distances between all pairs of MPs, this system then plans
random paths for each autonomous vehicle. If all differences between the paths of two
vehicles do not exceed a threshold value which ensures the loads of all autonomous
vehicles being balanced, the secufity patrolling task’can be carried out.

Because autonomous vehicles suffer from accumulation of mechanical errors, we
need to locate them constantly. When-a.vehicle runs-a fixed length of distance, it must
be located by the top-view omni-cameras. By the values of the vehicles’ odometers,
this system calculates the centroid of each vehicle from an image captured by a
top-view omni-camera. The other function of the camera is to monitor vehicles to see
whether they are still under control. If any vehicle loses control of its action, the
system will stop all vehicles and send an alarm message to the user. Otherwise, the
odometer of the vehicle is corrected and then the vehicle proceeds to move to its goal
node.

While the vehicles are carrying out the security patrolling, there could be
collisions between vehicles. Therefore, the detection of collisions is necessary. This
system computes the distance between two vehicles in every cycle of a fixed time

duration and determines if they are too close. If true, the paths of the vehicles will be
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Figure 2.6 Flowchart of proposed navigation process.

A mission for the autonomous vehicles in this system is to take pictures of all the
monitored objects during the navigation process. As a vehicle goes to a MP, it means
that the vehicle will be in front of a monitored object. Therefore, the direction of the
vehicle must be adjusted to face the object. Then the camera equipped on the vehicle
takes a picture at the moment. The picture is transmitted to the control system by the
wireless network and saved into an image file. When all the vehicles have
accomplished their own patrolling paths, one cycle of security patrolling is finished.
Then, the system will plan another set of new random paths for all the autonomous

vehicles again.
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Chapter 3
L_earning Strategies for Navigation by
Semi-automatic Driving

3.1 ldeas of Proposed Techniques Used
In Learning

In this study, two cameras with fish-eye lenses fixed on ceilings are utilized to
locate and monitor all autonomous yehicles. Before the use of the cameras, they must
be calibrated. For this purpose; we propese. in this study a point-correspondence
technique integrated with an 4mage interpolation method without conducting the
conventional task of calculating the projection matrix for transforming points between
2-D image and 3-D global spaces. At first, by a mouse a user points out some
landmarks in an image of a calibration target which is selected to be the tile pattern on
the floor of our experimental environment. The landmarks we use in this study are the
crossing points of the grid formed by the tile pattern. Such crossing points for use as
corresponding points are abundant which yield better calibration accuracy in the
proposed point-correspondence technique for camera calibration. The detail is
described in Section 3.2.

In an environment where autonomous vehicles navigate, it is indispensable to use
some turning points in the navigation path to ensure no collision between the vehicles
and the walls. To compute the turning points, the corner points of the walkable area

are first utilized to acquire all rectangular regions within the entire area. Each region
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is then represented by its upper-left and lower-right points. With these points, the
system can judge whether the vehicles can move straightly between any pair of nodes
where the vehicles visit (including the turning points). If two nodes belong to different
regions, the vehicle will be guided to pass some turning points. In other words, the
turning point is a medium that enables the vehicles to navigate between any pair of
nodes without incurring collisions with the walls. Therefore, a turning point is
selected to be the intersection of the centerlines of two overlapping regions or the
center of the overlapping boundary of two adjacent ones. The details of the proposed
techniques about processing rectangular regions and computing turning points are
described in Section 3.3.1.

Additionally, to take the pictures of monitored objects by cameras equipped on
the autonomous vehicles, all nodesiand directions.with respect to the objects must be
recorded. In this study, a learning technique is' proposed to guide vision-based
vehicles to capture pictures ~at suitable-spots/ ‘and directions. Two top-view

omni-cameras are used. The process is:described in detail in Section 3.3.2.

3.2 Calibration of Top-View
Omni-Cameras with Fish-Eye
Lenses

Each camera used in this study is equipped with a fish-eye lens. All images
captured by the camera are warped. So the traditional camera calibration method of
obtaining a global-space point via a projection-based transformation cannot be

utilized directly; the cameras must be calibrated by another method, as mentioned
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previously. For this, we propose a point-correspondence technique integrated with an
image interpolation method. By the way, it is noted that the correct coordinates in the

global space can be obtained from a warped image directly, as done in this study.

3.2.1 Review of Conventional Camera
Calibration Technique

In general, a projection matrix is utilized in conventional methods to do the job
of camera calibration. There are two kinds of parameters in the matrix, which must be
calibrated, namely, the intrinsic and,the extrinsic parameters. The intrinsic
parameters do not depend on thé position and. orientation of a camera in the global
space and include the focal length £, the image center point (uo, vo), the aspect ratio (S,
S,), and the skew error 6 of thé.camera. Because the coordinate system of a camera

and the global space may not be the ‘same; the extrinsic parameters related to the

rotation angle 6 and the translation vector (7.7,,7,) of the camera must be

X z

calibrated.

Based on the intrinsic and extrinsic parameters, the relation between points in
2-D image and 3-D global spaces may be described by Eq. (3.1) below [23], where
the point (u, v)" is in the image coordinate system and the point (x, y, z)" is in the

global coordinate system:
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3.2.2 Proposed Calibration Technique

In the proposed calibration technique, we divide the patrolling area on the floor
of the environment into multiple’grids at first and all corners of them are called
reference points. These points- are the crossing points of the boundaries of the
rectangular-shaped tiles on the floor. For-every-teference point, both of its coordinates
in an image and in the global “space must.be recorded, describing a pair of
corresponding points between the image and the global spaces.

In order to acquire more corresponding points faster, we calculate all quadratic
curves in the image of the patrolling floor area, of which the intersections are exactly
the desired reference points. Note that because the images are captured by the cameras
equipped with fish-eye lenses, a straight line in the global space appears as a quadratic
curve in the image. Therefore, the technique is feasible. A quadratic curve can be
calculated by three points at least. This property is utilized to find all curves.

More specifically, we use a minimum mean-square-error (MMSE) method to
calculate all the curves. Assume that a curve L is to be computed, which includes
three parameters a, b, c. If points (xi, y1), (x2, y2), ..., (X4, ¥») belong to the curve L, we

may acquire n curves which can be represented as a matrix in the form of Aw=bh, as
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shown in Eq. (3.2) below:

L:y:a+bx+cx2,(xl,y]), (X5, %,)s s (x,,¥,) €L

= Aw=h
2
i o a N (3.2)
where 4 =| . x.z x_2 L w=|b|,b= ):2 )
) c
1 x, x Y
The vector w can be computed by the MMSE criterion, that is,
J(w)=E[|b-Awf'];
~ e 3.3
w=argminJ(w). (3.3)
Through a series of simplifications from Eq. (3.3), we can acquire a result as
(A" Hw=A"D . (3.4)

If all x,x,,...,x, are not equal, the matrix A" 4 is invertible and Eq. (3.4) can be

solved to be:
W= (ATA)" A" b. (3.5)

Therefore, the curve L may be computed to be

L:y=a+bx+cx’ (3.6
=[1 x x* '

Before calculating a curve, a user has to input the index of the curve and indicate
that the curve is horizontal or vertical. As a curve is obtained, the pixels passed by the
curve must record the index of the curve. The process of acquiring all quadratic
curves is described as Algorithm 3.1 below. An example is shown in Figure 3.1 which
is a result of acquiring some horizontal and vertical quadratic curves by the algorithm

and each curve is calculated by four points on it.
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Algorithm 3.1 Calculating a quadratic curve.

Input: An image /, the number n of points needed to calculate a curve, the index k of
the curve, and being horizontal or vertical for the curve.
Output: Pixels passed by the quadratic curve.

Steps:

Step 1. Point out n points on the curve in the image /.

Step 2. Calculate the curve by the MMSE criterion as described previously.

Step 3. Record index k& and the property of being horizontal or vertical into the
table of pixels passed by the curve.

Figure 3.1 Calculating quadratic curves.

When all curves are obtained, we check all pixels in the image. If a pixel is
passed both by a vertical curve and by a horizontal one, the pixel is taken to be one of
the reference points. The width and height of a grid in the global space are also taken
as input by the user. According to the lengths and the total numbers of horizontal and

vertical curves, the coordinates of all reference points in the global space can be
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obtained. The entire process of acquiring all corresponding points between the image
and global spaces is described as Algorithm 3.2 below. A result of finding all

corresponding points from the image of one top-view omni-camera is shown in Figure

3.2.

Algorithm 3.2 Acquiring corresponding points between 2-D image and 3-D global
spaces.
Input: An image I, the total number 7, of vertical curves, the total number n, of
horizontal curves, and the width w and height / of a grid in the global space.
Output: The coordinates of all corresponding points.

Steps:

Step 1.  Repeat Algorithm 3.1 until enough curyes are obtained.

Step2. Find all intersections from -the result of Step 1 and record their
coordinates in the image coordinate system.

Step 3. Calculate all coordinates, with-respect to the intersections obtained from
Step 2, in the global coordinate system according to n,, n,, w and A, and

then record them.
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are the corners of the grid which point / belongs to. The

lines Lo, L1, Ly and Lsare straight lines through these corners. M), is the line passing
through point 7 and its slope is the mean of those of line L, and line L;. M, is the line
passing through point 7 and its slope is the mean of those of line Ly and line L,. The
points g and 7 are the intersections of Mj with Lyand L,, respectively. The points s and

t are the intersections of M, with L; and L3, respectively.
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Figure 3.3 Point / in a distortion image.

For a point in a warped image, weimust judge which grid the point belongs to
and calculate M), M,, g, r, s and t. The ratios of distances are utilized to obtain the

global-space coordinates with respect-to'the-point. The equation is Eq. (3.7) below:

X, = X, +unit_ widhx 221
d(q,r)
d(s. 1) (3.7)
Y, =Y, +unit_heighth.
! d(s,1)

The points G(X,,Y,) and Q,(X,,Y;) are in the global space with respect to

point / and point F,, respectively. The lengths unit width and unit_height are the

widths and the heights of a grid in the global space, respectively. The distance

d(q,I) is the length from point ¢ to point /. A graphic illustration is shown in Figure
3.4 and the process of acquiring the coordinates in the global space is described as

Algorithm 3.3.
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Figure 3.4 A relation between the image taken by the omni-camera and the global

space.

Algorithm 3.3 Computation of coordinates in the global space.

Input: A point [ in a warped image, the coordinates of all corresponding points, the
width unit width and the height unit height of a grid in the global space.

Output: The coordinates of the point G in global space with respect to the point /.

Steps:

Step 1. Judge which grid point / belongs to.

Step 2.  Calculate lines Lo, L, L, and Lj that are the straight lines through the
corners of the grid to which point 7 belongs, as illustrated by Figure 3.3.
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Step 3.  Calculate line M, that passes through point / with its slope being the mean
of those of line L and line L;.

Step 4.  Calculate line M, that passes through point / with its slope being the mean
of those of line L and line L,

Step 5.  Calculate points g and r that are the intersections of line M, and the edges
of the grid.

Step 6.  Calculate points s and ¢ that are the intersections of line M, and the edges

of the grid.
Step 7. Calculate point G(X,,Y,) by the following equation:

X, X +unit _ widthx ———= d(g.1).
d(q,r)’

d(s, 1)

Y, =Y, +unit _height x————
d(s,t)’

Annotate that point O, (X,

ij°

Y,) is in the global space with respect to

point F; in the warped image.

3.3 Information for Security Patrolling

3.3.1 Proposed techniques of learning
patrolling environment

Information about the patrolling environment includes rectangular regions, which
the floor shape is composed of, and the turning points among the regions. To find all
rectangular regions, a user must key in all the corners of the patrolling area in the

clockwise order. Because each point in the area belongs to one rectangular region at
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least, a vertical line, called scanning line, is utilized to check whether some points in
the vertical line do not belong to one region at least. If yes, another new rectangular
region will be found for the points. The entire process and details are described as

Algorithm 3.4 below.

Algorithm 3.4 Finding all rectangular regions.

Input: All corners of the patrolling area.
Output: All rectangular regions of the patrolling area.

Steps:
Step 1. Set a vertical line L through the leftmost corner of the patrolling area and
scan the area from left to right.

Step 2. Find the intersections of.Z and the boundaries of the area, and record them.
Record the corners of the boundary- merely, if there is an overlap between
L and the boundary.

See the example shown 1n the following, where points a, b and ¢ recorded.

Figure 3.5 Intersections of L and the boundaries of the area.

Step 3. Divide these intersections into groups from top to down with each group

including two points.
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See the example of Step 2 above for an illustration, where two groups (a,

b) and (b, c) are obtained.
Step 4. Judge where to set a line segment .
Step 4.1. Check whether the right part of a group is the inner range of the

patrolling area and a rectangular region in the range has not been found.
If yes, go to Step 4.2; else, continue to check the next group.
Annotate that the technique of checking whether the right part of a group

is the inner range of the patrolling area is described in Algorithm 3.5.
Step 4.2. Set / in the following way.
Step 4.2.1. Shift the middle point M of the group one pixel to the right.
Step 4.2.2. Extend M along a vertical direction until colliding with the

boundaries, where the line / is set.

See the example shown in_the following, where line de is [ mentioned

above.

Figure 3.6 Setting a line segment /.

Step 5. Continue scanning the line segment / to the left until colliding with the

boundary of the patrolling area.

See the example shown in the following.
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Figure 3.7 Scanning the line segment / to the left.

Step 6. Continue scanning the line segment / to the right until colliding with the

boundary of the patrolling area.

See the example shown in Step'S, ' where Region2 was obtained.

Regionl

%

. Region2
scanning

Figure 3.8 Scanning the line segment / to the right.

Step 7. Continue scanning the vertical line L to the right and repeat Step 2 until L

reaches the rightmost boundary of the patrolling area.

Algorithm 3.5 Judging an inner range.

Input: All corners C of the patrolling area, and two points P whose x-coordinates are
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the same.
Output: An indication whether the right part of P is an inner range of the patrolling
area.

Steps:

Stepl. Calculate the middle point M of the two points P.

Step2. Shift M one pixel to the right.

Step3. Set a vertical line LM through point M.

Step4. Check the numbers of intersections of the line LM and the boundary.

If both the number of the upper part and that of the lower one of M are odd
and either part does not include an overlapping line, it is decided that the
right part of P is an inner range of the patrolling area.

See the graphic illustration shown in the following.

Case 1: the right part«of points a. and, b is not an inner range of the

patrolling area.

L
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Figure 3.9 The right part of points @ and b is not an inner range.

Case 2: the right part of points b and ¢ is an inner range of the patrolling

area.
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Figure 3.10 The right part of points @ and b is an inner range.

Now, we show a result of Algorithm 3.4. A patrolling area is shown in Figure
3.11. The total number of rectangular'regions in the patrolling area is seven and they

are shown in Figure 3.12 through Figure 3.18 step by step.

Figure 3.11 A patrolling area.

According to these rectangular regions, we can compute all desired turning
points. If two regions are overlapping or adjacent, we can obtain a turning point. The
point is the intersection of two vertical and horizontal centerlines of the regions. The
process of finding all turning points is described as Algorithm 3.6 and the result in the
patrolling area of Figure 3.11 is shown in Figure 3.19. The eight circles in Figure 3.19

are exactly the turning points, in which each blue one is the center of the overlapping
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boundary of two adjacent regions.

Regionl

Figure 3.12 The first rectangular region.

B

Region2

Figure 3.13 The second rectangular region.

I

Region3

Figure 3.14 The third rectangular region.
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Region4

Figure 3.15 The fourth rectangular region.

Region5

Figure 3.16 The fifth rectangular region.

N

Region6

Figure 3.17 The sixth rectangular region.
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egion’

Figure 3.18 The seventh rectangular region.

Algorithm 3.6 Finding all turning points.

Input: All rectangular regions R in an area.

Output: All turning points.

Steps:
Stepl.

Step2.
Step3.

Step4.

StepS.

Take a pair of overlapping or adjacentiregions from the set R.

If the two regions are overlapping; go to Step2; else, go to Step4.
Calculate all vertical and horizontal centerlines of the two regions.
Find an intersection within these centerlines, which is exactly a turning
point of the area.
Calculate the center of overlapping boundary, which is exactly a turning
point of the area.

Repeat Step 1 until all regions in R have been checked.
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Figure 3.19 All turning points in the area.

3.3.2 Learning.of poses of vehicles with
respect to monitored objects

To learn the poses of autonomeus:vehicles with respect to monitored objects, we
designed a user interface, as shown in Figure 3.20. The image in the interface is the
real-time view of the camera installed on an autonomous vehicle.

Before learning, a vehicle is parked at the origin of the global space. Because the
vehicle suffers from mechanic errors, a user must constantly locate it by the top-view
omni-cameras in the period of the learning phase. We can use a joystick or the buttons
in the user interface to control the moves of the vehicle. As the vehicle has moved a
short distance, the user must press the “Localize” button in the interface. For an
example, Figure 3.21 shows a situation that the vehicle is ready to be located. After
the user presses the “Localize” button, the system will calculate the centroid of the
vehicle in the image captured by a top-view omni-camera. Then, the centroid is

transformed from the image space into the global space and the odometer value of the
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vehicle is corrected by the coordinates of the resulting point.
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Figure 3.20 User interface of learning MPs.
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Figure 3.21 Before localizing the vehicle.

In Figure 3.22, the green component is the vehicle and a white circle in the

component is its centroid. The entire detail of the technique is described in Section

4.2.2.
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For the direction with respect to monitored objects, we utilize two points to
obtain the direction vector. First, we drive the vehicle to the front of a monitored
object, leaving a sufficient distance between the vehicle and the object. At the moment,
we adjust the orientation of the vehicle by the image in the user interface. As the
monitored object appears at the center of the image, we locate the vehicle by pressing
the “Localize” button. Furthermore, we move the vehicle forward a short distance and
press the “Learn MP and Direction” button. For the example shown in Figure 3.23,
the safe deposit labeled by a red rectangle is a monitored object and the vehicle faces

the object. The detail process is described as Algorithm 3.7.
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Figure 3.22 Localizing the vehicle.
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LearmingPointe(MFs)
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Figure 3.23 The vehicle in front of a monitored object.
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Input: The position P of the Vefﬁgle .fr;),::_:frdht‘é‘f-a .m'_'(.}'r.’litored object.

Output: The pose of the vehicle wifh-'réspe_ct'l'to the object.

Steps:

Step 1.
Step 2.
Step 3.
Step 4.
Step 5.

Drive the vehicle to the position P.

Let the vehicle face the object.

Localize the vehicle.

Move the vehicle forward a short distance.

Localize the vehicle again and save its pose.
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Chapter 4
Security Patrolling by Multiple
Vehicle Navigation

4.1 Introduction to Concepts In
Proposed Systems

In the study, we use multiple vision-based autonomous vehicles to perform
security patrolling. To obtain more benefits, there must be ideal path planning for all
vehicles. By an optimal randomization technique proposed in this study and described
in this chapter, these patrolling paths have the properties of randomization,
optimization, and load balancing within all vehicles. Furthermore, two cameras with
fish-eye lenses are utilized to localize and monitor all the vehicles. All concepts of the

above are described in following five sections.

4.1.1 Randomized patrolling

The patrolling path of every autonomous vehicle is produced to be random.
Random paths are good for security surveillance. Because a fixed path will reveal
where a vehicle is located at a fixed moment, thieves can, by such observation, invade
and steal those valuable objects which are not guarded by any vehicle at the time. To

randomize a patrolling path, all nodes (MPs) in the path with respect to monitored
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objects are chosen randomly. Furthermore, if the time interval between two patrollings
of a monitored object is smaller, the security of the objects will be raised. Therefore,

each node (MP) is just chosen once in a patrolling session.

4.1.2 Optimal path

After the nodes of a patrolling path are determined, the order of passing these
nodes is computed. To decrease the time taken to accomplish security patrolling in
one patrolling session, the distance of each path must be made to be the shortest. A
method for this purpose by finding the Hamiltonian path is utilized and the detail of

determining all patrolling paths is described in Chapter 5.

4.1.3 Load balance

To obtain more benefits of using multiple autonomous vehicles to perform the
security patrolling, the loads for all vehicles must be balanced. We set a threshold
parameter to restrict the differences of the patrolling distances. After all patrolling
paths are produced, we check whether the differences of these paths are acceptable

according to the threshold; if not, the nodes of all paths must be chosen afresh.

4.1.4 Top-view omni-monitoring

In this study, two cameras are fixed on the ceiling and each of them is equipped
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with a fish-eye lens. That is the reason why the camera is called a top-view monitoring
omni-camera. At times, there may be some unexpected problems with the vehicles,
such as not complying with the user command. The cameras can overlook the
patrolling area and so control all actions of the vehicles. If one vehicle is not under
control, all vehicles will be stopped. And then the system will send an alarm message

to the control center.

4.1.5 Path correction by top-view
monitoring omni-camera

Autonomous vehicles used in this study ate subject to accumulation of mechanic
errors, so they must be localized periodically. About vehicle localizations, house
corners, geometric shapes, and-object features all- may be utilized to localize the
vehicle. For the vehicle localization technique proposed in this study, the top-view
omni-cameras are utilized. Because the cameras are fixed, images acquired by them
are good for analyzing the actual positions of the vehicles. The entire detail of vehicle

localization is described in Section 4.2.2.
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4.2 Proposed Techniques Used in
Patrolling

4.2.1 Optimal randomized patrolling
paths for all vehicles

All patrolling paths planned by algorithms proposed in this study have three
properties: randomization, optimization, and load balancing. Let the total number of
autonomous vehicles and monitoring positions (MPs) be n, and n,, respectively. In
the proposed method for generating random patrolling paths, we divide all MPs into
n, groups randomly. Assume that the number.of chosen MPs for the i-th vehicle is #;,
so that the numbers can be représented as(#,.72, ..., n,,). Each n; must satisfy two
conditions as listed in the following:

Condition 1:

ntny+ .. tn,,=n,—n,

Condition 2:

v

n n

[n’" _nVJ—Tvalue <n < {n’" _nv—‘+Tvalue, i=1,2,..,n
where Tvalue is an adjustable parameter. Because n, MPs are patrolled by #n, vehicles
at the end of the #-th session, there is no need to visit the n, MPs again in the (¢ + 1)-th
session. That is the reason why “n,, — n,” is included in Condition 1. Additionally, the

purpose of Condition 2 is to achieve load balancing among all vehicles. Because we

set a threshold parameter 7 to restrict the differences of the patrolling distances, each
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- n —n
n; dose not have to be equal to the mean [M—‘ or { n ”J . Therefore, we add

. n —n "
the parameter 7value to obtain an upper bound “{M—‘ +Tvalue” and a lower
nv

nm —

bound “[ nVJ—T value” for all n;. The parameters Tvalue and T are adjustable. If

n

v

they are smaller, the time taken to determine all patrolling paths is larger, but the loads
of all vehicles will be more balanced.

The state of choosing MPs for all vehicles can be represented as

m > “n, LERRS} .

The combination C, is the number of picking &k MPs from n MPs randomly, defined

as

o = 1 7!
R k(- k)Y @1

For example, assume that the number of MPs is “thirteen”, the number of vehicles is
“three”, and the parameter 7value is “one”. By Condition 1, “ten MPs” need be
divided into “three groups.” Besides, the number of each group has an upper bound of
“five” and a lower bound of “two” by Condition 2. The three states of the numbers of
MPs chosen for three vehicles are shown in following.

(1) (53,2

2) 442

(3) 4.3.3)

For state (1), the number of the combination is C}’ * C; * C; =2520. For state (2), the
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10 4, 6 5 12
Cl*CO*C;

number of the combination is =1575. For state (3), the number of the

10 6 % (13
ClxCS*C

combination is =2100. Hence, the total number of combinations is

2520+1575+2100=6195. It means that the total number of the states of choosing MPs

for the vehicles randomly is 6195 and the probability of choosing the same state in

two continuous sessions is .
6195

As long as one group of MPs is determined, we calculate next a path passing all
of the MPs under the constraint that the distance of the path is the shortest. The MPs
are the positions where vehicles perform the security monitoring task, and every MP
is just passed one time in this path. In other words, the requirement is that one vehicle
passes each MP once (once and only once) and takes the shortest time to accomplish
the route. The problem is equal to the fraveling salesman problem (TSP) and the detail
to solve it for our application of-this.study is desctibed in Section 5.2.

To solve the problem by the idea.of-the TSP, the information of the distance
between each pair of MPs is nec¢ded. In this study, the floor shape of a vehicle
patrolling environment is assumed to be composed of rectangular regions. There may
be two MPs which do not belonging to the same region. If two MPs are in different
regions, the vehicle might not be able to move along a straight path between them
without hitting obstacles. To obtain the distance between every pair of MPs, we must
judge whether one pair of MPs belong to an identical rectangular region. If yes, the
distance of this pair is the straight distance between them; else, the straight path
between them must be abandoned and a new path with multiple line segments should
be planned using some turning points obtained in the learning phase. Because the
between-MP distance is desired to be the shortest, it can be figured out that the
distance may be computed by the Dijkstra’s algorithm. The detail for the solution of

this problem is described in Section 5.1.
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In the proposed system, the reason why each MP is just passed one time is that it
is wished to patrol these monitored objects uniformly in time. That is, the difference
between the biggest and the smallest times of MPs passed at any moment is desired to
be one or zero. In this sense, each MP will have been visited ¢ times at the end of the
t-th session of security patrolling. And then the system will calculate new patrolling
paths for the next session. A flowchart is illustrated in Figure 4.1, and the detail of

obtaining the patrolling paths is described as an algorithm in the following.

Algorithm 4.1 Calculating all patrolling paths.

Input: MPs, the number n,, of MPs, the number 7, of vehicles, the points Ps where
the MPs are patrolled by all vehicles at the end of the front session, the distance
between every pair of MPs, thréshold parameters 7 and 7Tvalue.

Output: Optimal patrolling paths for the.vehicles.

Steps:
Step 1. Divide the number “n, — n,”” nto n, groups according to the following

conditions randomly and list all states, such as (n1, no, ..., n,,).
Condition 1:
nytny+..tn,,

Condition 2:

v

[nm _nVJ—TvalueSni S(”’” _nv—‘+Tvalue,i=1, 2, .., 01
n n

Step 2.  Choose MPs, not including Ps, randomly according to the numbers (n;,
N2, «oy M)

Step 3.  Calculate every patrolling path passing all chosen MPs such that the
distance of the path is the shortest.

Step4. Check whether all distance differences between each pair of paths
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conform to the threshold parameter 7. If yes, the paths are determined.

Start to
calculate paths

v £

Else, repeat Step 1.

Numbers of Divide the number of The MPs which
all groups “ remaining MPs into ) vehicles stop at in
(ny, ny, M) / n, groups the last cycle

v

Choose the remaining MPs h P
osen MPs
» according to 77;randomly [ (C c . )
1,C2, 7, Ly

(=1,..,n,)

Distances
between
MPs

_| Calculate the shortest paths
of all groups

v

n, paths

Finish
calculating paths

Figure 4.1 A flowchart of determining all paths for vehicles.

4.2.2 Guidance of vehicles by
localization and monitoring using
top-view omni-cameras

Before introducing the proposed scheme for guidance of vehicles, we take an
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illustration of all coordinate systems used in the system. They are the image

coordinate system, the global coordinate system, and the vehicle coordinate system.

By these coordinate systems, it is easily to know the position of a vehicle. The

definitions of the three coordinate systems are described in the following and a

graphic illustration is shown in Figure 4.2.

)

(2)

€)

The image coordinate system (ICS, denoted as u-v):

The coordinate system is used for the image acquired by the top-view
omni-cameras fixed on the ceiling, in which the u-v plane is parallel to the
floor where vehicles navigate. If the image is displayed in the user interface,
the positive direction of the u-axis is from left to right and the positive
direction of the v-axis is from top to bottom. The origin O,, is the upper
left corner of the image.

The global coordinate-system (GCS, denoted as X-Y):

This coordinate system is.inthe-3-D global space where the vehicles
navigate. Because the top-view ommni-cameras are fixed on the ceiling, the
distance between each camera and the floor of the global space is fixed.
Besides, we only need to know where the vehicles are located at nay
moment, so there are merely two axes in the coordinate system. To simplify
related computations, the positive directions of the X- and Y-axes are the
same as the u- and v-axes in the CCS, respectively. The origin O, is the
upper left corner of the patrolling environment.

The vehicle coordinate system (VCS, denoted as x-y):

In this system, the x-y plane is also parallel to the floor. The positive
directions of the x- and y- axes are the front direction and the leftward
direction of the vehicle, respective. The origin of the VCS is where the

vehicle starts its navigation.
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For vehicle localization, the position and the direction angle of a vehicle must be
calibrated after the vehicle moves a fixed distance because the vehicle is subject to
accumulation of mechanic errors. In the proposed system, a top-view omni-camera is
utilized to acquire the current location of the vehicle. To reduce the cycle time of the
navigation session, we only calculate a region, whose center is the odometer value of
the vehicle and whose width is a parameter 7, to find out the centroid of the vehicle
in the image. By the way, the negative influence of noise is also decreased. As an

example, the black region with a red rectangle frame shown in Figure 4.3 is the range

of calculation.
ICS
[
AR
0uv = : ] '~ u
| ' >
|
A !
)
v Image
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GCS VCS
L » X
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v
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(b) (b)

Figure 4.2 Coordinate systems used in this study. (a) ICS (b)GCS (c)VCS
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Before all vehicles perform the patrolling task, the top-view omni-cameras
capture an image of the floor without vehicles and unnecessary objects as a
background. An example of background images is shown in Figure 4.4. Because the
number of the cameras used in the study is more than one, when a vehicle needs to be
located, the system must judge which camera will do the job according to the
odometer value of the vehicle. We translate the coordinate of the vehicle from the

VCS into the GCS and then judge the camera view which includes the vehicle.

Figure 4.3 Vehicle localization from a top-view omni-camera.

To acquire the position of the vehicle, the camera must capture the current image
as a foreground. An example of foreground image is shown in Figure 4.5.

By subtracting the foreground from the background, we can obtain all
differences in the two images. Because there is a lot of noise in the patrolling
environment, such as light variations, we set an appropriate threshold parameter
T Diff'to threshold the difference image to eliminate noise. If the difference value of a

pixel is larger than the parameter 7' Diff, the pixel will be recorded as “1”’; else it will
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be recorded as “0”. At the end, we will obtain a binary image B_/M. Furthermore, we
apply consecutively two methods of morphology to decrease the interference of noise.
One is erosion and the other is dilation. The equations of them are described in the
following where A4 and B are sets in Z* and all elements of them are zero (false) or one

(true); B is the complement of the set B and its origin is z:

A®B={z|(B).nA+D}; 4.2)

AGB ={z|(B), c A}. (4.3)

We denote the dilation of A by B by A® B for which if there is at least one element
overlap between B and A4, then z is set true. The result of dilation is using B as a
mask translated by z over the set 43 The erosion 0f A4 by B is denoted A®B for which
if B is contained in 4, then z is set true. The result.of erosion is also using B as a mask
translated by z over the set 4.

As we obtain a binary image B IM, the noise which is smaller or bigger than the
vehicle too much can be eliminated by the method of erosion using some squares as
the mask. For example, given a binary image 4 composed of the square D of size 1
pixel on the side and a mask B also being a square of size 3 pixels on the side, erosion
of A by B results in the square D being eliminated.

After erosion, we can perform the method of dilation to repair some holes in the
range of the shape of the vehicle. By the way, if the shape of the vehicle can be more

complete, then the obtained position will also be more precise.
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Figure 4.5 A foreground taken by a top-view omni-camera.

As the next step, we use the method of connected component labeling. 1f the
number of components is larger than one, it is necessary to find out the one
component which is much like the shape of the vehicle by the number of the pixels in

the component. Furthermore, if no component is found, the state is that there is one
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vehicle which is not under control, for which the system will send a message to the
control center. When only one component is detected, we calculate the centroid of the
component, which is exactly the position of the vehicle in the CCS. The position then
is transformed into one in the GCS by the point-correspondence technique integrated
with an image interpolation method described in Section 3.2.2. For Figure 4.3, the
result of finding the position of a vehicle is shown in Figure 4.6. The entire detail is

described as Algorithm 4.2.

(c) (d)
Figure 4.6 Finding the position of a vehicle. (a) A binary image which is part of the

image shown in Figure 4.3. (b) Erosion of (a) with a square mask. (¢)
Dilation of (b) with a square mask. (d) The connected component of (c)

and the computed centroid (the white circle).

Algorithm 4.2 Calculating the position, in the GCS, of a vehicle by top-view

omni-cameras.

Input: A background image Back IM, the odometer value of the vehicle Va, the

width W of the calculation range, and a threshold parameter 7'_Diff
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Output: The position, in the GCS, of the vehicle.

Steps:
Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.
Step 10.

Judge which camera will do the job to calculate the centroid of the vehicle
by Va.

Capture a foreground image Foer IM by the camera determined from
Step 1.

Translate Back IM and Foer IM into gray images Back GalM and
Foer GalM.

Subtract Foer GalM from Back GalM, in a region whose center is Ja
and whose width is I, to obtain another image D.

Acquire a binary image Bi IM.
In the binary image Bi IM, “1” means that this pixel in the image D is

bigger than 7'_Diff.

Perform erosion of Bi IM with a square mask and to obtain a new image
Ero IM.

Perform dilation of-Ere IM with a square mask to obtain a new image
Dila_IM.

Find out one connected component Co .comp in Dila_IM.

Calculate the centroid ¢ of the'’component Co _comp.

Translate ¢ into one in the GCS.

Because vehicle navigation must utilize the direction angle of the vehicle, it is

important to ensure the accuracy of the direction angle. The reason why the direction

angle must be corrected is illustrated in Figure 4.7. A vehicle starts at point O and

moves forward a distance. The position B is desired, but the vehicle arrives at position

A.

At the moment, the direction angle of the vehicle is recorded as zero. In reality,

the correct value is 6,. Because the vehicle suffers from mechanic errors, a user’s

command to move the vehicle straightly for a distance will result in a curved
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trajectory. In this study, we utilize two continuous correct positions to acquire a
direction angle, such as & in Figure 4.7, and the detail is described in Section 4.3.
Because the distance between two continuous localizations is short, the curve path is
close to a straight line. We can correct the direction angle of the vehicle by 6. Finally,
the detail of localizing and monitoring vehicles is described as Algorithm 4.3 and the

flowchart of the entire process is shown in Figure 4.8.

Figure 4.7 Illustration of direction angles of the vehicle.

Algorithm 4.3 Vehicle localization and monitoring.

Input: A background image IM_ Back, the odometer value of a vehicle Va, and a
threshold parameter 7' Loss.
Output: Location of the vehicle.

Steps:
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Step 1.

Step 2.
Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Determine which camera needs to do the job of vehicle localization by
Va.

Capture the foreground image IM Fore by the camera.

Calculate the centroid c of the vehicle in one image using /M Back and
IM Fore.

Check whether the point ¢ is found.

If yes, go to Step 6.
Check whether the number of cycle times not finding the vehicle is more

than 7 Loss.
If yes, the system sends an alarm message to the security center and stops
all vehicles.

Else, move the vehicle toward the goal.

Translate the point ¢ into one in the GCS and correct the odometer value
of the vehicle by the point.

Check whether the :correcty position of the vehicle is found in two

continuous cycles of-navigation.
If yes, the two contmuous coitect positions are utilized to calculate the
direction angle, and take the angle value to replace the original direction

angle of the vehicle.
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Figure 4.8 Flowchart of localizing and monitoring vehicles.
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4.2.3 Avoiding collisions between
vehicles

Because the vehicles are located constantly by the top-view omni-cameras, the
odometer values can be utilized to avoid collisions among vehicles. The system sets a
timer to detect whether two vehicles are too close. If yes, their patrolling paths are
changed by calculating some passing points and inserting them into the original path.
By these passing points, the distance between the two vehicles can be drawn apart.

The detail about the proposed collision avoiding technique is described in Chapter 6.

4.3 Detailed Process for Security
Patrolling-oy Vehicle Navigation

In the navigation phase, the vehicles navigate along assigned patrolling paths by
arriving at each node orderly. The types of nodes on a path include monitoring point,
turning point, and passing point. Assume that N is the set of nodes on a patrolling path

and that an element »; in N means the i-th node passed by a vehicle. If a point m = (m,,

my) 1s the current position of a vehicle, we can utilize the goal node n;=(x,,y,), where
the vehicle wants to arrive at, to acquire a direction vector W, . The equation is shown

in Eq. (4.3). The direction angle &y of a vehicle is an included angle between the
current direction vector of the vehicle and the positive direction of the x-axis in the
VCS, as shown in Figure 4.9.

We calculate an acute angle @ by the cosine formula and utilize the angle to

obtain &y in the following way:
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(1) If the direction vector belongs to the first quadrant, &y= 6.
(2) If the direction vector W, belongs to the second quadrant, 6y= 180"-6.

(3) If the direction vector W, belongs to the third quadrant, 8,=-180"+6.

(4) If the direction vector W, belongs to the fourth quadrant, 8,= -6.

The relation between @and 6 is shown in Figure 4.10.

Turn Left Turn Right
Vs

L 2

(a) “ B (b)
Figure 4.9 A direction angle 6y. (a) Left (0<68 < ). (b)Right (-7 <8 <0).

6, =180°-6 ¥ 6,=0
A
II (_3_'_) I (+’+)
W, =(w.w,) @ O T =0w.w)
\;\\\\\ /////Q:\". 9
ST S
7 o 0
W= (w.ow,) @F 0 =)
I (-.-) IV(+,-)
6, =-180°+6 0, =-0
. Current position Goal node

Figure 4.10 The relation between fand 6.
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The acute angle @is an included angle between the direction vector W, and the

x-axis in the VCS, and the equation is shown in Eq. (4.4). If one element of Wl is

negative, it will be transformed into positive one. As the direction angle 6y is obtained,
the difference between €yand the original direction angle 6,4, is exactly the rotation

angle Gym.

The proposed system utilizes nodes to guide the vehicles. By the current node

and the goal node, we can obtain the direction vector W, and then the rotation angle

Gum- The vehicles turn to the angle 6, and move forward. Such actions enable
vehicles to arrive at the goal node. In the period of navigation, the vehicles must be
located constantly. Therefore, we set’a distance, parameter d. When one vehicle has
moved the distance d, it must b¢ located.-Furthermorte, if the vehicle arrives at a goal
node which is a monitoring point, the diréction angle of the vehicle must be adjusted
as one Gnoni obtained in the learning phase and then performs the security monitoring
task. The algorithm is shown in the following and the flowchart is shown in Figure

4.11.

Algorithm 4.4 Navigation and monitoring tasks.

Input: The current position m = (my, m,), the goal node n;=(x,,y,), and distance
parameter d.
Output: The vehicle moves the distance d toward the goal node.

Steps:
Step 1.  Locate the vehicle including correcting the position and the direction

angle.

Step2.  Calculate the direction vector W, from the node m to the node n;by the
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following equation:

7 = W | | X —m,
= ", = y-m, | (4.3)

Step3.  Transform W, into W, each element of which is the absolute value

with respect to the element in W, .

Step 4.  Calculate the acute angle &by the following equation:

W, = abs(7);
0= cos'l(W",.—(l’O)) . (4:4)
W, 11 (1,0)]

Step 5. Calculate the direction angle 6y by the following rules.

(1) If the direction vector W, belongs to the first quadrant, 6y= 6.

(2) If the direction vector W, belongs to the second quadrant, 6= 180°-6.

(3) If the direction vector W, belongs to the third quadrant, 8y=-180"+6.

(4) If the direction vector W, belotigs to the-fourth quadrant, 6,= -6.

Step 6.  Calculate the rotation angle as = 6y —6,4,.
Step 7. Turn the vehicle leftward forthe-angle G
Step 8.  Check whether the distanee d is bigger than the distance between the

current node and the goal node.
If yes, the vehicle moves the distance d forward.

Else, the vehicle moves to the goal node.

Step 9.  Check whether the vehicle arrives at a monitoring point.

If no, perform this Algorithm 4.4 again.
Step 10. Read the direction angle Goni at the monitoring point.
Step 11. Calculate the rotation angle as Gym = Gmoni - Godo-
Step 12. Turn the vehicle leftward for the angle Gym.
Step 13.  Perform the security monitoring task.

Step 14. Read the next goal node and perform this Algorithm 4.4 again.
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Figure 4.11 Flowchart of Navigation and monitoring tasks.
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Chapter 5
Planning of Optimal Randomized
Patrolling Paths for Vehicles

5.1 Introduction

In the proposed system, patrolling paths are designed to be optimal, random, and
load-balanced for all autonomous vehicles in the senses mentioned previously. All
monitoring points on these paths are_chosen randomly. Because some monitoring
points might belong to different rectangular regions, the turning points are utilized to
enable the vehicles to move between any pair of monitoring points without collisions
with walls. To optimize the patrolling paths;-all distances between monitoring points
must be the shortest. Therefore, we calculate the distances by Dijkstra’s algorithm.
The detail is described in Section 5.2.

To patrol all monitored objects uniformly, each monitoring point appears only
once in one patrolling session. With all distances between pairs of monitoring points,
we utilize the idea of the traveling salesman problem to obtain the optimal patrolling
paths, as mentioned previously. In such a way, all autonomous vehicles can take
shorter time to accomplish the security patrolling task in each session. The detail is

described in Section 5.3.
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5.2 Calculation of Paths between
Monitoring Points by Dijkstra’s
Algorithm

5.2.1 Review of Dijkstra’s algorithm

Dijkstra’s algorithm can be adopted to solve a single-source shortest-paths
problem on a weighted, directed graph G = (V, E), in which V' is the set of vertices and
E is the set of edges. The algorithm is only feasible for the case that all edge weights
are nonnegative. By the algorithm; the shortest paths and weights from a source s to
other vertices can be obtained. In the algorithm, there-are three symbol definitions:

(1) w(u, v) represents the weight 6f-the-edge (1 v);

(2) d[v] represents the shortest-path estimate from the source s to the vertex v;

and

(3) m[v] represents the predecessor of v in the shortest path from the source s to

the vertex v.

The main concept is that the all sub-paths of the shortest path are also the
shortest paths. Therefore, it uses the technique of relaxation [24] by a triangle
inequality. The process is to check constantly whether the shortest path to v can be
improved by going through u. If yes, then update d[v] and n[v]. Dijkstra’s algorithm

[24] is shown below.
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Algorithm 5.1 Dijkstra’s algorithm.

Input: A directed graph G including vertices 7 and edges E, all weights with respect
to edges E, a source s, and an empty set S.
Output: The shortest paths and weights from s to other vertices.

Steps:

Step 1. Setall d[v] = o0 and all n[v] = nil.

Step 2. Setd[s]=0.

Step 3.  Find out vertex u whose shortest-path estimate d[u] is the smallest.

Step 4.  Put the vertex u into the set S.

Step 5. Find out all vertices v which are adjacent to the vertex u from E and
which are not in the set S.

Step 6.  Check whether d[v] > d[u] + w(u, v).

If yes, update d[v] = d[u} + w(u, v) and z[v] = u.
Step 7. Repeat Step 3 if the set S do not contain all vertices V.

5.2.2 Proposed technique for
generation of partial patrolling paths

To calculate the distance between every pair of monitoring points, we adopt
Dijkstra’s algorithm. At first, we check whether two monitoring points belong to an
identical rectangular region. If yes, the distance between them is set equal to the
straight line distance; else, we calculate the shortest path by passing through some
turning points without colliding with walls.

To meet the assumptions in Dijkstra’s algorithm, the patrolling environment is

taken to be a directed graph G. All turning points and monitoring points are regarded

70



as the set V' of vertices in the graph G. If there is a rectangular region which two
turning points belong to or which both of a turning point and a monitoring point
belong to, then there exists an edge between the two and it is taken to be one element
of the set £ of edges in the graph G. The directions of all edges are two-way. The
straight line distances of all edges in the set £ are the set W of weights.

To calculate the shortest path between two monitoring points which belong to
different regions, we set one of the two points as a source point and the other as an
end point, at first. By Dijkstra’s algorithm, the shortest path from the source point to
the end point can be obtained and its weight is exactly the distance between them. The

algorithm of processing all pairs of monitoring points is described in following.

Algorithm 5.2 Computing distances between two monitoring points.

Input: Rectangular regions R, monitoring points, and ‘turning points.
Output: All the shortest distances-and paths between all pairs of monitoring points.

Steps:

Step 1. Produce the set V" which is composed of all monitoring points and turning
points.

Step 2.  Produce the set £, in which every element means that it connects two
points which belong to an identical rectangular region.

Step 3.  Produce the set /¥, in which each element is the straightly line distance
with respect to the edge in the set E.

Step4.  Check whether two monitoring points M; and M, belong to an identical

region.

If yes, the distance between them is exactly the straightly line distance
and repeat Step 4 until the distances between all pairs of monitoring
points are obtained.

Else, perform Dijkstra’s algorithm with the source point M; and the end
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point M;.

Step 5.  Record the weight and the order of the turning points passed by from the
source point M; and the end point M, according to the result from
Dijkstra’s algorithm.

Step 6.  Repeat Step 4 until the distances between all pairs of monitoring points

are obtained.

As an example, a patrolling environment is shown in_Figure 5.1, in which there
are five rectangular regions, five turning points N; through Ns, and two monitoring

points M| and M,.

Figure 5.1 Aipatrolling.environment.

Because M, and M, belong to different rectangular regions, the distance between
them 1is calculated by Dijkstra’s algorithm. Before performing the algorithm, we
transform the patrolling environment into a graph G = (V, E), as shown in Figure 5.2.
The set V contains N, through Nsand M, through M,; the set E includes all the black

lines which are two-way. M, is the source point and M, is the end point.

1 b
. ;'\"r_ {
4
2}
Ny~ 13 N;

Figure 5.2 The graph G from Figure 5.1.

The results of each process are shown in Figure 5.3 through Figure 5.9 step by

7 N;



step. Because M, is the source point, it has the smallest distance from the source point

in the first cycle.

11 N
p /
4
Ny 13
v M1 M2 N1 N2 N3 N4 NS
d[v] EI o0 o0 0 0 0 0
n[v] nil nil nil nil nil nil

Figure 5.3 The first cycle.

In the second cycle, N; has the smallest’distance within non-chosen vertices.

Therefore, the shortest path for the source-point is M. —> N; and the distance is 11.

N,
11 )
4
Ny 13
v M1 M2 N1 N2 N3 N4 NS
d[v] Lo] 0 L1 © o o 00
n[v] nil M, nil nil nil nil

Figure 5.4 The second cycle.

In the third cycle, N, has the smallest distance within the non-chosen vertices.

Therefore, the shortest path for the source point is M; = N; = N, and the distance is

15.

In the fourth cycle, N; has the smallest distance within non-chosen vertices.

Therefore, the shortest path for the source point is M; = Ny 2 N, = Njand the
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distance is 28.

11 N,f P
4
e E
v M1 M2 N1 N2 N3 N4 NS
dvi | [0 | = oo % o
n[v] nil M, N nil nil nil

Figure 5.5 The third cycle.

11 N,’ P
41
N 13
% M, M, N No N3 Ny Ns
a» | Lol % Ol | 51 | [2s] 0 0
n[v] nil M, N N, nil nil

Figure 5.6 The fourth cycle.

In the fifth cycle, N5 has the smallest distance within the non-chosen vertices.
Therefore, the shortest path for the source point is M; - N; > N, 2 N3 > Nsand the
distance is 29.5.

In the sixth cycle, N4 has the smallest distance within the non-chosen vertices.
Therefore, the shortest path for the source point is M; 2> N; > N, 2 N3 > Nsand the

distance is 30.
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11 > ..
41
N 13
v M1 M2 N1 N2 N3 N4 NS
dy] | Lo 37 ] | [O15] | [28] 30
TE[V] N3 M1 N1 N2 N3 N3

Figure 5.7 The fifth cycle.

41

N, 13
v M1 M2 N1 N2 N3 N4 NS
dav | ol 37 o as] o 28] | 3ol | [295]
n[v] N3 M, N N, N3 N3

Figure 5.8 The sixth cycle.

In the seventh cycle, M, has the smallest distance within the non-chosen vertices.
Therefore, the shortest path for the source point is M; = Ny 2> N, 2> N3 > M, and the
distance is 37. Finally, the distance between the pair of monitoring points M, and M,
is exactly 37. Furthermore, the path from M, to M, is M} = Ny 2 N, = N3 > M, and
the path from M, to M, is M, 2 N3 = N, 2> N; 2> M;. All results of the above

derivations must be recorded.
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N;
11 > ®
¥ 8
N
4 4 /
24AN\3 8
4}
N. 13 N; N5
1.5
v M1 M2 N1 N2 N3 N4 NS
d[v] Lo] (371 (1] L15] (28] (30] | [29.5]
TE[V] N3 M1 N1 N2 N3 N3

Figure 5.9 The seventh cycle.

5.3 Calculation of Optimal
Randomized Patrelling Paths by
Finding Hamiltonian Paths

5.3.1 Review of Traveling-Salesman
Problem (TSP)

The definition of the traveling-salesman problem is that a salesman must visit n
cities and wishes to visit each city exactly once with the minimum cost. Furthermore,
he finishes at the city where he starts from. The problem involves a complete
undirected graph G = (V, E), in which the set V contains all z cities, the set £ contains
all edges of any pair of vertices, and there is a nonnegative cost c(u, v) associated with

each edge (u, v) in the set £, and may be modeled as a search of a Hamiltonian cycle
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within G with the minimum cost.

The traveling-salesman problem is NP-complete, so it cannot be solved by a
polynomial-time algorithm. Many methods have been proposed to speed up the
process, such as genetic local search [21], distributed branch-and-bound search [22],
annealing-based heuristic search [23], etc. However, the number of the monitoring
points in the experiment of this study is not too large. So we adopt an exhaustive
search method (or called a brute-force method), whose time complexity is O(n!) with

inputs of size n, to find an optimal solution in all combinatorial states.

5.3.2 Proposed technique for
generation of complete patrolling
paths

Because every monitoring point is visited only once in a session, we transform
the path planning proposed into the traveling-salesman problem. Some assumptions
are made:

(1) all monitoring points are contained in a set V;
(2) each pair of vertices in the set } has an edge between them and all edges
are contained in a set £
(3) acomplete undirected graph G is composed of the set } and the set £; and
(4) a cost c(u, v) associated with the edge (u, v) is the distance between the
monitoring points z and v.
If two monitoring points belong to different rectangular regions, the distance between

them is calculated by Dijkstra’s algorithm described in Section 5.2; else, it is the
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straight line distance.

As an example, a patrolling environment is shown in Figure 5.10, in which M,
through M, are monitoring points, and N, through Ns are turning points. Furthermore,
each black edge connects two points which are in an identical rectangular region and
each blue edge connects two monitoring points which are also in the same one. All
distances between pairs of monitoring points and turning points passed by them are

recorded in a table, as shown in Table 5.1.

N, 13 N3 15 Ns

Figure 5:10 A patrolling.environment.

Then, we transform the graph in‘Figure-5.10 into another, as shown in Figure
5.11.With the complete undirected graph. G and all costs associated with the edges, we
can find an optimal patrolling path. Because the vehicles do not return to the start
position in this study, the path is exactly a Hamiltonian path with the minimum cost.
The result of Figure 5.11 starting at M, is M|} = M3 = M4 = M,. And then integrating
the information of Table 5.1 into the path, we get the final result as M; 2> M5 2> M,

= N4 =2 M,. The algorithm of generating an optimal patrolling path is shown below.

Table 5.1 Distances and passing turning points between every pair of monitoring

points.

M, M, M; My

M, 37 13 16.5
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NI2>N,>N;

M, 25.5 18.5

(M, > M)

Ny =2 N,
M, v 5
(M, > M)
N N,

My

(Ml > M4) (Mz > M4)

13 \w

37 \5
61 18.5

Figure 5.11 A complete undirected graph G = (V, E).

Algorithm 5.3 Generation of an optimal patrelling path.

Input: All monitoring points, a table 7" containing all distances and passing turning

points between all pairs of monitoring points, and a position P where the vehicle

starts at.

Output: An optimal patrolling path from P.

Steps:
Step 1.

Step 2.

Step 3.

Read the distance between each pair of monitoring points from 7" and each
of them is exactly the cost c(u, v) associated with the edge (u, v) .

Find a Hamiltonian path with the minimum cost from P in the patrolling
environment containing all MPs.

Merge turning points into the Hamiltonian path obtained from Step 2, by
Table T.

In this study, the number of vehicles used to perform the patrolling task is more

than one. Therefore, all monitoring points are divided randomly into groups for each
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vehicle to patrol. The rule of choosing monitoring points randomly has been described
in Section 4.2.1. By performing Algorithm 5.3 individually, the optimal randomized
patrolling paths for all vehicles can be obtained. However, we set a threshold
parameter 7 to restrict the differences of the patrolling distances for the property of
load balancing among vehicles. If the condition is not satisfied, all monitoring points

will be chosen and Algorithm 5.3 performed again.
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Chapter 6
Collision Avoidance between Vehicles

6.1 Introduction

In this study, an assumption made is that no unexpected obstacle exists in the
patrolling environment. However, the security patrolling task is performed by multiple
vehicles, it is necessary to ensure no collision among vehicles. Many methods about
collision avoidance among multiple vehicles have been proposed, such as by cell
decomposition [18], using a probabilistic model [19], or based on multilayered
cellular automata architecture [20],.ete.

Because only two vehicles-are used-in-the-experiment of this study, we can solve
the problem by keeping a fixed distance Dis between two vehicles. If the distance
between the vehicles is smaller than Dis, their patrolling paths must be changed. By
the way, it is noted that collision avoidance between the vehicles is real-time and this
is good for the property of random patrolling paths. Furthermore, the calculating time
is short. If the number of the vehicles is more than two, the collision avoidance

technique will need more consideration and this can be one of the further works.

6.2 Detection of Collisions

Because vehicles are located constantly by the top-view omni-cameras, the

odometer values are credible. Therefore, the values are utilized to compute the
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distance between two vehicles in every cycle of a fixed time duration. If they are too
close, their paths will be changed by inserting some passing points. By these points,
the distance between the two vehicles can be drawn apart.

For collisions, there are two different states. We only consider the section of the
assigned patrolling path from the current positions to the goals, turning points or
monitoring points, where the vehicles are moving to. If the two sections have an
intersection, this state is called path-intersecting; else, it is the state of
non-path-intersecting. The proposed collision avoidance techniques are described in

Section 6.3.

6.3 Proposed Collision‘Avoidance
Technigues

6.3.1 Collision avoidance on
Intersecting paths

In the state of path-intersecting, we let the two vehicles keeping a fixed distance.
Assume that the first vehicle is at position Vj; = (x11, y11) and the other is at position
Va1 = (x21, y21). Additionally, assume that they are moving to the goals G| = (gx1, g11)
and G, = (gx2, @1»), respectively. At first, we calculate the intersection / in the two
paths by the parametric forms. Each parametric form with respect to the path from the

current position to the goal is shown in Eq. (6.1) below:
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[xlj = {xllj+r*{gxl _x“j for vehiclel,
Vi Y EVi -

- 6.1
[xz j = [xm j + S*(gxz lej for vehicle2; ©.D
V) Mai 8V =V

where 0 <r,s <1.

The point / can be obtained by solving the simultaneous equations of “x; = x,”” and “y;
= y,”. Then, assume that the distance between ¥, and [ is smaller than the distance
between V3 and 1, as shown in Figure 6.1, and so the path of the second vehicle must

be changed.

G,
®

A

_\
/I ® C

A

Figure 6.1 An intersection / on the paths of two vehicles.

Because the first vehicle moves along the original path, we can forecast the
position V1> = (x12, ¥12) at the next moment. If the velocity of the vehicle is ve/ and the
time interval of calculating the distance between vehicles is ¢, then Vj, can be

calculated by Eq. (6.2) below:

o
2 Y \/(gxl'xn) +(gy -0 &I

Because the vehicles must keep a distance Dis to each other, we can say that the

passing point V>, of the second vehicle is on a circle C whose center is V1, and whose
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radius is Dis. To calculate V5,, we must acquire the projection point V3’ of V5, on the
circle C, at first. The reason is that the distance between V>, and V5, is desired to be
not too long. So we utilize an included angle & between V5’ and V>, on C to acquire

V2, in which C and V5’ can be represented as follows:

C:(x-x,) +(y-y,) = Dis’

, ' X X, - X 6.3
v, =[x2',j=( 21]+S*(g 2 21), where s € R. (63)
Yo Yo &Yy = Vy

Therefore, the projection point /,;’ can be calculated by Eq. (6.4) as follows:
(%, +(gx, - Xy))s 'xlz)2 + (1 + (8%, - X,))s 'y12)2 = Dis”. (6.4)

As long as the value s is solved, V5,’ is obtained. Then, we calculate the angle 6’ of
V51" from the positive direction of thex-axis. Because C can also be represented as Eq.

(6.5) below, we can calculate 6’ by Eq. (6.6) below:
C :(x,, + Dis*cos ¢, yy+Dis*sing) ; (6.5)

o . ,
X, =X, +Dis*cos 8,

. - (6.6)
where 6,, = arc COS(M).
Dis

Because the included angle between V5;’ and V>, is restricted to be 6, V2, is one of the

points a or b as shown in Eq. (6.7), called candidate passing points:
. [xlz j N Dis*[c?s(é?%l + 9))
Y2 sin(6,, +6)
1o () i)
M2 sin(6,, —0)

Furthermore, it is desired that the distance between V>, and G, is bigger. The

(6.7)

reason is that the distance between the two vehicles can be drawn apart. Therefore, if
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point a is closer to G; than point b, V5, will be exactly the point b. As the passing
point V5, is obtained, the patrolling path of the second vehicle is changed from V>, =
Gyto Vo1 2 Var 2 Go.

It is possible that the alternative path may exceed the walkable range. If this is
the case, then the path must be changed again. In general, there are three unallowable
states:

(1) the passing point P is in the outer region as shown in Figure 6.2;

P
/'1’\\
/ \
/ \
// \\
P]// \\PZ
/ '\
/ \
/ \
r @ G
Walkable Region
R

Figure 6.2 Passing point P s in the outer region.

(2) the path from the curtent position V- te the passing point P exceeds the

walkable range as shown in Figure 6.3; and

P Walkable Region
/—1'\\
/ \
/ \
/ \\
Py, \\P 2
/. .\
7/ N\
/ \
v @ G

Walkable Region

R

Figure 6.3 The alternative path is not feasible.

(3) the path from the passing point P to the goal G exceeds the walkable range

as shown in Figure 6.4.
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Walkable Region P
71.\\
/ \
/ \
/
/ \
Pl// \\[)2
/ N\
/ \
/ N\
// \
r @ % G
Walkable Region
R

Figure 6.4 The alternative path is not feasible.

For these states, the rectangular region which the passing point P belongs to is
not equal to the one R which both V" and G belong to. Therefore, we calculate the
intersections of the region R and the alternative path V' > P -> G. Finally, the
patrolling path is taken to be V' = P 2.2, = G. The algorithm of checking and

finding a feasible alternative patrolling path is'shown in the following.

Algorithm 6.1 Checking and finding-a feasible altérnative patrolling path.

Input: All rectangular regions Re, the passing point P, the front point F (the current
position V or another passing point) of P, and the goal G.
Output: A feasible alternative patrolling path.

Steps:
Step 1. Find the rectangular region R, which both /" and G belong to, from Re.
Step 2. Check whether the rectangular region, which the passing point belongs to,

is identical to R.
If yes, the alternative patrolling path is 7/ > P 2> G.

Else, go to Step 3.
Step 3. Calculate the intersections, P; and P,, of the region R and the alternative

path F > P > G.
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Then, the alternative patrolling path is F > P, 2 P, 2 G.

Additionally, after the time interval ¢, the system must check whether an
intersection is still on the paths of the two vehicles again. If yes, the patrolling path of
the second vehicle will be changed again. The entire process is described as

Algorithm 6.2.

Algorithm 6.2 Computing an alternative path for an intersecting state.

Input: The current position Vj; = (x11, y11) and the goal G, = (gx1, gy1) of the first
vehicle, the current position V2, = (x21, y21) and the goal G, = (gxz, g1») of the
second vehicle, a fixed length Dis between the two vehicles, the velocity vel of the
vehicles, the time interval ¢ of ¢alculating the distance between the vehicles, and the
included angle @between the current position and the passing point.

Output: A alternative patrolling path for one vehicle.

Steps:
Step 1. Calculate the intersection / in the two paths V1 2 G; and V3 2 Go.
Step 2. Judge which vehicle should change its path.

Ifd(V11, I) <d(Vai, ), the path of the second vehicle must be changed.
Else, the path of the first vehicle must be changed.
Assume that the path of the second vehicle must be changed in the

following steps.
Step 3.  Forecast the position Vi, of Vj; at the next moment by the following

equation:

(xnj_(xnj_'_ vol *t *£gxl-xllj
Vi Y \/(gxl-x“)2+(gyl-y“)2 EN-In

Step 4.  Calculate the projection point V3;’ of V3, on the circle C whose center is
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Step 5.

Step 6.

Step 7.

Step 8.

V12 and whose radius is Dis by the following equation:

C:(x-x,)" +(y-y,)" = Dis’®
, ' x X, - X
v, =[x21,]=( 21J+s*(g 2 21), where s € R.
Yo Va1 Yy =Vn

The above equations lead to

(x,, +(gx, - x,,)s 'xlz)z +(y H(gVy-yyy)s 'y12)2 = Dis’ .
Calculate the angle 6’ of V,,’ from the positive direction of the x-axis by
the following equation:
C:(x,, + Dis*cos ¢, y,, + Dis *sin ¢);
Vo =005 1)
The above equations lead to:
X, =X, + Dis*cos 6,,;

: X, - X,
6,, = arc cos(—*—2),
21 ( DlS )
Calculate candidate passing points‘a and & in the following way, in which

the included angle bétween /51" and'the ¢andidate passing points is &
a= (x” j + Dis (C?S(%l n 0));
Y2 sin(6,, +6)
o[ o[ 0)
Vi sin(6,, — 0)
Determine the passing point in the following way:

if (a, G1) < (b, G)), point b is the passing point.

Then the path of the second vehicle is taken to be V> 2 b 2> Go.
Check whether the alternative path is feasible by Algorithm 6.1.

If not, the new alternative path will be obtained from Algorithm 6.1.
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6.3.2 Collision avo
non-intersecting

iIdance on
paths

In this state, both paths of the two vehicles must be changed. Each passing point

is on the perpendicular bisector / of the path from a current position V' = (x1, y;) to a

goal G = (xz, y»). Because it is desired to draw apart the distance between the two

vehicles quickly, the included angle between the paths V' = G and V' = turning point

P = (p1, p2) 1s set by a parameter 6. Therefore, the distance between P and C, which is

the midpoint of line segment V" and G, is:

E>l<tan6?.
2

A graphic illustration is shown inFigure 6

C

(6.8)

152

|
Tperpendicular
bisector /

Figure 6.5 An included angle &between V> G and V > P.

The directional vector w of / is perpendicular to the one of path V' = G, so it is:

- (
Then, / can be represented as:
X X, +X,

Wi

where s € R.

1

J+

- -2,)
X=X,

(6.9)

}

- -y,)

(%, -x,) J’

(6.10)
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Because P is on the perpendicular bisector / and the distance between C and P is
computed by Eq. (6.8), P can be represented by Eq. (6.11) below, in which a and b are

in the different sides of path V' = G, respectively:

a_l(xf"xzj_ VG *tan 0 ['(yﬁyz)j_
2+ 2*\/(x1'x2)2+(y1'y2)2 A Ie) ’

or (6.11)
b_l(x1+x2j+ VG *tan 6 ('(yl'yz)]
2\ +y, 2*\/(x1-x2)2+(yl-y2)2 X=X

For each path of the vehicles, there are two candidates to choose as a passing point.

The condition of choosing passing points for the vehicles is that the distance between
chosen passing points is the longest within all combinations of the candidates. See an

example shown in the following.

VZ
o
0

3 a,
_ﬁ_ T
perpendicular
bisector /,
@ The first vehicle G,

Figure 6.6 Alternative paths at a non-intersecting state.

Points a; and b, are the candidates for the first vehicle and points a, and b, are
the ones for the second vehicle. All states of choosing candidates are (a;, az), (a1, b2),
(b1, az), and (b1, by), in which the distance between a; and a; is the shortest. So, a; and
a, are the passing points for the first and the second vehicles, respectively; the
alternative paths for the two vehicles are V; 2 a; =2 G and V2, 2 a; 2 Ga.

Additionally, because the included angle between the two paths from the current
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position ¥ to the goal G and to the passing point P is restricted by a parameter 6, the
distance between P and path /' = G may be too long. Therefore, we set a fixed
distance D between them. If the distance between P and path V' = G is larger than D,
we translate the line segment / connecting V' and G along a perpendicular direction
toward the passing point P, such as shown in Figure 6.7, in which / is exactly the

translation line.

R
/
‘ ‘ translation line /

/ \
/ \

b /NG W AN
V./[\ T %G

Figure 6.7 The passing point P:is too far.

The translation line [ can be répresented.as:

(y] -yZ)*x_(xl 'xz)*y:D*\/(xl 'x2)2 +(y1 ')’2)2 +d

or
(6.12)

(= 30) % x-(x,-X,) %y =-D*\(x, - x,)* + (3, - y,)* +d
) if VG: (yl 'yz)*x'(xl 'xz)*y:d‘

Then, we calculate the intersections, P, and P,, of path V' 2P = G and line /.
Therefore, the new alternative path is V' > P; = P, = G. Furthermore, it is necessary
to check whether the path is feasible by Algorithm 6.1, and then the final alternative
path can be obtained. See an example shown in Figure 6.8 through Figure 6.10 for
illustration.

In the example, two vehicles are too close and paths of them are non-intersecting.

Here, we only see the state of one vehicle, as shown in Figure 6.8. P is the passing
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point, but the point is too far from line segmentﬁ. Therefore, we translate VG a
distance D toward P, and then the translation line 1 can be obtained, as shown in

Figure 6.9.

IRB ................ perpendicular

| bisector /
vV ."' Rectangular Region

R

translation line /

-
e
-
"
e
....

Rectangular Region
R

Figure 6.9 P is too far.

After calculating two intersections of / and V= P = G, the new alternative path
is V> P, =2 P, 2 G. For P, and P,, it is necessary to check whether they are feasible
by Algorithm 6.1. Because the rectangular region which P, belongs to is different
from the one R which both the current position V and the goal G belong to, as shown

in Figure 6.10.
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/
1 2

Figure 6.10 P, is not in the rectangular region R.

Hence, we calculate the intersections of P; 2 P, =2 G and R, and then the
alternative path becomes V' = P, = P, = P»n = G. The processing of computing a

alternative path at a non-intersecting state is shown as Algorithm 6.3 below.

Algorithm 6.3 Computing an alternative path:for a non-intersecting case.

Input: The current position V| = (x11, y11) and the goal G, = (x12, y12) of the first
vehicle, the current position V, = (x21, ¥21) and the goal G, = (x22, ¥22) of the second
vehicle, the restricted distance D between a passing point and the original path V; =
Gy or V2 2 G, and the included angle @ between the original path and the path
from the current position to the passing point.

Output: The alternative paths for the two vehicles.

Steps:
Step 1. Calculate two candidates of passing points for the first vehicle (a; and b;)

and the second vehicle (a, and b,) by the following equation:
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l(x” +x12J VG * tan 6 ('(J’n -y12)]
2\yut+ya) 2% (X“ x12) +(¥, - y1z) T =X
l[xll +x12J VG *tan 6 ('(J’n 'ylz)j
2\m+yn) 2% (xu xlz) +(yy, - y12) T X
—l(x” +x22J_ VG *tan 6 ('(yzl 'yzz)J
2\ yy + 2*\/(x21—x22)2+(y21—y22)2 Yo = X2
b = (le +x22J VG*tan @ {'(yn ‘yzz)j
275 +

Vot Vn 2*\/(x21'x22)2+()’21'y22)2 Yo =X
Step 2.  Determine the passing points for the two vehicles in the following way.

Step 2.1. Calculate all distances of the four combinations (a;, az), (a1, b2),
(b1, a2), and (b1, by).
Step 2.2.  Choose the least distance from Step 2.1 and the combination is
exactly the passing points for the two vehicles.
Step 2.3.  Insert the passing point into the original path for each vehicle.
Step 3.  Check whether the distance between the passing point P and the original
path is larger than D, for each vehicle.

If yes, calculate the jintersections of the translation line / and the
alternative path, in which thedistance between / and the original path is

D; and then, replace P by the intersections.

Step 4.  Check whether every alternative path is feasible by Algorithm 6.1.

If not, obtain the new alternative path from Algorithm 6.1.
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Chapter 7
Experimental Results and
Discussions

In this chapter, we show some experimental results of the proposed security
patrolling system by two ways. The first is the result of optimal randomized patrolling
paths and collision avoidance between vehicles shown by a simulation using programs
written in the Borland C++ builder; it is described in Section 7.1. The other is the
result of an actual environment in the Computer Vision Laboratory, Department of

Computer Science, National Chiao Tung University, and it is described in Section 7.2.

7.1 Experimental Results of Simulation
of Patrolling

In this simulation, we create a patrolling environment whose floor shape is
composed of four rectangular regions, as shown in Figure 7.1, in which Obj. 0
through Obj.6 are monitoring points.

We utilize the rectangular regions to calculate all the turning points and the
distance between each pair of monitoring points, and then save the data into some text
files. By reading the files, they can be used again. Furthermore, the threshold to
restrict the differences between the patrolling distances needs to be keyed in to the
user interface, as shown in Figure 7.1, marked by a red frame. All patrolling paths are
random, optimal, and load balanced among vehicles. See an example shown in Figure

7.2, in which the first vehicle starts its navigation at Obj. 4 (M4) and the second
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vehicle starts at Obj. 1 (M1).

ColculeieDitarce  LosdDubs  Foom

ThresholdDis E

Patrol

Close ‘

i!tlf
ﬂ Vehicle 1

I_g;
e, ‘ehicle 2
[ |

Figure 7.1 A simulated patrolling environment.

Among all monitoring points, MO, M3,‘ M4; and M6 are chosen by the first
vehicle; M1, M2, and M5 are chosen by the second. The obtained optimal paths are
M4 > M6 &> M3 - MO and M1 >M2 - MS5. According to the record of turning
points passed by between each pair of monitoring points, obtained in the learning
phase, the actual paths are M4 - M6 - N3 > M3 > N1 = MO0 and M1 > M2 > N2
- N3-> MS5 for the two vehicles, as shown by red and green dotted lines in Figure 7.2.
Furthermore, the distances of the paths are 1633.22 and 1081.56. Because the
difference of the distances is smaller than the threshold 800, set by the user, the two
paths are accepted. In this session, the two vehicles end at M0 and M5, respectively,
so the positions are the starts for them in the next patrolling session, for which, the

new path planning is shown in Figure 7.3.
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Figure 7.2 Path planning for the two vehicles in a session.

MO, M2, M3, and M4 are chosen by the first vehicle; M1, M5 and M6 are chosen
by the second. The obtained optimal paths are M0 = M2 > M3 - M4 and M5 > M6
= M1; the actual paths are M0 2> N1 2> M2 2> M3 - M4 and M5 >M6 - N3 > N2
- M1 for the two vehicles, as shown by the red and green dotted lines in Figure 7.3.
Furthermore, the distances of the paths are 1175.41 and 1262.25 and they are also
accepted.

To show the advantage of our system, we compare the times needed for different
control factors, as shown in Table 7.1. If the property of randomization is an essential
condition, the average time in one session taken by using one vehicle is nearly double

of that taken by using two vehicles. This result tells us that the system for multiple

97



vehicles can bring more benefits. Besides, if the number of vehicles is the same, an

optimal patrolling path will take less time than a non-optimal path.
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Figure 7.3 Path planning for the two vehicles in the next session.

For collision avoidance, if the distance between two vehicles is too close, the
paths of the vehicles will be changed. The states of non-intersecting paths are shown
in Figure 7.4, in which red and green lines are the original paths of the vehicles.
Because the first obtained passing points, red and green circles, are too far from the
original path or exceed the walkable regions, the blue circles are calculated. The
dotted lines are exactly the feasible alternative paths for the vehicles. Besides, the
final passing points belong to the rectangular region which the original path also

belongs to.
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Table 7.1 The table of time comparisons where O and X means conducted or not,

respectively.

Number Average Time Saved Time /

of Randomization | Optimization (second / Original Time
Vehicles one session) (%)

1 O O 39.4 -

1 @) X 31.6 19.8

2 @) @) 19.7 50.0

2 @) X 13.5 65.7

For collision avoidance of the path-intersecting case, one example is shown in Figure

7.5. Because the second vehicle is closer to the intersection than the first one, the path

of the first vehicle must be changed. The black citcles a and b are the candidates of

passing points. Because b is fafther from the‘goal ofithe second vehicle, b is chosen.

However, the rectangular region which:&-belongs to is different from the one which

the original path belongs to. The blue cirele is the final passing point to be chosen,

and the red dotted line is the alternative path for the first vehicle.
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Figure 7.4 Collision avoidance of non-intersecting paths.
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Figure 7.5 Collision aveidanee of intersecting paths.

7.2 ExperimentalResults of Patrolling
In Real Environment

The real environment for this experiment is an open space area in our laboratory.
Because autonomous vehicles used in the study suffer from accumulation of
mechanical errors, two top-view omni-cameras are utilized to locate and monitor the
vehicles.

While collecting data for Table 7.2, we drive the vehicle to random places and
record the values of the actual positions and the odometer. The total moved distance,
passing twenty position points, is 4818.40 centimeters and the average error rate

without calibration by tow-view cameras between the actual positions and the
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odometer values is 8.86%. Furthermore, the reason why the errors do not increase is

that turning of the vehicle also incurs errors, so the errors might cancel one another by

left and right turnings.
Table 7.2 Mechanical errors of the vehicle.
(1)Actual Position |  (2)Odometer Value Error
No. (I(l)—(2)|)
X y X y )]

1 47.6 7.4 459 7.4 0.035
2 163.4 32.2 160.7 342 0.020
3 272.3 35.2 269.3 41.1 0.024
4 382.2 29.8 378.8 40.9 0.030
5 399 85.3 392.8 97.3 0.033
6 304.5 115.5 299.2 124.2 0.031
7 546.6 52 546.9 79.8 0.051
8 799.9 145.2 786.6 197.9 0.067
9 505.1 204.3 491.6 228 0.050
10 | 2674 198.2 256.8 192.8 0.036
11 717.3 195.2 691.8 274.6 0.112
12 | 3538 193.5 335.9 201.8 0.049
13 789.8 37.2 791.2 138.2 0.128
14 | 573.5 139.7 5574 175 0.066
15 631.6 82 630.9 138.9 0.089
16 | 329.7 177.6 316.2 104.5 0.198
17 | 746.6 103.2 721.9 208.6 0.144
18 213 46 292.9 106.5 0.460
19 | 6358 203.3 574.9 243.8 0.110
20 523 97.4 543 94 0.038

Additionally, we also record the errors of the two top-view omni-cameras. The
image in Figure 7.6 is the view of the first camera and we calculate the positions of all
circles in the image.

In Table 7.3, we calculate the errors between the actual positions and the

positions in the image. From the values, we know that the errors of those points,
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which is farther from the view center of the camera, is bigger. However, the average
error rate with calibration is only 3.86% and all points are independent. Therefore, the
vehicles are located by the cameras such that the vehicles do not suffer from
accumulation of mechanical errors anymore. About the second camera, the view and
the errors are shown in Figure 7.7 and Table 7.4, in which the average error rate with

calibration is 2.51 %.

Figure 7.6 The view of the first top-view omni-camera.

Furthermore, the task of security patrolling includes the work of capturing the
pictures of some monitored objects. By the top-view omni-cameras to locate the
vehicles periodically in the patrolling session, the vehicles can accomplish the mission
with the information of the positions and the orientations with respect to the objects,
obtained in the learning phase. In the following, we show some results of images
taken by the vehicles. Some monitored objects are in the center of the images, as
shown in Figure 7.8(a). The images, captured by the vehicles in the patrolling session,

with respect to the ones in Figure 7.8(a) are shown in Figure 7.8(b).
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Table 7.3 Errors of the first top-view omni-camera.

(1)Actual Position (2)Image Position Error
No. v . N , ( | (1)(1)(2) Loy, )

1 61 30.5 52.89 28.56 0.122
2 122 30.5 113.62 28.68 0.068
3 183 30.5 174.53 30.5 0.046
4 244 30.5 238.19 30.5 0.024
5 305 30.5 303.48 30.58 0.005
6 366 30.5 368.11 27.17 0.011
7 30.5 91.5 15.25 99.13 0.177
8 91.5 91.5 80.61 93.68 0.086
9 152.5 91.5 141.74 95.15 0.064
10 213.5 91.5 207.4 93.43 0.028
11 274.5 91.5 271.6 91.65 0.010
12 335.5 91.5 337.19 93.19 0.007
13 396.5 91.5 400.31 91.5 0.009
14 213.5 15245 205.47 156.39 0.034
15 274.5 152.5 270.22 154.21 0.015
16 335.5 152.5 335.86 155.89 0.009
17 396.5 152.5 397.27 156.36 0.009
18 244 213.5 23939 217.91 0.020
19 305 213.5 302.22 217.84 0.014
20 366 213.5 367.24 220.12 0.016

In Figure 7.8, the difference between each pair of images is smaller. It tells us
that the proposed vehicle-pose learning strategy and the proposed vehicle localization

technique are good for the vehicles to perform the security patrolling task.
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Figure 7.7 The view of the second top-view omni-camera.

Table 7.4 Errors of the second top-view omni-camera.

Actual Position g Image.Position Error

No. [T F (5 200" 3 N TUECI
1 488 30:5. .| 484388 23.73 0.109
2 549 305704 542.84 23.49 0.074
3 610 30.5 608.29 24.17 0.035
4 671 30.5 671.32 24.42 0.025
5 732 30.5 736.11 24.35 0.024
6 793 30.5 796.44 23.47 0.021
7 457.5 91.5 456.75 87.34 0.044
8 518.5 91.5 516.22 87.75 0.034
9 579.5 91.5 575.82 86.18 0.036
10 640.5 91.5 637.75 87.95 0.019
11 701.5 91.5 703.29 86.42 0.019
12 762.5 91.5 766.8 85.91 0.020
13 823.5 91.5 824.58 86.1 0.014
14 457.5 152.5 454.96 150.7 0.020
15 518.5 152.5 514.43 152.5 0.023
16 579.5 152.5 574.83 149.27 0.027
17 640.5 152.5 640.64 149.46 0.012
18 701.5 152.5 703.11 150.98 0.007




Actual Position Image Position
19 762.5 152.5 764.38 150.99 0.007
20 823.5 152.5 824.02 149.14 0.008
21 427 213.5 429.35 215.86 0.016
22 488 213.5 485.81 213.63 0.010
23 549 213.5 543.7 212.1 0.022
24 610 213.5 606.87 212.05 0.012
25 671 213.5 671.08 211.9 0.005
26 732 213.5 735.21 212.23 0.009

(@) (b)

Figure 7.8 The security patrolling task. (a) Images captured in the learning phase. (b)

Images captured in the navigation phase.
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Figure 7.9 The security patrolling task. (a) Images captured in the learning phase. (b)

Images captured in the navigation phase. (continued)
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7.3 Discussions

The proposed system utilizes multiple vision-based autonomous vehicles to
perform the security patrolling task. For this purpose, some monitoring points are
utilized to guide the vehicles. By the way, there are more applications of the
monitoring points, such as providing various services. Every monitoring point can be
regarded, for example, as a business service point in which there are some customers.
If the environment is a restaurant, the apparatus of showing menu can be equipped on
the vehicles, and then the vehicles can move to each service point along assigned
optimal paths to ask what dishes or services are needed. If the environment is a
company, the vehicles also can be utilized to deliver documents or messages in each
service point. Furthermore, if a walkable area can be divided into many ranges, in
which each is within the contrellable view of the vehicle, we may transform every
range into a node such that the vehicles can-arrive at anywhere in it to do some actions,
such as detecting whether an unknewn person has invaded with optimal randomized
paths.

However, there are still some problems in the system. If an object appears next to
the vehicle suddenly, the top-view omni-cameras will not have the ability to find out
the vehicle. To solve the problem, it might be necessary to add information of color
and sample models of the vehicles to this system. Furthermore, the vehicles are not on
a plane, so the vehicle localization accuracy is affected by the heights of the vehicles.
If the vehicle is taller and farther from the top-view omni-cameras, the error between
the obtained centroid and the actual position of the vehicle will be large. However, we
might be able to add an obvious mark on the center of the top of the vehicle. By
finding the mark, the correct position can also be obtained. Finally, the proposed

real-time collision avoidance technique between vehicles is feasible for two vehicles.
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If the total number of vehicles is larger than two, we will need to consider the
influence of passing points for the third vehicle. The problem is worth for future

research.

109



Chapter 8
Conclusions and Suggestions for
Future Works

8.1 Conclusions

In this study, we utilize multiple vision-based autonomous vehicles to develop a
security patrolling system in an environment whose floor shape is composed of
rectangular regions. We have proposed sevetal techniques and adopt some algorithms
which are summarized in the following.

(1) An environment-information calculation methodhas been proposed, by which we
can obtain all rectangular fegions; which-form the floor shape of the patrolling
environment, the turning points, and then all between-MP distances and paths.
The turning points are utilized to enable the vehicles to move between any pair
of MPs without collisions with the walls. With the turning points, we adopt
Dijkstra’s algorithm to obtain the shortest between-MP distances and paths
between the two MPs which belong to the different regions.

(2) A point-correspondence technique integrated with an image interpolation
method for camera calibration has been proposed. In this study, we don’t use the
traditional projection-based transformation. Instead, a grid pattern is used as the
calibration target and corresponding points between 2-D image and 3-D global
spaces are utilized. For the warped images captured by the top-view

omni-cameras, the correct coordinate positions can be obtained by the
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corresponding points and the use of an image interpolation method.

A faster point-correspondence technique has been proposed. Because more
corresponding points will yield better calibration accuracy, we adopt a minimum
mean square error (MMSE) method to calculate quadratic curves and abundant
cross points, in the image captured by the top-view omni-camera, can be
obtained. Each cross point and its coordinates in the global space, obtained by an
interpolation method, are exactly one pair of point correspondences.

A vehicle-pose learning method has proposed, by which the vehicles are taught
where and in which direction to perform the security monitoring task, which is to
take pictures of monitored objects as defined in this study. Furthermore, the
learned positions can be utilized to guide the vehicles.

An optimal method for randemized and load-balanced path planning has been
proposed, in which each MP is just passed once  such that monitored objects can
be patrolled uniformly. Additionally; the-difference of the numbers of assigned
MPs for all vehicles is smallerand a threshold distance is set to restrict the
difference between path distances, so that the loads of all vehicles can be
balanced. According to the numbers of assigned MPs, the MPs are chosen
randomly, and then the system calculate the shortest paths with each MP on these
paths appearing only once by the concept of the 7SP.

A vehicle localization and monitoring method has been proposed. Because the
vehicles suffer from mechanic errors, we utilize the top-view omni-cameras to
locate them in this study. By the odometer values of the vehicles, we can
calculate the centroids of the vehicles in the image. After the centroids are
transformed into the global space, the odometer values are corrected by the
coordinates of the resulting points. Besides, the directional angles of the vehicles

also must be corrected, in which two continuous correct position points are
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utilized to do the job. Additionally, the cameras have the ability to monitor
vehicles to see whether they are still under control. If any vehicle loses control of
its action, the system will send an alarm message to the security center and stop
all vehicles.

(7) A real-time collision avoidance technique between two vehicles has been
proposed. By the odometer values, the system computes the distance between
two vehicles in every cycle of a fixed-time duration and determines whether they
are too close. If yes, the feasible alternative paths of the vehicles will be obtained
by two different kinds of states, path-intersecting or non-path-intersecting.

The experimental results shown in the previous chapters have revealed the feasibility

of the proposed system.

8.2 Suggestions for:Future Works

The proposed strategies and methods, as mentioned previously, have been
implemented on a vehicle system with multiple vision-based autonomous vehicles.
According to this study, in the following we make several suggestions and point out
some related interesting issues, which are worth further investigation in the future:

(1) wusing a pen-tilt-zoom camera equipped on the vehicle to capture clearer images,
and then extracting features of the images to detect whether monitored objects
still exist;

(2) adding the capability to detect more danger conditions;

(3) adding the capability of warning users immediately through cell phones or
electronic mails;

(4) adding the capability of voice control when users want to issue navigation orders
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to the vehicle;
(5) improving the real-time collision avoidance technique to be suitable for more
vehicles; and

(6) improving the accuracy of finding the centroid of the vehicle.

113



References

[1]

[6]

I. Fukui, “TV image processing to determine the position of a robot vehicle,”
Pattern Recognition, vol. 14, pp. 101-109, 1981.

Betke M and Gurvits L, “Mobile robot localization using landmarks,” /EEE
Transactions on Robotics and Automation, vol. 13, no 2, pp 251-263,Apr., 1997.

M. J. Magee and J. K. Aggarwal, “Determining the position of a robot using a
single calibration object,” IEEE Conference on Robotics, pp. 57-62, Atlanta,
Georgia, USA, May 1983.

J. Huang, C. Zhao, Y. Ohtake, H. Li, and Q. Zhao, “Robot position identification
using specially designed landmarks,” Proceedings of 2006 IEEE Conference on
Instrumentation and Measurement Technology, Italy, Apr., 2006.

H. L. Chou and W. H. Tsai=“*A.new approach to robot location by house corners,”
Pattern Recognition, vol. 19, pps439-451;.1986:

K. L. Chiang and W. H. Tsai; Vision-based autonomous vehicle guidance in
indoor environments using odometer and house corner location information,”
Proceedings of 2006 IEEE International Conference on Intelligent Information
Hiding and Multimedia Signal Processing, pp. 415-418, USA, Dec. 18-20, 2006.
K. C. Chen and W. H. Tsai, “A study on autonomous vehicle navigation by 2D
object image matching and 3D computer vision analysis for indoor security
patrolling applications,” Proceedings of 2007 Conference on Computer Vision,
Graphics and Image Processing, Miaoli, Taiwan, June, 2007.

D. Cobzas, H. Zhang, and M. Jagersand, “Image-based localization with
depth-enhanced image map,” Proceedings of IEEE International Conference on
Robotics and Automation (ICRA 2003), pp. 1570-1575, Taipei, Taiwan, 2003.

P. Biber, H. Andreasson, T. Duckett, and A. Schilling, 3D modeling of indoor
114



environments by a mobile robot with a laser scanner and panoramic camera,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2004), Sendai, Japan, Sept. 28 - Oct. 2, 2004.

[10] C. C. Lai and W. H. Tsai, “A study on automatic indoor navigation techniques for
vision-based mini-vehicle with off-line environment learning capability,”
Proceedings of 2003 Conference on Computer Vision, Graphics and Image
Processing, Kinmen, Taiwan, June, 2003.

[11] N. Winters and J. Santos-Victor, “Mobile robot navigation using omni-directional
vision,” Proceedings of. 3rd Irish Machine Vision and Image Processing
Conference (IMVIP'99), Dublin, Ireland, 1999.

[12] L. E. Kavraki, J. C. Latombe, P. vestka, and M. H. Overmars, “Probabilistic
roadmaps for path planning.in high-dimensional configuration spaces,” IEEE
Transactions on Robotics and.-Automation, vol. 12, no. 4, Aug., 1996.

[13] R. Kimmel, N. Kiryati, and A.:M. Bruckstein,"Multivalued distance maps for
motion planning on surfaces ‘with. moving obstacles," I[EEE Transactions on
Robotics and Automation, vol. 14, no. 3, pp. 427-436, June, 1998.

[14] Y. Mezouar and F. Chaumette, “Path planning for robust image-based control,”
IEEFE Transactions on Robotics and Automation, vol. 18, no. 4, Aug., 2002.

[15] S. Hert and B. Richards, “Multiple-Robot Motion Planning = Parallel Processing
+ Geometry,” Springer-Verlag, pp. 195-215, London, UK, 2000.

[16] M. C. Chen and W. H. Tsai “Vision-based security patrolling in indoor
environments using autonomous vehicles,” Proceedings of 2005 Conference on
Computer Vision, Graphics and Image Processing, Taipei, Taiwan, Aug., 2005.

[17] D. Parsons and J. Canny, "A motion planner for multiple mobile robots," IEEE
International Conference on Robotics and Automation, vol. 1, pp. 8-13, May

13-18, 1990.
115



[18] M. Bennewitz and W. Burgard, “Coordinating the motions of multiple mobile
robots using a probabilistic Model,” Proceedings of the International Symposium
on Intelligent Robotic Systems (SIRS), England, 2000.

[19] F. M. Marchese and M. D. Negro, ” Path-Planning for Multiple Generic-shaped
Mobile Robots with MCA,” Springer-Verlag Ed., vol. 3993, pp 264-271, Berlin,
Heidelberg(D), May, 2006.

[20] N.L.J. Ulder, E. H. L. Aarts, H. J. Bandelt, P. J. M. Van Laarhoven, and E. Pesch,
“Genetic local search algorithms for the traveling salesman problem,” Springer,
Parallel Problem Solving from Nature—Proceedings of 1st Workshop , vol. 496,
pp. 109-116, Berlin, Germany, 1991.

[21] S. Tschoke,R. Lubling, and B .Monien, “Solving the Traveling Salesman
Problem with a Distributed Branch-and-Bound Algorithm on a 1024 Processor
Network,” Proceedings of-InternationalsParallel Processing Symposium, April
25-28, 1995, pp. 182-189.

[22] J. W. Pepper, B. L. Golden, and-E. A..Wasil, “Solving the traveling salesman
problem with annealing-based heuristics: A computational study,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 32, no. 1, Jan., 2002.

[23] D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach, Prentice Hall,
Upper Saddle River, New Jersey, USA, 2002.

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms, 2nd edition. MIT Press, Cambridge, 2001.

116



