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UML 線上手寫辨識系統 

研究生：王偉全 指導教授：陳玲慧 博士 

國立交通大學多媒體工程研究所 

摘要 

  在本論文中，我們建構了一個 UML 線上手寫辨識系統。

根據我們的觀察，UML 的圖形多半為類似方形或是菱形的圖

形，因此在本系統中利用決策樹的方式，來達到辨識的效

果。首先我們擷取使用者輸入圖形的幾何特徵，來進行第一

階段的分類。接著從輸入圖形擷取我們需要的特徵，和其所

屬分類中各個圖形的特徵向量進行比對，即可得到最後的辨

識結果。本系統之優點在於可以接受使用者任意筆順的輸

入，並且辨識的方法較之前更為簡單有效，正確結果出現在

前三名的辨識率為 91.24%。 
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An Online Handwritten Recognition System of 

UML Diagrams 

Student: Wei-Chuang Wang  Advisor: Dr. Ling-Hwei Chen 

Institute of Multimedia and Engineering 

National Chiao Tung University 

 

ABSTRACT 

  In this thesis, we construct an online handwritten recognition system of UML 

diagrams. We use a decision tree to do recognition. According to our observation, the 

shapes of the notations of UML diagrams almost look like rectangles or diamonds. 

Based on this characteristic, an input notation is first classified to the correct category. 

Then some notation features are extracted from the input notation and used to do final 

recognition. The advantages of our system are that we can accept free style input and 

our method is simpler and more efficient than previous methods. The recognition rate 

of the top three choices is 91.24%. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

In recent years, the development of the handheld devices and pen-based 

computing hardware, such as PDAs, electronic whiteboards and tablet computers, is 

grown rapidly, and the handwritten systems which can work in the freehand drawing 

environment are short of demand. There exists some handwritten recognition systems 

in some different applications, including math formula [1], engineering drawings [2], 

table detection [3] and geometric shapes [4-5]. However, the Unified Modeling 

Language (UML) are widely used in many different domains but there is no 

handwritten recognition system supporting them. 

UML diagrams are widely used in the field of software engineering. Early in the 

software design cycle, software engineers need to sketch UML diagrams to represent 

the whole structure of the system. Engineers may draw these diagrams on paper, 

whiteboard or computer. There are many Computer Assisted Software Engineering 

(CASE) tools like Rational Rose or Visio to sketch UML diagrams on computer. The 

functionality of these CASE tools is robust but they have some drawbacks. The most 

serious drawback of CASE tools is that their design concepts are technique oriented. 

Technique oriented design provides strong capability but it is not convenient to use. 
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For example, the input manner of CASE tools is not intuitional. CASE tools usually 

provide a way called “point and click” to sketch UML diagrams. “Point and click” 

means that user needs to start with pointing the icon which represents the desired 

input notation and then to click the position that the notation wants to be placed. 

Using this way to draw notations is simple but not intuitional. Sketching notations 

using pen or mouse is the most intuitional way for people, because people are used to 

draw diagrams on paper by hand. Due to these reasons, we want to build a 

handwritten recognition system which can allow people enjoying the freedom of 

drawing UML diagrams by hand. 

 

1.2 UML Diagrams 

UML is a general-purpose modeling language that includes a graphical notation 

used to create an abstract model of a system [6]. UML was designed to specify, 

visualize, construct and document software-intensive systems. UML is not only 

restricted to modeling software but also used for business process modeling, systems 

engineering modeling and representing organizational structures. UML consists of 

thirteen different diagram types ： Activity, Class, Component, Composite, 

Communication, Deployment, Interaction, Object, Package, Sequence, State, UML 

Timing and Use Case diagrams [7]. Although there are thirteen different types, UML 
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diagrams only have some main concepts [6], such as structure, behavior, and 

relationship. The structure concept is the main components of a diagram and includes 

actor, class, component…etc. The behavior concept is the actions or the functions of a 

diagram. The behavior concepts include activity, state, use case…etc. The relationship 

concept indicates the relationship between the structure and the behavior and includes 

aggregation, association, dependency…etc. We can construct any UML diagram 

based on these concepts. Figures 1.1 and 1.2 show the examples of Use Case diagram 

and Class diagram. 

 

 

Figure 1.1 An example of Use Case diagram. 
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Figure 1.2 An example of Class diagram. 

 

1.3 Previous Works 

In 2000, Damm et al. [8] proposed the Knight Project which is a gesture based 

system for entering and editing UML diagrams. Gestures are some simplified shapes 

designed by the designer to replace the complex notations. Due to that all of the 

shapes are simplified, the advantage of gesture based systems is easy to recognize the 

input notations. However, the user needs to learn what the gestures stand for because 

they are designed by the designer. In Knight Project, the gestures are separated into 

two classes, compound gestures and eager gestures, and they use Rubine’s algorithm 

[9] to recognize their gestures. The drawbacks of the Knight Project are that the 
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gesture based system is not intuitional enough. Besides, they do not illustrate the 

notations supported by their system and there is no experimental result to show their 

recognition rate. 

In 2001, Lank et al. [10] proposed an online recognition algorithm for UML 

diagrams. The algorithm is composed of the domain dependent kernel and the domain 

independent kernel. The domain independent kernel deals with the preprocessing 

steps, including capturing the input strokes, stroke grouping and so on, and the 

domain dependent kernel is the part of recognition. In the recognition algorithm, they 

use size, number of strokes, the input order of strokes and the stroke’s bounding box 

size to recognize the input notations. Their algorithm does not allow user drawing the 

notations in various order because they use the input order as a feature. Besides, there 

is no experimental result to show their recognition rate. 

In 2003, Chen et al. [11] proposed another gesture based recognition system for 

UML diagrams called SUMLOW. The recognition kernel of SUMLOW combines 

several multi-stroke shape recognition algorithms to recognize their gestures. The 

characteristic of SUMLOW is that they allow user modifying, copying, replacing, and 

deleting input notations via pen-based input technique. Their system has high 

recognition rate, but there are only six experienced UML designers to participate in 

their experiment. Thus the recognition rate is not objective.  
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In 2006, Costagiola et al. [12] proposed an online recognition method for 

hand-drawn diagrams based on grammar formalism, namely Sketch Grammars. The 

method uses a parse tree and the Sketch Grammar to recognize input notations. To 

enhance the recognition rate, the authors propose a language recognizer which can 

help the original recognizer to select the best interpretation. This method can be 

adapted to any notation besides UML diagrams and has high recognition rate. 

However, a troublesome problem for this method is how the grammars train for new 

notations. 

In this thesis, we propose a new online recognition system for UML diagrams 

based on decision tree. The system supports all the UML notations which are used 

frequently and allows user inputting the notations in any kind of order. Our user 

interface is designed based on the user oriented concepts. In the system, we provide 

the redrawn technique to help users draw in the location they desired. We also provide 

the function of user self-definition letting users define the gestures themselves.  

 

1.4 Organization of the Thesis 

This thesis is composed of four chapters. In Chapter 1, the motivation and 

previous works are introduced. The UML notation database is described in Chapter 2. 

Our proposed system will be presented in Chapter 3. Experimental results and 
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comparisons to other systems are presented in Chapter 4. The conclusions and future 

works are summarized in Chapter 5. 
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CHAPTER 2 

UML NOTATION DATABASE 

UML diagrams have thirteen different types and more than forty different 

notations. However, some of these notations are used rarely and their shapes are more 

complex. In the thesis, we choose 23 notations based on UML concepts and the 

frequency of usage to recognize. These 23 notations are shown in Figure 2.1.  

 

Figure 2.1 Supported notations of the system.  

In the thesis, we invite 20 persons to draw the 23 notations ten times for each and 

collect the ink data they draw. We randomly choose half of the ink data for training, 

and the rest for testing. The training procedure is implemented by the MBSAS 

algorithm [13] which will be elaborated in the next chapter. 
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CHAPTER 3 

PROPOSED METHOD 

The proposed method is based on a decision tree and shown in Figure 3.1. The 

whole process consists of four major phases： geometric feature extraction, category 

classifier, notation feature extraction (NFE), and final classifier. In the geometric 

feature extraction phase, some geometric features, such as convex hull, bounding 

rectangle, PA ratio and Area ratio, are extracted from the input notation. In the 

category classifier phase, the features extracted in the previous phase are used to 

classify the input notation to the belonging category. In the notation feature extraction 

phase, the input notation is divided into primitives and then we extract features like 

direction, location and distance from these primitives. In the final classifier phase, 

based on the extracted features, a similarity measure is provided. Based on the 

similarity measure, the result notation that is most similar to the input notation is 

determined. 

 

3.1 Input 

Before discussing the proposed method, we need to describe how we get input and 

define some expressions which are used frequently in the thesis. The system can get 

input from tablet computer, tablet digitizer and mouse, and convert the input to a point 
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sequence. The recognition procedure of the system is started when users draw a  

 

Figure 3.1 The proposed method. 

complete notation, not a stroke. A stroke is the locus of the pen tip from its pen down 

to the next pen up position. A notation is composed of one or more strokes and 

represents a UML symbol. For getting the complete input, the time-out technique 

which is proposed by Kimura [6] is used. The system processes pen input when the 

time-out value is decreased to zero. The time-out value is started to decrease when the 

pen up action occurs. It is stopped and reset when the pen down action occurs before 

the value is decreased to zero. The system sets 2 seconds to the time-out value 

initially. Based on the technique, the system can get integrated input and start the 

Geometric Feature Extraction 

Category Classifier 

NFE NFE NFE NFE NFE 

Final 

Classifier 

Final 

Classifier 

Final 

Classifier 

Final 

Classifier 

Final 

Classifier 

Result Result Result Result Result 
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Pen Input 
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recognition procedure. 

 

3.2 Geometric Feature Extraction 

The first phase of the recognition procedure is geometric feature extraction. 

According to our observation, the notations supported in the system can be divided 

into five categories, i.e. circle, line, rectangle, diamond, and others, based on their 

geometric properties. This phase extracts geometric features from input notation to 

classify it to the correct category. The geometric features we used include convex hull, 

bounding rectangle, PA ratio and Area ratio. Each of these features is described 

below. 

 

3.2.1 Convex Hull 

The first feature we need is the convex hull of the input notation. The convex hull 

for a set of points X is the minimal convex set containing X. Figure 3 gives two 

examples to illustrate convex hull. We use the Graham scan algorithm [14] to find the 

convex hull of the input notation. Figure 3.2 (b) shows the convex hull of an input 

notation “Actor”. The blue line denotes the convex hull. After finding the convex hull, 

we compute its perimeter and the area. These values will be used in the following 

section. 
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Figure 3.2 Two examples to illustrate convex hull (a) A convex hull of a set of points.  

         (b) The convex hull of an input notation “Actor”. 

 

3.2.2 Bounding Rectangle 

The bounding rectangle is the minimum rectangle containing the input notation. 

We scan all points of input notation to find the minimum values of x and y 

coordinates, and the maximum values of x and y coordinates. After finding these 

coordinates, we use them to establish the bounding rectangle of the input notation. 

Figure 3.3 shows an example of the bounding rectangle of an input notation “Actor”. 

The bounding rectangle is shown by red lines. After finding the bounding rectangle, 

we compute its perimeter and area. These values will be used in the following section. 

 

Figure 3.3 An example of the bounding rectangle of an input notation “Actor”.  

(a) (b) 
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3.2.3 PA Ratio 

PA ratio proposed by Kimura [6] is defined as：          

CH

2

CH /AreaPerimeter  ratio =PA ,                             (1) 

where PerimeterCH denotes the perimeter of the convex hull of the input notation, and 

AreaCH denotes the area of the convex hull of the input notation. Note that the 

perimeter and area partly define the shape of an object. 

This ratio will be a constant for some kinds of shape. For instance, PA ratio = 16 

for any square rectangle and PA ratio = 4π for any circle. Size independent is the 

main advantage of PA ratio. In the thesis, PA ratio is used to classify circle and line. 

 

3.2.4 Area Ratio 

Area ratio is also proposed by Kimura [6]. The ratio is defined as： 

BRCH/AreaArea  ratio =Area  ,                                (2) 

where AreaBR is the area of the bounding rectangle of an input notation. 

Area ratio also has the property of size independent. In the thesis, we use this ratio 

to distinguish the rectangle and the diamond shape.  

 

3.3 Category Classifier 

After extracting geometric features, we use these features to classify the input 
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notation to the correct category. The 23 supported notations are separated to five 

categories including circle, line, rectangle, diamond, and others. The classification of 

each notation is shown in Figure 3.4. Four different filters, namely circle filter, line 

filter, rectangle filter and diamond filter, are provided to distinguish the five 

categories in the category classifier. In the following sections, we will introduce each 

filter according to the filtering order. The flowchart of the category classifier is shown 

in Figure 3.5. 

 

Figure 3.4 The classification of each notation. 
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Figure 3.5 The flowchart of the category classifier. 

 

3.3.1 Circle Filter 

In the category classifier, we use the circle filter to check for circles first. In the 

thesis, we use PA ratio for circle filter. PA ratio of a perfect circle of any size is a 

scalar 4π. Due to that the input may not be a perfect circle, we need to train a 

threshold range around 4π to classify the input notation. To train the threshold, we 

compute the PA ratio of the notations belonging to the circle category in the training 

database first. Then we find a maximum and a minimum as the upper bound and the 

lower bound of threshold range.  

Is Circle? 

Input 

Is Line? 

Is Rectangle? 

Is Diamond? 

Circle Filter 

Line Filter 

Rectangle Filter 

Diamond Filter 

Others Category 

 Rectangle Category 

Line Category 

Circle Category Yes 

Yes 

Yes 

 Diamond Category Yes 

No 

No 

No 

No 
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3.3.2 Line Filter 

If the input notation does not belong to the circle category, it will be checked by 

the line filter. Here, we use PA ratio for line filter. Due to the PerimeterCH of a line is 

close to twice of the length of input notation and the AreaCH of a line is closed to the 

product of the length of input notation and ∆h which is the maximum distance 

between input stroke and its convex hull, the PA ratio of a line can be approximated 

by 
h

l

hl

l
ratioPA

∆
=

∆×
≈

4)2(
 

2

. Since h∆ << l the PA ratio should be large. Here, we 

take 120 as a threshold value obtained by training. Figure 3.6 shows two examples to 

explain why the PA ratio is greater than a threshold. In Figure 3.6, the black line is 

user’s input and the red line is the convex hull. To avoid the error of dividing zero, we 

set the PA ratio equal to 200 when the area of the convex hull of a line is equal to 

zero.  

 

Figure 3.6 Two examples to show the PA ratios of lines.  
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3.3.3 Rectangle Filter 

Rectangle filter will be used when the notation does not belong to the circle or line 

category. In the thesis, we use Area ratio for rectangle filter. According to the fact that 

the AreaCH of a rectangle is almost equal to the AreaBR of the rectangle, the Area ratio 

of a rectangle is close to 1. Figure 3.7 shows two examples to explain the fact 

mentioned above. In Figure 3.7, the black line is user’s input, the red line is the 

convex hull and the green line is the bounding rectangle. To get a threshold range, we 

also train the rectangle notations in the training database. 

 

Figure 3.7 Two examples to show the Area ratios of rectangles.  

 

3.3.4 Diamond Filter 

If input notation is not considered as a circle, a line or a rectangle, it will be 

checked by the diamond filter. In the thesis, we use Area ratio for diamond filter. We 

assume that the notations belonging to the diamond category are all upright patterns. 

The AreaBR of a diamond is nearly two times of the AreaCH of a diamond based on our 
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assumption. In other words, the Area ratio of a diamond is nearly 0.5. Figure 3.8 

shows two examples to explain why the Area ratio of a diamond is nearly 0.5. In 

Figure 3.8, the black line is user’s input, the blue line is the convex hull and the red 

line is the bounding rectangle. We use a threshold range which is trained using the 

diamond notations in the training database to check whether the input notation 

belongs to the diamond category or not. 

 

Figure 3.8 Two examples to show the Area ratios of diamonds.  

 

3.3.5 Other Notations 

If the input notation does not belong to any category mentioned above, it will be 

classified to the others category. In our experiments, after category classification the 

others category contains Actor and several rectangle notations which are ill-written. 

 

3.4 Notation Feature Extraction 

After the input notation is classified to a category, some notation features will be 
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extracted for the final classification. Before extracting notation features, we will first 

segment the notation into several primitives, which will be described in the following 

subsection. The notation features extracted include the number of primitives, the 

direction of each primitive, the location of each primitive, the length of each primitive, 

and the hollowness of the notation. In the following subsections, we will describe how 

to extract features. 

 

3.4.1 Primitive 

A primitive is defined to be the minimum unit of a notation, which may be a line 

or an arc. The advantage of segmenting a notation to primitives is that it is much 

easier for the shape matching procedure to find the matching notation. All the notation 

features are extracted in primitive level except hollowness. 

To divide a notation to many primitives, we use 4-way chain code and the 

curvature of each point. The 4-way chain code is shown in Figure 3.9. First we 

compute the chain code for each point. Then we compute the curvature of each point 

by 

)
))1()1(())1()1((

)1()1(
(cos  r

22

1-

pi

+−−++−−

+−−
=

iyiyixix

ixix
C  ,                (4) 

where x(i), y(i) denotes the x, y coordinates of point pi and Crpi is the curvature of 

point pi. After computing the curvature, we evaluate the curvature difference between 
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two neighboring points to find the dominate points, which have curvature difference 

greater than a threshold. Finally, the notation is divided into several segments using 

the dominate points as cut points, each segment is considered as a primitive of the 

notation. When the notation is segmented to many primitives, we take the number of 

primitives, N, as the first feature. Note that we have two kinds of primitives: line and 

curve, which are decided by the sequence of chain codes of the primitive. To decide 

what kind of a primitive is, we evaluate the chain code difference between each two 

neighboring points in the chain code sequence and sum all of them. If the summation 

is larger than a threshold, we will decide that it is a curve; otherwise, it is a line. 

 

 

Figure 3.9 4-way chain codes 

 

3.4.2 Direction and Location Feature 

The direction of a line primitive is defined as the chain code which appears most 

frequently in the primitive. If the primitive is an arc or a curve, we set 5 to be its 

1 

2 

3 
4 
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direction. In order to record the directions of the extracted primitives as a feature 

vector, we should give an unique id to each primitive. The primitives get their unique 

ids based on the relative locations on the notation. Since some notations have some 

rotation varieties with 90, 180, and 270 degrees, we provide an algorithm to find 

relative location.  

First, we extract the directions of primitives. Then the primitives with the same 

direction are collected and sorted according to their top left corner points. Finally, 

each primitive gets its unique id based on the sorted list. When all the primitives get 

their unique ids, we combine their directions into a direction feature vector. An 

example is shown in Figure 3.11; the blue number in the figure denotes the id of a 

primitive. The provided algorithm is stated below. 

When the algorithm is finished, all the primitives have unique ids and we group 

Algorithm to Find Unique Id 

1. Setting variable i to 1.  

2. Collecting the primitives with direction i to a temp list. 

3. Sorting the temp list according to the top left corners point of primitives. 

4. Giving a unique id to each primitive in the sorted temp list according to its 

order in the list. 

5. Increasing 1 to i. If i is less than 6, go to step 2; otherwise, stop. 
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the directions of primitives according to their ids into a vector, DIR, which is 

considered as the second notation feature. The notation in Figure 3.10 has (1, 1, 1, 1, 3, 

3) as its direction feature.  

 

Figure 3.10 An example of the relative location of each primitive in a notation with 

the direction feature vector is (1, 1, 1, 1, 3, 3).  

 

3.4.3 Length Feature 

The length feature is a binary value which represents that a primitive is long or 

short. To extract this feature, we first find the longest primitive in a notation. Then 

each primitive is compared to the longest one. If the length of the primitive is larger 

than half of the longest one, it is considered as a long primitive; otherwise, it is a short 

one. The length feature is calculated by 







<
=

otherwise,2

        len(j)max
2

1
     len(i)  1

)( j
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iLEN                      (5) 

where len(i) denotes the length of the ith primitive, and max len(j) denotes the length 

of the longest primitive in the notation. 
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4 

5 

2 

3 
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3.4.4 Hollowness 

The hollowness feature is the only feature extracted in the notation level. 

Hollowness means whether the shape is a solid one or not. A hollow shape has a 

property that there are no points near the gravity center of the shape. According to this 

property, we locate a rectangle with size 60% of the convex hull, and the center of the 

located rectangle is the same as that of the convex hull. If the number of points inside 

the rectangle is smaller than a threshold, the notation is considered as a hollow shape. 

Otherwise, the notation is not a hollow shape. Figure 3.11 shows examples of 

hollowness. Figure 3.11 (a) is a hollow shape, and Figure 3.11 (b) is a solid shape. 

The hollowness feature, H, is also a binary value and defined by 



 <

=
otherwise,2

  t        P If   1 rec
H                                       (6) 

where Prec denotes the number of points inside the located rectangle, and t is a 

threshold value.  

 

Figure 3.11 Examples of hollowness. (a) A hollow shape. (b) A solid shape 

(a) (b) 

gravity center 

located rectangle 
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3.5 Final Classifier 

Feature vectors extracted from the operations described above, including N, DIR, 

LEN, and H, are taken for pattern matching at this phase. 

In order to obtain the most likely notation for the input notation, we use the 

inverse of sum-of-absolute-difference (SAD) as the similarity measure. Let notations 

T and T’ be the database notation and the input notation respectively, the similarity 

between T and T’ is calculated by 

∑
=

−
=

4

1

'

)(
i i

ii

K

FF
TSAD  ,  

)(

1
)(

TSAD
TS =    ,                    (7) 

where Fi (Fi’) denotes the ith feature vector of T (T’), and Fi∈{N, DIR, LEN, H}. Ki 

denotes the number of elements in the feature vector Fi. 

 Due to the dimension of direction feature vector and the length feature vector are 

dependent on the number of primitives, we will pad zero to the smaller vector 

between Fi and Fi’ for computing SAD. Let S(T) max arg*
T

=T , the input notation is 

considered to be notation T*. 

 

3.6 MBSAS Algorithm for Database Creation 

The final classifier step uses the inverse SAD to classify the notation. If we 

calculate SAD between the input notation and all the notations in the database which 

is described in Chapter 2, the processing time will be very long. Therefore, we use 
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MBSAS to reduce the database and get some representative feature vectors for 

reducing the processing time. 

Modified Basic Sequential Algorithm Scheme (MBSAS) [13] is a clustering 

algorithm. More specifically, it is an algorithm to group the objects based on 

attributes. MBSAS does not need to know the number of clusters. It contains two 

phases. The first phase determines the number of clusters; the second phase is the 

pattern classification.  

 

3.7 Post Processing 

The input notation is classified in the previous steps, but we do not know where 

the notation should be located on. Therefore, we will do some post processing to 

display the notation at the correct position and size. 

First, we will display the input notation using the corresponding standard UML 

notation at the position user drawn based on the corner points of the bounding 

rectangle of input notation. Then, we resize the notation to the user’s requisite size 

based on the size of the bounding rectangle of input notation. Finally, we will get the 

user desired result. Figure 3.12 shows an example of the post processing step. The left 

figure shows the scene before post processing and the right one shows the scene after 

post processing. 
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Figure 3.12 An example of the post processing step 
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CHAPTER 4 

EXPERIMENTAL RESULTS 

 In order to evaluate the recognition rate of the proposed method, we invite 20 

persons, with poor experience using tablet digitizer and tablet PC, to sketch 23 

supported notations about ten times for each notation. We use a tablet digitizer, 

Wacom Graphire4 CTE-440, and a tablet PC, HP Compaq tc4200, to collect the ink 

data. In the experiment, we randomly choose half of the ink data for training and the 

rest for testing. Table 1 shows the recognition rate of the proposed method. The first 

column shows that only the top one is chosen and the recognition rate is 84.62%. The 

second column shows that the top three ones are taken, and the recognition rate 

increases from 84.62% to 91.24%. We can observe that the notations belonging to the 

Line, Circle, and Diamond categories are classified very well. 

In order to show that our proposed method has higher recognition rate than other 

methods, we compare our method to SkGs method [12]. In SkGs method, there are 

five students to participate the experiment, and each student draw 20-25 symbols of 

Use Case diagram. The recognition method proposed in [12] has two parts. The first 

part only used the Grammar based method to recognize symbol, and the second part 

combined the Grammar based method and the language recognizer. Our results will 

be compared to these two parts. In the comparison, we also invite five persons 
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drawing the symbols supported in SkGs method, and the recognition rate is shown in 

Table 2. In Table 2, we can see that the results of the proposed method are better than 

these two parts besides Actor. Thus, our recognition rate is superior to SkGs method. 

 

Table 1. The recognition rate of top 1 choice and top 3 choices. (continued) 

Shape Top 1 Accuracy% Top 3 Accuracy% 

Activity 73(73/100) 86(86/100) 

Aggregation 88.78(87/98) 91.84(90/98) 

Activationbar 87.78(79/90) 88.89(80/90) 

Actor 87.78(79/90) 92.22(83/90) 

Branch 90.91(90/99) 100(99/99) 

Class 84.44(76/90) 92.22(83/90) 

Component 73.81(62/84) 86.9(73/84) 

Communication 100(98/98) 100(98/98) 

Dependency 81(81/100) 86(86/100) 

End 92(92/100) 92(92/100) 

Fork 89.29(75/84) 89.29(75/84) 

Generalize 97.96(96/98) 98.98(97/98) 

Initial 77(77/100) 81(81/100) 

Interface 78.65(70/89) 85.39(76/89) 

Lifeline 100(89/89) 100(89/89) 

Node 72.22(65/90) 86.67(78/90) 

Note 70.79(63/89) 91.01(81/89) 
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Table 1 The recognition rate of top 1 choice and top 3 choices. 

Shape Top 1 Accuracy% Top 3 Accuracy% 

Object 87.78(79/90) 88.89(80/90) 

Package 75.56(68/90) 92.22(83/90) 

State 71(71/100) 84(84/100) 

Swimlane 80.9(72/89) 91.01(81/89) 

Transition 94(94/100) 97(97/100) 

Use Case 89.89(80/89) 96.63(86/89) 

Total 84.62 (1816/2146) 91.24 (1958/2146) 

 

Table 2. Comparison with SkGs method 

Shape 

SkGs without 

Language 

Recognizer (%) 

SkGs with 

Language 

Recognizer (%) 

Proposed Method 

(%) 

Actor 76.92(10/13) 92.31(12/13) 92.31(12/13) 

Use Case 83.3(45/54) 90.74(49/54) 96.30(52/54) 

Communication 100(21/21) 100(21/21) 100(21/21) 

Dependency 72.73(16/22) 72.73(16/22) 95.45(21/22) 

Generalize 81.82(9/11) 100 (11/11) 100(11/11) 

Transition 88.89(8/9) 88.89(8/9) 100(9/9) 

Total 80.99(98/121) 91.74(111/121) 96.69(117/121) 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

The thesis proposed an online handwritten recognition system of UML diagrams 

based on decision tree. First, some geometric features are extracted for classifying the 

input notation to the corresponding category. Then we extract several notation 

features in primitive level and notation level to create the feature vectors. Finally, the 

similarity measure based on SAD is calculated for getting the final result. 

In the system, users can sketch UML diagrams using tablet computer, digital 

tablet, and mouse. Users can sketch any notation in any kind of order in the system. 

After sketching a notation, the standard notation will replace the hand-drawn one and 

be displayed with the correct position and size. We also support user self-definition 

function which allows user defining gestures representing the UML notations. Besides 

these characteristics, the most important property of the system is that it is relative 

efficient and simple to other methods mentioned above because we use decision tree 

and reduction database to reduce the comparison time. 

Although the system provides many functions of sketching UML diagrams, it is 

still not enough. In the future, we will add more functions, such as forward/backward 

engineering, modularity, supporting the multi-layer diagrams, and supporting more 

UML notations to make the system become a practical tool.  
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