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A Study on Mobile Robot Navigation with Simple Learning
Procedures by Ultrasonic Sensing and Computer Vision Techniques

Student: Shung-Yung Tsai ~ Advisor: Prof. Wen-Hsiang Tsai, Ph. D.

Institute of Multimedia Engineering, College of Computer Science

National Chiao Tung University

ABSTRACT

Two intelligent autonomous vehicle systems for use in indoor environment
applications are proposed. One is a vision-based vehicle system for security patrolling
which has the capabilities of learning paths by person following, interaction with
humans, analyzing 2D images and.conducting:path planning. Another is an intelligent
vehicle system for navigation by analyzingultrasonic signals. A vehicle equipped with
wired control and a web PTZ camera is used“as a test bed. First, a method for
improving the practicability of an adopted camera calibration method is proposed,
which uses a grid pattern as the calibration target and detects the centers of cross
shapes on the pattern in a more precise and automatic manner. Next, a technique of
odometer calibration is proposed, which uses an odometer calibration model to reduce
the incremental mechanical errors the vehicle suffers. Besides, a technique for person
following in an environment with variant illuminations is proposed, which adjusts the
reference color value for person following dynamically. To follow a target person who
turns fast in front of the vehicle, a technique of using the image information exhibited
by the angle of panning of the camera to search the disappearing person is proposed.
Also proposed is a technique for enhancing the accuracy of detection of the facing

direction of a human by increasing the number of pixels for use in the detection work.
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For object monitoring, the vehicle is enabled to find out the 2D object in the image
automatically when the followed person asks it to learn the object. In addition, a
minimum MSE technique for refining dynamically the path learned while following a
person is proposed. Finally, a method of vehicle navigation in corridor environments
by the use of the ultrasonic signal sequence is proposed. Good experimental results
show the flexibility and feasibility of the proposed methods for the applications of

security patrolling, person following, and people guiding in indoor environments.
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Chapter 1
Introduction

1.1 Motivation

In recent years, autonomous land vehicles with ultrasonic sensors and
vision-based robots have played helpful roles in human life. They can help us to do
various tasks, such as:

(1) keeping company with old people like a nurse to take care of them;

(2) monitoring concerned objects;

(3) navigating in desired efivironments automatically;

(4) guiding people in indoor environment, and so on.

In security monitoring of objects, i1f we use stationary cameras, we have to install
many of them and there might still be corners where the cameras cannot cover. But if
we use an autonomous vehicle equipped with a video camera, which has the ability of
automatic learning and human following, then the problem can be solved because the
vehicle can follow people everywhere and learns the path that we hope it patrol, just
like a mother teaching her child where to go.

While a vehicle follows a person, the vehicle has to detect the person in front of
it continually. However, this is not easy because the brightness could not be all the
same on the path, it could change to dark or bright slowly, and the person in the
camera view might be darker or brighter than in the view a moment ago. The vehicle
has to keep finding out the person to follow under variant brightness.

When the vehicle is patrolling, it may seem not smart if it walks totally the same



as the trajectory it learned, because this trajectory could be rough and there is no need
to step on every spot of it precisely. We hope the vehicle could reconstruct the path
into a smooth route, but not too smooth to miss some important points we want it to
patrol.

In playing the role of a guide, it might be dangerous when the vehicle guides
people in a narrow environment because the vehicle could hit the wall. But if we use
an autonomous land vehicle equipped with ultrasonic sensors, the problem can be
solved because the vehicle can then detect the distance to the wall using ultrasonic
signals and keep navigating in the middle of the path safely.

For the application of person guidance, the vehicle needs often the additional
functions of making audio introductions to the environment or the surrounding objects,
and making warning announcements to people who stand on the way that the vehicle
want to pass through.

In summary, the research goal -of-this, study is to design an intelligent
autonomous vehicle system with two kinds of ¢apability. One is to learn the traversed
path and objects which to be monitored, while following a person, and then navigate
to the start point by automatic path correction by the use of computer vision and
ultrasonic sensing techniques. For this goal, it is desired to design a system to be
capable of automatic learning and path planning. The other capability is to navigate in
a narrow indoor environment by ultrasonic sensing. It is desired to design a system to
be capable of environment analysis in narrow indoor environments. By these
functions, a variety of applications of the vehicle can be carried out, like being used as
an autonomous patrolling assistant or a security guard, as well as a guide in an office

environment, an exhibition area, or a tour route.



1.2 Survey of Related Studies

To achieve the mission of person following in indoor environments, the function
of human detection is required at first for finding a targeted person in the person
following process. Skin color is an important feature of humans. In the study of
human skin colors, many methods have been proposed to build skin color models.
Wang and Tsai [1] proposed a method which uses an elliptic skin model to detect
human faces by color and shape features in images. They also proposed another
method which detects a person not using the skin color, but using the colors of the
clothes which the person wears. A study of human detection under variant
illumination was conducted by Chen and Tsai [2]. They used many sets of color
values of C, and C, to define a furetion of skin-color reference models. The function
was then used to separate human skin regions.from background.

Besides, some systems for person following have been proposed. Ku and Tsai [3]
proposed a sequential pattern recognition method to decide the location of a person
with respect to a vehicle and to detect a rectangular shape attached on the back of the
person to achieve smooth person following. However, the person has to appear in the
image all the time and the road has to be wide enough for this method to work. In
applications of person following, Kwolek [4] proposed a method that determines the
position of a mobile robot by laser readings. The tracking of the human head is done
by a particle filtering technique using the features of color, depth, gradient, and shape.
Morioka, Lee, Hashimoto [5] studied person following to provide people with
services by the use of a human collaborative robot which tracks the back and shoulder
of a person. There are some different studies for human detection and following by
using different sensors. Treptow, Cielniak, and Duckett [6] proposed a method which

tracks and identifies people from thermal and gray images.

3



For object monitoring, the vehicle has to learn the features of the concerned
object and match the features to determine whether the object is the same as the
previously learned one. Lowe [7] used a scale-invariant detector to find the extrema in
the difference-of-Gaussian scale-space. He then created a scale-invariant feature
transform (SIFT) descriptor to match key points using a Euclidean distance metric in
an efficient best-bin first algorithm which can identify the nearest neighbors of points
in high dimensional spaces.

For path planning, a method for planning the navigation task for a mobile robot
under dynamic and unknown environments was proposed by Xiao, Liao, and Zhou [8].
For the topic of robot navigation, Chen and Tsai [9] proposed a method with a
simplified SIFT for monitoring objects and used the position and feature information
of objects to conduct vehicle navigation. Davison [10] proposed a method for

monocular vision-based robot navigation.

1.3 Overview of Proposed Approach

The goal of this study, as mentioned previously, is to design two kinds of
intelligent capabilities for autonomous land vehicles. One is to use computer vision
and ultrasonic sensing techniques for person following and patrolling. The other is to
use ultrasonic sensing for navigation in narrow indoor environments. The overall
frameworks of proposed systems for these two capabilities are illustrated in Figure
1.1(a) and Figure 1.1(b).

The first proposed approach to person following and patrolling using a
vision-based autonomous vehicle with an ultrasonic sensing system includes seven

major stages. The first stage is camera calibration for measuring the distance between
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the person and the vehicle by a so-called angular mapping technique [1] in which
each point in the image represents a unique light ray from the viewpoint into the
camera. By the angular information of light rays and the height of the camera, we can
know the relative distances of targets in images. The details will be described in
Chapter 3.

The second stage is human detection. An elliptic skin model to detect human
faces by color and shape features in images was proposed by Wang and Tsai [1]. But
this model is suitable only in a limited range of luminance. An improved skin color
model which can adjust its elliptic center to adapt to the change of luminance was
proposed by Chen and Tsai [9]. However the skin color detection is not suitable for
everyone. We solve the problem by using cloth detection instead of skin color
detection in this study.

The third stage is person: following. It not enly conducts the basic person
following function but also deals with seme-unexpected situations. For example, it
deals with environments where luminance is'not uniform. This study solves these
problems by dynamically adjusting the values of C; and C, of the clothes worn by the
person to detect the person in the camera frame.

The fourth stage is learning the path data during person following. The vehicle
needs to learn two kinds of data. One is the data of a path node which are used for
path planning in the next cycle. The other is object monitoring data which are used to
conduct security patrolling. The details will be described in Chapter 4.

The fifth stage is path planning by the mean square error (MSE) method using
the path data collected during person following. The vehicle reconstructs the path it
has learned into a smooth path. In addition, it is also wanted in this stage to
automatically adjust the threshold of the mean square error for adaptation to different

environments like wide or narrow ones. The details will be described in Chapter 5.
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The sixth and seven stages compose the navigation phase. The vehicle uses the
information learned and the path planned before for executing the mission of
patrolling. It monitors objects using a simplified SIFT method [9] and a navigation
technique using 2D object image matching.

The second proposed approach to autonomous land vehicle guidance in indoor
environments with ultrasonic sensors includes two major phases. The first is the
learning phase, and the second is the guidance phase. In the learning phase, the
vehicle needs to learn the information of path data and point data. In the guidance
phase, the vehicle analyzes the signal detected from the ultrasonic sensor and guides
people on the path which was learned in the learning phase. The details will be

described in Chapter 6.

1.4 Contributions

The major contributions of this study are summarized as follows.
(1) A method for improving the practicability of camera calibration is proposed.
(2) A method for person following in environments where the luminance is not
uniform is proposed.
(3) A method for detecting a person who turns fast and disappears is proposed.
(4) A path planning method which can adapt to different environments is proposed.
(5) A method of computing the angle to calibrate the odometer of the vehicle is
proposed.

(6) A guidance method using sequences of ultrasonic signals is proposed.
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Figure 1.1 Flowcharts of proposed systems.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, we describe

the system configuration of the vehicle and the principles of proposed learning,



human following, and guidance techniques. In Chapter 3, the proposed the method for
improving the practicability of camera calibration, the method for calibration of the
odometer, and the method of using the reference data for distance computation are
described. In Chapter 4, a method for improving the practicability of human facing
direction detection is described. The proposed techniques for path planning are
described in Chapter 5. The method for learning the path of guidance is described in
Chapter 6. Some satisfactory experimental results are shown in Chapter 7. Finally,

some conclusions and suggestions for future works are given in Chapter 8.



Chapter 2
System Configuration and Guidance
Principles

2.1 Introduction

There had many studies about using machines to reduce the burden of humans to
do the work of patrolling. The autonomous land vehicle with camera equipments is
commonly used for this kind of work because cameras could “see” objects which
need be monitored in replacement of human eyes. Usually, we have to key in the path
of a patrolling vehicle manually into a computer and such work of assigning a path to
a vehicle is not easy to performfor a-user‘whe is not good at machine handling. This
inconvenience can be resolved if we have an autonomous vehicle equipped with a
camera which has the abilities of following people and remembering the path it
walked through. With such an intelligent vehicle, we can then bring it to walk through
the path once, and the vehicle can remember the path and walk the way back to the
start point by itself. Additionally, we can change the patrol path adaptively for various
application needs easily.

On the other hand, when we visit an unfamiliar place like an office in a building,
we often need a guide to bring us from the outside of the elevator into the office. It is
desirable too that the guide could give some introduction to the environment. We can
use a robot instead of a human being to do this job. However, when the environment

is not broad, then the robot could hit the wall. The problem could be solved if we have
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an autonomous land vehicle with ultrasonic sensors, which can keep the vehicle
navigating in the middle of the path using the ultrasonic signals provided by the
Sensors.

The entire hardware equipments and software used in this study are described in
Section 2.2. The system of person following and patrolling includes two major stages
to reach its goal. The first is the learning process which makes the vehicle more
intelligent. In Section 2.3, we will introduce the principle of the proposed learning
technique. We will describe how to follow a person and learn the information of paths.
The second stage is the path planning process which can refine the learned path. In
Section 2.4, we will describe the major steps of refining the path obtained from the
learning process. For the system of the guiding vehicle, we will introduce the

principles of the learning and guidihg strategies in'Section 2.5.

2.2 System Configuration

In our system, we use the Pioneer 3, a vehicle made by ActiveMedia Robotics
Technologies Inc., as a test bed. The vehicle is equipped with a pan-tilt-zoom camera
of which we can adjust some parameters by a graphical user interface, such as the
image resolution, the image format, and so on.

Because the wireless signal might be interfered by unknown signals sometimes,
we control the vehicle by a network cable connecting our computer and the vehicle in
our system. In this way we can have stable communication among the vehicle, the
program, and the PTZ camera. A diagram illustrating this configuration is shown in

Figure 2.1.
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Figure 2.1 Equipment connection situations in this study.

2.2.1 Hardware configuration

The hardware equipments we use in our system include three parts. The first part
is a laptop which we use to run our program. A kernel program can be executed on the
laptop to control the vehicle by issuing commands.to the vehicle. It also can be used
to get the status information of theivehicle.

The second part is the vehicle which~hasian aluminum body. The size of it is
44cmx38cmx22cm with three wheels of the same diameter of 16.5cm. In the vehicle,
there are three 12V batteries each of which, by one charge, supplies power to the
vehicle to run 18-24 hours. The vehicle can reach a forward speed of 160cm per
second and a rotation speed of 300 degrees per second. The embedded control system
can be used to control the vehicle to move forward or backward and turn around by
the user’s commands. The appearance of the vehicle is shown in Figure 2.2.

The third part is a digital IP camera with panning, tilting, and zooming (PTZ)
capabilities. The PTZ IP camera used in this study is an AXIS 213 PTZ made by
AXIS, as shown in Figure 2.3. This is a camera with a height of 130mm, a width of
104mm, a depth of 130mm, and a weight of 700g. The pan angle range is 340 degrees

and the tilt angle range is 100 degrees. It has 26x optical zooming and 12x digital



zooming capabilities. The image captured in our experiments is of the resolution of
320x240 pixels for the reason of raising image processing efficiency. Moreover, the
camera is directly connected to a laptop by a network cable for transmission of the

captured image.

(a) T (b)

Figure 2.2 The vehicle Pioneer 3 used in this study. (a) A front view of the vehicle. (b)
A side view of the vehicle.

2.2.2 Software configuration

The ActiveMedia Robotics provides an application interface ARIA to control the
vehicle used in this study. ARIA is an object-oriented interface which is usable under
Linux or Win32 in the C"" language and can dynamically control the velocity, heading,
and other navigation settings of the vehicle. We use the ARIA to communicate with
the embedded system of the vehicle. And we use the Borland C™ Builder as the
development tool in our experiments.

13



(b) (©)

Figure 2.3 The pan-tilt-zoom camera used in this study. (a) A perspective view of the
camera. (b) A front view of the camera. (c) A left-side view of the

camera.

2.3 Learning Strategy and Major Steps
In Proposed Process

The proposed learning strategy is based on human following [2]. When the

vehicle follows a person, it uses the information of the clothes which the person wears.
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Two kinds of situations should be handled. The first is that the vehicle can find the
person by the clothes feature and the second is that the vehicle cannot find the person.

In the first situation, the vehicle will keep following the person and avoid losing
the observation of the person. In the second situation, the vehicle cannot follow the
person anymore. Because the camera on the vehicle always pans to follow the person,
the vehicle can keep knowing that the person is on which side with respect to the
vehicle (left or right). If the person disappears in front of the vehicle, then the vehicle
can find out the side on which the disappearing person was. After that, the vehicle will
turn an angle to the correct its direction to search for the disappearing person in the
acquired image. But if the vehicle turns for a pre-set number of times and still cannot
find the person, then the system stops the learning strategy.

Our system needs to learn two major kinds of data at the learning strategy. The
first part is path data. These data are'used in the path-planning. The second part is the
information of those objects whichithe person wants the vehicle to monitor. The
person only needs to stand in front of the object and looks at it. Then the vehicle will
go forward to learn the information of the object. These data are used in the patrolling

process. The major steps are shown in Figure 2.4.

2.4 Path Planning and Patrolling
Principle and Major Steps in
Proposed Process

After the vehicle learns the path and the object data in the learning stage, the

vehicle refines the path and stretches the rough part of the path by analyzing these
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data using a binary-cut line fitting technique. The path planning process has three
major steps. The first step is to retain the nodes where the monitored objects are
located. After doing the first step, the path is separated into some segments. Then, we

collect these path segments by pushing them into an empty queue.

Start of learning
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Figure 2.4 An illustration of the automatic learning process by person following.
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The second step that is to pop out one segment from the queue and check the
segment to see whether it is smooth enough or not. If the answer is no, then go to the
third step to separate the segment again into two small parts and push them into the
queue mentioned before. We then execute the second step again and repeatedly, until
the queue is empty. We save the segments which are smooth enough to be the path
data, for use in the patrolling process. The major steps are illustrated in Figure 2.5.

After doing the steps of the path planning, the next process is navigation to the
start point. The navigation process includes three major steps. The first step is to read
and sort the path data obtained from the path planning. The second step is to go
forward according to the path data, and check the current position to see whether there
is an object to be monitored there or not. If the answer is yes, then go to the third step
to match the monitored object. We repeat the second and the third steps until the

vehicle arrives at the start point=The major steps are tllustrated in Figure 2.6.

2.5 Vehicle Navigation Principle and
Major Steps in Proposed Process

Our system has two major processes in the vehicle navigation system. The first is
the learning process. The vehicle learns the information of a navigation path in this
process. We divide the navigation path into several segments, and the divided points
are the positions where the vehicle needs to turn. Also, the vehicle needs to learn two
kinds of major information of every segment of the navigation path. One is the
information of the environment of the path where the vehicle navigates and the other

is the information of a turning node which the vehicle passes by. The major steps are
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illustrated in Figure 2.7.
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Figure 2.5 An illustration of the path planning process.

The second part of our system is the navigation process. After reading the data of
the navigation path which is separated into several segments by the turning nodes
obtained from the learning process, the vehicle can now navigate and guide, if
necessary, a visitor on the path, by performing two tasks at every segment. One is
navigation in the middle of the hallway and the other is finding the position of the

turning node. These major steps are illustrated in Figure 2.8.
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Chapter 3
Camera and Odometer Calibration

3.1 Introduction

The camera and the odometer are the two important equipments of the vehicle
used in this study. In this chapter, we describe the proposed calibration methods for
these two equipments.

Distance information is important and useful in the person following process.
The vehicle of our system computes the distance information by analyzing images
captured from the camera. But-there is ambiguity in the inverse mapping from 2D
image coordinates to 3D world-positions--Wang and Tsai [1] proposed a method of
angular mapping for camera calibration to.compute the distance between a vehicle
and a person. Chen and Tsai [9] proposed a method of area tracking to deal with the
situation where the vehicle cannot see the entire clothes of the person. In Section 3.2,
we will review these methods and propose another method which can improve the
practicability of these camera calibration methods.

For vehicle navigation in indoor environments, the vehicle location is the most
important information to guide the vehicle in correct paths. Though the information
provided by the odometer of the vehicle is precise enough for inferring the vehicle
location for most applications, it cannot be used solely for the navigation process
because the incremental mechanical errors might result in imprecise odometer data
and so in deviations from the planned navigation path. Hence, in order to keep the

navigation in track, a vision-based odometer calibration technique is desirable to
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eliminate the errors. In Section 3.3, we will propose a technique for this purpose.

3.2 Camera Calibration by Cross
Shape Detection

3.2.1 ldea of Proposed Camera Calibration Method

The distance information is indispensable for a person-following vehicle. The
vehicle can avoid striking a person by using the distance information to keep a safe
distance to the person. And the vehicle,can go forward to see more clearly for
avoiding losing information of this personby.tising'the distance information when the
person is far from the vehicle: Our system computes the distance information by
analyzing the images captured from~the camera. Through imaging with the camera,
3D world coordinate systems are mapped into 2D image coordinate systems. However,
there is ambiguity in the inverse mapping from a 2D image point to its corresponding
3D world location because each point in the image is the projection result of a light
ray onto the image sensor. The light ray can be described by a longitude angle and a
latitude angle in the 3D world space. To define the corresponding longitude and
latitude angles (or simply called longitude and latitude in the sequel) of each point in
images, Wang and Tsai [1] proposed a method of 2D mapping to achieve the goal of
angular-mapping camera calibration.

However, some steps repeat and incur error easily in their method. We will
propose a method which simplifies the steps of camera calibration and is suitable for

common users. In Section 3.2.3, we will review the method of angular-mapping
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camera calibration. In Section 3.2.4, we will describe the proposed method.
Before describing the above-mentioned methods, we first introduce the
definitions of the coordinate systems and the directional angle of the camera used in

this study in Section 3.2.2.

3.2.2 Coordinate Systems and Directional Angles of

Camera

Four coordinate systems are utilized in this study which describes the relative
locations between the vehicle and encountered objects. The coordinate systems are
shown in Figure 3.1. The definitions of all the coordinate systems are stated in the
following.

(1) Image coordinate system (IE€S):'denoted .as (i, v). The uv-plane of the system is
coincident with the image plane and.the.origin I of the ICS is placed at the center
of the image plane.

(2) Global coordinate system (GCS): denoted as (x, y). The x-axis and the y-axis are
defined to lie to on the ground, and the origin G of the global coordinate system is
a pre-defined point on the ground. In this study, we define G as the starting
position of the person-following process.

(3) Vehicle coordinate system (VCS): denoted as (Vi V,). The V.V,-plane is
coincident with the ground. And the origin V is placed at the middle of the line
segment that connects the two contact points of the two driving wheels with the
ground. The V;-axis of the system is parallel to the line segment joining the two
driving wheels and through the origin V. The V;-axis is perpendicular to the x-axis
and goes through V.

(4) Spherical coordinate system (SCS): denoted as (p, 6, ¢). This system is proposed
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by Wang and Tsai [1]. It is a 3D polar coordinate system and we explain this
system in terms of the 3D Cartesian coordinate system with coordinates (i, j, k) for
convenience. The origin S of the spherical system, which is also the origin of the
Cartesian system, is the optical center of the camera. The ij-plane of the Cartesian
system is parallel to the uv-plane in the ICS. A point P at coordinates (i, j, k) in the
Cartesian space is represented by a 3-tuple (p, €, ¢) in the spherical space. The
value p with p >0 is the distance between the point P and the origin S. The
longitude @ is the angle between the positive k-axis and the line from the origin S
to the point P projected onto the ik-plane. The latitude ¢ is the angle between the

ik-plane and the line from the origin S to the point P.

Two kinds of directional angles of a camera are used in this study. One is the pan
angle and the other the tilt angle. The pan angle of the camera is defined in the VCS,
denoted by 6.. It represents the degree-of-horizontal rotation of the camera and is

important for coordinate transformation.

- Room y
II—b u GI—b X
(a) (b)

Figure 3.1 The coordinate systems used in this study. (a) The image coordinate system.
(b) The global coordinate system (c) The vehicle coordinate system. (d) The

spherical coordinate system.
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P(p, 8, 9)

(c)

(d)

Figure 3.1 The coordinate systems used in this study. (a) The image coordinate system.
(b) The global coordinate system (c) The vehicle coordinate system. (d) The

spherical coordinate system. (continued)

We define the direction of the j-aXis to.be zero. The value of 6. is exactly the
angle between the camera direction and the direction of the y-axis. The range of €. is
between 0 and = if &, is in the first‘and fourth quadrants and between 0 and —x if 6, is
in the second and third quadrants, as shown in Figure 3.2. The tilt angle of the camera
is defined as the angle between the optical axis of the camera and the ground. The
angle, denoted as ¢, represents the vertical tilting of the camera. We define the angle
to be zero when the optical axis of the camera is parallel to the ground. The range of
@. 1s between 0 and 7/2 if the camera tilts up, and is between 0 and —x/2, else, as

shown in Figure 3.3.

3.2.3 Review of Adopted Camera Calibration Method

Wang and Tsai [1] proposed a nonlinear angular mapping method to precisely

obtain the angular transformation from the real world to the image. By the angular
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information of the light rays and the height of the camera, we can know the relative

distances of targets in images.

2 -2

m[ﬁ:ﬂTJ'

(a) (b)
Figure 3.2 The pan angle of the camera. (a) 0<6. <7.(b) 026 >-rx.

The coordinate system used in-this-method 1s shown in Figure 3.4, which
includes the previously-mentioned image coordinate system (ICS) described by image
coordinates (u, v) and the spherical coordinate system (SCS) described by parameters
(p, 6, ). The latter is a 3D polar coordinate system which can be explained in terms
of the 3D Cartesian coordinate system with coordinates (i, j, k). The ij-plane of the
Cartesian system is parallel to the uv-plane in the ICS. The origin S of the SCS, which
is also the origin of the Cartesian system, is the optical center of the camera. A point P
at coordinates (i, j, k) in the Cartesian space is represented by a 3-tuple (p, 6, ¢) in the
SCS where p is the distance between the point P and the origin S. The longitude € is
the angle between the positive k-axis and the line from the origin S to the point P
projected onto the ik-plane, and the latitude ¢ is the angle between the ik-plane and

the line from the origin S to the point P.
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(@) (b)

Figure 3.3 The tilt angle of the camera. (a) 0< ¢, < % .(b) 029, 2> —% .

A grid board is used in this method. It has m vertical lines and # horizontal lines,
and is attached on a wall which is petpendiculatto the ground. Because the longitude
and the latitude values of the “intersection: points in the grid have been known in
advance, the longitude and the latitude values of theother pixels in the image can be
computed by an interpolation méthed. In this way, the longitude and the latitude
values of each pixel in the image can be obtained. In Figure 3.5, we can see the
respective positions of the grid board and the camera use in this method. And the
views from the camera are shown in Figure 3.6. The intersections of the lines are
marked by yellow points.

After knowing the longitude and the latitude values of the yellow points in the
image by previously-mentioned nonlinear angular mapping, we can use an
interpolation method to compute the longitude and the latitude values of the other

pixels in the image.
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Figure 3.4 An illustration of transformation between image coordinate system (ICS)
and spherical coordinate system (SCS).
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Figure 3.5 Camera calibration by a vertical grid board. (a) An illustration of

(a)

attaching the lines on the wall. (b) The intersections seen by camera are
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marked by yellow points.



(a) (b)

Figure 3.6 The camera views of Figure 3.5. (a) View of Figure 3.5(a). (b) View of
Figure 3.5(b).

3.2.4 Proposed Cross S@aae{g,etectlon Technique

T\

-
By using the camera cahbé{lan_me * ,hichIﬁ mentioned in Section 3.2.2, we
A e E
can convert the coordinate Valuésﬁ)f W _.gl-ie image coordinate system (ICS)

into the spherical coordinate syste;?":(@'ﬁ)ﬁ An important step is to mark the
intersection points in an image of the grid board. However, it is required to point out
every intersection point manually in this method. The work is repeated many times
and is prone to incur errors. To deal with this problem, we propose a technique of
cross shape detection which can be adopted to locate the intersection points in the
image automatically.

A look of a cross shape which has two lines intersecting each other is shown in
Figure 3.7(a). For detecting the cross shape, we have to find out its property. A
different definition of cross shape is a shape which has a center point C with four lines
L, L,, Ly and L4 emerging out of the center in four directions, as shown in Figure

3.7(b). Let C denote the center. After we draw a circle, it can be divided into four
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curve parts, P1P,, P3Ps, PsPs and P;Ps, intersecting the four lines of the cross shape
respectively, as shown in Figure 3.7(c). By a careful observation around the circle, we
can discover a common property of the eight intersection points, P; to Ps, that is, the
positions of the eight points are located at places where the cross shape changes its
color from white to black or from black to white. That means if we choose a point on
the grid board randomly, let the point be the center to draw a circle, and find out the
color changes eight times through the circle, then we can decide that the point is the
center point of a cross shape. On the contrary, if we choose a point on the grid board
randomly, let the point be the center to draw a circle, and find out that the color
changing times are not equal to eight, then we can say that the point is not the center
point of the cross shape.

We can simplify this technique by using fout.lines instead of using the circle, as
shown in Figure 3.7(d). That is; we'check every pomt of the foreground on the grid
board by using a matrix, which is.shown-ia Figure 3.8, to scan the four lines
composed of yellow cells and count the times' of color changing. If the color of the
grid board changes eight times, then we can decide C to be the center of the cross
shape. The detailed process is described in the following as an algorithm.

An experimental result of cross shape detection is shown in Figure 3.9. Figure
3.9 shows the image captured from the camera. Figure 3.9(b) is the thresholding result
of Figure 3.9(a). In Figure 3.9(c), many groups of centers of cross shapes are detected.
Figure 3.9(d) shows the final result in which the real center of every cross shape have
been found out. We conducted the calibration work and saved the longitude and the
latitude values of every pixel in the image into a bmp image as shown in Figure 3.9(e).

Figure 3.10 shows the program windows for camera calibration.
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(a) (b) (c) (d)

Figure 3.7 Detection of the cross point of a cross shape. (a) The look of a cross shape.
(b) A center point and four lines composing the cross shape. (c) A circle
with four intersections with the cross shape. (d) Use of four lines to detect
the cross shape.
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Figure 3.8 The matrix used to detect the cross shape.

Algorithm 3.1. Computing the intersection points in a calibration target image.

Input: An image taken from camera /., and the gray version /, of /.

Output: A set S of intersection points of the image /., with coordinates (x.1, ¥ 1), (xc2,
V) «ens (Xeny Y en)

Steps:

Step 1. Calculate a threshold value T of the gray value which can differentiate the

background and the foreground of /..
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Step 2. Reset the gray value g,; of every pixel p; in the image /; in the following

way:

If g,; > T is satisfied, set g,; as a foreground point;

else,

if g, < T'is satisfied, set g,; as a background point.

Step 3. Calculate the times ¢ of color changing around every pixel of the
foreground.

Step 4. Delete the point p; whose value #; is not equal to eight, and consider the
remaining points as centers.

Step 5. Calculate the centroid of every group of centers and find out the

intersection points by Eqgs. (3.1) and (3.2) below:

1 n

X, =—Zx,-; (3.1)
n iy
1 n

ye =220 (3.2)
i=1

I =
r yeEEEREEERRY

(a) (b)

Figure 3.9 Some experimental results of cross shape detection. (a) Original Image. (b)
After thresholding. (¢) Find groups of centers. (d) Center detected. (e) The

bmp image with camera calibration information.
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(d)

Figure 3.9 Some experimental résults of erossishape detection. (a) Original Image. (b)

After thresholding. (c¢) Groups of centers detected. (d) Centers detected. (e)
The bmp image with camera calibration information. (continued)
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Figure 3.10 The program window of camera calibration.
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3.3 Odometer Calibration by
Quadratic Functions

3.3.1 ldea of Odometer Calibration

The vehicle moving direction is another important information factor for guiding
the vehicle to navigate in indoor environments. The direction information is provided
by the odometer of the vehicle. However, the vehicle cannot navigate by using the
odometer information only because the incremental mechanical errors might result in
imprecise odometer data. Hence, in order to keep the navigation in the path, odometer
calibration must be carried out to eliminate the errors.

The vehicle we use in this study has'meehanical errors, as mentioned. It deviates
gradually to left when it moves" forward on a straight line, as observed in our
experiments. In this study, we pfopose a technique'to collect the data of the deviation,
and analyze the data to build an odometer calibration model. In Section 3.3.2, we will
describe the details of the odometer calibration model we adopt which can eliminate
the mechanical errors. After finding out the deviation values in every different
distance, we want to apply this model to compute the deviations of all distances by a
curve fitting scheme which we will discuss in Section 3.3.3. The use of such

calibration results is described in Section 3.3.4.

3.3.2 Odometer Calibration Model

Before building an odometer calibration model, we prepare some equipment for
our experiment. We use a sticky tape, a measuring tape, an autonomous land vehicle,

and a computer. First, we fix the initial position O of the vehicle and mark the position
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by pasting a sticky tape on the ground. Second, we fix the initial direction of the
vehicle and paste a straight line L along the direction on the ground by using a stick
tape. Third, we send commands to drive the vehicle forward on a straight line, and
then commands to stop the vehicle. Fourth, we mark the terminal position 7 of the
vehicle by pasting a piece of sticky tape on the ground. Fifth, we find the node P on
the straight line L which is the vertical projection of the terminal position 7. Sixth, we
measure the distance D; between O and T which is the move distance of the vehicle,
and the distance D, between T and P which is the deviation produced by mechanical
errors. Seventh, we compute the angle @ of the inverse sine value of D,/D; which is
the angle of the deviation. We repeat the steps at least twenty times and let the
distance the vehicle moves be different every time. An illustration of the experiment is
shown in Figure 3.11. The resulting values are shown in Table 3.1 and the distribution

of the results is shown in Figure-3.12.

Algorithm 3.2. Building an odometer calibration model.

Input: None.

Output: An odometer calibration model.

Steps:

Step 1. Fix the initial position O and initial direction line L of the vehicle.

Step 2. Send commands to let the vehicle move forward and then stop.

Step 3. Mark the terminal position 7 of the vehicle.

Step 4. Find the vertical projection node P of the terminal position 7" of the
vehicle on the straight line L.

Step 5. Measure the distance D, between O and 7 and the distance D, between T

and P.
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Step 6. Compute the angle @ of inverse sine value of D,/D;.
Step 7. Repeat Step 1 to Step 6 at least twenty times and let the distance the

vehicle moves every time be different.

Figure 3.11 An illustration of the experiment.
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Figure 3.12 The distribution of the angles of the deviations.
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Table 3.1 The results of the experiment of building an odometer calibration model.

Move Distance (cm) Distance of Deviation (cm) Angle of Deviation
45.6 1.3 5.13
70.3 2.1 5.38
87.9 24 491
102.7 2.8 491
113.1 2.8 4.46
148.7 3.5 4.24
175.6 4.2 4.31
197.6 5.7 5.19
2259 6.4 5.10
246.5 0.7 4.89
281.6 L2l 7.10
290.7 11.4 7.06
317.6 12.5 7.09
359.3 12.8 6.41
389.4 17.1 7.91
403.8 18.8 8.38
443.4 20.8 8.45
469.9 18.3 7.01
515.1 23.6 8.25
577.3 28.3 8.83

3.3.3 Curve Fitting

After measuring the values of the angles of deviations, we found out that the
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distribution of data has a trend which may be roughly described as a curve of the
second order with respect to the vehicle move distance value. Therefore, we use a
least squares error (LSE) fitting method to fit the data with a curve. And then we can
use the resulting curve for odometer calibration while patrolling. The method is
explained as follows.

First, we generalize a straight line to a curve of the Ath-degree polynomial:
y=a,+a,x+..+a,x", (3.3)

with the residual given by

2

R’ = i[% —(ao + ax; +...+akxik)] . (3.4)
i=1

The partial derivatives of R? are

a(Rz):—zzn:[y—(ao +a1x+...+akxk)]=0; (3.5)
aao i=1
o(R’ i

f?al ):—2;[y—(a0+ a]x+...+akxk)]x20; (3.6)
o(R’ "

(gak ) = —2;[)/—(% + a1x+...+akxk )]xk =0. (3.7)

These lead to the following equations:
aon-l-alei-l-...-l-akaik:Zyi; (3.8)
i=1 i=1 i=1

n n n n
aOle. +a,2xi2 +...+ak2xf“ = Zx,.yi ; (3.9
i=1 i=1 i=1 i=1
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or, in matrix

n n n n
k k+1 2% _ k
-aogx,.+a1§x, +...+ak2xi —Exl.ya
i=1 i=1 i=1 i=1

form,

n n 7
n le- le.k
i=1 i=1
2 - k+1
+
Sy Yy o Yk
i i=1

n
2k
Z X;
i=1 ]

Z Yi

i=1
DXy,
i=1

n
k
in y
=

(3.10)

(3.11)

This is a Vandermonde matrix. We can also obtain the matrix for a least squares fit by

writing:

1 1
X X%
k k
xl x2
So, we have

As before, given n points, a fitting of them with polynomial coefficients ay, a, ..

- . WAL
I x X Hra,
k
I x, X e
k
_1 xn xn _ _ak =

k
1|1 x x| @
k
n 1 x2 ‘x2 al
k k
x, |1 x, x, ||l a

n n

i=1 i=1

n n
2 k+1
E X; E X; E X;
i=1 i=1

n n

k k+1
Sxf S

i=1 i=1

n
2k
>
i=1 _
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ay gives

M 1 x ‘xlk a,
y2 1 x2 cee xzk al
o D (3.15)
LV _1 Xp 07 xnk__ak_
In matrix notations, the equation for a polynomial fit is given by
Y=X4. (3.16)
This can be solved by pre-multiplying by the matrix transpose as follows:
X'Y=X"X4. (3.17)

This matrix equation can be solved numerically, or‘can be inverted directly if it is well
formed, to yield the solution vector:

A=(XExX)* XY (3.18)

The result of curve-fitting of the previously-mentioned set of angle data of
deviations is shown in Eq. (3.19) below and illustrated in Figure 3.13.

£ (x)=0.00000476 xx*+0.00592048 x +4.16437951 . (3.19)

L L L L L
a 100 200 300 400 &00 &00

Figure 3.13 The results of line fitting of the angle of deviation.
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3.3.4 Navigation by Odometer Calibration

In Section 3.3.2 and Section 3.3.3, we have described the process of building the
odometer calibration model and found a quadratic function which can show the
relationship between the distance the vehicle moves and the angles of deviations
caused by the mechanical errors. In this section, we describe the process about using
the quadratic function to calibrate the odometer while navigating the vehicle in indoor
environment.

We guide the vehicle most of the time while navigation by the command: “move
to front.” But the vehicle always has a leftward deviation while moving forward. To
deal with this problem, we use the odometer calibration model to balance the
deviation. First, we have to know the distance D we want the vehicle to move forward.
Second, we substitute the value-D into Eq. (3.19) to get the angle of deviation @. That
means if we command the vehicle to‘meve-to, D centimeters ahead of the original
position, then the vehicle should be instructed to deviate rightward for the angle of
@. Therefore, we issue a command of right turn of angle ® before commanding the
vehicle to move forward. In this way, we can balance the deviation. The major steps

are shown in Figure 3.14.
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Figure 3.14 An illustration of odometer calibration.
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Chapter 4
Learning Procedures

4.1 Introduction

In this chapter, we introduce the details of the proposed learning procedures. Two
kinds of environment features are used for learning in this study. The first is path
data. In the procedures, the vehicle learns path data while following a person. An
adopted method and an improved method of human following are described in
Section 4.2. In Section 4.3, we describe how to.gather path data when the vehicle
follows a person in an indoor environment.

The second feature is 2D object.“In-the learning procedures, the vehicle learns
2D objects if it detects the situation that the person stops and faces to the left or right
side. An adopted method and an improved method of human facing direction
detection are described in Section 4.4. For object monitoring, how to detect the 2D
object automatically is the key issue, and we propose a method for it in Section 4.5.

An illustration of the learning procedures is shown in Figure 4.1.

4.2 Human Following

4.2.1 Review of Adopted Method

Wang and Tsai [1] proposed a person following method which can conduct a
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work of following a specified person by motion analysis of human clothes. The
system user learned the clothes of the target person manually. The user decided the
start point and the boundary box in the image for region growing of the clothes. After
learning the image part of the person’s clothes, the system will enter the human

tracking process. The major steps are shown in Figure 4.2.

{ Start of learning

-

- J

Following

A

‘ Human detection J

—»{ Person following

- J

N

c T/e person stlll in~
C front of vehlcle? ) Person tracking strategy
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|

Learning path data Path data /
\ ) (

~ A
Human facing direction
detection

|

_
\\\\
No /’l’hepﬁn stops and-

N R I
ias:s to lateral sid

~— _—

~
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- . . Object )
—{ Learning object data }—@

Learning

Figure 4.1 An illustration of proposed learning procedures.

To detect the location of the target person by clothes, the system uses a clothes
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intersection region to predict the direction of the target person. The proposed method
only computes the directional variation of the target person. The detail of the

proposed clothes region intersection is described in the following algorithm.

Algorithm 4.1. Clothes region intersection.

Input: Clothes image I jomes, and the initial region R, Which is the target clothes

region.

Output: The current region R, of the person’s clothes in the image.

Steps:

Step 1. Capture an image .,rent-

Step 2. Subtract I jomes from Iyen pixel by pixel in Ryiq, and get a new image
Lintersec: @s the result, which 1s the intersection of the two images in the
region Ripersect-

Step 3. Calculate the centroid=of Liserseer-iitrRinersec: and that of Lejpmes 10 Ripitial,
denoted as Ciyersec: and Cipialy tespectively.

Step 4. Compute Ceyrens, the centroid of the clothes region location in the current

C . +C

1 __ _initial current .
image, by C, . == Also calculate the region R.yens by

Cleurrens With its width and height being those of Rj,iq1, respectively.

Step 5. Let R

i = R and repeat the steps.

current ?

4.2.2 Proposed Improvement of Adopted Process

The vehicle can follow persons by the method mentioned previously in indoor
environments with uniform illumination. Unfortunately, the illumination in common

indoor environments is not actually uniform, especially in the hallway environment
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where there are more than one light and the illumination between two lights is darker
than the illumination under either light. A vertical view of the lighting condition under

two lights is shown in Figure 4.3.

Person following

A
—{ Clothes learning strategy
A \ /
Clothes

image Face detected
e A Y
—{ Human tracking module

Target person

disappears
e - N
Finish

Figure 4.2 The application for person following.

The method mentioned in Section 4.2.1 uses the value of C, and C, which are
detected at the initial time. However, if the vehicle follows a person and keeps using
the value detected at the initial time, then it may lose the tracking of the person
because the illumination over the vehicle changes while the vehicle moves in the

environment.
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O :Light

: Range of Illumination

Hallway

Figure 4.3 The top-view of light and illumination in the hallway.

To deal with the problem, we propose an improvement of an adopted process
which dynamically adjusts the values of C, and C, for detecting the color of the
clothes. First, when we detect the clothes of a person, we collect the pixels py, p, ...,
pn of the clothes in the image. Second, we get the values of C and C, of all the pixels
P, P2, s Pu, Named Cpi, Cpp, «5Cp, and C,i, €y, ...,.C,,, respectively. Third, we
calculate the average values Cpaveiage and Ciaverage 0fall the values of Cp; and C,; by

Egs. (4.1) and (4.2) below:

1 n

Cb,average = ; Z] Cbi b (4 1)
1 n

Cr,average = ; Z Cr[ ° (42)

Fourth, we detect persons by using the new values Cj average and Ci.gyerage. Instead of
using pre-selected fixed values, the vehicle uses dynamic values of Cp ayerage and
Ci.average 10 €ach cycle to detect and follow the person and overcomes the problem of
luminance changes under different lighting conditions. The major steps are shown in

Figure 4.4.
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4.2.3 Person Tracking Strategy

When the person being followed turns fast in front of the vehicle, it is difficult
for the vehicle to keep track of the person. Chen and Tsai [2] proposed a method of
recording the disappearing direction of a fast-moving person by an arm equipped on
the vehicle. Our system records the direction of disappearance by using the capability

of panning of a PTZ camera.

Start person following

A

Y

_| Detect clothes by new standard |
values
New standard ) f )
/ values of y Renew the standard values
¢ clothes L )
Ve A ~

Follow Person Ji

Figure 4.4 An illustration of improvement of adopted process.

When the person turns fast in front of the vehicle, we can find out his/her turning
direction, left or right, and guide the vehicle to turn for a large angle, 04,4, to the
direction to find the disappearing person. If the disappearing person appears in the
view of the camera after the vehicle turning, then the vehicle will follow the person
again and continually. But, if the vehicle cannot find the disappearing person after

turning, then it turns again until the sum of the multiple turning angles is equal to
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180°. When the vehicle turns 180° (half of a circle), we can be sure that the person
disappears in the direction which the system recorded. Then the system will end the
process of learning. We save the positions of this kind of loss-of-tracking point, where
the vehicle turns the angle of 6,4, as the turning point data in this study and use them
in the patrolling process. An illustration of the previously-described person tracking

strategy is shown in Figure 4.5, and an example of results is shown in Figure 4.6.

’ Learning process

Person following < Yes \/ 18 hun‘llzllllilcnl:(r)ont of ) «
J \\\\\\\ ////////////
No

, , : \

" Human / j ‘
direction r‘ Turn an angle to find human

information )

l No

(////Véhicle turns a half of\\

End of learning

Figure 4.5 An illustration of person tracking strategy.
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(a) (b)

(e)

Figure 4.6 An example of person tracking results. (a) A vehicle is following a person.

(b) The person turns fast to right. (c) The vehicle turns an angle 6,4 to find
the person. (d) The vehicle finds the person. (e) The vehicle follows the

person again.

50



4.3 Learning of Path Data

When the vehicle is following a person, the odometer provides continuously the
current position data of the vehicle in the global space with respect to the start point of
the current navigation session, and the ultrasonic sensors provide continuously the
current distance data with respect to the surrounding objects or walls. The position
data, which are provided by the odometer, consist of the vehicle coordinates (x, y) in
the vehicle coordinates system. And the distance data, which are provided by the
ultrasonic sensors, consist of the left and right side distances (d, d,) from the vehicle
to the upholstery of concern in the environment. We record both the position and the
distance data as the path data in this study.

We save once every second’'the coordinatés (x, y) and the distances (d;, d,)
integrally as a node »;. Each node is'labeled with a serial number. These nodes form a
graph of the learned path. Afterdearning; we-have a set of nodes, denoted as N,q. We
will use the path data in the process of path-planning. Additionally, we can use the
data to draw a draft of the map of the environment. Two drafts of maps of two

different environments are shown in Figure 4.7.
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(a) (b)
Figure 4.7 Drafts of maps. (a) Map of an open indoor environment. (b) Map of a

hallway environment
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4.4 Detection of Human Facing
Direction

4.4.1 Review of Adopted Process

We can know the direction of the monitored object by detecting the human
facing direction. Chen and Tsai [2] proposed a method for human facing direction
detection, which can decide what direction a person is facing to, based on the use of
the change of the ratio of the width of the person’s clothes to the height. When the
person turns, this ratio becomes smaller because the shape of the clothes extracted in
the image becomes thinner. Then the distribution of the person’s hair and skin is used
to judge whether the person turngito, the fightor to'the left. For this, the center of the
face is found out first and the colors of the pixels in a-horizontal line which passes this
center point are collected to compute the color distribution of the hair and skin in the
person’s face.

If the person is facing to the vehicle, then most pixels on the horizontal scan line
are of the skin color; if the vehicle is at the back of the person, then most pixels on the
line are of the hair color. When the person turns to the right, the hair is at the left side
of the face and the skin is at the right side, so most pixels at the left side of the scan
line are of the hair color and most pixels at the right side of the scan line are of the
face color, and vice versa. An illustration of human facing direction detection is
shown in Figure 4.8. An illustration of the facing direction of the person is shown in

Figure 4.9.
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Figure 4.8 An illustration of detection of a person’s facing direction.

‘l . (] .
R = Scan Line

Scan Line Scan Line Scan Line

s

(a) (b) (c) (d)

Figure 4.9 An illustration of the facing direction of the person. (a) Front. (b) Back. (c)
Left. (d) Right.
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4.4.2 Proposed Improvement of Adopted Process

The proposed method mentioned in Section 4.4.1 detects the human facing
direction by using a scan line. However, it gets a false result easily, because the scan
line is thin and the numbers of pixels on the scan line are little. For this situation,
instead of using the scan line, our system uses a scan rectangle to increase pixels for
detection and enhance the accuracy of detection. The details of the improved method

are described in the following algorithm and an illustration is shown in Figure 4.10.

Algorithm 4.2. Finding the facing direction of a person.

Input: The current image /., the clothes center C, (i., j.) and the four corner points
Propresi (s ji)s Propright (rs ie)s PottomLefi Wbis jb1), a0d Pgosonright (brs jir) Of the
clothes region, the length of the person’s face Ly .., a region of the color of
blackness, Black, the skin color region-Skin, a minimum threshold 75 and a
maximum 73 threshold, a width.value Ly of the scan rectangle.

Output: The facing direction of the person, Direction.

Steps:

Step 1. Scan the column of the image /., which contains the pixel C, (i, j.) to find

the first pixel Hair (ipair, jnair) With the color of the hair, Black.

Step 2. Find the center of the face Crce (ifuces jrace) by the following way:

(4.3)

lface = lc;

L

face

5 (4.4)

jface = jhair +

Step 3. Because the range of the width of the face will not exceed the clothes, limit
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the horizontal search region to be from Pryprep (i) t0 Proprigh: (7).
Step 4. Find the value Ry, and Rp.uon by the following way, and limit the vertical

search region to be from Rz, t0 Rposon:

. Lwi e
RTap = Jﬁzce - 2d 5 (45)

wide

RBottun = jﬁzce + T : (46)

Step 5. Measure the values of C, and C, of the pixels inside the left half of the scan
rectangle position of the horizontal direction from iy to isc. and the vertical
direction from Rz, t0 Rpouon. 1f the values fall into the region Black, set the

number NLy,.. of black colorias

NLBlack T NLBlack ’ 1 : (47)

If the values fall into the region‘Skin, set the number NLg,, of skin color as

NL,, =NL,, +1. (4.8)

skin

Step 6. Measure the values of C; and C, of the pixel inside the right half of the scan
rectangle from the horizontal position i to i, and from the vertical
position Ry, t0 Rpouon. If the values fall into the region Black, set the

number MRy« of black color as

NR Black = NL Black + 1 . (49)

If the value falls into the region Skin, set the number NL;, of skin color as
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NRskin = NRskink + 1 . (4 1 0)

Step 7. Check the sizes of the distributions of the colors of the skin and the hair as

follows:

NL,,.., +NR,,., <T,; (4.11)
NL, +NR, >T,; (4.12)
NL,,.. > NR,,i (4.13)
NL,, <NRg. . (4.14)

If Inequalities (4.11) and(4.12) ate'satisfied, set Direction as “Front”;
else,
if Inequalities (4.13) and (4.14) are satisfied, set Direction as “Right”;

else, as “Left”.

Scan
q Rectangle

Scan _ = Scan

can
Rectangle

Rectangle Rectangle

(a) (b) (c) (d)

Figure 4.10 An illustration of the scan rectangle for human facing direction detection.
(a) Front. (b) Back. (¢) Left. (d) Right.
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4.5 Learning of 2D Objects

4.5.1 Review of adopted algorithm for learning of

objects

In order to learn concerned objects, Chen and Tsai [9] designed a user interface
to help users specify the object which they want to monitor. While the user controls
the vehicle to the front of the object to be monitored, they can move the PTZ camera
toward the object. Then, they can select the object in the image by the use of the
mouse connected to the computer to drag a rectangle as an interesting region to cover
the object which appears in the image, as. shown in Figure 4.11(a). After that, the
system applies the simplified SIFT, algorithm. [9].to obtain the feature set of the
interesting region.

During the learning phase, if the user gives a horizontal line, which is parallel to
the floor plane in the 3D global coordinate system in the image as shown in Figure
4.11(b), the system can acquire the same line found in the image taken in the
navigation phase by applying this affine transformation. Then, by some analytic
mathematics analysis on this horizontal line found in the image taken in the
navigation phase, the proposed system could obtain the relative position C(x,, y,) and
the relative angle 6, of the vehicle in the world coordinate system with respect to the
monitored object, as shown in Figure 4.12.

Then, the user saves the vehicle location, the PTZ position, the feature set, and
the interesting region into the storage of the computer. The last thing is to save the
calibration information data including the start point («;, v;) of the horizontal line, the

coefficients b and c in the equation u+bv+c=0 of the horizontal line, the relative
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position (x,, ), and the relative angle 6. for use in adjusting the vehicle location in

the navigation phase. The detailed learning process is described in the following.

Current Image Current Image 1921

leam || reset | Leam Selected image |
(a) (b)
AL,
Figure 4.11 (a) A red rectangle 1nc@%:g the m red object as an interesting region.
(b) A user interface v{? horizontal line.
e !'-“
- |
j;é_,
F
- X

[ o Beats

Figure 4.12 The relative position C(x,, y,) of the vehicle with respect to the start

point in the world coordinate system.
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Algorithm 4.3. Learning of a monitored object.

Input: The position P of a monitored object.

Output: A calibration information data.

Steps:

Step 1.
Step 2.
Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

Drive the vehicle to the monitored object position P.

Move the PTZ camera toward the object and take an image /.

Drag a rectangle on the image / as an interesting region.

Apply the simplified SIFT algorithm [9] on the interesting region to extract
the feature set.

Select the start point (u,, v;) and the end point (u,, v2) of the horizontal line
in the image / which is parallel to the floor plane in the 3D global
coordinate system.

Compute the coefficients.b and ¢ by solving the equation u+bv+c=0
with (u1, vi) and (uz, v2).

Apply the location estimation-algorithim ‘proposed in [9] to find the relative
position C(x,, y,) and the relative angle 6. with respect to the start point in
the 3D global coordinate system as an origin.

Save the vehicle location, the PTZ position, and the feature set of the
interesting region as monitored object information data.

Save the start point (u, v;), the coefficients b and c, the relative position
(xr, yr), and the relative angle 6, as calibration information data for a
monitored object.

Save the interesting region in the image.
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4.5.2 Learning 2D Objects Automatically

The proposed method of learning 2D objects described in Section 4.5.1 need to
be performed manually. In our system, the vehicle learns 2D objects and follows a
person in the mean time. It is unreasonable to let the user controls the computer and
leads the vehicle at the same time. Hence, we propose a method which can learn 2D
objects automatically.

Because of the vehicle always detects the facing direction of the user, if there is a
picture on a wall and we hope that the vehicle could remember the picture, the user
just need to stand in front of the picture and face to it for a while, and then the vehicle
will go to the position where the user stands and pan the angle of camera to the same
direction as the user. The vehicle remembers the view of the camera frame as image /.
The system finds the interesting-region of the.2D object and a horizontal line L, which
is parallel to the floor plane in the 3D global.coordinate system in image /. We save
the positions of this kind of nodes Whete the vehicle learns 2D objects, as monitoring
point data in this study and it will be used in the patrolling process.

The system uses the method of the simplified SIFT algorithm [9] to obtain the
feature set of the picture and applies the location estimation algorithm proposed in [9]
to find the relative position C(x,, y,) and the relative angle 6, with respect to the start
point of the horizontal line L in the 3D global coordinate system as an origin. Finally,
we save the information into the storage of the computer. The detail process is

described in the following algorithm, and a flowchart is illustrated in Figure 4.13.
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Algorithm 4.4. Learning of a monitored object automatically.

Input: A vehicle and a user.

Output: Monitored object information data.

Step 1. Follow the user.

Step 2. Detect the human facing direction, if the user stops and turns to left or right
for a while, go to Step 3, else go back to Step 1.

Step 3. Go to the position of the user and pan the camera to the picture.

Step 4. Remember the view of camera frame as image /.

Step 5. Find the interesting region of the 2D object and a horizontal line L, which
is parallel to the floor in the image /.

Step 6. Calculate the position of the vehicle with respect to the horizontal line L.

Step 7. Calculate the feature set of the 2D object:

Step 8. Save information.

4.5.3 Finding Regions of 2D"'Objects

There are two crucial techniques in the method of learning 2D objects
automatically. The first is finding the interesting region of the 2D object in the image /
and the other is finding the horizontal line L, which is parallel to the floor plane in the
3D global coordinate system in image /. For finding the interesting region, we deal
with image / by using thresholding and region growing methods. The detail process is
described in the following algorithm. Additionally, we will describe the method of

finding the horizontal line L automatically in Section 4.5.4.
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Figure 4.13 An illustration of learning of a monitored object automatically.
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Algorithm 4.5. Finding the interesting region in the image.

Input: An image I with a monitored object, and the gray version /, of 1.

Output: Four corner points Prprei(it, Jji)» Proprighiirs Jji)s PBowomreri(it, Jjb), and

Step 1.

Step 2.

Step 3.

Step 4.

Pgowonrign(ir, j») 0of an interesting region, and the horizontal line L.
Calculate the threshold value T of the gray value which can differentiate
background and foreground of /.

Reset the gray value g,; of every pixel p; in the image /, in the following

way:
If g,; > T 1s satisfied, set g,; as a foreground point;

else,
if g,; < T'is satisfied, set g,; as a background point.
Conduct region growing from-the center of /, and get the top and bottom
vertical coordinate values Grand Gg, the leftmost and rightmost horizontal
coordinate values G and Gp.
Set the coordinate values i;, i,, j; and'jy for corner points Prpre(is, Ji),

Proprighiirs j1)s Pottomieri(in, jb), and Pgogonrigh(ir, j») Of the interesting region

by the following way
=G, ; (4.15)
i =Gg; (4.16)
J =Gr; (4.17)
Jy =Gp. (4.18)
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4.5.4 Finding the Horizontal Line Automatically

If we want to find the horizontal line, then we need to find the set of edge points
by edge detection in the image first. There are many different operators which can
find edges in an image, for example, the Laplacian operator, Marr-Hildreth operator
and Canny operator, etc. In our system, we detect edges by using the Sobel operator

as shown in Figure 4.14. Let T be the threshold value of the Sobel operator.

120 - 10 1

0 0 0 2 0 2

1|2 |1 10 1
(a) (b)

Figure 4.14 Sobel-Operator (a)x direction (b) y direction.

We apply the Sobel operator on"a‘pixel p;, and let r,; be the resulting value. If

Inequalities (4.19) below is satisfied, then we mark the pixel p; as an edge point.

r,>T (4.19)

After checking very pixel p; in the interesting region which was obtained from Section
4.5.3, we can get a set of edge points, EP.

Now we can find the line by using the Hough Transform. It is a method of line
detection by a voting technique and the relationship between the parameter space and

the normal distance-normal angle space is as shown in Figure 4.15.
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Figure 4.15 The relationship with x-y space and y-6 space.

At first, we divide the range of angles, [0, @], in to n part, &, O, ..., O,, and
calculate the length 7.4, of a diagonal of the interesting region. We prepare next an
accumulation array 4, whose size is n*rregion, and set-the value of every cell to zero, as

shown in Figure 4.16.

Vregion

v
~
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Figure 4.16 The accumulation array 4 of the Hough Transform.

We substitute a point (x, y) in the edge point set EP and ©; into Eq. (4.20) below

to get a value » and put a vote into the cell (», ©)):

r=xcosf +ysing,. (4.20)

We repeat this step of voting in the cells for every edge point and every @;. After
voting, we find the cell (y, §) with the maximum number of votes to obtain a line
which has the intercept y and the angle 6 in the normal distance-normal angle space.
There is a restriction in our method, that is, the heights of monitored objects
must be of fixed values known in.advance. By the progressive method as described
above, we can find the interesting region of the .concerned 2D object in the image /
and the horizontal line L, which is parallel.to the floor plane in the 3D global
coordinate system in image /, as‘shown by the example in Figure 4.17 and Figure

4.18.

(2) (b)
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Figure 4.17 An example of detection of information of monitored object by the
progressive method. (a) An image with a monitored object. (b) The

thresholding result. (c) The interesting region. (d) The horizontal line.

(©) (d)

Figure 4.17 An example of detection of information of monitored object by the
progressive method. (a) An image with a monitored object. (b) The
thresholding result. (¢) The interesting-region. (d) The horizontal line.
(continued)

(a) (b)

Figure 4.18 Another example of detection of information of monitored object by the
progressive method. (a) An image with a monitored object. (b) The

thresholding result. (c) The interesting region. (d) The horizontal line.
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(©) (d)

Figure 4.18 Another example of detection of information of monitored object by the
progressive method. (a) An image with a monitored object. (b) The
thresholding result. (c) The interesting region. (d) The horizontal line.

(continued)
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Chapter 5

Path Planning by Minimizing Mean
Square Errors Using Ultrasonic
Signals

5.1 Introduction

After learning the path and the monitored object data, the system will refine the
path data before the vehicle navigates to the start point. The path data are composed
of many path nodes. Two extréme examples of path planning results are shown in
Figure 5.1(a) and Figure 5.1(b). The First example is a path for backing to the start
point directly which is very simple and crude, and there might have some obstacles on
the path. The second example is a path stepping on every node precisely. It may not
seem smart because the path could be rough or tortuous. Hence, we desire the planned
path could be smooth but not lose the original trend, as the illustration shown in
Figure 5.1(c). We describe the details of the proposed path planning process in
Section 5.2.

The system performs the path planning process by using the MSE criterion. In
the MSE criterion, the system needs to set a threshold value which is used to control
the precision of the path. Hence, the choice of the threshold value is very important.
Our system uses a technique which can choose the threshold value by adapting to
different environments. We describe the detail of the proposed process in Section 5.3.

In Section 5.4, we will describe the details of the patrolling technique of our system.
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o End End

Start Start

(a) (b)

Figure 5.1 Illustrations of path planning. (a) Backing to the start point directly. (b)
Stepping on every path node precisely. (¢) The planned path we desire.

5.2 Path Planning by MSE criterion

The path data are composed of path points.‘As a start, the system finds out »n path
points where we learned monitered objects; and separates the path into n+1 segments
by the n path points. Then we“.construct an empty queue Q, and push the n+1
segments into Q.

The system pops out a segment of the path, and uses the line fitting technique
which is described in Section 3.3.3, to find a linear equation of a line L in two

variables, x and y, like the formula of Eq. (5.1) below, where 4, B and C are constants:
L:Ax+By+C=0. (5.1)

We calculate the distance values d; from every path point P,(x;, y;) in this segment to

the line L by

J - |Axi + By, +C|.

Nyad (5-2)
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The value of the induced square error E of the line L can be calculated by

E=

1 & 2
;;(d[) : (5.3)
The system uses a threshold value 7, as the upper bound of the square error value. If
the error £ is smaller than T, then the system considers the currently-processed
segment of the path smooth enough. But if the error E is larger than 7., then the
system considers the segment not smooth enough, and we need to do more processing
for this path.

It is proposed in this study to choose a cut point from the path points P;, P, ...,
P, of the segment of the path which is not smooth enough. If we cut on the point P;,
then we need to find the line Li; and'Ly, by using the line fitting method again and

calculate the values of the two mean square errors £; and Ej, separately. Then, the

square error of cutting on the point P; is

E,=E ,+E,,. (5.4)
After cutting the path m-2 times on P, ..., P,.1, we can get m-2 mean square errors £,
E;, ..., E,.1. We then find the minimum value E; from the m-2 error values, with E;

meaning that if we cut the path on Py, then we can get the least error value. We finally
push the two shorter paths Py, P, ..., Py and P11, Pis2, ..., P, into the queue Q.

The system executes the above process repeatedly, until the queue is empty, and
at that time the original path has been cut into many segments which are smooth
enough. Finally, we save every start point of these segments of the path as the
navigation path data. An illustration of the path planning process is shown in Figure

5.2
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Figure 5.2 Illustration of proposed path planning.
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5.3 Dynamic Path Decomposition

The threshold value of the MSE criterion is used to tolerate the value of the error.
The larger the threshold, the cruder the path decomposed. There is no advantage if the
threshold is very large or very small. The choice of the threshold should adapt to the
environment of the path. Moreover, the environment could be different at different
parts of a path, and each different part of the path should be decomposed by a
different degree of precision. We propose a technique here which chooses the
threshold value dynamically.

Except the coordinates of path points, the distances are also part of the
information of path data which are learned in the learning process by using ultrasonic
sensors. Our system knows the breadth of the environment of a path by analyzing the
distance data collected by the ultrasonic sensors. In-the learning process, the system
learned the left and right distances (&4, dx)-0f-every path point P; with respect to the
obstacle or the wall around the point.-We simplify such distance data to get a single

distance value D; of every path point by

D, :min(d,’i ,d,,l.). (5.5)

Considering the correlation of the connected segments of the path, our system
calculates the threshold value of one segment by using the distance values of not only
the path points in this segment but also five points before and five points behind this
segment. Additionally, the composite the mean square error for this segment is taken
to be the average of the squares of the error distances, as Eq. (5.3), and the threshold
value is related to the mean square error. So we derive the equation of Eq. (5.6) below

to calculate the threshold value of a segment with # points;
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l -1 ) n ) n+5 5
Threshold =———————| » D"+ ) D"+ » D: |, .
k(5n+10)(z 302+ 8 n (5.6)

i=—5 i=1 i=n+l1

where k is a constant.
We decompose the path dynamically by recalculating the above threshold value
in every cycle of a navigation session. An illustration of the proposed dynamic path

decomposition scheme is shown in Figure 5.3.

L Path Planning

_— ~

> < If the queue is empty? > Yes{ End of path planning

P . o ~ o

T

No

v

Pop a segment of path Pi~Pj
from queue

\ J

A A

Calculate Ty i)

Calculate MSE Ej;

-
Yes C I Ej<Tpgei;? D)

No

Decompose P~P; into P~Py
and P~P;

Y
Push P~Py and P;~P; into
queue

Figure 5.3 An illustration of proposed dynamic path decomposition.
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5.4 Vehicle Navigation by 2D Object
Image Matching

After planning the path, the last process of the system is vehicle patrolling from
the end to the start position of the path obtained from the path planning process. In a
patrolling session, the vehicle navigates along a learned path by visiting each path
point consecutively. The learned navigation path, which consists of a set Npan of
points and we specify the last point of Npah to be the initial position of the navigation
path. Then, the vehicle reads the next node data Ni:1(xi+1, yir1) and computes a turning
angle and a moving distance by Egs. (5.7) and (5.8) in the following algorithm, for the

vehicle to move to the next position N (Xit15Vir1), @s shown in Figure 5.4.

Algorithm 5.1. Process of vehicle guidance by a learned path.

Input: A set Npath of nodes.
Output: The vehicle navigates to the start point.in the learning process.

Steps:

Step 1. Start vehicle navigation from the starting node Ny in Npath.
Step 2. Let the current position be Ni(xi, yi), and the direction read from the
odometer be G,4.

Step 3. Scan Npath to read the next node Ni:+i(xXi+1, Vi1).
Step 4. Compute the moving direction as a vector _VT by using the following

equation:

i Y, Yia =Y . '
Step 5. Compute the direction angle 6, for the vehicle to turn toward the node
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Ni+1 by using the following equation:

Y
0, =tan"| —|.
new an ( X J (5 . 8)

i

Step 6. Compute the navigation distance for the vehicle to advance as d = ‘Vl‘ .

Step 7.  Calculate the odometer calibration angle €,,;; using the following equation

obtained from Section 3.3.3:

0

cali

=0.00000476 xd’ +0.00592048 xd +4.16437951. (5.9)

Step 8.  Compute the rotation angle for the vehicle as Gym = Ghew — Godo + Gali-

Step 9. Turn the vehicle leftward «for the afgle Gy if Gum is larger than zero;
otherwise, turn the vehicle rightward for the angle G-

Step 10. Move the vehicle forward for the distance d:

Step 11. Read the next node data. If there exist femaining nodes, repeat Steps 3

though 8; else, finish the navigation.

. Learned node

—»  Vehicle direction

= Move direction

Vehicle direction

> X

Figure 5.4 Computation of the turning angle and move distance.
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Additionally, the navigation path is composed of two kinds of special path points.
The first kind is turning point where the vehicle turns a large angle Ofng, obtained
from Section 4.2.3. Because 65pq is a large angle, we hope the vehicle can really turn
this angle in the navigation process; otherwise, the resulting vehicle trajectory will be
too far away from the desired path learned in the learning stage, according to our
experience of experiments conducted in this study. Hence, when the vehicle navigates
to this kind of path point, it is commanded to turn to the inverse direction of the angle
Ofing + Ocaii instead of the angle G, calculated in the algorithm above. The second
kind of path point is monitoring point where the vehicle learned a 2D object, obtained
from Section 4.5.2. When the vehicle navigates to this kind of path point, the vehicle
will “see” the 2D object again and the system will monitor this object. After
successfully monitoring an object,”we can take advantage of the matching result to
adjust the vehicle location [9].~An.illustration of.the patrolling process is shown in
Figure 5.6. Some examples of experimental-results are shown in Figure 5.5 and Figure

5.7.

Figure 5.5 An example of a planned path of an ellipse shape.
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Figure 5.6 An illustration of proposed patrolling process.
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(a) (b)

2 £ (@

(e)

Figure 5.7 An example of experimental results. (a) The vehicle monitors an object. (b)
The vehicle walks to a turning point (¢) The vehicle monitors another

object. (d) The vehicle goes back to the original start point.
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Chapter 6
ALV Navigation by Ultrasonic Signal

Sequences

6.1 Ultrasonic sensing in ALV System

The vehicle of our system has eight ultrasonic sensors that facilitate
implementations of object detection and range finding functions for collision
avoidance, recognition, localization, and navigation. The ultrasonic sensors are
equipped in the vehicle at fixed locations around the vehicle: one on each side and six
facing outward at twenty degree-intervals, as shown in Figure 6.1.

The ultrasonic sensors may belused. to-obtain-the information of distances by
calculating the time spent from the start of firing an ultrasonic sound to the end of
receiving a reflected sound. The distance data could have errors if the plane, which
receives the incident, is not perpendicular to the fired sound ray. If the angle of
incidence grows, then the erroneous distance values will grow, too. This phenomenon
needs to be noticed when using this kind of sensor.

In our system, we set the left distance Dy as the value detected from ultrasonic
sensor No. 0 plus half of the width of the vehicle, set the right distance Dr as the
value detected from ultrasonic sensor No. 7 plus half of the width of the vehicle, and
set the front distance Dy as the average value of those detected from ultrasonic
sensors No. 3 and No. 4. The system catches the reflected values F,,; times every

second as a sequence of distance data.
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6.2

6.2.1

The navigation paths in an indoor environment are usually composed of some
straight lines which are connected by turning points. Before navigation, the vehicle
has to learn the parameters of Width, Directionym, Directiongeect, and Distancegetect Of
the environment. For a straight line of a path in the indoor environment, if it is a
hallway with two walls at both the left and the right sides, then the value Width is set
equal to the width of the hallway. But if the straight path only has one wall at the left
or the right side, then Width is set equal to double the distance between the vehicle
and the wall. An illustration is shown in Figure 6.2. For a turning point of the path, if

the vehicle needs to turn to the right at the turning point, then we set Directionym =

Va2 N,
Lff‘?';‘ )
o | Top e
o b | s I

Courtesy of ActivhMedia Roborics, LLC

Figure 6.1 The positions of ultrasonic sensors around the vehicle.

Principle of Navigation

Learning Strategy

right, and if the vehicle needs to turn to the left, we set Directionm = left.
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(2) (b)

Figure 6.2 An illustration of the parameter of Width. (a) The hallway with two walls.
(b) The hallway only has one wall.

Additionally, the vehicle has to know the conditions of turning points. Turning
points are usually located at the end of a wall or a hallway. The distance values caught
from the ultrasonic sensors will vary to large values at the position of the end of a
wall. The parameter Directiongeect 1 used to'save the direction where the environment
has caused such a kind of large-value :variation,and the vehicle can detect such
variations to find out turning peints. If a turning point is located at the end of the left
wall, then we set Directiongewci+=. left; otherwise, we set Directiongeect = right.
Moreover, we set Directiongewect = left or right to mean that the turning point is located
at the end of the left or the right wall, respectively. If the turning point is located at the
end of the hallway, it means that there is something stopping the hallway. In that case,
we set Directiongeect = front. The last parameter needs to learn is Distancegeect Which
is the distance between the turning point and the start position of the end of the wall in

the environment. An illustration is shown in Figure 6.3.

6.2.2 Navigation Strategy

After learning the navigation path in the environment, the vehicle can navigate

along the learned path by analyzing the sequential signals acquired by the ultrasonic
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sensors. The vehicle has two missions, one to navigate along the middle line of the

hallway, and the other to keep the direction of navigation parallel to the hallway.

Turning Point
w D -
<_>4: Distancegegect i
1 - -
@ - ‘
Turning Point

(a) (b)

Distance geect

Distancegegect

!

! . »
i Turning Poing Turning Point

!

!

!

!

() (d)

Figure 6.3 An illustration of the parameter of Directiongetect (2) Directiongetect = left.
(b) Directiongetect = right. (¢) Directiongeect = left + right. (d) Directiongetect
= front.

We begin a navigation session at a start position in the hallway, and let it go
forward by a fixed speed Speed. From the ultrasonic sensors, the system retrieves
distance information D; which includes the left and the right distances (D;;, D;r) at
time i, and analyzes » sets of data, D, ,, Dip+1, ..., D;, before time i. The vehicle needs
to adjust its direction in four situations. When the vehicle moves close to the wall at
the left side gradually, the system could find out the fact that the left distance of the
vehicle is reducing or that the right distance of the vehicle is growing. Then, if the
vehicle is close enough to the left wall, that is, if the right distance of the vehicle
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exceeds half of the width of the hallway, then the vehicle turns an angle 8y to the

right, that is, the vehicle turns when the following conditions are met:

Dk,L > Dk—l,L ) (6.1)
or Dk,R < Dk—l,R 5 (6.2)

. 1 :
with D, , <§>< Width, (6.3)

for every k between i — n and i.

On the other hand, when the vehicle moves close to the wall at the right side
gradually, the system could find out the fact that the right distance of the vehicle is
reducing or that the left distance of the vehicle is growing. Then, if the vehicle is close
enough to the right wall, that is,«if the left distance of vehicle exceeds half of the
width of the hallway, the vehicle sturns an angle ). to the left, that is, the vehicle

does so if

D,, <D, ,,, (6.4)
or Dk,R > Dk—l,R ) (6.5)

) 1 .
with D, < Eszdth (6.6)

for every k between i — n and i. An illustration of the situation of adjusting the
direction of the vehicle is shown in Figure 6.4. An illustration of navigation in a
hallway is shown in Figure 6.5.

It is seems superfluously if we both consider Eq. (6.1) and (6.2), but it is
necessary. The walls in environments are not completely planar and the sensor could

get some noise, so we need to consider the data from both sides of the wall. Eq. (6.4)
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and (6.5) are for use to handle the same situation as above.

I\ /1
B "
| |

centerline centerline

@ o ®)

Figure 6.4 An illustration of the situation of adjﬁsting the direction of the vehicle. (a)

The vehicle should turn ah angle.to the r1ght (b) The vehicle should turn an
angle to the left ' o ]

J Analyze n sets of |

ultrasonic signals f
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[ Adjust to left }»

Figure 6.5 An illustration of navigation in a hallway.
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For detection of a turning point, we have learned the parameters of the direction
to detect Directiongetect and the distance to detect Distancegetect in the learning stage. If
the parameter Directiongeect 1S left or right, the system calculates the times N to detect

the changes of the environment by:

N | Distanceuey | ppo @7
Speed " |

And it also detects the changes of Directiongeec, and if the times reach N, then the
vehicle arrives the turning point and turns to Directiony,. If the parameter
Directiongeect 18 front, then the vehicle will keep detecting the front distance until the
distance is smaller then Distancegeeci. Then we consider that the vehicle has arrived at

the turning point and command the vehicle to turn to the direction Directionym.

6.3 Applications‘in“Four Navigation

A set of path information P; of a straight line and a turning point is compose by
four parameters Width;, Directionym,; Directiongeecti, and, Distancegdeect;. We can
construct a complete navigation path by learning many sets of such path information,
Py, P, ..., P,. While navigation, every time the vehicle goes through the turning point,
the system reads the next set of path information and detects the next turning point.

The navigation path can be considered as a simple automaton as shown in Figure 6.6.

6.4 EXxperimental Results

In this section, we show some experimental results of the proposed navigation
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system. In Figure 6.7, the vehicle navigates on a path.
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Figure 6.7 An experimental result of navigation in an indoor environment. (a) The

vehicle navigates on the path. (b) The navigation map.
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Figure 6.7 An experimental result of navigation in an indoor environment. (a) The

vehicle navigates on the path. (b) The navigation map. (continued)
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Figure 6.7 An experimental result of navigation in an indoor environment. (a) The

vehicle navigates on the path. (b) The navigation map. (continued)
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Figure 6.7 An experimental result of navigation in an indoor environment. (a) The

vehicle navigates on the path. (b) The navigation map. (continued)
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Chapter 7
Experimental Results and
Discussions

7.1 Experimental Results

In this section, we will show some experimental results of the proposed person
following and patrolling system and the navigation system in indoor environments.
Experiments for this study were performed at the hallway out of the Computer Vision
Laboratory at the Department of Computer Science in Engineering 3 Building, and
the hallway of the sixth floor of 'the Microelectronics and Information Systems
Building, all in National Chiao Tung Uniiversity:

The user interface of the person-following and patrolling system is shown in
Figure 7.1. The proposed system has four modes: detection, following, learning and
turning. The system will detect humans in acquired images in the detection mode. In
the following mode, the system will follow a target person by the use of the extracted
clothes features. After a user presses the start button, the system will start the
detection mode and detects any person’s clothes. Then the system will extract the
clothes region; and if it decides a person to be existent, it will change the detection
mode to the following mode, and then finish the current cycle, as shown in Figure 7.2.
After changing to following mode, the vehicle will follow the person and calculate a
new value of the color of clothes of the target person at the same time, the reference
value of clothes will renew continually.

When the person turns to a direction to face a picture, then the vehicle will enter
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the learning mode. If the person turns to the right or left for a while, the vehicle will
go to the position where the person stands and turn to the same direction to see and
remember the view. Then, the system will analyze the view and find the region and
the horizontal line of the 2D object, as shown in Figure 7.3 and Figure 7.4.

Besides, when the vehicle follows the person, if the person turns fast in front of
the vehicle, the system will change to the turning mode. Then the vehicle will turn a
big angle to the right direction to search the disappearing person, as shown in Figure
7.5.

A record map of navigation session is shown in Figure 7.6. After path planning,
the vehicle will go back to the start point in the learning process, and monitor the
learned objects, as shown in Figure 7.7. An illustration of the experimental process is

shown in Figure 7.8.

1/ Path Planning Ex
a
N = e GroupBos!
& Adapt environment
£ Not Adapt

Initial

Area -~
Tracking/llim

v
’W

Figure 7.1 An interface of the experiment. The green box shows the image stream
and the blue box shows the input image at this moment. The yellow box

shows the difference image and the red box shows the draft of the map.
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(b)
Figure 7.2 An experimental result of extraction of the clothes. (a) The input image.
(b) The image of the extracted clothes.

(b)
Figure 7.3 An experimental result of the learning mode. (a) The input image. (b) The

position of the vehicle.

For the second type of vehicle system using ultrasonic sensors, the user interface
of the system is shown in Figure 7.9. We simulate the vehicle as a guiding vehicle for
guiding visitors from the door area of an elevator into an office. An illustration of the
learned data, the navigation map, and the actual navigation path created in the
experiment is shown in Figure 7.10 and the record map of navigation session is shown
in Figure 7.11.
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(a) (b) (b)

Figure 7.4 An example result of learning a 2D object. (a) The input image. (b) The
region of the 2D object:i(¢) The horizontal line of the 2D object.

(2) (b)

Figure 7.5 An experimental result of following a person turning fast. (a) The input

image. (b) The position of the vehicle.
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(b)

Figure 7.5 An experimental result of following a person turning fast. (a) The input

image. (b) The position of the vehicle. (continued)

g —————

._SE;'., : -.-_‘.. S
Figure 7.6 An experimental result of nayigation. The blue line segments show the
planning result. And the red points show the real patrolling path of the

vehicle.

After a user presses the start button, the system will read the path data and start

the navigation. In the hallway environment, the vehicle will adjust the direction by

analyzing sequence of signals detected from ultrasonic sensors and navigation on the

middle of the hallway. When the vehicle arrive the detection node, it will start

detecting the position of turning node by the learned information of the distance and

the direction, and take a turn. The experimental results are as shown in Figure 7.12.
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Figure 7.7 The experimental result of object monitoring and navigation path
correction. (a) The numbg:s”dlf-:ﬁﬁaﬂﬁmed objects. (b) The vehicle

monitors the objects. g@; he 1

‘tckﬂglg\ré,sult and the horizontal line used

for path correction. EY(' = ‘;>_ =
- 1 ,r*w”’.,.w =
- i -
E.'I'!‘ h‘i;;’ g': '5, lil'.'ﬁu
= Ve =
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Poster 4 Poster 3 CvLab Poster 2 Poster 1

l‘ eSS * : Starting and finishing point

’ : Turning node
‘ Poster 6 . . .
‘ : Monitored object check point

l ‘ : Learned path

— : Navigation path

Figure 7.8 An illustration of the path of following a person and monitoring objects
in an experiment.
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Figure 7.9 Interfaces of the experiment.

.r* : Starting point
] Elevator

" : Learned path

- : Navigation path
." ‘ = Wall
l Corridor
Room
608

Figure 7.10 An illustration of learned data and navigation path.

Figure 7.11 An experimental result of navigation.
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Figure 7.12 The experimental result of the vehicle guide a person. (a) Navigation in a
hallway. (b) Navigation at a turning point.

7.2 Discussions

By analyzing the experimental results of person following and guidance, some
problems are identified as follows.
(1) We built an odometer calibration model to calibrate the deviation angle which is
made by the action of moving forward of the vehicle. But there are still some
deviations made by the action of turning of the vehicle which should be
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2)

3)

(4)

)

calibrated.

The human following process by the use of the clothes color might incur errors
due to other people wearing clothes of the same color. When different people
wear clothes of the same color, the system will be confused and cannot decide
which person is the target to follow.

In the detection of the facing direction, we use the color of the hair, i.e., the
black color, for judging the facing direction of the person. If the hair of the
person is dyed or if the person has no hair, the system cannot work.

In our system, there are some restrictions to finding 2D objects in images, for
example, the height of 2D objects must be fixed and the objects need be pasted
on a wall of light color. But pictures in common environment are not always
pasted at the same height, and the paint of.the wall is not always light. This
problem should be solved 4n the future.

The maps of paths are drawn by the coordinate data which are provided by the
odometer in our systems. But the path.in‘the map is ‘curved’ and different from
the traversed path, because of the imprecise odometer data resulting from the

incremental mechanical errors.
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Chapter 8
Conclusions and Suggestions for

Future Works

8.1 Conclusions

Several techniques and strategies have been proposed in this study and integrated
into two autonomous vehicle systems for navigation in indoor environments: one with
human following and object monitoring .capabilities, and the other with person
guidance capability.

At first, a method of improving the practicability of a camera calibration method
has been proposed. Some steps in-a past.method for'finding the intersection points on a
grid board repeat incurring errors easily. We use the property of the cross shape,
which has eight points with color changes around the center point, to detect the cross
shape. Besides, a method of calibrating the odometer equipped on the vehicle has
been proposed. For the purpose of reducing the incremental mechanical errors
suffered by the vehicle, we built an odometer calibration model by using a curve
fitting technique to calculate a smooth curve of the values of the angle of deviation in
different distance moves taken by the vehicle.

The proposed system for patrolling in the indoor environment has three
processes: the following process, the path planning process, and the patrolling process.
The system is in the following process at the beginning. When the vehicle is

following a person, the illumination in common indoor environments is not actually
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uniform. If the vehicle keeps using the value detected at the initial time to follow a
person, then it may lose the tracking of the person because the illumination over the
vehicle changes while the vehicle moves in the environment. We have proposed an
improvement of an adopted process to dynamically adjust the values of C, and C, for
detecting the changing color of the clothes of a followed person.

Then, a method for detecting a disappearing person who turns fast in front of the
vehicle has been proposed for use in the person following process. When the person
makes a fast turn at a corner, the system will use the recorded information to
command the vehicle to turn to the right direction for searching the disappearing
person in the acquired image.

When the vehicle follows a person, it will also detect the facing direction of a
person by using a scan line. It gets a false result'easily, because the scan line is thin
and the numbers of pixels on the scan line are little.-So, we have proposed a method
by using a scan rectangle to increasé:the-number of pixels for detection and enhance
the accuracy of detection.

After detecting the facing direction of a person, the vehicle goes to the position
where the person just stands and turns to the same direction of the person, and then
analyzes the view to find a 2D monitored object. We have proposed a method by
using region growing and the Hough transform to find the region and a horizontal line
of the object. And we save these data of objects and use them in the patrolling
process.

The vehicle collects the path data of positions and distances from the odometer
and the ultrasonic sensors, and uses these data to refine the path into a smooth path. A
method of path planning by using the MSE criterion has been proposed. Also
proposed is a method to adjust the MES threshold automatically, by which the

planned path can adapt to different environments.
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In another system for navigation in indoor environment, we have proposed a
method of analyzing ultrasonic signals for the vehicle to navigate in a corridor
environment. The vehicle can navigate in the middle of paths and detect the learned
turning point. The system can be applied to be a guiding vehicle in the office
environment, which can guide visitors and make some introduction to them.

The experimental results shown in the previous chapters have revealed the

feasibility and practicality of the proposed systems.

8.2 Suggestions for Future Works

The proposed strategies and: methods, ‘as®.mentioned previously, have been
implemented on a vehicle systems Several suggestions and related interesting issues worth
further investigation in the future-are stated-in-thefollowing.

(1) Improving the extraction of clothes.colorsySuch as a pattern on the cloth.

(2) Conducting human following by different features, such as texture and shape, to
eliminate errors caused by the case that the different people may wear clothes of
the same color.

(3) Following a person by use not only the feature of color, like using the ultrared
rays to detect the heat of a person, for overcoming huge changes of the
luminance.

(4) Improving the detection of a person’s facing direction by learning other hair and
skin colors or using the position of the mouth to know the direction which a
person faces to.

(5) Adding a judgment of the position of a person’s body. When a person slips and

falls over, the person’s body may fall down on the floor. If this situation
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continues for a long time, the vehicle can issue an emergence signal to call
someone for help.

(6) Detecting the heights of monitored objects by using two pictures captured at
different positions.

(7) Using a top view camera to make sure the computed position of the vehicle.
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