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An Interactive Motion Editing System

based on Spacetime Optimization

Student: Ying-Shou Lan Advisor: I-Chen Lin
Institute of Multimedia Engineering

National Chiao Tung University

Abstract

In this thesis, we present an interactive motion editing system to
synthesize new motions from an original input motion. The system adjusts
the input motion in a strategy of consecutive short-term optimization by
solving a quadratic program problem according to user-specified constraints.
In contrast to fully physical simulation which is usually difficult to track
joints forces accurately, we define our problem on the Euclidean space of
joints angular configuration. Herewith we can exploit the advantage of
spacetime optimization by supplying various kinds of kinematic constraints.
However, to further alleviate the time-consuming computation, we reduce
the number of variables by utilizing coherence of human motion. Finally, a
static equilibrium system is embedded into the system to provide an
intuitive and simple yet vital dynamics control.

Keywords: Motion Editing, Principle Components Analysis,

Spacetime Optimization
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1 Introduction

1.1 Motivation

In recent years, using motion capture (MoCap) systems to animate
humanoid 3D models has become more and more popular. MoCap data
recording character’s motions are more realistic than key-frame based
animations made by animators. However, to capture a set of motions is
usually time-consuming and costs expensively. Besides, the recorded motion
data are also difficult to directly apply to different environments and
conditions. Thus, many researchers have devoted themselves to overcome
these difficulties. Plenty of techniques have also been proposed, such as
motion graph and space-time optimization. Both methods attempt to expand
the variety of the original motion data set but through different ways: the
former produces new motion by concatenating many smaller motion clips,
while the later synthesizes a new one by adjusting an original motion to fit

user-specified constraints.

The main limit of motion graph is that it cannot produce novel motion
which 1s not originally in database. That is, the size of database decides the
variety of synthesized motion. Moreover, maintaining the synthesis quality
of a large motion database usually costs extremely. In contrast, spacetime
optimization does not need a large database. With the underlying dynamics
or kinematics model, it can synthesize more plausible results than key-frame

interpolated motions. In other words, it can produce new motions which are



not limited by a database. However, the complexity of spacetime
optimization itself is O(n3), where t is the number of iterations, and n is the
number of degrees of freedom (DOFs). This leads the optimization process to
be very inefficient when it is applied to highly dimensional human
musculoskeletal model. For this reason, we propose to further improve the
traditional optimization framework by decreasing the number of DOFs and

simplifying the physical model, but keep it realistic as well.

1.2 Overview

The base framework of our method is spacetime optimization, adjusting
an original motion to fit user-specified constraints, including kinematic and
force constraints. Nevertheless, the high complexity of human
musculoskeletal model makes the optimization process time-consuming or
difficult to converge to an acceptable solution. To overcome this problem, we
observe that every human motion has considerable coherence. By the
articulation of human skeleton, there is spatial relationship between
neighbor joints; by the gravity and muscle force, there is temporal
relationship between several frames. Therefore, we propose exploiting both

spatial and temporal coherence to keep only the most effective dimensions.

Principle components analysis (PCA) is a space transformation
technique by projecting multidimensional data sets to a lower dimensional
space while retaining most significant features. When applying PCA on the

motion data, it can hold the major moving information of the hierarchy. In



order to maximize the utilization of spatial coherence so that the moving
information can be described more accurately in the low dimensional space,
we divide each limb and torso into different segments and group the most
correlated joints. As a result, we can use fewer DOFs to control the original
motion properly in the optimization process. Temporal coherence makes the
trajectories of motion vary continuously. We use splines to approximate the
smooth of motion such that we only need to optimize key frames at regular
intervals. Hereby, numbers of DOFs are further decreased in the phase of

optimization.

Our editing system provides an interface for users to modify original
motions by specifying high-level constraints, including kinematic constraints
and force constraints. Kinematic constraints include end effectors positions,
footsteps positions, etc. A force constraint is an external force applied to
certain joints. Finally, the system iteratively adjusts the original motion to

fit these constraints in the spacetime optimization process.

Instead of embedding fully physics-based model into our optimization
framework, a simplified force response constraint is proposed, where we
assume that the original and adjusted joint figures are both in a static
equilibrium situation. We assemble springs at joints to exert muscle forces
which counteract external forces. Without consuming time in extracting lots
of physics parameters, we only have to project all muscle forces to the line of

external force vector. By keeping each frame in static equilibrium, we can



simulate the behavior affected by this external force plausibly.

1.3 Flowchart

The outline of our method is as follows:

Original Motion

-

Segmentation

Low Dimensional
Space

Kinematics Spacetime
Constraints

Optimization

Result Motion

Figure 1: The flowchart

Equilibrium-based
Force Response




. Divide the skeleton into different segments according to the loading BVH
file.

. Perform PCA on each segment respectively to transform the original
moiton to a low dimensional space.

. Embed the physical model in this low dimensional space.

. Specify kinematic constraints and force constraints.

. Adjust the original motion to fit constraints by spacetime optimization.



2 Related Works

It has been widely known that making character animation is a
labor-intensive work. Instead of the traditional key-framing method which
creates animation from sketch, Andrew Witkin and Michael Kass [9]
proposed spacetime constraints formulation that allows animators to control
animation from a more high-level perspective. Recent years with the
availability of realistic character animations by motion capture systems,
there has been many researches regarding the reuse of captured data to
lessen the cost of animation production. By combing the advantage of
spacetime optimization, Zoran Popovic et al [5] took the original animation
sequence as the underlying input, and then transformed it to a wide range of
realistic character animations controlled by editing intuitive, high-level

parameters.

Spacetime constraints approach provides a framework for creating
character animation. The user first specifies what the character has to do by
a set of kinematics constraints including pose constraints and mechanical
constraints. Then the user specifies an objective function that defines how
the motion should be performed such as minimizing energy consumption. In
order to make the motion visually vivid, the physical structure of the
character and the physics law form the dynamics constraints. Finally, an
optimization algorithm solves the objective function to find out the motion
trajectories satisfying kinematics and dynamics constraints. Thus this

method has an intuitive control of the resulting motion.



However, the complexity of human musculoskeletal structure often
leads the optimization problem to convergence difficulties. Zoran Popovic et
al addressed this problem by mapping the original character structure to a
simplified model with drastically reduced degrees of freedom (DOFs). Their

entire algorithm breaks down to four stages.

) _ Complex
| f J Model

Original Motion ' Final Motion
", ",
ec,
O ]Emrmcn.{]
d li]

(1) Simplification (4)
3) Fitting (A Simplified
Model
f Spacetime ( Transformed
- Motion I'vIodelJ Spacetime ¢ d:ll't | Spacetime Motion

’;3)

Figure 2: Algorithm outline of motion transformation

First, character simplification creates an abstract character model
containing the minimal number of DOF's necessary to capture the essence of
the input motion. Second, find the solution of spacetime optimization that
matches the motion of simplified character model at fitting stage. Third,
adjust spacetime motion parameters, kinematics and dynamics constraints,
or even objective function to edit the resulting motion. Finally, remap the
editing change in motion onto the original motion to produce the final

animation.



Fused body parts have redundant DOFs and the subtree of character
hierarchy can be replaced with a single node in some cases of high-energy
motion. By manually removing them, the simplified model not only captures
the essence of the input motion without losing fundamental dynamics
properties, but improves performance and facilitates convergence of the

spacetime optimization.

Figure 3: Kinematic character simplification: (a) elbows and spine are
abstracted away, (b) upper body reduced to the center of mass, (c) symmetric

movement abstraction

Instead of simplifying character model directly, Safonova et al [7]
performed PCA to reduce the dimension of motion and solved spacetime
optimization in a low-dimensional space. They exploited the observation of
dynamic human motion having high degree of coordination. There is spatial
coherence between body parts so that reduction of dimensionality is possible.
For the common human behaviors, they found that five to ten dimensions are

sufficient.



30

40
30
20
10 \\

> 4 6 8 10 12 14
number of dimensions

average squared error (degrees?)

Figure 4: Error between a full-dimensional motion and the corresponding

k-dimensional representation

In their implementation, PCA were used to find basis vectors from a set
of example motions. They solved the optimization problem to obtain the
coefficients of linear combination of basis vectors that form the desired
motion. Constraints were specified in the full-dimensional space and then
projected onto the low-dimensional space. As long as the choice of example
motion capture clips is similar behaviors to the desired motion, spacetime
optimization in this approach can work well and effectively to generate

natural-looking character animation.

Liu et al [3] proposed another approach that does not reduce the
number of DOFs directly to improve spacetime optimization, but enforce
linear and angular momentum of the motion to avoid heavy computation of
complex dynamical model. They kept the pattern of linear and angular

momentum as dynamics constraints by invariants and splines respectively.
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Figure 5: The general angular and linear momentum pattern of a jumping

motion

Furthermore, Liu et al [4] introduced more sophisticated dynamical
model that incorporates several factors of locomotion derived from the
biomechanical literature. This model accounts for passive joint forces due to
muscles, tendons and ligaments, and simulated by springs and dampers. In
order to overcome the difficulties of fine tuning of these physical parameters,
they proposed a new algorithm, Nonlinear Inverse Optimization (NIO) to
estimate the values from motion capture data. The underlying paradigm of
NIO 1is a spacetime optimization problem that assumes the captured motion
1s optimal and then solves unknown parameters inversely. After that the

user can adjust these parameters to generate new animations.

In contrast to long-horizon optimal plans, da Silva et al [6] proposed a
short-term approach. They presented a controller, McSim, composed of a
predictive component and a low gain proportional-derivative (PD) component.
The predictive component is a quadratic program (QP) with the linear

dynamics model as constraints. It solves for the joint and external forces

10

13

T2

a6




which track the input motion for a short window of time into the future.

Then the PD component compensates for the errors generated by the

predictive component due to high latency and modeling assumptions. McSim

guides the simulated character dynamics toward input motion data at

interactive rates while sacrifices optimality for computational performance.

g Motion

—»(++— aP

~
—n—( + —

PO —( ) "
~1000 Hz

b= 4’—v
~10 Hz

Figure 6: An overview of McSim’s design
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3 Methods

Our system first reads the human motion from a BVH file. BVH is a
common file format used to store human motion. It arranges the articulation
of human body in a hierarchy structure and specifies the motion data of each
joint by three consecutive Euler angles, that is, rotation angle about Z axis,
rotation angle about X axis and rotation angle about Y axis. Thus, there are

3 DOFs to describe a joint every frame.

Right collar heck  aft collar
Right shoulder aft shauldar

Chest

Hips {1owl)
Leftfingers

Left ankle
Left toes

Figure 7: Skeleton of human body

The above structure of human body has 18 joints. For a 5-second motion clip
containing 165 frames, there are totally 8910 DOF's in this clip. If we treat
each DOF as a variable in the optimization phase, such huge number of
variables would result in a considerable computation time (even though this
solution may not be an “optimial” solution because of local minimums) or a
divergence situation. However, by utilizing spatial coherence and temporal
coherence of human motion, we do not need to take all DOFs as variables in
the optimization phase. In the following sections, details about how we

reduce the number of variables would be introduced.
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3.1 Segmentation

A human body has four limbs and a torso. Joints in the same part are
more related than those in different parts because of the hierarchy structure.
For example, the movement of right shoulder would affect the moving of
right wrist, whereas there is no direct relationship between right shoulder
and left wrist. Thus we divide limbs and the torso into different segments in
order to maximize this kind of local spatial coherence. Moreover, keeping

local spatial coherence also provides more flexible controbility.

Figure 8: Each color for a segment

There are 5 segments. Each segment 1s divided empirically according to
the physical structure of human body. They are the Torso, RightArm,
LeftArm, RightLeg and LeftLeg respectively.
® Torso: there are 4 joints, including Hips, Chest, Neck and Head.
® RightArm: there are 4 joints, including RightCollar, RightShoulder,

RightElbow and RightWrist.
® LeftArm: there are 4 joints, including LeftCollar, LeftShoulder,

LeftElbow and LeftWrist.
® RightLeg: there are 3 jonts, including RightHip, RightKnee and

RightAnkle.

13



® LeftLeg: there are 3 joints, including LeftHip, LeftKnee and LeftAnkle.
After segmentation, we perform PCA on each segment respectively. For

DOFs reduction, which will be described in section 3.5.

3.2 Kinematics Constraints

By specifying appropriate kinematics constraints, spacetime
optimization can provide comprehensive control over the motion. Instead of
keyframes interpolation, the optimization process iteratively adjusts the
motion without discontinuity defects by the smooth term in its objective
function. There are 3 kinds of kinematics constraints supported in our
system:
® Position Constraints of End Effectors

The user can change the positions of end effectors at certain frames by

specifying this kind of constraints.

Figure 9: (left) Original motion, (right) adjusted motion satisfied the

constraint

14



® Environment Obstacles Constraints
The user can put some boxlike obstacles in the environment such that

the original motion is modified to react the conditions surrounded it.

Figure 10: (left) Original motion, (right) adjusted motion satisfied the

constraint

® Body Parts Lengths Constraints
By assuming uniform mass denisty of human body, the mass of a body
part is modulated proportional to its length. So the user can retarget the
original motion to a different size of model by combining additional
center of mass (COM) constraints. Limiting the position of COM can
preserve the balance of human body and make sure the motion to be

physics plausible.

15



Figure 11: (left) Original motion, (right) adjusted motion satisfied the

constraint

16



3.3 Equilibrium-based Force Response

Instead of embedding complex dynamics to simulate human’s
musculoskeletal model, we propose using the assumption of static
equilibrium at each frame. This assumption take advantage of spacetime
optimization such that we can only focus on the statics of each frame
independently and let spacetime optimization keep the temporal
connectivity between frames for us. In addition, by assembling 3 springs at
X-axis, Y-axis and Z-axis respectively in the local coordinates for each joint,
we do not need to induct novel variables as extra physics parameters in the
optimization phase. To simulate the muscle force of some joint, we simply

apply Hooke’s law for each spring of the joint.

Op

J

Qmj

Figure 12: A spring and a damper assembled at the joint

For some frame, the muscle force exterted by the joint 7is made up of 3

component forces applied on local axes of the joint.

11 [kiag
F=| 1) |=| kg
il | kiag

, where Aé’)i( , AQ;, and Aezi are Euler angles about the local axes.

17



By assuming that the original posture of human body at each frame is in
static equilibrium, we do not need to calculate muslce forces when there is no
external force; otherwise, the net force of total muscle forces and the external
force must equal to zero. An external force is an additional force specified by
the user to apply on some joint. It is a vector including magnitude and
direction of the external force. Once the external force being added into the
system, the whole human body is no longer in the state of static equilibrium.
As a result, angles of joints must be changed to exert muscle forces to

counteract ths external force.

Every joint in the hierarchy would contribute 3 forces, each lying on the
direction of its local axis. Then we transform these forces from their local
coordinates to the world coordinates. Finally, all forces are projected onto the
vector of the external force. Because the external force is set as a constraint,
optimization process will drive the net force to zero.

/
Joint j // G/ F/= ki

Fi = kle 1

G! + GJ = External Force

Joint 7 External

Force

Figure 13: Equilibrium
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There are 2 kinds of force constraints that the user can specify in our
system:
® Permanent Force Constraint
This kind of constraint is applied to the entire motion clip. That 1is,
the motion in the whole animation will be influenced by this external
force. For example, we can increase the weight of right arm by adding an
external force which points to negative Y-axis as the permanent force
constraint.
® Instant Force Constraint
This kind of constraint is only applied to a specific frame in the
motion. Because we treat each frame as an independent static system,
spline interpolation is used to hold the connectivity between the target

frame and its neightbor frames.

Figure 14: (left) Original motion, (right) adjusted motion satisfied the force
constraint applied to the left limb of body

19



3.4 Spacetime Optimization

The kernel of our system is a sequential quadratic programming (SQP)
problem. We define the objective function companied with kinematics
constraints and force constraints, and then solve our problem by the SQP

solver SNOPT.

Such a motion optimization process is based on the original motion to
ensure reality and also try to fit all user-specified constraints for motion
editing. Thus the objective function is designed to preserve both smooth of

the motion and similarity between the original motion and the result motion.

n—-2 m-

Fonj = Z

i=1l j

olale) -0),) +a-a)lo) - o) ]

M2

Il
o

m-1
,where ®': the weight of DOF j, ), @' =1
j=0
a : the weight of continuity, 0 < a <1

&, : DOF jat 7’th frame of the motion

®): DOF jat 1’th of the original motion

The superscript ; indicates the index of joint, and the subscript 1
indecates the index of frame. As a result, the first term in the above equation
means that DOFs of the same joint between 2 consecutive frames should be
close, while the second term means that the DOFs of joints in the target and

original motion should be close as well.

20



In order to maximize accuracy and efficiency of the SQP solver, we

provide the gradient of each DOF as follows,

Oy _ 00 [(eii —0),f+(07 -0} f +(0), -0/ +(0), -0/,

i+1 i

agij 8(9ij
= o [2(9ij - eiil)—i_ 2(‘9ij -0/ )_ Z(Qiil ~0] )]
=20’ (303’ -6),-6), -0 )

With sufficient information of gradients, computation time the SQP
solver spending on finding out solutions can be reduced about 100 times. The
number of iterations can also be decresed greatly to reach acceptable

accurate results.

For all constraints, we append them to the objective function as soft

constraints rather than hard constraints. The objective function becomes
n-2m-1 y -\ ) \2
fonj = (L~ a)C)ZZa)’ [a(é?i’ —6?i’_1) + (1—0:)(t9iJ —@i’) ]+ ,C
i=1 j=0
, where w. is the weight of constraint. It is a trade-off between accuracy and
efficiency. We observed that little loss of accuracy can gain great time spent

on trivial computation. At last, we refine the inaccuracy with Inverse

Kinematics (IK).

21



3.5 Principle Components Analysis

To further improve the efficiency of spacetime optimization, we propose
to use PCA to reduce the number of DOFs. Because PCA can preserve the
most significant features or styles of data sets during transformation, in the
situation of motion data it captures the major movement of body. When
considering the hierarchy of human structure, the movings of joints which
belong to the same body part are most correlated. Consequently, we perform
PCA on each body segment independently such that less number of principle
components can hold more accordant information without the bothering of

unrelated data.

We arrange frame data as a n X m matrix, where n is the number of
original DOFs and m is the number of frames. After applying PCA, we can
get the matrix of eigenvectors stored in column-major and the matrix of
deviations as follows:

X=VB+7Z

X: original data matrix, n by m

V: matrix of eigenvectors, n by n

B: matrix of deviations, n by m

Z: matrix of z-scores, n by m
Eigenvectors in V are sorted according to their cumulative energy such that

the eigenvector with the largest-magnitude eigenvalue is at the left.

We reduce the number of DOFs by keeping the eigenvectors of 98%

22



energy. It results in a submatrix W of V and a submatrix Y of B. The
dimension of W is n X n, where 1 1s less than n, and the dimension of Y is
n X m. Finally, we use the elements of Y as the variables in optimization
process instead of the original DOFs. In practice, nn is usually half of n by
preserving 98% energy because there is high coherence among joints in the

same body segement.

At optimization, the object function is bascally uncanged except that
variables are not original DOFs any more, the elements of sub deviations
matrix Y instead. Then the gradient of each variable is slightly modified as

follows:

O o =50 1 T
-3 20(36) - 03, -0}, - O] )a—X’
, where summation means that all joints of the hierarchy described by the

eigenvector related to x.

3.6 Spline Interpolation

To exploit temporal coherence between consecutive frames and further
improve the quality of synthesis results, we use optimized key frames as
control points of splines. Key frames are selected at regular intervals from
the original motion. After applying PCA to their DOFSs, the elements left in
the matrix of deviations are set as variables in optimization process. To
reconstruct the whole result motion, we simply interpolate other frames from

these key frames.

23



4 Experiments and Results

There are 3 kinds of parameters that need to adjust manually. They are
weight of continuity, weights of joints and force constants of joints,

respectively.

4.1 Weight of Continuity

Weight of continuity influences the continuity between frames. The more
weight of continuity, the more smooth of the motion. However, the
constraints may not be satisfied accurately when keeping smooth. It results
in a trade-off between smooth and accuracy. In practice, weight of continuity
can be set heigher for environment obstacle constraints than for constraints
of end effectors. Because the end effector does not need to hit a target
precisely in the case of environment obstacle constraints, high weight of

continuity can help the synthesis result look like more gracefully.

100
90
80
70
60
50
40

y
/[
/

/

e min (%)

/. -
\ /] \

) ——

err (%)

30
20

p—

—

10 /
0/,

100 99 98 97 96 95 94 93 92 91 90 80 70 60 50

Figure 15: Relationshiop between accuracy and computation time

In Figure 15,

it shows more computation time needed for higher
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accuracyframes. The time is represented by the precentage of minutes.
Compared with 100% accuracy, the computation time is reduced greatly to 35%
minutes for 90% to 98% accuracy. In practice, a 32-frame clip takes about 6

seconds to complete with other minor modifications of optimization

parameters.
Length 32 frames Time =6 seconds
QP Solver | Conjugate-gradient Iterations | 300
CPU Interl Core 2 6700 @ 2.66 GHz | Memory | 3.25 GB

Table 1

100:0 90 :10

80 : 20 70 : 30 60 - 40

Figure 16: Accuracy between different weights of continuity
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4.2 Weights of Joints

Joint Weight Joint Weight
Hips 4000 RightKnee 100
LeftHip 1000 | RightAnkle 10
LeftKnee 100 Chest 2000
LeftAnkle 10 LeftCollar 1000
RightHip 1000 | LeftShoulder | 100
LeftElbow 10 RightElbow 10
LeftWrist 1 RightWrist 1
RightCollar 1000 Neck 10
RightShoulder | 100 Head 1
Table 2
4.3 Force Constants of Joints
Joint | Value of &
Chest 4
Collar 8
Shoulder 8
Elbow 4
Wrist 2
Table 3

4.4 Results

® Original Motion

26
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® Environment Obstacle Constraint

28



® Force Constraint

The external force is applied to the left limb of body.

29
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5 Conclusions and Future Works

This thesis proposes a spacetime optimization based motion editing
system which solves the configuration of joints satisfying user-specified
kinematics and forces constraints. We exploit spatial and temporal coherence
of human motion to save computation time while providing various kinds of
constraints. With appropreiate set of kinematic constraints, QP solver can
find acceptable solutions without tracking accurate muslce forces by a
complex musculoskeletal model. To further expand the limits of kinematic
constraints, we propose equilibrium-based force response model to efficiently
counteract external forces or joint weight modifications.

However, the values of manual parameters such as weights and force
constants play an important role to the synthesis results. One of our system
limits is that the user needs to tune these parameters for the best results. In
contrast to physics-based spacetime optimization approach, there are only 3
kinds of weights needed to tune manually in our system. It does not spend
time on extracting massive physical parameters, neither. As a result, the
performance can reach 6 times of real-time at best cases.

In the future, the most important work 1s to incorporate balance
maintenance mechanism into our system, such as considering feedback
forces in the supporting phase. Besides, gradient calculations in the
optimization process can be further programmed generalized so that more
kinds of kinematic constraints can be included with a friendly user interface.
Furthermore, the QP solver can be re-implemented to a parallel environment

to enhance the performance.
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