Bl 1 A

LR TREMER

Bt R X

L AR 2 S e O

Programming Peer Assessment Using Tagging A pproach

g4 e

GESS ER § £ S

PEREBE LW+t XA

L R S

Programming Peer Assessment Using Tagging Approach

oA RN Student : Yi-Li Liu
hERE B A Advisor : Shian-Shyong Tseng

“

ESN
g?t;_
e
=
2
it
o+

A Thesis
Submitted to Institute of Multimedia Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Computer Science
June 2008

Hsinchu, Taiwan, Republic of China

PERARAY L ES

L A - S S e O

g4 Fle sy § gL
Rid - BFNFIx
Y

ﬁﬁﬁﬁé*’ﬁﬁﬁg‘ﬁﬁiﬁsﬂéa%%’{ﬁﬁﬂ?ﬁ@ﬁ
e & e °*“%ﬁﬁﬁ#€**rgr;wpmgsomﬁﬁﬁi
T %i‘\r}:;‘l'mpﬁtﬁié £ 7 ﬁi;\rﬂf—g TR EAEY o 2§ FL
B AES ER AR Glde s PSSR RSN F e Rm R TA
N AR I VIR L Gl A S L R S . N R
Bl RIEZ R inicd @ RanER Y 4 2 LR AR -
@”mﬁ*iﬁié’“Fﬁ?ﬂ%**ﬁﬁﬁaﬁﬂﬁﬁﬂﬁﬁkﬁﬁ
R REERAEN DR ET LE IR RE S ARG 8
mp‘?%‘f“,}f K ni_éf‘:!_ iE AT Y “'Jﬁi:{\i&p}; B2 % Kf@—iﬂ g rﬁ"p“q‘
- gﬁﬁ%%ﬁﬁﬁ%’?U+§4rﬂﬂﬁdi£?'fib TR ER? § 2t

%
L)

Wil B4 B Y R g ?Jl‘ﬁ‘f—"zﬁﬂ?%%wﬁd"f{:?ﬂfgmg °E’5‘\
P Far B4 g\ FAMAVT UAAPagEE 3 2S5 Nk, 77
2\ IFE%"‘I-E /r,ﬁv ¢ j% mlEWFI 5 ¥ 1y ﬁfﬁ”’%‘?i %‘3 sgl Jeim 13&11"»‘ ,Elja—; (75

B BE 2 el i @I E

Programming Peer Assessment Using
Tagging Approach

Student: Yi-Li Liu Advisor: Dr. Shian-Shyong Tseng

Institute of Multimedia Engineering
College of Computer Science
National Chiao Tung University

ABSTRACT

Most of the programming novices feel hard to learn programming skills, such as coding,
tracing, debugging and testing. To help them learn programming well, computer program
assessments which can find out the novices’ programming misconception have been proposed.
Although traditional computer program assessment can score the student’s program by
executing the program with test cases, it is ineffective because the novices’ programming
misconception in the coding mistakes and tracing mistakes can not be found out. In the peer
assessment activity, the learners can discuss their works with others to get the comments
about his/her work together with the score. This thesis proposes a new computer program peer
assessment to help the novices easily find out their programming misconception in the coding
mistakes and tracing mistakes. An experiment has been done to evaluate the effectiveness of
the new assessment. We may conclude that the process is useful to find out the learner’s
coding and tracing problems, and that the tracing guidance is useful to direct the novice to

trace peer’s program.

Keywords: computer program peer assessment, peer assessment, computer program

learning

B e

FARRPALA Sl S § R L AL i e gt
ﬁﬂ#ﬁ%fklziﬂﬁﬂﬂs ER e s R O il = “H?Eﬁﬁ e iR %%mﬁw%«g;\&
PR TE 5 A ﬂ}i,}rl rﬂl}b,» ’Eg\.sz nl;.’,f

R e
v A R g A RARRNE JEFRRE DFF LA RN
51

5 BE

PR oo RS BB

E\\I’

BTRERHE MRS g F ¥ FEELE P REFedg AT P i

A

P PR AR LAY o AipEES £ BAR EF S G TBE FaH
TS AT LA rm?}% TR A b1t B EEE B N 5%"'&5?']57

'
A RHAL 2B EEAITE R T R B EARBERT PR R

FORRBANY A AT EBBE F BEATIAGEE S RAT UL S PR
P EERFNAE DA R BN R HAPT P A F o AN D R R
A ’;}_ff J#’I#TE&‘/‘A-,,% __’J, ’gf\é‘bﬁl/gglp&a'\ﬁzﬁ%w,*i%_iyiﬁggog
RS G R S R

Table of Content

B ettt e RS |
FAN S I AN 4 SR [l
B = ST PS 11
TADIE OF CONMTENT ...ttt sttt b et st b et be e enes v
LISt OF FIQUIES.... .ottt ettt et et e s se e s e e s e e beensesseesreenseeneenseeneenneenns \
Chapter 1. g1 0o (U Tox 1 o o PSSR 1
Chapter 2. REGEAWWOIK ... et 4
2.1. Computer Program Peer Assessment with Text-based comment ... 4

2.2. Computer Program Peer Assessment with Questionnaire-based comment............ 4
Chapter 3. Computer Program Peer Assessment Architecture..........ccooeceveeveeceseecieceee 6
Chapter 4. Computer Program Peer Assessment Tag Schema.........cccoooeveieniinenccee, 8
4.1. TheReviewer Tag SCheMA.......cccoiiiiieiieesee e 8
4.1.1. Structure Tag SChema..........cccoiieiiicee e 8

4.1.2. Test CaseTag SChEMA....cccoiiir it 10

4.1.3. Mistake Tag SChema........ccooiiiii e 11

4.2. TheProgrammer Tag SCNEMAccccviieiiriieiiiereeiiisee e s 14
4.2.1. TheFeedback Tag SChemMa........cccccoeviiieiiieii e 14

Chapter 5. Experiment N AT B e 16
51. Programming ASSIONMENTccoiiiieieeiescirte st ee e sre e e e eeseesse e e e 16

5.2. Computer Program Peer ASSESSMENt SYSEM.........coocerieriieerin e 18
5.1.1. TheWeb System for Exchanging Document among Peers...................... 18

5.1.2. TheMicrosoft Word for Making Tag-based Comments..............ccccuen..... 19

Chapter 6. The Misconception Pattern ANAlYSIS.......ccviiieeiere e 22
6.1. Thedistribution of four kind of tag-based comment.............cccccoriiieiiniienenne 22

6.2. The evaluation of the learners’ tracing abilitycccevieririninien e 23

6.3. The evaluation of the learners’ testing abilityccceviiriiiiniiien e 25

6.4. The evaluation of the learners’ debugging abilityccccceririiiiiiiiiiinicneee 28

B.5. DISCUSSION.....citiiiiiiiesteeieeiestee st ee st este e e sseeste e e s seesbeentesaeesbeeseeseesbeensesneesseensens 30
Chapter 7. CONCIUSIONottt e e e te e e s se e aeeneesreenseennesneensens 31
REFEIEINCE......cee ettt bbbt bttt et et e b st e e be st e bt be e e e e 32

List of Figures

Figure 1: Computer Program Peer ASSESSIMENEcceeuirieieeie e seeieesee e eeeseee e seesseeseesseesees 2
Figure 2: Marking criteriain Unix programming MOdUle.............cccoeereenerinneeneeenee e 5
Figure 3: Computer Program Peer Assessment ArchiteCture..........oooveeeveeceveeseecieseese e 7
Figure 4: Structure Tag SCREMAL........ccueoii e 9
Figure 5: Using structure tag schema to mark the program’s non-sequential statements........ 10
Figure 6: Test Case Tag SCNEMAL........ccoo e 10
Figure 7: Using test case tags to record the execution status of programccccceeveveeeennene 11
Figure 8: Mistake Tag SChEMA..........cieeiiiiesierie ettt ee e sneenesneenne s 12
Figure 9: Using the mistake tags to denote the program mistake of initial values................... 13
Figure 10: Using mistake tag to indicate the mistake on the test case tags.........ccccoveevvreennene 13
Figure 11: FeedbaCk Tag SCREMAL........ccciviiiiiee et ne s 14
Figure 12: The example of accepting the reviewer’s COMMENLS.ccueerrueerrieersiieessireessieeeenns 15
Figure 13: The GUI of the program aSSIgNMEeNt..........ccccovereeririeniereee e 17
Figure 14: The coding area for the NOVICe ProgramiMmerScccecveveererreeseeseeee e seeeeesseeneens 17
Figure 15: Theimage of SUCCESS ONthE GUIoceeiiieeie e 18
Figure 16: Theimage of fallure oNthe GUIccooiiiiieie e 18
Figure 17: Computer Program Peer ASSeSSMeENt SYSIemMcooiveeienirneeneee e 19
Figure 18: Review tags predefined in Microsoft Word document.ccocoeeeeveeneeieneennens 20
Figure 19: The predefined execution table in Microsoft Word document.............cccccveeveeennen. 20
Figure 20: Feedback tags predefined in Microsoft Word documentccceceveeveeieceennns 20
Figure 21: The tagged PrOgraiMoieeieeieseere e see sttt e st esteseesaeestesneesreesseeneesneeneens 21
Figure 22: The distribution of the novice programming learner’s tag-based comment 23

Figure 23: The distribution of correctness of the novice reviewers’ structure tag comments.. 24
Figure 24: An example of the wrong structure tag comments made on tagging the nested
CONITIONEl SLALEMENTS.ovieiiirieree ettt e bbbt enes 24

Figure 25: The distribution of correctness of the novice reviewers’ test case tag comments ..25

Figure 26: An example of tagged program made by the novice reviewercccocevereennen. 26
Figure 27: An example of the execution table made by the novice reviewer............c.ccocueene... 26
Figure 28: The watch point made by the NOVICE reVIEWEcccceevveieieecece e 27
Figure 29: An example of the execution table made by the novicereviewerccc.c...... 28

Figure 30: The distribution of different level of mistake tags used by the novice reviewers...29

Figure 31: An example of the syntax error program tagged by the mistake tag

Figure 32: An example of the execution table annotated the syntax error of the program

\

Chapter 1. Introduction

The basic programming skills, such as coding, tracing, debugging, testing, etc., are of most
importance for a programmer to implement, maintain, and extend computer programs.
However, it is hard for a novice to learn these programming skills. In order to find out the
misconception of the novice programmers, a computer program assessment is needed [1-4].
As we know, the traditional computer program assessment uses test cases to evaluate the
correctness of the learners’ program assignments. When the program can not be correctly
executed for the test cases, the learner’s coding ability still can not be enhanced without being
taught the knowledge about the mistakes in the program. Furthermore, the traditiona
assessment does not take the tracing ability of the learner into account. Therefore, how to

evaluate the learners’ coding and tracing ability is our concern.

According to the pedagogica theory [5], we know that peer assessment [6, 7] is an effective
learning method for learners to understand others’ work [8-11]. In the peer assessment
activity, the learners usually discuss their works with others, and every learner can get the
comments about his’her work together with the score. Using the peer assessment for learning
programming, the learner can get the comments about their programming mistakes from
others, so that more information rather than the result of program execution can be obtained to
help learner understand his/her programming misconception in the coding mistakes and
tracing mistakes. Therefore, computer program peer assessment is a good approach to

improve the novices’ programming skills.

In the computer program peer assessment activity as shown in Figure 1, a learner, who plays
the role of a programmer, implements the program to satisfy the requirements and solve the
problem, and then another learner, who plays the role of a reviewer, reviews the
programmer’s program and gives comments about the coding mistakes. According to the
reviewer’s comments, the programmer may modify himself/herself program or discuss the
comments with the reviewer to improve the coding ability. Besides, the reviewer also can
improve the tracing ability by reviewing the programmer’s program and being notified
whether the comments have been adopted or not after the discussion with the programmer.

Furthermore, all of the comments and programmer’s feedbacks can be collected as a data

source from which data analysis or data mining can be done to find out the frequent
programming misconception pattern of the learners to help the teacher to design the remedial

instruction.

ieacher

| teat

prum’am| |
- | cases

problem _

programmer CEVIWEr

.i% Coding 'ﬂE:f’ Reviewing @2

Pear Assessment

N

Review Analysis

Figure 1. Computer Program Peer Assessment

In previous research about computer program peer assessment [12-14], the text-based
comments [15-17] and the questionnaire comments [16, 18] are usually used to communicate
among peers. The former is hard to be used to precisely point out the mistakes of the peer’s
program, and also hard to be dealt with by the computer program to provide teachers some
information about the activity. The latter is based on the research using the questionnaire of
5-point Likert scale to help the reviewer make comments, so the reviewer can easily make the
comments by only choosing the question, but only the comments, which are covered by the

guestions in the questionnaire, can be expressed.

As mentioned above, it is hard for a reviewer to give precise comments for the concerned
problems, where the reviewer’s programming skills should be good enough to give the correct
comments, and how to make good use of the comments, the important resource about the
learners’ learning status, to help finding the frequent misconception of the learners is also an

interesting issue.

Therefore, our idea is to develop a tag-based comment environment for the learner to
comment using appropriate and predefined tags. We propose the tracing guidance to guide the
novice learner tracing code and finding the coding mistake by providing the proper
demonstration. We also propose the feedback mechanism for the programmer to express
his/her acceptance or rejection about the reviewer comments. When the programmer does not
agree with the reviewer’s comment, the feedback mechanism becomes the peer assessment of

the reviewer’s reviewing ability or tracing ability.

This paper proposes a new Computer Program Peer Assessment Activity using tag-based
comment to help the learners to improve their programming skill effectively. In the scheme,
after the programmer implementing the program given by the teacher, the reviewers can make
tag-based comments according to the running status of the test cases using the Authoring Tool
with Program Tagging Schema, where three tasks for different tracing purposes are proposed
to guide the reviewer to trace the program. The first one is to trace the structure of the
program, the second one is to trace the execution of the program, and the third one is to point
out the mistakes in the program. After the reviewers finish the review, the Review Analysis
Process will analyze the tag based comments and provide learners’ learning status for teachers

to help the learner learning programming well.

Finally, an experiment has been done to evaluate the effectiveness of the Computer Program
Peer Assessment Activity. We can conclude that the process is useful to find out the learner’s
tracing problem. The tracing guidance is useful to direct the novice learners to trace peer’s

program.

Chapter 2. Related Work

In previous research about computer program peer assessment, the text-based comments [15,
16] and the questionnaire comments [16, 18] were used to communicate among peers.

2.1.Computer Program Peer Assessment with Text-based

comment

The research of text-based comments shows that the novices can not understand what
comments are necessary and the comments usually give some useless comments. Besides, the
text-based comments are difficult to be analyzed automatically to provide teachers

information about the learning status in the assessment.

2.2.Computer Program Peer Assessment with

Questionnair e-based comment

The other research [18] describes the experiences with a novel web-based peer assessment
system deployed on a large class of undergraduate computer science students studying
computer programming. In this research, they developed the software containing three
components, which are automatic test results, strict marking guideline, and tutor support, to
assist the peer assessment activity. The strict marking guideline is the questionnaire of 5-point
Likert scale, shown in Figure 2, which was set by the teacher, used by the students to give
comments. They found that most of the students understood the marking guideline and could
give the comments easily. However, the students can not give the comments that the
guestionnaire doesn’t cover. The questionnaire is difficult to be designed to fulfill different

kinds of program assignments. Therefore, the questionnaire is hard to be used to give precise

comments on finding out the programming mistake.

1. Comments are unhelpful QO0O0OOC helpful

2. The code are indented mconsistently OO0 O00 consistently
3. Variable/function names are inappropriate OOOOO0 appropriate
4. The code handles errors mapproprate OOOOO0 appropriate
3. The program finishes with an appropriate exit never QOO00Q0C always

status

6. The wtilities have been selected inapproprate COO0OCO0O0 appropriate
7. The program is structured poorly OQOOCOOC well

&. Owersll, following what the program is doing is hard OOOOO Easy

Figure 2: Marking criteriain Unix programming module

Chapter 3. Computer Program Peer

Assessment Architecture

In a computer program peer assessment, we need to overcome three issues to improve the
learning effectiveness of programmers, reviewing, and teaching effectiveness of teachers.

How to help reviewers give precise comments, focusing on concerned problems?
How to evaluate reviewers’ tracing ability in the activity?
How to mine the learners’ learning status from data in the peer assessment?

Thus, we propose a tag-based computer program peer assessment, where tags are defined to
guide reviewers to give precise comments. The programmers, who receive the tag-based
comments, can challenge the comment tags to give reviewers precise feedback. Besides, the
predefined tags are easy to be analyzed automatically to help teachers understanding the

learners’ learning status.

Accordingly, we propose a Computer Program Peer Assessment Architecture (CPPAA),

shown in Figure 3.

feacher

4 —~TTYTS
" < o P € R
Erdbiem ' —| fast Program Tag Schema
to be | ‘ - el ;
solved L= ‘ RASRS | =
/ \ (B
P

) Reviewing 5 >
Coding

implement a program ‘ Tagging Tool

Fregrammer Trace the sbucture reviewer

of the program
Feedback L — :
pr - i eer Assessment Trace the execution
‘modlfy the program‘ ifthe Hrbigdin

. re]'eCt : |Point out the errors
accem [_in ﬂ1_e_|Jrogram

Review Analysis

Figure 3: Computer Program Peer Assessment Architecture
In the beginning of the peer assessment, teachers give learners a programming assignment
with a set of test cases. After the first round of coding activity, each completed program will
be reviewed by other two programmers, who have the similar ability of programming. In the
reviewing activity, each learner needs to trace others programs to annotate the programs’
structures, test cases running status, and program mistakes with predefined tag schemas. In
the second round of coding activity, the reviewing results will be returned to the programmers
to help them enhance their codes, if the programmers do agree with the comments, given by
reviewers, otherwise, they can reject. Finally, the programmers’ feedback will be given to the
reviewers to let reviewers know the effectiveness of their comments. After the peer
assessment, in the review analysis, the frequent patterns of coding and tracing mistakes can be

mined automatically and can be referred by teachers to design the supplementary instructions.

Because our targeted learners are novice programmers, the scope of the programming
language is limited to the basic concept of structured programming language, including
conditional statement, repetition statement, and the build-in data type. Thus, not only the
advanced programming language concepts, such as “function” and “object”, but aso the
“goto statement” which is easy to break the execution flow of a program, are excluded in our

programming language scope.

Chapter 4. Computer Program Peer

Assessment Tag Schema

In CPPAA, reviewers will use the predefined reviewer tag schema to annotate their reviewing

results, and programmers can use the programmer tag schemato give feedback to reviewers.

4.1.The Reviewer Tag Schema

The reviewer tag schema includes structure tag schema, case tag schema, and mistake tag
schemato guide learners to recognize the structure of the traced program, use the test cases to
evaluate the correctness of the program, and find out the mistakes in the programs.

4.1.1. StructureTag Schema

The structure tag is used to describe the structure of the program. In general, the statementsin
the program code are executed sequentialy if there is no “conditional statement” or
“repetition statement” in the program code; otherwise, the program may not be executed
sequentially, and may result in increasing the difficulty for the novices to trace the program.
Therefore, we guide the learner to mark the scope of non-sequentia statements, such as

conditional statements and repetition statements, firstly.

As shown in Figure 4, the structure schema set is a hierarchical structure, where the tag
“conditional statement” is used to tag the conditional block and its child tag “condition” is
used to tag the condition statement in the conditional statement block. The tag “loop
statement ” is used to tag the loop block in the program and its child tag “condition” is used to
tag the condition statement in the loop block. Since the structure tag set is also a composite

structure, the nesting loop or nesting condition can also be tagged.

Structure Tag Schema

statement

4/\

Conditional Loop
statement statement

/;Iition /gition

statement statement
Figure 4: Structure Tag Schema

If the learner can mark the scope and the condition of the non-sequential statements correctly,
it means s’he can understand the execution flow of the program. Otherwise, the missing or
wrong tags are useful for the teacher to know the learner’s misconception and then give
him/her appropriate help.

Example 1. Using Structure Tags to Represent Nested Program Structure

As shown in Figure 5, the program, designed to find out the minimal number and the count of
this minima number in a given integer array “5, 3, 3”, contains a nested structure of a
for-loop statement and two if statements, so learners need to identify each statement’s scope
with the loop or branch conditions. The scope of the most outside for-loop statement is
marked from tag “loop start #1” to tag “loop end #1” and the loop condition is marked with
the light-orange background color to annotate the constraint of the for-loop statement. The
internal nested if statements can be marked by the tags “condition start” and “condition end”
with different tag numbers to denote scopes of different statements. Thus, learners have to
mark the scope of the outer if statement from tag “condition start #1” to tag “condition end
#1”, and the scope of the inner if statement from tag “condition start #2” to tag “condition end
#2” to clearly denote the nested program structures. Similar to loop statement, learners need
to use “light pink background color ” to identify the constraint of the conditional statement.

int main() {
int[] ivec = {5, 3, 3};

int minVal = 0;
int occurs = 0;

for (intix = 0; ix < size; ++ix) {
if (minVal == ivec[ix]) {
++occurs;
telse {
if (minVal > ivec[ix]) {
minVal = ivec[ix];
occurs = 1;

condition end #2
condition end #1 }
loop end #1 H

Print minVal;
Print occurs;

¥
Figure 5: Using structure tag schemato mark the program’s non-sequential statements

4.1.2. Test Case Tag Schema

When learners evaluate the correctness of others’ program, it is important to use critical test
cases and monitor the values of variable to find out the mistakes. In order to help learners
trace the test case execution, we want the learner to record the variation of variables. Thus, we
define test case tag schema, which support the learner to record certain (critical) variation of
certain (critical) variables.

The “test case” tag set, shown in Figure 6, is composed of two kinds of tags. “Watch point”
tag is used to indicate the program line, where the reviewer wants to know the variables’
values, and “variables set” tag is used to record the value of variables at the line of “watch
point”. If the “Watch point” isin aloop block, then a variable may have different values at
different iterations. So the “variables set” tag is a two dimensiona table, where the first

dimension is the watched variables, and the second one is the watched iterations.

Test Case Tag Schema

Watch point

Variable set

Figure 6: Test Case Tag Schema

With the test case tags, we can evaluate whether the learners can correctly identify the critical
variation and trace the values or not. If the learner chooses the irrelevant variables or can not
record the values correctly, teachers can easily capture the learners’ misconceptions about

recognizing the program’s key points or tracing the values during the execution of the

10

program.
Example 2: Using test case tagsto record the execution status of program

For representing the execution status of a program, the watch points should be assigned by the
novice reviewer to point out the critical position of the program. As shown in Figure 7, the
for-loop statement is assigned with a watch point and three critical variables, “minval ”,
“occurs”, and “ivec[ix] ”, are defined as the watched variable set, where the variable
“minVal ” is used to record the current minimal number of the array, the variable “occurs” is
used to record the current count of the minimal number in execution, and the variable
“Ivec[ix] " is used to represent the element in the array. Because the watch point is assigned in
the loop structure, the value of each variable may be changed in different iterations. Thus,
three variable set tags are used to record the values of variables in the three iterations, where

“minVal 7, “occurs” are assigned 0 in all iterations, and "ivec[ix] ”’ ischanged to “5, 3, 3”.

int main() {
int[] ivec = {5, 3, 3};

int minVal = 0;
int occurs = Q;

mirtial =0 miral =0 mimal =0

| for (intix = 0; ix < size; ++ix) {| | occurs =0 oceurs =0 oceurs =0

if(minVaI p— ivec[ix]) { ivec[0] =5 ivec[1] =3 ivec[2] =3
++oceurs;

else if (minVal = ivec[ix]) {
minVal = ivec[ix];
occurs = 1;

b

else
¥
Print minVal;
Print occurs;

b
Figure 7: Using test case tags to record the execution status of program

4.1.3. Mistake Tag Schema

After tracing the programs with test cases, reviewers may find some mistakes in the programs.
In order to guide reviewers to give more precise comments, we propose a mistake tag schema
to hierarchicaly structure the mistake tags from general to specific, as shown in Figure 8.
With the schema, reviewers are asked to find the correct and precise mistake tag, so

reviewers’ debugging ability could be evaluated.

11

Mistake Tag Schema

right wrong

syntax error semantic error

initialization error computational output error
error

no wrong boundary branch
initial value initial value condition error
error

Figure 8: Mistake Tag Schema

With the mistake tag schema, reviewers can tag the test case tag with program mistakes to
specify the program mistake and the faced situation. If the reviewer can tag the correct and
precise comments, it means that the reviewer has good debugging ability about finding
program mistakes. If the reviewer can not tag the correct or precise comments, then her/his

programming misconception in debugging will be found.

Example 3: Using the mistake tags to denote the program mistake of initial
values

Tracing the program and record the variation of the concerned variables may help to find out
some mistakes of the program according to the tracing records. For example, when the learner
records the values in the first iteration, s/he can find that “minVal ” is not changed until the
negative number appears in “ivec[ix] ” because the initial value of “minVal ” is 0. Thus, as
shown in Figure 9, a mistake tag “wrong initial value” can be used to denote the found
mistake in the first iteration of execution.

12

int main() {
int[] ivec = {5, 3, 3},
wrong initial value
int minVal = 0; 9
int occurs = 0;

minval =0 minval =0 minval =0
loop start #1 I for (intix = 0; ix < size; ++ix)} { | occurs =0 occurs =0 oceurs =0
condition start #1 TS ETITNVE) pryievs (B R wedlll = | Q) ivsdd] =9 || Wedl) = o

+-+occurs;

else {

if (minVal > ivec[ix]) {
minVal = ivec[ix];
occurs = 1;

condition end #2
condition end #1 3
loop end #1 T

Print minVal;
Print occurs;

¥
Figure 9: Using the mistake tags to denote the program mistake of initial values
Example 4. Using mistake tag to indicate the mistake on the test case tags

If the learner can not identify the mistake of initial value, he may find that the truly minimal
number of the array is 3, stored in “ivec[1] ”, but the “minVal ” is not equal to 3 after the
second iteration. Thus, as shown in Figure 10, s/he can assign the more general mistake tag

“computational error ” in the variable setsin third iteration.

int main() {
int[] ivec = {5, 3, 3}; .
computational
int minval = 0; error
int occurs = 0;
minva =0 minva =0 minval =0
TSR | for (intix = 0; ix < size; ++ix) { | | cosurs =0 acours =0 arelrs =0
if (minval == ivec|ix]) { Ivecf0] =5 hvec[1] =3 vec[2] =3
++occurs;
I
else {

if (minVal > ivecfix]) {
minVal = ivec[ix];
occurs = 1;
i
1
loop end #1

Print minVal;
Print ocecurs;

b
Figure 10: Using mistake tag to indicate the mistake on the test case tags

13

4.2.The Programmer Tag Schema

The programmers, who receive the comments from the reviewers, have to return their
feedback about the comments to the reviewers, and thus the reviewers’ tracing ability can be
evaluated.

4.2.1. TheFeedback Tag Schema

After receiving the reviewers’ comments, the programmers can give feedbacks to express
whether the comments can be accepted or not. As shown in Figure 11, the feedback tag

schemaincludes two tags, “reject” and “accept ”.

Feedback Tag Schema

(Reject) (Accept)

Figure 11: Feedback Tag Schema

Example 5: Using feedback tag to represent the regection or acceptation of

programmers

As shown in Figure 12, the programmer receives the comments from reviewers and agrees the
comment of “computational error ”, so s’/he can refine the program and return the feedback
comments with tag “accept” in the mistake tag to the reviewer.

14

Accept

int main() {

int[] ivec = {5, 3, 3} (computational error)

?nt minVal = 0; minval =0 minya =0 minval =0

int occurs = 0; occurs =0 occurs =0 occurs =0
wec[0] =5 ivec[1] =3 ivec[2] =3

loop stat #1 > for (intix = 0; ix < size; ++ix) {
condition start #1 if (minVal == ivec[ix]) {

+40ccurs;
condition end #1 1

else if (minVal > ivec[ix]) {
minVal = ivec[ix];
occurs = 1;
¥
h

¥
Figure 12: The example of accepting the reviewer’s comments.

15

Chapter 5. Experiment

In order to evaluate the effectiveness of our computer program peer assessment, an
experiment was performed. The target learners were around 19~20 years old sophomore
undergraduate students in Department of Computer Science and Information Engineering,
Minghsin University of Science and Technology, who have learned the basic VB language,
including data type, expression, sequence statement, condition statement, and repetition
statement, for one year. Each three learners, with similar programming ability, were assigned
to a group, and al learners were asked to implement the programming assignment
“Determining the Winning Tiles of the Sixteen Tiles Mahjong” [19]. This program assignment,
designed to determine the win of the given set of seventeen tiles, is appropriate to evauate
novice programmers programming skill, because learners have to use a simple problem
solving strategy with basic repetition, conditional statements in the determination function of
the program. Moreover, the Sixteen Tiles Mahjong game is easy to motivate learners to

accomplish the assignment.

5.1. Programming Assignment

In order to let learners easily check the execution results of their programs, a pre-constructed
GUI, as shown in Figure 13, was provided in the assignment, and left the determination

function, the core of the program, for novice programmers to design and implement.

16

W E=-E7E = []

ERE 95 FE8ER

2 | oot | @ N N s r | @®°
»
“5
HEH BRE G

'E#if#

Figure 13: The GUI of the program assignment

As shown in Figure 14, the determination function, named “Win() ”, is used to determine the
given set of seventeen tiles, defined in “tileArray”, and output a Boolean value to indicate

whether the set of seventeen tiles can win the game or not.

. M) -Microsoft Visual Studio TS 20 Y. BB
EEFR HEE =BEV SEF S =0 =ER) IEM ESW EEQ RHEH
TERENERIEN™ = R) - &= | b Debug = Any CPU - [
e =E=2=2 (3 S|
MainForm.vb| MarnFurmvb fell

@

&

|
3 (|

¥ DealiTlleButton « < Click

o

il [=Public flass M1 tiF o

) Dim tilefireay(l To 1B} As Integer
e

&

b

I

L] Din chooselestlasefon fs New ChooseTesttaszForn
Bl e .o A A A A Y
=] Frivate Function Win{) A Boolean

i Retuzn Falze

Emd - Function

-_?ﬁ%?&ﬁﬁﬂlﬁﬁTTTTTTTTTTTTTTTTTTTTT

=] Privaie Sub. '|'|'11'|B.ut1.c-n _ClickiBwal sendar b Sys*am Dbject, Byfal eds System Eventiirzs) Handles WinButton Click
If '.'.'111() Then
Resiltlahel Tekt = "&F 7~
Resol tPictureBox _Im,gelnl':atiun‘ = " Mimageiwes bmp"
Else)
Resultlabel Text = "j2iB. .. Or="
FesultPictirsbox Imagelocation = "% Simdgs oo g
End 1f
End Sub

Figure 14: The coding areafor the novice programmers

If the output of the determination function is “true”, the image of success, as shown in Figure
15, can be displayed on the GUI, or if the result is “false”, the image of failure, as shown in
Figure 16, can be displayed. Thus, programmers can be easy to check the given set of

seventeen tiles and the result of their program.

17

EETTE

I R EG Rm|eE
B B BEE
TR E BFEES AR
S H HEE M

[Aeum

Figure 15: The image of success on the GUI

——

HiE BEEEE0
HEH HREGEE

[AFus

Figure 16: The image of failure on the GUI

5.2. Computer Program Peer Assessment System

5.1.1. TheWeb System for Exchanging Document among Peers

In order to facilitate the exchange of programs and comments, a Computer Program Peer
Assessment System consisting of design and review region, as shown in Figure 17, was
constructed, where a novice learner has to play the role of a programmer and a reviewer to
upload an program code and reviewing reports. Therefore, after the learner logins to the
system, s’he will see the web page. When the learner plays the role of the programmer, s'he
uses the design region for uploading his’her program code, downloading the comments from
the peer reviewers, and uploading his’her feedback of the reviewer’s comment. When the
learner plays the roles of the reviewer, s/he uses the review region for downloading the

programmer’s program, uploading his’lher comments to the programmer and downloading the

18

programmer’s feedback of his/her comments.

[

B =) R EPRZEAR| T ESAE . (LIl SeE. |
Lai ¢ s 5 =071

e —— B e L

FTAE o8 RErasmsEe e 20

o

Jemic B - o An- D orRcai! 5 erun - [WA - 80k -

Bpoe L) c e R) SR

Juz-

aitE
Wy . M RIENTE

AR R - & ety

HAPWEIN GRS ST ESRS -
ARERSETEE - PSR - AreS

Hian

et

Syl TRESERITECA
PRl
1R I LR
T—=

Seert MR

Erfat o L

SIS

), AT AT

CEN T

FRREN Iz =

= 3 [(£2]
o L 2 A E Z /){t e TR
FRALFETE RS :
RanE.
TR L
LA SR
=
W B paooot o), AR BT ESION
- MU AR - o S
Lt W T PETITRE R
[
L i R
KT
fis |
qEE
G

LTINS | MUNADES. - TlAY e

0 PT T SUh TE ML

ik H
foeyl TREERITCA

OO A R A T ¢ R ‘_‘L\
N - e AR EeR % nl:.ll:[
H [

1R R
T—#

Seep! MV

LRGBS UL PR

IO o L Y

SN S ™
o) TEEITRAIETR

TN e TN W TR
nivanr

FRRE Wz R

Figure 17: Computer Program Peer Assessment System

5.1.2. TheMicrosoft Word for Making Tag-based Comments

To ease the tagging process, the tagging tasks could be done using in Microsoft Word. We
predefined review tags, as shown in Figure 18, the execution table, as shown in Figure 19, and
the feedback tag, as shown in Figure 20, in the Microsoft Word document for reviewers and

programmer. When making comments or feedback, the learner copies the peer’s program

code in the Microsoft Word document and then copies and pastes the tag comment on the

Word document of peer’s program code. They also used Microsoft Word document to record

the variation of the program variables. The tagged programs are shown in Figure 21.

19

AETEIEE o Rt EE,
L ¢ Bara || EEEE B |

i WPl B ¥

EEEE e EEEE B

EEEE B EEEE: B

i WL

PR - B 1| [P B

MEPHELHS - B2 MERRENE I B2

e W LEl i Bl

WPEEEH - BT 1| PR BE 4

WEPREHS < BAvR S| EOEEW B

HITIZS: (CHIER 7 2RSS

ORORORORORORGROROR TR PR g
Figure 18: Review tags predefined in Microsoft Word document.

Test Case no. :

instruction line () | Variable name | Value of the Variable | Mistake tag

/loop time

Figure 19: The predefined execution table in Microsoft Word document

(SR 24,
=

Figure 20: Feedback tags predefined in Microsoft Word document

20

Private Function Win() As Boolean

Dim result As Boolean

result = False

5110 3= o A A S A At A " A A A Y A 0 A
N P Y A A A
WA c Py 1Forv=0 4

teAmy(l)=1 tleAmy(l)=1 tldmyd=1
tileArray(3) =2 tileArray(q) =2 tileArray($) =2
tileArray(6)=3 tleArmay(T)=4 tileArray(8) =3
tleArmay(®) =4 tileArmay(10) =% tikeAmay(ll) =6
tileArmap(12) = 1 tileAmap(13) =12 ticAmay(id) =13

[LﬂtArn"(lf)=33 tile Array(16) = 33
R ¥ |1 | ¥22 | dileAreay(y) | tileAray(y+1) | tleArrav{y+D) | res
OESER RN BAARS A aTRE R EE E L T D [h e
gz |5 |2 2) True
. Bls[7 |s |3 4 s Trve
BESEEEETT I T T T T T I T I I T Y T i@ o (v 3 3 True
v ol ol o :E:;r:: TR 12 13 True
Win = result
End Function

Figure 21: The tagged program

21

Chapter 6. The Misconception Pattern

Analysis

According to the tag schema we defined, we can use them to evaluate the novice learners’
programming misconception. In this chapter, we provide the misconception pattern analysis
methods of the four kinds of the tags, and then the misconception of the novice programming
learner will be found out.

By analyzing the distribution of the tag-based comments, the structure tags, the test case tags,
and the mistake tags could be helpful for evaluating the learner’s different abilities of
programming skills, the tracing ability, the testing ability, the debugging ability, respectively.
Analyzing the structure or sequence of the learner’s structure tags, we can find the learner’s
misconception in various structure of the program.

According to the watch point marked by the novice reviewers, we can know what part of the
program is the major concern. To observe what the variables are chosen, we can know
whether the novice reviewer got the magor meaning of the program or not. Furthermore, we
check the correctness of the variation of the variables to understand the students’ thought of
the execution of the program.

The mistake tag schema is designed to evaluate whether the novice reviewer’s comment of
program mistakes are specific enough or not. So, we can map the novice reviewer’s mistake
tag with the hierarchical mistake tag schema to know whether the mistake tag is specific

enough.

6.1. Thedistribution of four kind of tag-based comment

As shown in Figure 22, seventy-one percent of the novice reviewers can make the structure
tags, so we know that most of the novice reviewers can understand the peer’s structure of the
program. Forty-nine percent of them can make the mistake tags, so half of them can find the

mistake in the peer’s program. But, only eleven percent of them can make the test case tags

22

means that most of the novice reviewers fedl difficult to trace the execution of peer’s program.
Finally, because the duration of the feedback process in this experiment is not long enough,
only eleven percent of the novice programmers make the feedback of novice reviewer’s

comments.

S0% 7
T
B0
50%
A0%
0%
20% 5% 5%
10%

o

49%

percentage of the learners

structure execitinn mistake feedback

kind of tag-bazed comment

Figure 22: The distribution of the novice programming learner’s tag-based comment

6.2.The evaluation of the learners’ tracing ability

According to the structure tags tagged by the novice reviewers, we can evauate their
understanding about the structure of the program. As shown in Figure 23, twelve percent of
the novice reviewers made the wrong structure tags. One third of the novice reviewers, who
made the wrong structure tags, can not recognize the “if statement” is a conditiona statement
because g/he used the “repetition statement ” tag to mark the scope of the “if statement”. Two
thirds of the novice reviewers, who made the wrong structure tags, have the misconception of
the nested structure because the scopes, defined by their structure tags, are not properly
nested.

23

Fhuctore cornrnent

coomect

b

BiEf 7 scopeTify
3%

Figure 23: The distribution of correctness of the novice reviewers’ structure tag comments

Example 6: The misconception in nested structure of the program

We can analyze the order of the structure tags tagged by the novice reviewer to find out the
learner’s programming misconception in the program structure. As shown in Figure 24, the
learner tagged the wrong structure tag, because the tag pair of "condition structure 2" should
be closed inside the tag pair "condition structure 1", and then we can find this learner may

have the misconception of the nested structure of the program.

Private Function Win{) 8= Boolean+
Dim result As Booleans
Dim v Az Integer+
result = Falsed
EEEELHE - BEiG1 For v = 0 To 14 Step 3+
If tilefrray(l5s) = tiledrrav(1l6) Then+

If tilefirray(y) = tileArray(y + 1) And tilefrray(y + 1) =
tilefirrayiy + 2) Or Val{tiledrray(y + 1)) = Val({tiledrrav(y)) + 1 &nd Val({tilefrray(y + 2)) =
Val{tilefrray({v)) + & Then+

result = Trues+
End If+
End If+
B - B Hext+

Win = results

End Functions

Figure 24: An example of the wrong structure tag comments made on tagging the nested
conditional statements.

24

6.3.The evaluation of the lear ners’ testing ability

Most of the novice reviewers can not make the test case tags of peer’s program, shown as
Figure 22, but three fourths of the novice reviewers, who can make the test case tag comments,

can make the correct test case tags of comment, as shown in Figure 25.

Execution coTnrnemt

O corert
W Wz

coouect

T

Figure 25: The distribution of correctness of the novice reviewers’ test case tag comments

Example 7: The misconception in testing along program

We can anayze the variables what the novice reviewer chose and the correctness of the
variation of variable values recorded by the learner to find out the learner’s programming
misconception in the program execution. As shown in Figure 26 and Figure 27, the learner
can tag the correct structure tags on the program, but s’he can not decide what variables were

needed to be observed and then used the “unknown(#; 7 /‘g) ” tag to express him/her

circumstance.

25

Private Function Win{) A=z Boolean
a=10
If tilefrray(0) = tiledrray(l) = tilebrray(2) Or
tilefrray(0) = tilefrray(l) + 1 = t1lebrrayw(2) + 2 Or tilebrray(0) =
tilefrray{l) - 1 = tilebrraw(2) - 2 Then

a=a+l

i - g | Fnd 1f

e c B [tilelrray(3) = tiledfrray(d) = tilebrrayw(d) Or
tilefrray(3) = tilefrray(d) + 1 = tilelrrawd) + 2 Or tilebrray(3) =
tilebrray(d) - 1 = tilefrray(5) - 2 Then

; i - B I tilelrray(f) = tilefrrayw(7) = tilebrray{8) O
tlleﬂrra].r{ﬁj = tiledfrray(T) + 1 = tilefrraywl8) + 2 Or tilebrraw(f) =
tilefrray(?) - 1 = tilebrraw(d) - 2 Then

a=a+l
i 5 1
I e 11 tilefrray(9) = tilefirray(10) = tilafirray(11) Or
tilefrray(9) = tilefrray (10} + 1 = t1leforay{ll) + 2 Or tilebrray{®) =
tilefrray {10y - 1 = tilefrray(ll) - 2 Then
a=a+l

t11e£".rra].r{12} = t11&"‘;rra].r{13} +1 = tilebrray{ldy + 2 Or tilebrrayw{ld)
= tiledrray(13) - 1 = t1ledrray(ld) - 2 Then
a=a+l

Feturn False

End Function

Figure 26: An example of tagged program made by the novice reviewer

ISR -

T @ /| EEETE EEE
FE R

BT

Figure 27: An example of the execution table made by the novice reviewer

Example 8: The misconception of a novice reviewer in testing a program

The novice reviewer successfully made the comments of the execution of the peer’s program.

As shown in Figure 28, the novice reviewer used the green number tag, which is the watch

26

point tag, to annotate the program line, which s’/he will observe the variation of the variables.
And then, as shown in Figure 29, the novice reviewer recorded the variation of the variables.
S/he chose the four variables “tileArray(y)”, “tileArray(y+1)”, “tileArray(y+2)”, and
“Result” and recorded four rounds of the variation. At the fourth round, sshe computed that
the “Result” is true and the expected “Result” is false. Therefore, ¥he made the mistake tag
“idyResultfiv i jEsLFalse” on the unexpected row. Actually, the value of the “Result”
computed this program is false, so we found that the novice reviewer has the misconception

of testing the program.

Private Function Win{) A= Boolean+
Dim result As Booleans
Dim v fz Integer+

result = Falzes

ErErELE - PEiG1 For v = 0 To 14 Step 3+
EPEELE - BEiGL If tilefrravil5) = tilebrraw(18) Then+
Bt - BRkG2 If tilebrraw(w) = tilehrraviy + 1) And tiledrray(y + 1) =

tiledrraviy + 2) Or Vali{tilefrrav{v + 130 = Val{tiledrraw{w)) + 1 fnd Val({tiledrrav(vy + 2)) =
Val{tilebrrawiv)) + 2 Then+

rezult = True+

it - e End If+
it - a2 End If+
(e EHE - B Mext+

Win = result+

+

End Function+

Figure 28: The watch point made by the novice reviewer

27

HIE S e - 0018

FERAT | EEETE HEE B AR
8 %
I
/1 tiledrraviy) 0
tiledrrav(v+l) 1
tiledrrav(v+a) 2
Result True
i 2 tiledrraviy) 0
tilefrrav(v+l) 1
tiledrrav(v+a) 2
Rezult True
s 3 tiledrraviy) 3
tilefrraviv+l) 4
tiledrrayiy+2) 3
Result True
e tiledrraviy) 1%
tiledrrav(v+l) 19
tiledrrav(v+a) i)
Result True S8 Result fY{HFED Flase

Figure 29: An example of the execution table made by the novice reviewer

6.4.The evaluation of the learners’ debugging ability

As shown in Figure 30, we conclude the distribution of different mistake tags, the novice
reviewers made. The “unknown(z; 7+ /}5) tag and the “output error (s /A ,%f,;i@ tag were
used frequently, which means that most of the novice reviewers have difficulty in finding out
the program mistakes of peers or they just know the high level or more general mistakes of
the program, such as “/ \/}yjﬁ%ﬁﬁj}#ﬁ/ ”or fﬁyé’\@;’?‘?{

28

mistake comment

iREE
L
B EREFh
2%
BT
0%
EaEER
11%
HAdeR
5
symtas ermor
54 e

1%

Figure 30: The distribution of different level of mistake tags used by the novice reviewers

Example 9: A misconception in making a syntax error program

As shown in Figure 31, the novice reviewer used the mistake tag to annotate the peer’s
program has syntax error. To analyze the structure tags tagged by this novice reviewer, we
can know this novice reviewer pointed out the mistake because s’he found the conditional
statement does not have the start scope. Because of the syntax error, the peer’s program can

not be executed, as shown in Figure 32.

| EESEEARAEE AR LLLLLLLLLLLLLLLLLLL

Private Function Win{) &= Boolean

Din resnlt Az Boolean

Dim x &= Integer

rezult = Falge

Next

End Function

AR BB T T I T T T T I T T I
Figure 31: An example of the syntax error program tagged by the mistake tag

29

— - BRRE RS

AT B/ | BB e
FrHEE
@ if PR A s

Figure 32: An example of the execution table annotated the syntax error of the program

6.5.Discussion

The results of experiment show that the structure tag is useful to evaluate the learners’
understanding about program structure, and we find that twelve percent of learners have this
kind of misconception. In order to guide learners to correctly trace the program and find the
mistakes in the program, designing a critical test case is important, because learners are
difficult to find out the mistakes by tracing the test case execution without a good test case.
Besides, severa learners can not choose the critical variables to observe, so they can not
perform well in finding mistakes. Finally, the mistake tag schema for general purpose can
only describe a part of program mistakes, so it is necessary to define a mistake tag schema for

specific problem domain for reviewers to indicate more specific mistakes.

30

Chapter 7. Conclusion

In order to make the program assessment more effective to evaluate novices’ coding and
tracing abilities, we have proposed computer program peer assessment architecture, where the
tagging approach is used to improve the communication between programmers and reviewers.
In the reviewing activity of peer assessment, the proposed tracing guidance can guide learners
to trace program step by step to give the more precise and critical comments. Moreover,
tag-based comments are easier to be anayzed automaticaly to mine the novice’s learning
status for teachers. In the near future, the peer assessment can be extended to evaluate the

more advanced programming skills.

31

Reference

[1]

[2]-
[3]-
[4]-
[5]-
[6]-
[7]-
[8]-

[9]-

[10]
[11).
[12).

[13] .

[14] .

[15]

[16].

Michael McCracken, V.A., Danny Diaz, Mark Guzdia, Dianne Hagan, Yifat
Ben-David Kolikant, Cary Laxer, Lynda Thomas, lan Utting, Tadeusz Wilusz, A
multi-national, multi-institutional study of assessment of programming skills of
first-year CSstudents. ACM SIGCSE Bulletin, 2001. 33(4): p. 125-180.

Riku Saikkonen, L.M., and Ari Korhonen, Fully automatic assessment of
programming exercises. ACM SIGCSE Bulletin 2001. 33(3): p. 133-136.

Dochy, F., McDowell, L., Assessments as a tool for learning. Studies in Educational
Evaluation, 1997. 23(4): p. 279-298.

Sluijsmans, D., Dochy, F., Moerkerke, G. Creating a Learning Environment by Using
Salf-Peer-and Co-Assessment. 1999 [cited.

Ennis, R. Critical thinking: what is it? in Proceedings of the Forty-Eighth Annual
Meeting of the Philosophy of Society Denver. 1992. Colorado.

Dochy, F.S., M.; Sluijsmans, D., The use of self-, peer and co-assessment in higher
education: A review Studies in Higher Education, 1999. 24(3): p. 331-350.

Stefani, L.A.J.,, Peer, self and tutor assessment: Relative reliabilities. Studies in
Higher Education. Vol. 19. 1994. 69-75.

Boud, D., Cohen, R., & Sampson, J., Peer Learning and Assessment. Assessment and
Evaluation in Higher Education, 1999. 24(4): p. 413-426.

Topping, K.J.,, & Ehly, S. E., Peer-assisted learning. Journal of Educational and
Psychological Consultation, 2001. 12(2): p. 113-132.

Falchikov, N., Peer feedback marking: developing peer assessment. Innovations in
Education and Training International, 1995. 32: p. 175-187.

Brindley, C., Scoffield, S., Peer Assessment in Undergraduate Programmes. Teaching
in Higher Education, 1998. 3(1): p. 79-89.

Davies, P., Computerized peer assessment. Innovations in Education and Training
International, 2000. 37(4): p. 346-355.

Sitthiworachart, J., and Joy, M., Deepening Computer Programming Skills by Using

Web-based Peer Assessment, in 4th Annual Conference of the LTSN Centre for
Information and Computer Sciences. 2003: NUI Galway, Ireland.

Orsmond, P., Merry, S., and Reiling, K., The use of Exemplars and Formative

Feedback when Using Sudent Derived Marking Criteria in Peer and Self-assessment.
Assessment & Evaluation in Higher Education, 2002. 27(4): p. 309-323.

Lin, S, Liu, E., and Yuan, S., Web-based peer assessment: feedback for students with
various thinking-styles. Journal of Computer Assisted Learning, 2001. 17: p. 420-432.

Bhalerao, A.aW., A, Towards Electronically Assisted Peer Assessment: A Case Study.

32

[17]

[18].

[19).

Association for Learning Technology journal, 2001. 9(1): p. 26-37.

Lin, S.S.J, Yang, K. H., Liu, E. Z. F. & Yuan, S.-M., Peer Assessment in an Assembly

Programming Course of a Vocational Industrial High School: A Case Sudy on
Assessment Validity and Student Attitudes. Journal of Technology, 2001. 16(4): p.
613-623.

Jirarat Sitthiworachart, M.J., Effective Peer Assessment for Learning Computer

Programming, in Innovation and Technology in Computer Science Education. 2004:
Leeds, United Kingdom.

Willoughby, S. Taiwan 16-Tile Mahjong Rules. 1997 [cited; Available from:
http://www.rag.com/~steve/mahjong/.

33

