

國 立 交 通 大 學

多媒體工程研究所

碩碩碩碩 士士士士 論論論論 文文文文

U M L 線 上 手 寫 辨 識 系 統

An Online Handwritten Recognition System of UML

Diagrams

研 究 生：王偉全

指導教授：陳玲慧 教授

中中中中 華華華華 民民民民 國國國國 九九九九 十十十十 七七七七 年年年年 六六六六 月月月月

U M L 線 上 手 寫 辨 識 系 統

An Online Handwritten Recognition System of UML Diagrams

研 究 生：王偉全 Student：Wei-Chuang Wang

指導教授：陳玲慧 Advisor：Ling-Hwei Chen

國 立 交 通 大 學

多 媒 體 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Multimedia Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年六月

 i

UML 線上手寫辨識系統

研究生：王偉全 指導教授：陳玲慧 博士

國立交通大學多媒體工程研究所

摘要

 在本論文中，我們建構了一個 UML 線上手寫辨識系統。

根據我們的觀察，UML 的圖形多半為類似方形或是菱形的圖

形，因此在本系統中利用決策樹的方式，來達到辨識的效

果。首先我們擷取使用者輸入圖形的幾何特徵，來進行第一

階段的分類。接著從輸入圖形擷取我們需要的特徵，和其所

屬分類中各個圖形的特徵向量進行比對，即可得到最後的辨

識結果。本系統之優點在於可以接受使用者任意筆順的輸

入，並且辨識的方法較之前更為簡單有效，正確結果出現在

前三名的辨識率為 91.24%。

 ii

An Online Handwritten Recognition System of

UML Diagrams

Student: Wei-Chuang Wang Advisor: Dr. Ling-Hwei Chen

Institute of Multimedia and Engineering

National Chiao Tung University

ABSTRACT

 In this thesis, we construct an online handwritten recognition system of UML

diagrams. We use a decision tree to do recognition. According to our observation, the

shapes of the notations of UML diagrams almost look like rectangles or diamonds.

Based on this characteristic, an input notation is first classified to the correct category.

Then some notation features are extracted from the input notation and used to do final

recognition. The advantages of our system are that we can accept free style input and

our method is simpler and more efficient than previous methods. The recognition rate

of the top three choices is 91.24%.

 iii

誌謝誌謝誌謝誌謝

能夠完成這篇論文，首先要感謝我的指導教授 陳玲慧教授，在他細心、耐心

的指導下，使我於兩年的碩士生涯中，學習到了學術研究的精神以及方法。此外，

老師也在生活上給予我們鼓勵以及幫助，對於日後的處事有莫大的幫助，必會將

老師的教誨銘記於心。另外，也要感謝口試委員鍾國亮教授、蔡月霞教授、以及

李坤龍處長於口試中給予的指導與建議。

兩年的碩士生涯，多虧了實驗室的夥伴陪伴，不但在課業上互相扶持，更讓

兩年的生活中充滿了歡笑與美好的回憶。在此要感謝實驗室的大家:民全、萓聖、

文超、惠龍、俊旻以及占和等博士班的學長，維中、立人、芳如以及佩瑩等大我

們一屆的學長姐，子翔、信嘉、薰瑩等同屆的同學，最後當然少不了益成、明旭、

志鴻、志達這些活潑的學弟們，因為有你們，讓這個實驗室無時無刻充滿朝氣，

也豐富了我這兩年的碩士生涯。

最後，最重要的是要感謝我的家人:爸爸、媽媽以及弟弟，總是在最需要的時

候給我鼓勵與支持，雖然與家人相處的機會較少了，但是家人一句簡單的問候與

關心，就是我努力下去的最大動力，謝謝你們一直那麼支持我。謹以此篇論文獻

給所有關心我以及鼓勵我的人。

 iv

TABLE OF CONTENTS

摘要摘要摘要摘要..i

ABSTRACT ...ii

TABLE OF CONTENTS ..iv

LIST OF FIGURES ..vi

LIST OF TABLES..vii

CHAPTER 1 INTRODUCTION ..1

1.1 Motivation ... 1

1.2 UML Diagrams.. 2

1.3 Previous Works.. 4

1.4 Organization of the Thesis ... 6

CHAPTER 2 UML NOTATION DATABASE......................................8

CHAPTER 3 PROPOSED METHOD..9

3.1 Input .. 9

3.2 Geometric Feature Extraction..11

 3.2.1 Convex Hull...11

 3.2.2 Bounding Rectangle .. 12

 3.2.3 PA Ratio.. 13

 3.2.4 Area Ratio... 13

3.3 Category Classifier .. 13

 3.3.1 Circle Filter... 15

 3.3.2 Line Filter ... 16

 3.3.3 Rectangle Filter... 17

 3.3.4 Diamond Filter.. 17

 3.3.5 Other Notations... 18

3.4 Notation Feature Extraction ... 18

 3.4.1 Primitive ... 19

 3.4.2 Direction and Location Feature ... 20

 v

 3.4.3 Length Feature .. 22

 3.4.4 Hollowness ... 23

3.5 Final Classifier... 24

3.6 MBSAS Algorithm for Database Creation.. 24

3.7 Post Processing.. 25

CHAPTER 4 EXPERIMENTAL RESULTS27

CHAPTER 5 CONCLUSION AND FUTURE WORK30

REFERENCES ..31

 vi

LIST OF FIGURES

Figure 1.1 An example of Use Case diagram ..……………………………....…....3

Figure 1.2 An example of Class diagram ……………….……………………..….4

Figure 2.1 Supported notation of the system …………….…………….………….8

Figure 3.1 The proposed method ...……………….……………………………...10

Figure 3.2 (a) A convex hull of a set of points …...……….……………..………12

Figure 3.2 (b) The convex hull of an input notation “Actor”…...……………..…12

Figure 3.3 An example of bounding rectangle of an input notation “Actor”…12

Figure 3.4 The classification of each notation …………………………………..14

Figure 3.5 The flowchart of the category classifier………………………...…….15

Figure 3.6 Two examples to show the PA ratios of lines……………….….….…16

Figure 3.7 Two examples to show the Area ratio of rectangles……..…………...17

Figure 3.8 Two examples to show the Area ratios of diamonds………………....18

Figure 3.9 4-way chain codes……………………………………..……………...20

Figure 3.10 An example of the relative location………………………………....22

Figure 3.11 (a) A hollow shape………………………………...……….…..……23

Figure 3.11 (b) A solid shape…………………………………………………….23

Figure 3.12 An example of the post processing step .……………………………26

 vii

LIST OF TABLES

Table 1 The recognition rate of top 1 choice and top 3 choice……………...…...28

Table 2 Comparison with SkGs method ...…………….………..……………….29

 1

CHAPTER 1

INTRODUCTION

1.1 Motivation

In recent years, the development of the handheld devices and pen-based

computing hardware, such as PDAs, electronic whiteboards and tablet computers, is

grown rapidly, and the handwritten systems which can work in the freehand drawing

environment are short of demand. There exists some handwritten recognition systems

in some different applications, including math formula [1], engineering drawings [2],

table detection [3] and geometric shapes [4-5]. However, the Unified Modeling

Language (UML) are widely used in many different domains but there is no

handwritten recognition system supporting them.

UML diagrams are widely used in the field of software engineering. Early in the

software design cycle, software engineers need to sketch UML diagrams to represent

the whole structure of the system. Engineers may draw these diagrams on paper,

whiteboard or computer. There are many Computer Assisted Software Engineering

(CASE) tools like Rational Rose or Visio to sketch UML diagrams on computer. The

functionality of these CASE tools is robust but they have some drawbacks. The most

serious drawback of CASE tools is that their design concepts are technique oriented.

Technique oriented design provides strong capability but it is not convenient to use.

 2

For example, the input manner of CASE tools is not intuitional. CASE tools usually

provide a way called “point and click” to sketch UML diagrams. “Point and click”

means that user needs to start with pointing the icon which represents the desired

input notation and then to click the position that the notation wants to be placed.

Using this way to draw notations is simple but not intuitional. Sketching notations

using pen or mouse is the most intuitional way for people, because people are used to

draw diagrams on paper by hand. Due to these reasons, we want to build a

handwritten recognition system which can allow people enjoying the freedom of

drawing UML diagrams by hand.

1.2 UML Diagrams

UML is a general-purpose modeling language that includes a graphical notation

used to create an abstract model of a system [6]. UML was designed to specify,

visualize, construct and document software-intensive systems. UML is not only

restricted to modeling software but also used for business process modeling, systems

engineering modeling and representing organizational structures. UML consists of

thirteen different diagram types ： Activity, Class, Component, Composite,

Communication, Deployment, Interaction, Object, Package, Sequence, State, UML

Timing and Use Case diagrams [7]. Although there are thirteen different types, UML

 3

diagrams only have some main concepts [6], such as structure, behavior, and

relationship. The structure concept is the main components of a diagram and includes

actor, class, component…etc. The behavior concept is the actions or the functions of a

diagram. The behavior concepts include activity, state, use case…etc. The relationship

concept indicates the relationship between the structure and the behavior and includes

aggregation, association, dependency…etc. We can construct any UML diagram

based on these concepts. Figures 1.1 and 1.2 show the examples of Use Case diagram

and Class diagram.

Figure 1.1 An example of Use Case diagram.

 4

Figure 1.2 An example of Class diagram.

1.3 Previous Works

In 2000, Damm et al. [8] proposed the Knight Project which is a gesture based

system for entering and editing UML diagrams. Gestures are some simplified shapes

designed by the designer to replace the complex notations. Due to that all of the

shapes are simplified, the advantage of gesture based systems is easy to recognize the

input notations. However, the user needs to learn what the gestures stand for because

they are designed by the designer. In Knight Project, the gestures are separated into

two classes, compound gestures and eager gestures, and they use Rubine’s algorithm

[9] to recognize their gestures. The drawbacks of the Knight Project are that the

 5

gesture based system is not intuitional enough. Besides, they do not illustrate the

notations supported by their system and there is no experimental result to show their

recognition rate.

In 2001, Lank et al. [10] proposed an online recognition algorithm for UML

diagrams. The algorithm is composed of the domain dependent kernel and the domain

independent kernel. The domain independent kernel deals with the preprocessing

steps, including capturing the input strokes, stroke grouping and so on, and the

domain dependent kernel is the part of recognition. In the recognition algorithm, they

use size, number of strokes, the input order of strokes and the stroke’s bounding box

size to recognize the input notations. Their algorithm does not allow user drawing the

notations in various order because they use the input order as a feature. Besides, there

is no experimental result to show their recognition rate.

In 2003, Chen et al. [11] proposed another gesture based recognition system for

UML diagrams called SUMLOW. The recognition kernel of SUMLOW combines

several multi-stroke shape recognition algorithms to recognize their gestures. The

characteristic of SUMLOW is that they allow user modifying, copying, replacing, and

deleting input notations via pen-based input technique. Their system has high

recognition rate, but there are only six experienced UML designers to participate in

their experiment. Thus the recognition rate is not objective.

 6

In 2006, Costagiola et al. [12] proposed an online recognition method for

hand-drawn diagrams based on grammar formalism, namely Sketch Grammars. The

method uses a parse tree and the Sketch Grammar to recognize input notations. To

enhance the recognition rate, the authors propose a language recognizer which can

help the original recognizer to select the best interpretation. This method can be

adapted to any notation besides UML diagrams and has high recognition rate.

However, a troublesome problem for this method is how the grammars train for new

notations.

In this thesis, we propose a new online recognition system for UML diagrams

based on decision tree. The system supports all the UML notations which are used

frequently and allows user inputting the notations in any kind of order. Our user

interface is designed based on the user oriented concepts. In the system, we provide

the redrawn technique to help users draw in the location they desired. We also provide

the function of user self-definition letting users define the gestures themselves.

1.4 Organization of the Thesis

This thesis is composed of four chapters. In Chapter 1, the motivation and

previous works are introduced. The UML notation database is described in Chapter 2.

Our proposed system will be presented in Chapter 3. Experimental results and

 7

comparisons to other systems are presented in Chapter 4. The conclusions and future

works are summarized in Chapter 5.

 8

CHAPTER 2

UML NOTATION DATABASE

UML diagrams have thirteen different types and more than forty different

notations. However, some of these notations are used rarely and their shapes are more

complex. In the thesis, we choose 23 notations based on UML concepts and the

frequency of usage to recognize. These 23 notations are shown in Figure 2.1.

Figure 2.1 Supported notations of the system.

In the thesis, we invite 20 persons to draw the 23 notations ten times for each and

collect the ink data they draw. We randomly choose half of the ink data for training,

and the rest for testing. The training procedure is implemented by the MBSAS

algorithm [13] which will be elaborated in the next chapter.

 9

CHAPTER 3

PROPOSED METHOD

The proposed method is based on a decision tree and shown in Figure 3.1. The

whole process consists of four major phases： geometric feature extraction, category

classifier, notation feature extraction (NFE), and final classifier. In the geometric

feature extraction phase, some geometric features, such as convex hull, bounding

rectangle, PA ratio and Area ratio, are extracted from the input notation. In the

category classifier phase, the features extracted in the previous phase are used to

classify the input notation to the belonging category. In the notation feature extraction

phase, the input notation is divided into primitives and then we extract features like

direction, location and distance from these primitives. In the final classifier phase,

based on the extracted features, a similarity measure is provided. Based on the

similarity measure, the result notation that is most similar to the input notation is

determined.

3.1 Input

Before discussing the proposed method, we need to describe how we get input and

define some expressions which are used frequently in the thesis. The system can get

input from tablet computer, tablet digitizer and mouse, and convert the input to a point

 10

sequence. The recognition procedure of the system is started when users draw a

Figure 3.1 The proposed method.

complete notation, not a stroke. A stroke is the locus of the pen tip from its pen down

to the next pen up position. A notation is composed of one or more strokes and

represents a UML symbol. For getting the complete input, the time-out technique

which is proposed by Kimura [6] is used. The system processes pen input when the

time-out value is decreased to zero. The time-out value is started to decrease when the

pen up action occurs. It is stopped and reset when the pen down action occurs before

the value is decreased to zero. The system sets 2 seconds to the time-out value

initially. Based on the technique, the system can get integrated input and start the

Geometric Feature Extraction

Category Classifier

NFE NFE NFE NFE NFE

Final

Classifier

Final

Classifier

Final

Classifier

Final

Classifier

Final

Classifier

Result Result Result Result Result

Line Circle Rectangle Diamond Others

Pen Input

 11

recognition procedure.

3.2 Geometric Feature Extraction

The first phase of the recognition procedure is geometric feature extraction.

According to our observation, the notations supported in the system can be divided

into five categories, i.e. circle, line, rectangle, diamond, and others, based on their

geometric properties. This phase extracts geometric features from input notation to

classify it to the correct category. The geometric features we used include convex hull,

bounding rectangle, PA ratio and Area ratio. Each of these features is described

below.

3.2.1 Convex Hull

The first feature we need is the convex hull of the input notation. The convex hull

for a set of points X is the minimal convex set containing X. Figure 3 gives two

examples to illustrate convex hull. We use the Graham scan algorithm [14] to find the

convex hull of the input notation. Figure 3.2 (b) shows the convex hull of an input

notation “Actor”. The blue line denotes the convex hull. After finding the convex hull,

we compute its perimeter and the area. These values will be used in the following

section.

 12

Figure 3.2 Two examples to illustrate convex hull (a) A convex hull of a set of points.

 (b) The convex hull of an input notation “Actor”.

3.2.2 Bounding Rectangle

The bounding rectangle is the minimum rectangle containing the input notation.

We scan all points of input notation to find the minimum values of x and y

coordinates, and the maximum values of x and y coordinates. After finding these

coordinates, we use them to establish the bounding rectangle of the input notation.

Figure 3.3 shows an example of the bounding rectangle of an input notation “Actor”.

The bounding rectangle is shown by red lines. After finding the bounding rectangle,

we compute its perimeter and area. These values will be used in the following section.

Figure 3.3 An example of the bounding rectangle of an input notation “Actor”.

(a) (b)

 13

3.2.3 PA Ratio

PA ratio proposed by Kimura [6] is defined as：

CH

2

CH /AreaPerimeter ratio =PA , (1)

where PerimeterCH denotes the perimeter of the convex hull of the input notation, and

AreaCH denotes the area of the convex hull of the input notation. Note that the

perimeter and area partly define the shape of an object.

This ratio will be a constant for some kinds of shape. For instance, PA ratio = 16

for any square rectangle and PA ratio = 4π for any circle. Size independent is the

main advantage of PA ratio. In the thesis, PA ratio is used to classify circle and line.

3.2.4 Area Ratio

Area ratio is also proposed by Kimura [6]. The ratio is defined as：

BRCH/AreaArea ratio =Area , (2)

where AreaBR is the area of the bounding rectangle of an input notation.

Area ratio also has the property of size independent. In the thesis, we use this ratio

to distinguish the rectangle and the diamond shape.

3.3 Category Classifier

After extracting geometric features, we use these features to classify the input

 14

notation to the correct category. The 23 supported notations are separated to five

categories including circle, line, rectangle, diamond, and others. The classification of

each notation is shown in Figure 3.4. Four different filters, namely circle filter, line

filter, rectangle filter and diamond filter, are provided to distinguish the five

categories in the category classifier. In the following sections, we will introduce each

filter according to the filtering order. The flowchart of the category classifier is shown

in Figure 3.5.

Figure 3.4 The classification of each notation.

 15

Figure 3.5 The flowchart of the category classifier.

3.3.1 Circle Filter

In the category classifier, we use the circle filter to check for circles first. In the

thesis, we use PA ratio for circle filter. PA ratio of a perfect circle of any size is a

scalar 4π. Due to that the input may not be a perfect circle, we need to train a

threshold range around 4π to classify the input notation. To train the threshold, we

compute the PA ratio of the notations belonging to the circle category in the training

database first. Then we find a maximum and a minimum as the upper bound and the

lower bound of threshold range.

Is Circle?

Input

Is Line?

Is Rectangle?

Is Diamond?

Circle Filter

Line Filter

Rectangle Filter

Diamond Filter

Others Category

 Rectangle Category

Line Category

Circle Category Yes

Yes

Yes

 Diamond Category Yes

No

No

No

No

 16

3.3.2 Line Filter

If the input notation does not belong to the circle category, it will be checked by

the line filter. Here, we use PA ratio for line filter. Due to the PerimeterCH of a line is

close to twice of the length of input notation and the AreaCH of a line is closed to the

product of the length of input notation and ∆h which is the maximum distance

between input stroke and its convex hull, the PA ratio of a line can be approximated

by
h

l

hl

l
ratioPA

∆
=

∆×
≈

4)2(

2

. Since h∆ << l the PA ratio should be large. Here, we

take 120 as a threshold value obtained by training. Figure 3.6 shows two examples to

explain why the PA ratio is greater than a threshold. In Figure 3.6, the black line is

user’s input and the red line is the convex hull. To avoid the error of dividing zero, we

set the PA ratio equal to 200 when the area of the convex hull of a line is equal to

zero.

Figure 3.6 Two examples to show the PA ratios of lines.

 17

3.3.3 Rectangle Filter

Rectangle filter will be used when the notation does not belong to the circle or line

category. In the thesis, we use Area ratio for rectangle filter. According to the fact that

the AreaCH of a rectangle is almost equal to the AreaBR of the rectangle, the Area ratio

of a rectangle is close to 1. Figure 3.7 shows two examples to explain the fact

mentioned above. In Figure 3.7, the black line is user’s input, the red line is the

convex hull and the green line is the bounding rectangle. To get a threshold range, we

also train the rectangle notations in the training database.

Figure 3.7 Two examples to show the Area ratios of rectangles.

3.3.4 Diamond Filter

If input notation is not considered as a circle, a line or a rectangle, it will be

checked by the diamond filter. In the thesis, we use Area ratio for diamond filter. We

assume that the notations belonging to the diamond category are all upright patterns.

The AreaBR of a diamond is nearly two times of the AreaCH of a diamond based on our

 18

assumption. In other words, the Area ratio of a diamond is nearly 0.5. Figure 3.8

shows two examples to explain why the Area ratio of a diamond is nearly 0.5. In

Figure 3.8, the black line is user’s input, the blue line is the convex hull and the red

line is the bounding rectangle. We use a threshold range which is trained using the

diamond notations in the training database to check whether the input notation

belongs to the diamond category or not.

Figure 3.8 Two examples to show the Area ratios of diamonds.

3.3.5 Other Notations

If the input notation does not belong to any category mentioned above, it will be

classified to the others category. In our experiments, after category classification the

others category contains Actor and several rectangle notations which are ill-written.

3.4 Notation Feature Extraction

After the input notation is classified to a category, some notation features will be

 19

extracted for the final classification. Before extracting notation features, we will first

segment the notation into several primitives, which will be described in the following

subsection. The notation features extracted include the number of primitives, the

direction of each primitive, the location of each primitive, the length of each primitive,

and the hollowness of the notation. In the following subsections, we will describe how

to extract features.

3.4.1 Primitive

A primitive is defined to be the minimum unit of a notation, which may be a line

or an arc. The advantage of segmenting a notation to primitives is that it is much

easier for the shape matching procedure to find the matching notation. All the notation

features are extracted in primitive level except hollowness.

To divide a notation to many primitives, we use 4-way chain code and the

curvature of each point. The 4-way chain code is shown in Figure 3.9. First we

compute the chain code for each point. Then we compute the curvature of each point

by

)
))1()1(())1()1((

)1()1(
(cos r

22

1-

pi

+−−++−−

+−−
=

iyiyixix

ixix
C , (4)

where x(i), y(i) denotes the x, y coordinates of point pi and Crpi is the curvature of

point pi. After computing the curvature, we evaluate the curvature difference between

 20

two neighboring points to find the dominate points, which have curvature difference

greater than a threshold. Finally, the notation is divided into several segments using

the dominate points as cut points, each segment is considered as a primitive of the

notation. When the notation is segmented to many primitives, we take the number of

primitives, N, as the first feature. Note that we have two kinds of primitives: line and

curve, which are decided by the sequence of chain codes of the primitive. To decide

what kind of a primitive is, we evaluate the chain code difference between each two

neighboring points in the chain code sequence and sum all of them. If the summation

is larger than a threshold, we will decide that it is a curve; otherwise, it is a line.

Figure 3.9 4-way chain codes

3.4.2 Direction and Location Feature

The direction of a line primitive is defined as the chain code which appears most

frequently in the primitive. If the primitive is an arc or a curve, we set 5 to be its

1

2

3
4

 21

direction. In order to record the directions of the extracted primitives as a feature

vector, we should give an unique id to each primitive. The primitives get their unique

ids based on the relative locations on the notation. Since some notations have some

rotation varieties with 90, 180, and 270 degrees, we provide an algorithm to find

relative location.

First, we extract the directions of primitives. Then the primitives with the same

direction are collected and sorted according to their top left corner points. Finally,

each primitive gets its unique id based on the sorted list. When all the primitives get

their unique ids, we combine their directions into a direction feature vector. An

example is shown in Figure 3.11; the blue number in the figure denotes the id of a

primitive. The provided algorithm is stated below.

When the algorithm is finished, all the primitives have unique ids and we group

Algorithm to Find Unique Id

1. Setting variable i to 1.

2. Collecting the primitives with direction i to a temp list.

3. Sorting the temp list according to the top left corners point of primitives.

4. Giving a unique id to each primitive in the sorted temp list according to its

order in the list.

5. Increasing 1 to i. If i is less than 6, go to step 2; otherwise, stop.

 22

the directions of primitives according to their ids into a vector, DIR, which is

considered as the second notation feature. The notation in Figure 3.10 has (1, 1, 1, 1, 3,

3) as its direction feature.

Figure 3.10 An example of the relative location of each primitive in a notation with

the direction feature vector is (1, 1, 1, 1, 3, 3).

3.4.3 Length Feature

The length feature is a binary value which represents that a primitive is long or

short. To extract this feature, we first find the longest primitive in a notation. Then

each primitive is compared to the longest one. If the length of the primitive is larger

than half of the longest one, it is considered as a long primitive; otherwise, it is a short

one. The length feature is calculated by







<
=

otherwise,2

 len(j)max
2

1
 len(i) 1

)(j
if

iLEN (5)

where len(i) denotes the length of the ith primitive, and max len(j) denotes the length

of the longest primitive in the notation.

1

4

5

2

3

6

 23

3.4.4 Hollowness

The hollowness feature is the only feature extracted in the notation level.

Hollowness means whether the shape is a solid one or not. A hollow shape has a

property that there are no points near the gravity center of the shape. According to this

property, we locate a rectangle with size 60% of the convex hull, and the center of the

located rectangle is the same as that of the convex hull. If the number of points inside

the rectangle is smaller than a threshold, the notation is considered as a hollow shape.

Otherwise, the notation is not a hollow shape. Figure 3.11 shows examples of

hollowness. Figure 3.11 (a) is a hollow shape, and Figure 3.11 (b) is a solid shape.

The hollowness feature, H, is also a binary value and defined by



 <

=
otherwise,2

 t P If 1 rec
H (6)

where Prec denotes the number of points inside the located rectangle, and t is a

threshold value.

Figure 3.11 Examples of hollowness. (a) A hollow shape. (b) A solid shape

(a) (b)

gravity center

located rectangle

 24

3.5 Final Classifier

Feature vectors extracted from the operations described above, including N, DIR,

LEN, and H, are taken for pattern matching at this phase.

In order to obtain the most likely notation for the input notation, we use the

inverse of sum-of-absolute-difference (SAD) as the similarity measure. Let notations

T and T’ be the database notation and the input notation respectively, the similarity

between T and T’ is calculated by

∑
=

−
=

4

1

'

)(
i i

ii

K

FF
TSAD ,

)(

1
)(

TSAD
TS = , (7)

where Fi (Fi’) denotes the ith feature vector of T (T’), and Fi∈{N, DIR, LEN, H}. Ki

denotes the number of elements in the feature vector Fi.

 Due to the dimension of direction feature vector and the length feature vector are

dependent on the number of primitives, we will pad zero to the smaller vector

between Fi and Fi’ for computing SAD. Let S(T) max arg*
T

=T , the input notation is

considered to be notation T*.

3.6 MBSAS Algorithm for Database Creation

The final classifier step uses the inverse SAD to classify the notation. If we

calculate SAD between the input notation and all the notations in the database which

is described in Chapter 2, the processing time will be very long. Therefore, we use

 25

MBSAS to reduce the database and get some representative feature vectors for

reducing the processing time.

Modified Basic Sequential Algorithm Scheme (MBSAS) [13] is a clustering

algorithm. More specifically, it is an algorithm to group the objects based on

attributes. MBSAS does not need to know the number of clusters. It contains two

phases. The first phase determines the number of clusters; the second phase is the

pattern classification.

3.7 Post Processing

The input notation is classified in the previous steps, but we do not know where

the notation should be located on. Therefore, we will do some post processing to

display the notation at the correct position and size.

First, we will display the input notation using the corresponding standard UML

notation at the position user drawn based on the corner points of the bounding

rectangle of input notation. Then, we resize the notation to the user’s requisite size

based on the size of the bounding rectangle of input notation. Finally, we will get the

user desired result. Figure 3.12 shows an example of the post processing step. The left

figure shows the scene before post processing and the right one shows the scene after

post processing.

 26

Figure 3.12 An example of the post processing step

 27

CHAPTER 4

EXPERIMENTAL RESULTS

 In order to evaluate the recognition rate of the proposed method, we invite 20

persons, with poor experience using tablet digitizer and tablet PC, to sketch 23

supported notations about ten times for each notation. We use a tablet digitizer,

Wacom Graphire4 CTE-440, and a tablet PC, HP Compaq tc4200, to collect the ink

data. In the experiment, we randomly choose half of the ink data for training and the

rest for testing. Table 1 shows the recognition rate of the proposed method. The first

column shows that only the top one is chosen and the recognition rate is 84.62%. The

second column shows that the top three ones are taken, and the recognition rate

increases from 84.62% to 91.24%. We can observe that the notations belonging to the

Line, Circle, and Diamond categories are classified very well.

In order to show that our proposed method has higher recognition rate than other

methods, we compare our method to SkGs method [12]. In SkGs method, there are

five students to participate the experiment, and each student draw 20-25 symbols of

Use Case diagram. The recognition method proposed in [12] has two parts. The first

part only used the Grammar based method to recognize symbol, and the second part

combined the Grammar based method and the language recognizer. Our results will

be compared to these two parts. In the comparison, we also invite five persons

 28

drawing the symbols supported in SkGs method, and the recognition rate is shown in

Table 2. In Table 2, we can see that the results of the proposed method are better than

these two parts besides Actor. Thus, our recognition rate is superior to SkGs method.

Table 1. The recognition rate of top 1 choice and top 3 choices. (continued)

Shape Top 1 Accuracy% Top 3 Accuracy%

Activity 73(73/100) 86(86/100)

Aggregation 88.78(87/98) 91.84(90/98)

Activationbar 87.78(79/90) 88.89(80/90)

Actor 87.78(79/90) 92.22(83/90)

Branch 90.91(90/99) 100(99/99)

Class 84.44(76/90) 92.22(83/90)

Component 73.81(62/84) 86.9(73/84)

Communication 100(98/98) 100(98/98)

Dependency 81(81/100) 86(86/100)

End 92(92/100) 92(92/100)

Fork 89.29(75/84) 89.29(75/84)

Generalize 97.96(96/98) 98.98(97/98)

Initial 77(77/100) 81(81/100)

Interface 78.65(70/89) 85.39(76/89)

Lifeline 100(89/89) 100(89/89)

Node 72.22(65/90) 86.67(78/90)

Note 70.79(63/89) 91.01(81/89)

 29

Table 1 The recognition rate of top 1 choice and top 3 choices.

Shape Top 1 Accuracy% Top 3 Accuracy%

Object 87.78(79/90) 88.89(80/90)

Package 75.56(68/90) 92.22(83/90)

State 71(71/100) 84(84/100)

Swimlane 80.9(72/89) 91.01(81/89)

Transition 94(94/100) 97(97/100)

Use Case 89.89(80/89) 96.63(86/89)

Total 84.62 (1816/2146) 91.24 (1958/2146)

Table 2. Comparison with SkGs method

Shape

SkGs without

Language

Recognizer (%)

SkGs with

Language

Recognizer (%)

Proposed Method

(%)

Actor 76.92(10/13) 92.31(12/13) 92.31(12/13)

Use Case 83.3(45/54) 90.74(49/54) 96.30(52/54)

Communication 100(21/21) 100(21/21) 100(21/21)

Dependency 72.73(16/22) 72.73(16/22) 95.45(21/22)

Generalize 81.82(9/11) 100 (11/11) 100(11/11)

Transition 88.89(8/9) 88.89(8/9) 100(9/9)

Total 80.99(98/121) 91.74(111/121) 96.69(117/121)

 30

CHAPTER 5

CONCLUSION AND FUTURE WORK

The thesis proposed an online handwritten recognition system of UML diagrams

based on decision tree. First, some geometric features are extracted for classifying the

input notation to the corresponding category. Then we extract several notation

features in primitive level and notation level to create the feature vectors. Finally, the

similarity measure based on SAD is calculated for getting the final result.

In the system, users can sketch UML diagrams using tablet computer, digital

tablet, and mouse. Users can sketch any notation in any kind of order in the system.

After sketching a notation, the standard notation will replace the hand-drawn one and

be displayed with the correct position and size. We also support user self-definition

function which allows user defining gestures representing the UML notations. Besides

these characteristics, the most important property of the system is that it is relative

efficient and simple to other methods mentioned above because we use decision tree

and reduction database to reduce the comparison time.

Although the system provides many functions of sketching UML diagrams, it is

still not enough. In the future, we will add more functions, such as forward/backward

engineering, modularity, supporting the multi-layer diagrams, and supporting more

UML notations to make the system become a practical tool.

 31

REFERENCES

[1] L. H. Chen and Y. P. Yin, “A System for On-line Recognition of Handwritten

Mathematical Expressions,” Computer Processing of Chinese and Oriental

Languages, Vol. 6, No. 1, pp. 19-39, 1992.

[2] G. Hutton, M. Cripps, D. Elliman, and C. Higgins, “A Strategy for On-line

Interpretation of Sketching Engineering Drawings,” Fourth Intl. Conf. on

Document Analysis and Recognition, pp. 771-775, 1997.

[3] Z. Lin, J. He, Z. Zhong, R. Wang, and H. Shum, “Table Detection in Online Ink

Notes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28,

No. 8, pp. 1341-1346, 2006.

[4] T. Kimura, A. Apte, and V. Vo, “Recognizing Multistroke Geometric Shapes： an

Experimental Evaluation,” Proceedings of the ACM conference on User

Interface and Software Technology (UIST’93), pp. 121-128, 1993.

[5] M. Fonseca and J. Jorge, “Using Fuzzy Logic to Recognize Geometric Shapes

Interactively,” The Ninth IEEE International Conference on Fuzzy Systems, Vol.

1, pp. 291-296, 2000.

[6] UML in Wikipedia : http://en.wikipedia.org/wiki/Unified_Modeling_Language

[7] Object Management Group : http://www.uml.org/

[8] C. Damm, K. Hansen, M. Thomsen, and M. Tyrsted, “Creative Object-Oriented

 32

Modeling： Support for Intuition, Flexibility and Collaboration in CASE Tools,”

ECOOP 2000-Object-Oriented Programming： 14
th

 European Conference, Vol.

1850, pp. 27-43, 2000.

[9] D. Rubine, “Specifying Gestures by Example,” Proceedings of SIGGRAPH'91,

pp. 329-337, 1991.

[10] E. Lank, J. Thorley, S. Chen, and D. Blostein, “On-line Recognition of UML

Diagrams,” The Sixth IEEE International Conference on Document Analysis and

Recognition, pp. 356-360, 2001.

[11] Q. Chen, J. Grundy, and J. Hosking, “An E-whiteboard Application to Support

Early Design-Stage Sketching of UML Diagrams,” IEEE Symposium on Human

Centric Computing Language and Environments, pp. 219-226, 2003.

[12] G. Costagliola, V. Deufemia, and M. Risi, “A Multi-layer Parsing Strategy for

On-line Recognition of Hand-drawn Diagrams,” IEEE Symposium on Visual

Languages and Human-Centric Computing (VL-HCC’06), pp. 103-110, 2006.

[13] S. Theodoridis and K. Koutroumbas, Pattern Recognition, Academic Press,

2006.

[14] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms,

MIT Press, 2001.

