
國立交通大學

多媒體工程研究所

碩 士 論 文

標籤式電腦程式同儕互評

Programming Peer Assessment Using Tagging Approach

研 究 生：劉怡利

指導教授：曾憲雄 教授

中 華 民 國 九 十 七 年 六 月

標籤式電腦程式同儕互評

Programming Peer Assessment Using Tagging Approach

研 究 生：劉怡利 Student：Yi-Li Liu

指導教授：曾憲雄 Advisor：Shian-Shyong Tseng

國 立 交 通 大 學

多 媒 體 工 程 研 究 所

碩 士 論 文

A Thesis
Submitted to Institute of Multimedia Engineering

College of Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master
in

Computer Science

June 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年六月

I

標籤式電腦程式同儕互評

學生: 劉怡利 指導教授: 曾憲雄博士

國立交通大學資訊學院
多媒體工程研究所

摘 要

程式技能包含，程式撰寫、程式追蹤、測試及除錯，是程式設計師應該
具備重要的能力。為了讓程式的初學者於初學階段能知道自己的程式迷失
概念，程式設計的課程中會有程式的評量活動來幫助學生學習。但是因為
傳統的程式評量活動，例如、上機考試，以程式執行的對錯來評量評分，
這使得程式有錯卻又不知錯誤所在的學生來說成效不佳；並且學生程式追
蹤、測試及除錯的能力在傳統的評量中也不易被評量。在本篇論文提出一
個新的程式評量方法，用同儕互評的方式讓學生在互評活動中找尋同學的
程式錯誤，使得撰寫程式的同學可以得到除了執行結果外的評論；而評論
的同學除了在評量的過程中練習到程式追蹤、測試及除錯外，評論的資料
也會被記錄及分析，因此學生的程式技能可以在此評量活動中多方的得到
檢測，學生的學習狀態及結果也可以作為老師實施補救教學的參考。由我
們的實驗得知，學生的程式迷失概念可以被我們的評量方法找出來，並且
我們於評量活動中提出的追蹤指引可以幫助學生學習如何追蹤、測試及除
錯，讓學生的程式技能得到改善。

關鍵字: 電腦程式同儕互評、同儕互評、電腦程式學習

II

Programming Peer Assessment Using
Tagging Approach

Student: Yi-Li Liu Advisor: Dr. Shian-Shyong Tseng

Institute of Multimedia Engineering
College of Computer Science

National Chiao Tung University

ABSTRACT

Most of the programming novices feel hard to learn programming skills, such as coding,

tracing, debugging and testing. To help them learn programming well, computer program

assessments which can find out the novices’ programming misconception have been proposed.

Although traditional computer program assessment can score the student’s program by

executing the program with test cases, it is ineffective because the novices’ programming

misconception in the coding mistakes and tracing mistakes can not be found out. In the peer

assessment activity, the learners can discuss their works with others to get the comments

about his/her work together with the score. This thesis proposes a new computer program peer

assessment to help the novices easily find out their programming misconception in the coding

mistakes and tracing mistakes. An experiment has been done to evaluate the effectiveness of

the new assessment. We may conclude that the process is useful to find out the learner’s

coding and tracing problems, and that the tracing guidance is useful to direct the novice to

trace peer’s program.

Keywords: computer program peer assessment, peer assessment, computer program

learning

III

誌 謝

首先要感謝的是我的指導教授，曾憲雄博士。碩士班期間，曾教授相當細心與耐心

的指導我研究的方法；從老師的身上學習到許多研究的方法與態度，寶貴的經驗讓我獲

益良多開闊學習的視野，不甚感激！因此也讓我能順利的完成此篇論文。同時也感謝我

的口試委員，孫春在教授、黃國禎教授以及楊鎮華教授所給予的寶貴意見，讓我的論文

研究能夠更有價值。

接下來要感謝感謝翁瑞鋒、林喚宇、曲衍旭學長們不厭其煩的指出我研究中的缺

失，且總能在我迷惘時為我解惑。在這短短兩年中讓我學會許多理論知識及實務技巧，

並給予我許多論文上的寶貴意見，協助我論文上的修改工作，使得這篇論文能夠順利的

完成，也感謝念主、立晧同學的幫忙及互相勉勵，陪伴我渡過這充實的碩士生涯。

另外要感謝我的父母親在背後默默地支持我完成我的學業，讓我可以安心的做研究

而不需要煩惱生活上的問題。最後要特別感謝我的男朋友喚宇，在我身邊不時地關心

我，並在我感到挫折時給我支持的力量，也讓我能夠自信地、樂觀地面對一切難題。日

後，我會更加努力的繼續向前進！

IV

Table of Content

摘 要 ...I

ABSTRACT .. II

誌 謝 .. III

Table of Content ...IV

List of Figures..V

Chapter 1. Introduction ..1

Chapter 2. Related Work ..4

2.1. Computer Program Peer Assessment with Text-based comment4

2.2. Computer Program Peer Assessment with Questionnaire-based comment............4

Chapter 3. Computer Program Peer Assessment Architecture...6

Chapter 4. Computer Program Peer Assessment Tag Schema ...8

4.1. The Reviewer Tag Schema ...8

4.1.1. Structure Tag Schema ...8

4.1.2. Test Case Tag Schema ..10

4.1.3. Mistake Tag Schema... 11

4.2. The Programmer Tag Schema ..14

4.2.1. The Feedback Tag Schema ...14

Chapter 5. Experiment ...16

5.1. Programming Assignment ..16

5.2. Computer Program Peer Assessment System...18

5.1.1. The Web System for Exchanging Document among Peers18

5.1.2. The Microsoft Word for Making Tag-based Comments...........................19

Chapter 6. The Misconception Pattern Analysis ..22

6.1. The distribution of four kind of tag-based comment..22

6.2. The evaluation of the learners’ tracing ability..23

6.3. The evaluation of the learners’ testing ability..25

6.4. The evaluation of the learners’ debugging ability..28

6.5. Discussion...30

Chapter 7. Conclusion..31

Reference ..32

V

List of Figures

Figure 1: Computer Program Peer Assessment ..2

Figure 2: Marking criteria in Unix programming module..5

Figure 3: Computer Program Peer Assessment Architecture...7

Figure 4: Structure Tag Schema ...9

Figure 5: Using structure tag schemato mark the program’s non-sequential statements10

Figure 6: Test Case Tag Schema...10

Figure 7: Using test case tags to record the execution status of program 11

Figure 8: Mistake Tag Schema ...12

Figure 9: Using the mistake tags to denote the program mistake of initial values...................13

Figure 10: Using mistake tag to indicate the mistake on the test case tags..............................13

Figure 11: Feedback Tag Schema...14

Figure 12: The example of accepting the reviewer’s comments..15

Figure 13: The GUI of the program assignment...17

Figure 14: The coding area for the novice programmers ...17

Figure 15: The image of success on the GUI ...18

Figure 16: The image of failure on the GUI...18

Figure 17: Computer Program Peer Assessment System ...19

Figure 18: Review tags predefined in Microsoft Word document. ..20

Figure 19: The predefined execution table in Microsoft Word document................................20

Figure 20: Feedback tags predefined in Microsoft Word document ..20

Figure 21: The tagged program ..21

Figure 22: The distribution of the novice programming learner’s tag-based comment23

Figure 23: The distribution of correctness of the novice reviewers’ structure tag comments..24

Figure 24: An example of the wrong structure tag comments made on tagging the nested

conditional statements. ...24

Figure 25: The distribution of correctness of the novice reviewers’ test case tag comments..25

Figure 26: An example of tagged program made by the novice reviewer................................26

Figure 27: An example of the execution table made by the novice reviewer...........................26

Figure 28: The watch point made by the novice reviewer ...27

Figure 29: An example of the execution table made by the novice reviewer28

Figure 30: The distribution of different level of mistake tags used by the novice reviewers...29

VI

Figure 31: An example of the syntax error program tagged by the mistake tag29

Figure 32: An example of the execution table annotated the syntax error of the program30

1

Chapter 1. Introduction

The basic programming skills, such as coding, tracing, debugging, testing, etc., are of most

importance for a programmer to implement, maintain, and extend computer programs.

However, it is hard for a novice to learn these programming skills. In order to find out the

misconception of the novice programmers, a computer program assessment is needed [1-4].

As we know, the traditional computer program assessment uses test cases to evaluate the

correctness of the learners’ program assignments. When the program can not be correctly

executed for the test cases, the learner’s coding ability still can not be enhanced without being

taught the knowledge about the mistakes in the program. Furthermore, the traditional

assessment does not take the tracing ability of the learner into account. Therefore, how to

evaluate the learners’coding and tracing ability is our concern.

According to the pedagogical theory [5], we know that peer assessment [6, 7] is an effective

learning method for learners to understand others’ work [8-11]. In the peer assessment

activity, the learners usually discuss their works with others, and every learner can get the

comments about his/her work together with the score. Using the peer assessment for learning

programming, the learner can get the comments about their programming mistakes from

others, so that more information rather than the result of program execution can be obtained to

help learner understand his/her programming misconception in the coding mistakes and

tracing mistakes. Therefore, computer program peer assessment is a good approach to

improve the novices’ programming skills.

In the computer program peer assessment activity as shown in Figure 1, a learner, who plays

the role of a programmer, implements the program to satisfy the requirements and solve the

problem, and then another learner, who plays the role of a reviewer, reviews the

programmer’s program and gives comments about the coding mistakes. According to the

reviewer’s comments, the programmer may modify himself/herself program or discuss the

comments with the reviewer to improve the coding ability. Besides, the reviewer also can

improve the tracing ability by reviewing the programmer’s program and being notified

whether the comments have been adopted or not after the discussion with the programmer.

Furthermore, all of the comments and programmer’s feedbacks can be collected as a data

2

source from which data analysis or data mining can be done to find out the frequent

programming misconception pattern of the learners to help the teacher to design the remedial

instruction.

Figure 1: Computer Program Peer Assessment

In previous research about computer program peer assessment [12-14], the text-based

comments [15-17] and the questionnaire comments [16, 18] are usually used to communicate

among peers. The former is hard to be used to precisely point out the mistakes of the peer’s

program, and also hard to be dealt with by the computer program to provide teachers some

information about the activity. The latter is based on the research using the questionnaire of

5-point Likert scale to help the reviewer make comments, so the reviewer can easily make the

comments by only choosing the question, but only the comments, which are covered by the

questions in the questionnaire, can be expressed.

As mentioned above, it is hard for a reviewer to give precise comments for the concerned

problems, where the reviewer’s programmingskills should be good enough to give the correct

comments, and how to make good use of the comments, the important resource about the

learners’learning status, to help finding the frequent misconception of the learners is also an

interesting issue.

Therefore, our idea is to develop a tag-based comment environment for the learner to

comment using appropriate and predefined tags. We propose the tracing guidance to guide the

novice learner tracing code and finding the coding mistake by providing the proper

demonstration. We also propose the feedback mechanism for the programmer to express

his/her acceptance or rejection about the reviewer comments. When the programmer does not

agree with the reviewer’s comment, the feedback mechanism becomes the peer assessment of

the reviewer’s reviewing ability or tracing ability.

3

This paper proposes a new Computer Program Peer Assessment Activity using tag-based

comment to help the learners to improve their programming skill effectively. In the scheme,

after the programmer implementing the program given by the teacher, the reviewers can make

tag-based comments according to the running status of the test cases using the Authoring Tool

with Program Tagging Schema, where three tasks for different tracing purposes are proposed

to guide the reviewer to trace the program. The first one is to trace the structure of the

program, the second one is to trace the execution of the program, and the third one is to point

out the mistakes in the program. After the reviewers finish the review, the Review Analysis

Process will analyze the tag based comments and provide learners’ learning status for teachers

to help the learner learning programming well.

Finally, an experiment has been done to evaluate the effectiveness of the Computer Program

Peer Assessment Activity. We can conclude that the process is useful to find out the learner’s

tracing problem. The tracing guidance is useful to direct the novice learners to trace peer’s

program.

4

Chapter 2. Related Work

In previous research about computer program peer assessment, the text-based comments [15,

16] and the questionnaire comments [16, 18] were used to communicate among peers.

2.1.Computer Program Peer Assessment with Text-based

comment

The research of text-based comments shows that the novices can not understand what

comments are necessary and the comments usually give some useless comments. Besides, the

text-based comments are difficult to be analyzed automatically to provide teachers

information about the learning status in the assessment.

2.2.Computer Program Peer Assessment with

Questionnaire-based comment

The other research [18] describes the experiences with a novel web-based peer assessment

system deployed on a large class of undergraduate computer science students studying

computer programming. In this research, they developed the software containing three

components, which are automatic test results, strict marking guideline, and tutor support, to

assist the peer assessment activity. The strict marking guideline is the questionnaire of 5-point

Likert scale, shown in Figure 2, which was set by the teacher, used by the students to give

comments. They found that most of the students understood the marking guideline and could

give the comments easily. However, the students can not give the comments that the

questionnaire doesn’t cover. The questionnaire is difficult to be designed to fulfill different

kinds of program assignments. Therefore, the questionnaire is hard to be used to give precise

5

comments on finding out the programming mistake.

Figure 2: Marking criteria in Unix programming module

6

Chapter 3. Computer Program Peer

Assessment Architecture

In a computer program peer assessment, we need to overcome three issues to improve the

learning effectiveness of programmers, reviewing, and teaching effectiveness of teachers.

 How to help reviewers give precise comments, focusing on concerned problems?

 How to evaluate reviewers’ tracing ability in the activity?

 How to mine the learners’ learning status from datain the peer assessment?

Thus, we propose a tag-based computer program peer assessment, where tags are defined to

guide reviewers to give precise comments. The programmers, who receive the tag-based

comments, can challenge the comment tags to give reviewers precise feedback. Besides, the

predefined tags are easy to be analyzed automatically to help teachers understanding the

learners’ learning status.

Accordingly, we propose a Computer Program Peer Assessment Architecture (CPPAA),

shown in Figure 3.

7

Figure 3: Computer Program Peer Assessment Architecture

In the beginning of the peer assessment, teachers give learners a programming assignment

with a set of test cases. After the first round of coding activity, each completed program will

be reviewed by other two programmers, who have the similar ability of programming. In the

reviewing activity, each learner needs to trace others programs to annotate the programs’

structures, test cases running status, and program mistakes with predefined tag schemas. In

the second round of coding activity, the reviewing results will be returned to the programmers

to help them enhance their codes, if the programmers do agree with the comments, given by

reviewers; otherwise, they can reject. Finally, the programmers’ feedback will be given to the

reviewers to let reviewers know the effectiveness of their comments. After the peer

assessment, in the review analysis, the frequent patterns of coding and tracing mistakes can be

mined automatically and can be referred by teachers to design the supplementary instructions.

Because our targeted learners are novice programmers, the scope of the programming

language is limited to the basic concept of structured programming language, including

conditional statement, repetition statement, and the build-in data type. Thus, not only the

advanced programming language concepts, such as “function”and “object”, but also the

“goto statement”which is easy to break the execution flow of a program, are excluded in our

programming language scope.

8

Chapter 4. Computer Program Peer

Assessment Tag Schema

In CPPAA, reviewers will use the predefined reviewer tag schema to annotate their reviewing

results, and programmers can use the programmer tag schema to give feedback to reviewers.

4.1.The Reviewer Tag Schema

The reviewer tag schema includes structure tag schema, case tag schema, and mistake tag

schema to guide learners to recognize the structure of the traced program, use the test cases to

evaluate the correctness of the program, and find out the mistakes in the programs.

4.1.1. Structure Tag Schema

The structure tag is used to describe the structure of the program. In general, the statements in

the program code are executed sequentially if there is no “conditional statement” or

“repetition statement”in the program code; otherwise, the program may not be executed

sequentially, and may result in increasing the difficulty for the novices to trace the program.

Therefore, we guide the learner to mark the scope of non-sequential statements, such as

conditional statements and repetition statements, firstly.

As shown in Figure 4, the structure schema set is a hierarchical structure, where the tag

“conditional statement”is used to tag the conditional block and its child tag “condition”is

used to tag the condition statement in the conditional statement block. The tag “loop

statement”is used to tag the loop block in the program and its child tag“condition”is used to

tag the condition statement in the loop block. Since the structure tag set is also a composite

structure, the nesting loop or nesting condition can also be tagged.

9

Figure 4: Structure Tag Schema

If the learner can mark the scope and the condition of the non-sequential statements correctly,

it means s/he can understand the execution flow of the program. Otherwise, the missing or

wrong tags are useful for the teacher to know the learner’s misconception and then give

him/her appropriate help.

Example 1: Using Structure Tags to Represent Nested Program Structure

As shown in Figure 5, the program, designed to find out the minimal number and the count of

this minimal number in a given integer array “5, 3, 3”, contains a nested structure of a

for-loop statement and two if statements, so learners need to identify each statement’s scope

with the loop or branch conditions. The scope of the most outside for-loop statement is

marked from tag “loop start #1”to tag “loop end #1”and the loop condition is marked with

the light-orange background color to annotate the constraint of the for-loop statement. The

internal nested if statements can be marked by the tags “condition start”and“condition end”

with different tag numbers to denote scopes of different statements. Thus, learners have to

mark the scope of the outer if statement from tag “condition start #1”to tag “condition end

#1”, and the scope of the inner if statement from tag“condition start #2”to tag“condition end

#2”to clearly denote the nested program structures. Similar to loop statement, learners need

to use“light pink background color”to identify the constraint of the conditional statement.

10

Figure 5: Using structure tag schema to mark the program’s non-sequential statements

4.1.2. Test Case Tag Schema

When learners evaluate the correctness of others’ program, it is important to use critical test

cases and monitor the values of variable to find out the mistakes. In order to help learners

trace the test case execution, we want the learner to record the variation of variables. Thus, we

define test case tag schema, which support the learner to record certain (critical) variation of

certain (critical) variables.

The “test case”tag set, shown in Figure 6, is composed of two kinds of tags:“Watch point”

tag is used to indicate the program line, where the reviewer wants to know the variables’

values, and “variables set”tag is used to record the value of variables at the line of “watch

point”. If the “watch point”is in a loop block, then a variable may have different values at

different iterations. So the “variables set”tag is a two dimensional table, where the first

dimension is the watched variables, and the second one is the watched iterations.

Figure 6: Test Case Tag Schema

With the test case tags, we can evaluate whether the learners can correctly identify the critical

variation and trace the values or not. If the learner chooses the irrelevant variables or can not

record the values correctly, teachers can easily capture the learners’ misconceptions about

recognizing the program’s key points or tracing the values during the execution of the

11

program.

Example 2: Using test case tags to record the execution status of program

For representing the execution status of a program, the watch points should be assigned by the

novice reviewer to point out the critical position of the program. As shown in Figure 7, the

for-loop statement is assigned with a watch point and three critical variables, “minVal”,

“occurs”, and “ivec[ix]”, are defined as the watched variable set, where the variable

“minVal”is used to record the current minimal number of the array, the variable“occurs”is

used to record the current count of the minimal number in execution, and the variable

“ivec[ix]”is used to represent the element in the array. Because the watch point is assigned in

the loop structure, the value of each variable may be changed in different iterations. Thus,

three variable set tags are used to record the values of variables in the three iterations, where

“minVal”,“occurs”are assigned 0 in all iterations, and”ivec[ix]”is changed to“5, 3, 3”.

Figure 7: Using test case tags to record the execution status of program

4.1.3. Mistake Tag Schema

After tracing the programs with test cases, reviewers may find some mistakes in the programs.

In order to guide reviewers to give more precise comments, we propose a mistake tag schema

to hierarchically structure the mistake tags from general to specific, as shown in Figure 8.

With the schema, reviewers are asked to find the correct and precise mistake tag, so

reviewers’debugging ability could be evaluated.

12

Figure 8: Mistake Tag Schema

With the mistake tag schema, reviewers can tag the test case tag with program mistakes to

specify the program mistake and the faced situation. If the reviewer can tag the correct and

precise comments, it means that the reviewer has good debugging ability about finding

program mistakes. If the reviewer can not tag the correct or precise comments, then her/his

programming misconception in debugging will be found.

Example 3: Using the mistake tags to denote the program mistake of initial

values

Tracing the program and record the variation of the concerned variables may help to find out

some mistakes of the program according to the tracing records. For example, when the learner

records the values in the first iteration, s/he can find that “minVal”is not changed until the

negative number appears in “ivec[ix]”because the initial value of “minVal”is 0. Thus, as

shown in Figure 9, a mistake tag “wrong initial value”can be used to denote the found

mistake in the first iteration of execution.

13

Figure 9: Using the mistake tags to denote the program mistake of initial values

Example 4: Using mistake tag to indicate the mistake on the test case tags

If the learner can not identify the mistake of initial value, s/he may find that the truly minimal

number of the array is 3, stored in “ivec[1]”, but the “minVal”is not equal to 3 after the

second iteration. Thus, as shown in Figure 10, s/he can assign the more general mistake tag

“computational error”in the variable sets in third iteration.

Figure 10: Using mistake tag to indicate the mistake on the test case tags

14

4.2.The Programmer Tag Schema

The programmers, who receive the comments from the reviewers, have to return their

feedback about the comments to the reviewers, and thus the reviewers’tracing ability can be

evaluated.

4.2.1. The Feedback Tag Schema

After receiving the reviewers’ comments, the programmers can give feedbacks to express

whether the comments can be accepted or not. As shown in Figure 11, the feedback tag

schema includes two tags,“reject”and“accept”.

Figure 11: Feedback Tag Schema

Example 5: Using feedback tag to represent the rejection or acceptation of

programmers

As shown in Figure 12, the programmer receives the comments from reviewers and agrees the

comment of “computational error”, so s/he can refine the program and return the feedback

comments with tag“accept”in the mistake tag to the reviewer.

15

Figure 12: The example of accepting the reviewer’s comments.

16

Chapter 5. Experiment

In order to evaluate the effectiveness of our computer program peer assessment, an

experiment was performed. The target learners were around 19~20 years old sophomore

undergraduate students in Department of Computer Science and Information Engineering,

Minghsin University of Science and Technology, who have learned the basic VB language,

including data type, expression, sequence statement, condition statement, and repetition

statement, for one year. Each three learners, with similar programming ability, were assigned

to a group, and all learners were asked to implement the programming assignment

“Determining the Winning Tiles of the Sixteen TilesMahjong”[19]. This program assignment,

designed to determine the win of the given set of seventeen tiles, is appropriate to evaluate

novice programmers programming skill, because learners have to use a simple problem

solving strategy with basic repetition, conditional statements in the determination function of

the program. Moreover, the Sixteen Tiles Mahjong game is easy to motivate learners to

accomplish the assignment.

5.1. Programming Assignment

In order to let learners easily check the execution results of their programs, a pre-constructed

GUI, as shown in Figure 13, was provided in the assignment, and left the determination

function, the core of the program, for novice programmers to design and implement.

17

Figure 13: The GUI of the program assignment

As shown in Figure 14, the determination function, named “Win()”, is used to determine the

given set of seventeen tiles, defined in “tileArray”, and output a Boolean value to indicate

whether the set of seventeen tiles can win the game or not.

Figure 14: The coding area for the novice programmers

If the output of the determination function is“true”, the image of success, as shown in Figure

15, can be displayed on the GUI, or if the result is “false”, the image of failure, as shown in

Figure 16, can be displayed. Thus, programmers can be easy to check the given set of

seventeen tiles and the result of their program.

18

Figure 15: The image of success on the GUI

Figure 16: The image of failure on the GUI

5.2. Computer Program Peer Assessment System

5.1.1. The Web System for Exchanging Document among Peers

In order to facilitate the exchange of programs and comments, a Computer Program Peer

Assessment System consisting of design and review region, as shown in Figure 17, was

constructed, where a novice learner has to play the role of a programmer and a reviewer to

upload an program code and reviewing reports. Therefore, after the learner logins to the

system, s/he will see the web page. When the learner plays the role of the programmer, s/he

uses the design region for uploading his/her program code, downloading the comments from

the peer reviewers, and uploading his/her feedback of the reviewer’s comment. When the

learner plays the roles of the reviewer, s/he uses the review region for downloading the

programmer’s program, uploading his/her comments to the programmer and downloading the

19

programmer’s feedback of his/her comments.

Figure 17: Computer Program Peer Assessment System

5.1.2. The Microsoft Word for Making Tag-based Comments

To ease the tagging process, the tagging tasks could be done using in Microsoft Word. We

predefined review tags, as shown in Figure 18, the execution table, as shown in Figure 19, and

the feedback tag, as shown in Figure 20, in the Microsoft Word document for reviewers and

programmer. When making comments or feedback, the learner copies the peer’s program

code in the Microsoft Word document and then copies and pastes the tag comment on the

Word document of peer’s program code. They also used Microsoft Word document to record

the variation of the program variables. The tagged programs are shown in Figure 21.

20

Figure 18: Review tags predefined in Microsoft Word document.

Figure 19: The predefined execution table in Microsoft Word document

Figure 20: Feedback tags predefined in Microsoft Word document

21

Figure 21: The tagged program

22

Chapter 6. The Misconception Pattern

Analysis

According to the tag schema we defined, we can use them to evaluate the novice learners’

programming misconception. In this chapter, we provide the misconception pattern analysis

methods of the four kinds of the tags, and then the misconception of the novice programming

learner will be found out.

By analyzing the distribution of the tag-based comments, the structure tags, the test case tags,

and the mistake tags could be helpful for evaluating the learner’s different abilities of

programming skills, the tracing ability, the testing ability, the debugging ability, respectively.

Analyzing the structure or sequence of the learner’s structure tags, we can find the learner’s

misconception in various structure of the program.

According to the watch point marked by the novice reviewers, we can know what part of the

program is the major concern. To observe what the variables are chosen, we can know

whether the novice reviewer got the major meaning of the program or not. Furthermore, we

check the correctness of the variation of the variables to understand the students’thought of

the execution of the program.

The mistake tag schema is designed to evaluate whether the novice reviewer’s comment of

program mistakes are specific enough or not. So, we can map the novice reviewer’s mistake

tag with the hierarchical mistake tag schema to know whether the mistake tag is specific

enough.

6.1.The distribution of four kind of tag-based comment

As shown in Figure 22, seventy-one percent of the novice reviewers can make the structure

tags, so we know that most of the novice reviewers can understand the peer’s structure of the

program. Forty-nine percent of them can make the mistake tags, so half of them can find the

mistake in the peer’s program. But, only eleven percent of them can make the test case tags

23

means that most of the novice reviewers feel difficult to trace the execution of peer’s program.

Finally, because the duration of the feedback process in this experiment is not long enough,

only eleven percent of the novice programmers make the feedback of novice reviewer’s

comments.

Figure 22: The distribution of the novice programming learner’s tag-based comment

6.2.The evaluation of the learners’tracing ability

According to the structure tags tagged by the novice reviewers, we can evaluate their

understanding about the structure of the program. As shown in Figure 23, twelve percent of

the novice reviewers made the wrong structure tags. One third of the novice reviewers, who

made the wrong structure tags, can not recognize the“if statement”is a conditional statement

because s/he used the“repetition statement”tag to mark the scope of the“if statement”. Two

thirds of the novice reviewers, who made the wrong structure tags, have the misconception of

the nested structure because the scopes, defined by their structure tags, are not properly

nested.

24

Figure 23: The distribution of correctness of the novice reviewers’structure tag comments

Example 6: The misconception in nested structure of the program

We can analyze the order of the structure tags tagged by the novice reviewer to find out the

learner’s programming misconception in the program structure. As shown in Figure 24, the

learner tagged the wrong structure tag, because the tag pair of "condition structure 2" should

be closed inside the tag pair "condition structure 1", and then we can find this learner may

have the misconception of the nested structure of the program.

Figure 24: An example of the wrong structure tag comments made on tagging the nested
conditional statements.

25

6.3.The evaluation of the learners’testing ability

Most of the novice reviewers can not make the test case tags of peer’s program, shown as

Figure 22, but three fourths of the novice reviewers, who can make the test case tag comments,

can make the correct test case tags of comment, as shown in Figure 25.

Figure 25: The distribution of correctness of the novice reviewers’test case tag comments

Example 7: The misconception in testing a long program

We can analyze the variables what the novice reviewer chose and the correctness of the

variation of variable values recorded by the learner to find out the learner’s programming

misconception in the program execution. As shown in Figure 26 and Figure 27, the learner

can tag the correct structure tags on the program, but s/he can not decide what variables were

needed to be observed and then used the “unknown(看不懂)” tag to express him/her

circumstance.

26

Figure 26: An example of tagged program made by the novice reviewer

Figure 27: An example of the execution table made by the novice reviewer

Example 8: The misconception of a novice reviewer in testing a program

The novice reviewer successfully made the comments of the execution of the peer’s program.

As shown in Figure 28, the novice reviewer used the green number tag, which is the watch

27

point tag, to annotate the program line, which s/he will observe the variation of the variables.

And then, as shown in Figure 29, the novice reviewer recorded the variation of the variables.

S/he chose the four variables “tileArray(y)”, “tileArray(y+1)”, “tileArray(y+2)”, and

“Result”and recorded four rounds of the variation. At the fourth round, s/he computed that

the “Result”is true and the expected “Result”is false. Therefore, s/he made the mistake tag

“變數Result的值應為False”on the unexpected row. Actually, the value of the “Result”

computed this program is false, so we found that the novice reviewer has the misconception

of testing the program.

Figure 28: The watch point made by the novice reviewer

28

Figure 29: An example of the execution table made by the novice reviewer

6.4.The evaluation of the learners’debugging ability

As shown in Figure 30, we conclude the distribution of different mistake tags, the novice

reviewers made. The “unknown(看不懂)”tag and the “output error(結果錯誤)”tag were

used frequently, which means that most of the novice reviewers have difficulty in finding out

the program mistakes of peers or they just know the high level or more general mistakes of

the program, such as“只判斷部分牌”or“結果錯誤”.

29

Figure 30: The distribution of different level of mistake tags used by the novice reviewers

Example 9: A misconception in making a syntax error program

As shown in Figure 31, the novice reviewer used the mistake tag to annotate the peer’s

program has syntax error. To analyze the structure tags tagged by this novice reviewer, we

can know this novice reviewer pointed out the mistake because s/he found the conditional

statement does not have the start scope. Because of the syntax error, the peer’s program can

not be executed, as shown in Figure 32.

Figure 31: An example of the syntax error program tagged by the mistake tag

30

Figure 32: An example of the execution table annotated the syntax error of the program

6.5.Discussion

The results of experiment show that the structure tag is useful to evaluate the learners’

understanding about program structure, and we find that twelve percent of learners have this

kind of misconception. In order to guide learners to correctly trace the program and find the

mistakes in the program, designing a critical test case is important, because learners are

difficult to find out the mistakes by tracing the test case execution without a good test case.

Besides, several learners can not choose the critical variables to observe, so they can not

perform well in finding mistakes. Finally, the mistake tag schema for general purpose can

only describe a part of program mistakes, so it is necessary to define a mistake tag schema for

specific problem domain for reviewers to indicate more specific mistakes.

31

Chapter 7. Conclusion

In order to make the program assessment more effective to evaluate novices’ coding and

tracing abilities, we have proposed computer program peer assessment architecture, where the

tagging approach is used to improve the communication between programmers and reviewers.

In the reviewing activity of peer assessment, the proposed tracing guidance can guide learners

to trace program step by step to give the more precise and critical comments. Moreover,

tag-based comments are easier to be analyzed automatically to mine the novice’s learning

status for teachers. In the near future, the peer assessment can be extended to evaluate the

more advanced programming skills.

32

Reference

[1]. Michael McCracken, V.A., Danny Diaz, Mark Guzdial, Dianne Hagan, Yifat
Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, Tadeusz Wilusz, A
multi-national, multi-institutional study of assessment of programming skills of
first-year CS students. ACM SIGCSE Bulletin, 2001. 33(4): p. 125-180.

[2]. Riku Saikkonen, L.M., and Ari Korhonen, Fully automatic assessment of
programming exercises. ACM SIGCSE Bulletin 2001. 33(3): p. 133-136.

[3]. Dochy, F., McDowell, L., Assessments as a tool for learning. Studies in Educational
Evaluation, 1997. 23(4): p. 279-298.

[4]. Sluijsmans, D., Dochy, F., Moerkerke, G. Creating a Learning Environment by Using
Self-Peer-and Co-Assessment. 1999 [cited.

[5]. Ennis, R. Critical thinking: what is it? in Proceedings of the Forty-Eighth Annual
Meeting of the Philosophy of Society Denver. 1992. Colorado.

[6]. Dochy, F.S., M.; Sluijsmans, D., The use of self-, peer and co-assessment in higher
education: A review Studies in Higher Education, 1999. 24(3): p. 331-350.

[7]. Stefani, L.A.J., Peer, self and tutor assessment: Relative reliabilities. Studies in
Higher Education. Vol. 19. 1994. 69-75.

[8]. Boud, D., Cohen, R., & Sampson, J., Peer Learning and Assessment. Assessment and
Evaluation in Higher Education, 1999. 24(4): p. 413-426.

[9]. Topping, K.J., & Ehly, S. E., Peer-assisted learning. Journal of Educational and
Psychological Consultation, 2001. 12(2): p. 113-132.

[10]. Falchikov, N., Peer feedback marking: developing peer assessment. Innovations in
Education and Training International, 1995. 32: p. 175-187.

[11]. Brindley, C., Scoffield, S., Peer Assessment in Undergraduate Programmes. Teaching
in Higher Education, 1998. 3(1): p. 79-89.

[12]. Davies, P., Computerized peer assessment. Innovations in Education and Training
International, 2000. 37(4): p. 346-355.

[13]. Sitthiworachart, J., and Joy, M., Deepening Computer Programming Skills by Using
Web-based Peer Assessment, in 4th Annual Conference of the LTSN Centre for
Information and Computer Sciences. 2003: NUI Galway, Ireland.

[14]. Orsmond, P., Merry, S., and Reiling, K., The use of Exemplars and Formative
Feedback when Using Student Derived Marking Criteria in Peer and Self-assessment.
Assessment & Evaluation in Higher Education, 2002. 27(4): p. 309-323.

[15]. Lin, S., Liu, E., and Yuan, S., Web-based peer assessment: feedback for students with
various thinking-styles. Journal of Computer Assisted Learning, 2001. 17: p. 420-432.

[16]. Bhalerao, A.a.W., A, Towards Electronically Assisted Peer Assessment: A Case Study.

33

Association for Learning Technology journal, 2001. 9(1): p. 26-37.

[17]. Lin, S.S.J., Yang, K. H., Liu, E. Z. F. & Yuan, S.-M., Peer Assessment in an Assembly
Programming Course of a Vocational Industrial High School: A Case Study on
Assessment Validity and Student Attitudes. Journal of Technology, 2001. 16(4): p.
613-623.

[18]. Jirarat Sitthiworachart, M.J., Effective Peer Assessment for Learning Computer
Programming, in Innovation and Technology in Computer Science Education. 2004:
Leeds, United Kingdom.

[19]. Willoughby, S. Taiwan 16-Tile Mahjong Rules. 1997 [cited; Available from:
http://www.rag.com/~steve/mahjong/.

