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利用超音波感測及電腦視覺技術經由簡易學習作自動車導航之研究 

 

研究生：蔡雙圓    指導教授：蔡文祥 博士 

 

國立交通大學多媒體工程研究所 

 

摘 要 

本研究提出了兩套智慧型自動車系統，其一是以視覺為基礎的自動巡邏車，

具有利用跟隨人物同時做學習路徑、與人互動、二維影像分析以及路徑規劃等功

能；其二為利用超音波訊號分析做智慧型導航的自動車。我們利用一台具有 PTZ

攝影機的自動車作為實驗平台，並且利用有線網路與自動車通訊，使其航行於室

內環境中。針對一利用格狀圖案為校正目標的舊有影像校正方法，我們提出了一

精確的十字中心自動偵測方法，增進了校正的準確性與自動化。我們也建立了一

計步器校正技術，用一校正模型來減少自動車所累積的行走機械誤差。接著我們

發展一利用動態調整跟隨人物衣服顏色參考值的方法，來適應跟隨人物時環境中

的不均勻照度。針對跟隨人物在自動車前的快速消失，我們亦提出一利用攝影機

轉動角度，紀錄使用者方向的尋找方法，並使用一增加參考圖素數量的方法，來

增進偵測人物朝向的準確率。當使用者要求自動車進行學習時，自動車能夠從影

像中自動找出需要被監控的物品。此外，我們利用最小化均方差以及動態選擇門

檻值，來規劃跟隨人物時所學習的路徑。我們同時提出一分析串列超音波訊號的

方法，使自動車能在狹窄的室內空間中進行導航。最後我們以成功的巡邏、跟隨

和導覽實驗證明本系統的完整性與可行性。 
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ABSTRACT 

Two intelligent autonomous vehicle systems for use in indoor environment 

applications are proposed. One is a vision-based vehicle system for security patrolling 

which has the capabilities of learning paths by person following, interaction with 

humans, analyzing 2D images and conducting path planning. Another is an intelligent 

vehicle system for navigation by analyzing ultrasonic signals. A vehicle equipped with 

wired control and a web PTZ camera is used as a test bed. First, a method for 

improving the practicability of an adopted camera calibration method is proposed, 

which uses a grid pattern as the calibration target and detects the centers of cross 

shapes on the pattern in a more precise and automatic manner. Next, a technique of 

odometer calibration is proposed, which uses an odometer calibration model to reduce 

the incremental mechanical errors the vehicle suffers. Besides, a technique for person 

following in an environment with variant illuminations is proposed, which adjusts the 

reference color value for person following dynamically. To follow a target person who 

turns fast in front of the vehicle, a technique of using the image information exhibited 

by the angle of panning of the camera to search the disappearing person is proposed. 

Also proposed is a technique for enhancing the accuracy of detection of the facing 

direction of a human by increasing the number of pixels for use in the detection work. 
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For object monitoring, the vehicle is enabled to find out the 2D object in the image 

automatically when the followed person asks it to learn the object. In addition, a 

minimum MSE technique for refining dynamically the path learned while following a 

person is proposed. Finally, a method of vehicle navigation in corridor environments 

by the use of the ultrasonic signal sequence is proposed. Good experimental results 

show the flexibility and feasibility of the proposed methods for the applications of 

security patrolling, person following, and people guiding in indoor environments. 
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Chapter 1  

Introduction 

1.1 Motivation 

In recent years, autonomous land vehicles with ultrasonic sensors and 

vision-based robots have played helpful roles in human life. They can help us to do 

various tasks, such as: 

(1) keeping company with old people like a nurse to take care of them; 

(2) monitoring concerned objects; 

(3) navigating in desired environments automatically; 

(4) guiding people in indoor environment, and so on. 

In security monitoring of objects, if we use stationary cameras, we have to install 

many of them and there might still be corners where the cameras cannot cover. But if 

we use an autonomous vehicle equipped with a video camera, which has the ability of 

automatic learning and human following, then the problem can be solved because the 

vehicle can follow people everywhere and learns the path that we hope it patrol, just 

like a mother teaching her child where to go. 

While a vehicle follows a person, the vehicle has to detect the person in front of 

it continually. However, this is not easy because the brightness could not be all the 

same on the path, it could change to dark or bright slowly, and the person in the 

camera view might be darker or brighter than in the view a moment ago. The vehicle 

has to keep finding out the person to follow under variant brightness. 

When the vehicle is patrolling, it may seem not smart if it walks totally the same 
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as the trajectory it learned, because this trajectory could be rough and there is no need 

to step on every spot of it precisely. We hope the vehicle could reconstruct the path 

into a smooth route, but not too smooth to miss some important points we want it to 

patrol. 

In playing the role of a guide, it might be dangerous when the vehicle guides 

people in a narrow environment because the vehicle could hit the wall. But if we use 

an autonomous land vehicle equipped with ultrasonic sensors, the problem can be 

solved because the vehicle can then detect the distance to the wall using ultrasonic 

signals and keep navigating in the middle of the path safely. 

For the application of person guidance, the vehicle needs often the additional 

functions of making audio introductions to the environment or the surrounding objects, 

and making warning announcements to people who stand on the way that the vehicle 

want to pass through. 

In summary, the research goal of this study is to design an intelligent 

autonomous vehicle system with two kinds of capability. One is to learn the traversed 

path and objects which to be monitored, while following a person, and then navigate 

to the start point by automatic path correction by the use of computer vision and 

ultrasonic sensing techniques. For this goal, it is desired to design a system to be 

capable of automatic learning and path planning. The other capability is to navigate in 

a narrow indoor environment by ultrasonic sensing. It is desired to design a system to 

be capable of environment analysis in narrow indoor environments. By these 

functions, a variety of applications of the vehicle can be carried out, like being used as 

an autonomous patrolling assistant or a security guard, as well as a guide in an office 

environment, an exhibition area, or a tour route. 
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1.2 Survey of Related Studies 

To achieve the mission of person following in indoor environments, the function 

of human detection is required at first for finding a targeted person in the person 

following process. Skin color is an important feature of humans. In the study of 

human skin colors, many methods have been proposed to build skin color models. 

Wang and Tsai [1] proposed a method which uses an elliptic skin model to detect 

human faces by color and shape features in images. They also proposed another 

method which detects a person not using the skin color, but using the colors of the 

clothes which the person wears. A study of human detection under variant 

illumination was conducted by Chen and Tsai [2]. They used many sets of color 

values of Cb and Cr to define a function of skin-color reference models. The function 

was then used to separate human skin regions from background. 

Besides, some systems for person following have been proposed. Ku and Tsai [3] 

proposed a sequential pattern recognition method to decide the location of a person 

with respect to a vehicle and to detect a rectangular shape attached on the back of the 

person to achieve smooth person following. However, the person has to appear in the 

image all the time and the road has to be wide enough for this method to work. In 

applications of person following, Kwolek [4] proposed a method that determines the 

position of a mobile robot by laser readings. The tracking of the human head is done 

by a particle filtering technique using the features of color, depth, gradient, and shape. 

Morioka, Lee, Hashimoto [5] studied person following to provide people with 

services by the use of a human collaborative robot which tracks the back and shoulder 

of a person. There are some different studies for human detection and following by 

using different sensors. Treptow, Cielniak, and Duckett [6] proposed a method which 

tracks and identifies people from thermal and gray images. 
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For object monitoring, the vehicle has to learn the features of the concerned 

object and match the features to determine whether the object is the same as the 

previously learned one. Lowe [7] used a scale-invariant detector to find the extrema in 

the difference-of-Gaussian scale-space. He then created a scale-invariant feature 

transform (SIFT) descriptor to match key points using a Euclidean distance metric in 

an efficient best-bin first algorithm which can identify the nearest neighbors of points 

in high dimensional spaces. 

For path planning, a method for planning the navigation task for a mobile robot 

under dynamic and unknown environments was proposed by Xiao, Liao, and Zhou [8]. 

For the topic of robot navigation, Chen and Tsai [9] proposed a method with a 

simplified SIFT for monitoring objects and used the position and feature information 

of objects to conduct vehicle navigation. Davison [10] proposed a method for 

monocular vision-based robot navigation. 

1.3 Overview of Proposed Approach 

The goal of this study, as mentioned previously, is to design two kinds of 

intelligent capabilities for autonomous land vehicles. One is to use computer vision 

and ultrasonic sensing techniques for person following and patrolling. The other is to 

use ultrasonic sensing for navigation in narrow indoor environments. The overall 

frameworks of proposed systems for these two capabilities are illustrated in Figure 

1.1(a) and Figure 1.1(b). 

The first proposed approach to person following and patrolling using a 

vision-based autonomous vehicle with an ultrasonic sensing system includes seven 

major stages. The first stage is camera calibration for measuring the distance between 
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the person and the vehicle by a so-called angular mapping technique [1] in which 

each point in the image represents a unique light ray from the viewpoint into the 

camera. By the angular information of light rays and the height of the camera, we can 

know the relative distances of targets in images. The details will be described in 

Chapter 3. 

The second stage is human detection. An elliptic skin model to detect human 

faces by color and shape features in images was proposed by Wang and Tsai [1]. But 

this model is suitable only in a limited range of luminance. An improved skin color 

model which can adjust its elliptic center to adapt to the change of luminance was 

proposed by Chen and Tsai [9]. However the skin color detection is not suitable for 

everyone. We solve the problem by using cloth detection instead of skin color 

detection in this study. 

The third stage is person following. It not only conducts the basic person 

following function but also deals with some unexpected situations. For example, it 

deals with environments where luminance is not uniform. This study solves these 

problems by dynamically adjusting the values of Cb and Cr of the clothes worn by the 

person to detect the person in the camera frame. 

The fourth stage is learning the path data during person following. The vehicle 

needs to learn two kinds of data. One is the data of a path node which are used for 

path planning in the next cycle. The other is object monitoring data which are used to 

conduct security patrolling. The details will be described in Chapter 4. 

The fifth stage is path planning by the mean square error (MSE) method using 

the path data collected during person following. The vehicle reconstructs the path it 

has learned into a smooth path. In addition, it is also wanted in this stage to 

automatically adjust the threshold of the mean square error for adaptation to different 

environments like wide or narrow ones. The details will be described in Chapter 5. 
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The sixth and seven stages compose the navigation phase. The vehicle uses the 

information learned and the path planned before for executing the mission of 

patrolling. It monitors objects using a simplified SIFT method [9] and a navigation 

technique using 2D object image matching. 

The second proposed approach to autonomous land vehicle guidance in indoor 

environments with ultrasonic sensors includes two major phases. The first is the 

learning phase, and the second is the guidance phase. In the learning phase, the 

vehicle needs to learn the information of path data and point data. In the guidance 

phase, the vehicle analyzes the signal detected from the ultrasonic sensor and guides 

people on the path which was learned in the learning phase. The details will be 

described in Chapter 6. 

1.4 Contributions 

The major contributions of this study are summarized as follows. 

(1) A method for improving the practicability of camera calibration is proposed. 

(2) A method for person following in environments where the luminance is not 

uniform is proposed. 

(3) A method for detecting a person who turns fast and disappears is proposed. 

(4) A path planning method which can adapt to different environments is proposed. 

(5) A method of computing the angle to calibrate the odometer of the vehicle is 

proposed. 

(6) A guidance method using sequences of ultrasonic signals is proposed. 
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(a) Person following and patrolling technique. 
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1.5 Thesis Organization 

The remainder of this thesis is organized as follows. In Chapter 2, we describe 

the system configuration of the vehicle and the principles of proposed learning, 

Learning Phase

Guiding Phase

Learn path data

Learn turning data

Environment analyze 

Navigation

Path and point information

Detect turning node

Turn

 

(b) Tour guiding in narrow indoor environments technique. 

Figure 1.1 Flowcharts of proposed systems. 
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human following, and guidance techniques. In Chapter 3, the proposed the method for 

improving the practicability of camera calibration, the method for calibration of the 

odometer, and the method of using the reference data for distance computation are 

described. In Chapter 4, a method for improving the practicability of human facing 

direction detection is described. The proposed techniques for path planning are 

described in Chapter 5. The method for learning the path of guidance is described in 

Chapter 6. Some satisfactory experimental results are shown in Chapter 7. Finally, 

some conclusions and suggestions for future works are given in Chapter 8. 
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Chapter 2  

System Configuration and Guidance 
Principles 

2.1 Introduction 

There had many studies about using machines to reduce the burden of humans to 

do the work of patrolling. The autonomous land vehicle with camera equipments is 

commonly used for this kind of work because cameras could “see” objects which 

need be monitored in replacement of human eyes. Usually, we have to key in the path 

of a patrolling vehicle manually into a computer and such work of assigning a path to 

a vehicle is not easy to perform for a user who is not good at machine handling. This 

inconvenience can be resolved if we have an autonomous vehicle equipped with a 

camera which has the abilities of following people and remembering the path it 

walked through. With such an intelligent vehicle, we can then bring it to walk through 

the path once, and the vehicle can remember the path and walk the way back to the 

start point by itself. Additionally, we can change the patrol path adaptively for various 

application needs easily. 

On the other hand, when we visit an unfamiliar place like an office in a building, 

we often need a guide to bring us from the outside of the elevator into the office. It is 

desirable too that the guide could give some introduction to the environment. We can 

use a robot instead of a human being to do this job. However, when the environment 

is not broad, then the robot could hit the wall. The problem could be solved if we have 



 11

an autonomous land vehicle with ultrasonic sensors, which can keep the vehicle 

navigating in the middle of the path using the ultrasonic signals provided by the 

sensors. 

The entire hardware equipments and software used in this study are described in 

Section 2.2. The system of person following and patrolling includes two major stages 

to reach its goal. The first is the learning process which makes the vehicle more 

intelligent. In Section 2.3, we will introduce the principle of the proposed learning 

technique. We will describe how to follow a person and learn the information of paths. 

The second stage is the path planning process which can refine the learned path. In 

Section 2.4, we will describe the major steps of refining the path obtained from the 

learning process. For the system of the guiding vehicle, we will introduce the 

principles of the learning and guiding strategies in Section 2.5. 

2.2 System Configuration 

In our system, we use the Pioneer 3, a vehicle made by ActiveMedia Robotics 

Technologies Inc., as a test bed. The vehicle is equipped with a pan-tilt-zoom camera 

of which we can adjust some parameters by a graphical user interface, such as the 

image resolution, the image format, and so on. 

Because the wireless signal might be interfered by unknown signals sometimes, 

we control the vehicle by a network cable connecting our computer and the vehicle in 

our system. In this way we can have stable communication among the vehicle, the 

program, and the PTZ camera. A diagram illustrating this configuration is shown in 

Figure 2.1. 



 12

Laptop

Network cable

 

Figure 2.1 Equipment connection situations in this study. 

2.2.1 Hardware configuration 

The hardware equipments we use in our system include three parts. The first part 

is a laptop which we use to run our program. A kernel program can be executed on the 

laptop to control the vehicle by issuing commands to the vehicle. It also can be used 

to get the status information of the vehicle. 

The second part is the vehicle which has an aluminum body. The size of it is 

44cm×38cm×22cm with three wheels of the same diameter of 16.5cm. In the vehicle, 

there are three 12V batteries each of which, by one charge, supplies power to the 

vehicle to run 18-24 hours. The vehicle can reach a forward speed of 160cm per 

second and a rotation speed of 300 degrees per second. The embedded control system 

can be used to control the vehicle to move forward or backward and turn around by 

the user’s commands. The appearance of the vehicle is shown in Figure 2.2. 

The third part is a digital IP camera with panning, tilting, and zooming (PTZ) 

capabilities. The PTZ IP camera used in this study is an AXIS 213 PTZ made by 

AXIS, as shown in Figure 2.3. This is a camera with a height of 130mm, a width of 

104mm, a depth of 130mm, and a weight of 700g. The pan angle range is 340 degrees 

and the tilt angle range is 100 degrees. It has 26x optical zooming and 12x digital 



 13

zooming capabilities. The image captured in our experiments is of the resolution of 

320×240 pixels for the reason of raising image processing efficiency. Moreover, the 

camera is directly connected to a laptop by a network cable for transmission of the 

captured image. 

 

(a) 
 

(b) 

Figure 2.2 The vehicle Pioneer 3 used in this study. (a) A front view of the vehicle. (b) 
A side view of the vehicle. 

2.2.2 Software configuration 

The ActiveMedia Robotics provides an application interface ARIA to control the 

vehicle used in this study. ARIA is an object-oriented interface which is usable under 

Linux or Win32 in the C++ language and can dynamically control the velocity, heading, 

and other navigation settings of the vehicle. We use the ARIA to communicate with 

the embedded system of the vehicle. And we use the Borland C++ Builder as the 

development tool in our experiments. 
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(a) 

(b) (c) 

Figure 2.3 The pan-tilt-zoom camera used in this study. (a) A perspective view of the
camera. (b) A front view of the camera. (c) A left-side view of the 
camera. 

2.3 Learning Strategy and Major Steps 
in Proposed Process 

The proposed learning strategy is based on human following [2]. When the 

vehicle follows a person, it uses the information of the clothes which the person wears. 
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Two kinds of situations should be handled. The first is that the vehicle can find the 

person by the clothes feature and the second is that the vehicle cannot find the person. 

In the first situation, the vehicle will keep following the person and avoid losing 

the observation of the person. In the second situation, the vehicle cannot follow the 

person anymore. Because the camera on the vehicle always pans to follow the person, 

the vehicle can keep knowing that the person is on which side with respect to the 

vehicle (left or right). If the person disappears in front of the vehicle, then the vehicle 

can find out the side on which the disappearing person was. After that, the vehicle will 

turn an angle to the correct its direction to search for the disappearing person in the 

acquired image. But if the vehicle turns for a pre-set number of times and still cannot 

find the person, then the system stops the learning strategy. 

Our system needs to learn two major kinds of data at the learning strategy. The 

first part is path data. These data are used in the path planning. The second part is the 

information of those objects which the person wants the vehicle to monitor. The 

person only needs to stand in front of the object and looks at it. Then the vehicle will 

go forward to learn the information of the object. These data are used in the patrolling 

process. The major steps are shown in Figure 2.4. 

2.4 Path Planning and Patrolling 
Principle and Major Steps in 
Proposed Process 

After the vehicle learns the path and the object data in the learning stage, the 

vehicle refines the path and stretches the rough part of the path by analyzing these 
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data using a binary-cut line fitting technique. The path planning process has three 

major steps. The first step is to retain the nodes where the monitored objects are 

located. After doing the first step, the path is separated into some segments. Then, we 

collect these path segments by pushing them into an empty queue. 

Human detection

Person following

Learn path data

Detect human facing 
direction

The person looks at 
a picture for a 

while

Learn object data

Yes

Start of learning

The person in front 
of vehicleYes

Turn a little angle to 
find the person Path data

Object 
data

No

The vehicle finds 
the person

The vehicle not 
find the person for 

a while 

No

No

Yes

Yes

No

End of learning

Figure 2.4 An illustration of the automatic learning process by person following. 
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The second step that is to pop out one segment from the queue and check the 

segment to see whether it is smooth enough or not. If the answer is no, then go to the 

third step to separate the segment again into two small parts and push them into the 

queue mentioned before. We then execute the second step again and repeatedly, until 

the queue is empty. We save the segments which are smooth enough to be the path 

data, for use in the patrolling process. The major steps are illustrated in Figure 2.5. 

After doing the steps of the path planning, the next process is navigation to the 

start point. The navigation process includes three major steps. The first step is to read 

and sort the path data obtained from the path planning. The second step is to go 

forward according to the path data, and check the current position to see whether there 

is an object to be monitored there or not. If the answer is yes, then go to the third step 

to match the monitored object. We repeat the second and the third steps until the 

vehicle arrives at the start point. The major steps are illustrated in Figure 2.6. 

2.5 Vehicle Navigation Principle and 
Major Steps in Proposed Process 

Our system has two major processes in the vehicle navigation system. The first is 

the learning process. The vehicle learns the information of a navigation path in this 

process. We divide the navigation path into several segments, and the divided points 

are the positions where the vehicle needs to turn. Also, the vehicle needs to learn two 

kinds of major information of every segment of the navigation path. One is the 

information of the environment of the path where the vehicle navigates and the other 

is the information of a turning node which the vehicle passes by. The major steps are 
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illustrated in Figure 2.7. 

Allow the part of path

Start of path planning

If the queue is empty?

Separate the part of path into 
two part and push into queuePoint data The part of path is 

smooth enough?

Path data

Separate path and push path 
data into an empty queue Object data

Get a part of path from queue

Yes

No

Yes

End of path planning

 

Figure 2.5 An illustration of the path planning process. 

The second part of our system is the navigation process. After reading the data of 

the navigation path which is separated into several segments by the turning nodes 

obtained from the learning process, the vehicle can now navigate and guide, if 

necessary, a visitor on the path, by performing two tasks at every segment. One is 

navigation in the middle of the hallway and the other is finding the position of the 

turning node. These major steps are illustrated in Figure 2.8. 
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Figure 2.6 An illustration of the patrolling process. 
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Figure 2.7 An illustration of the learning process of the vehicle navigation system. 
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Figure 2.8 An illustration of the navigation process. 
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Chapter 3  

Camera and Odometer Calibration 

3.1 Introduction 

The camera and the odometer are the two important equipments of the vehicle 

used in this study. In this chapter, we describe the proposed calibration methods for 

these two equipments. 

Distance information is important and useful in the person following process. 

The vehicle of our system computes the distance information by analyzing images 

captured from the camera. But there is ambiguity in the inverse mapping from 2D 

image coordinates to 3D world positions. Wang and Tsai [1] proposed a method of 

angular mapping for camera calibration to compute the distance between a vehicle 

and a person. Chen and Tsai [9] proposed a method of area tracking to deal with the 

situation where the vehicle cannot see the entire clothes of the person. In Section 3.2, 

we will review these methods and propose another method which can improve the 

practicability of these camera calibration methods. 

For vehicle navigation in indoor environments, the vehicle location is the most 

important information to guide the vehicle in correct paths. Though the information 

provided by the odometer of the vehicle is precise enough for inferring the vehicle 

location for most applications, it cannot be used solely for the navigation process 

because the incremental mechanical errors might result in imprecise odometer data 

and so in deviations from the planned navigation path. Hence, in order to keep the 

navigation in track, a vision-based odometer calibration technique is desirable to 
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eliminate the errors. In Section 3.3, we will propose a technique for this purpose. 

3.2 Camera Calibration by Cross 
Shape Detection 

3.2.1 Idea of Proposed Camera Calibration Method 

The distance information is indispensable for a person-following vehicle. The 

vehicle can avoid striking a person by using the distance information to keep a safe 

distance to the person. And the vehicle can go forward to see more clearly for 

avoiding losing information of this person by using the distance information when the 

person is far from the vehicle. Our system computes the distance information by 

analyzing the images captured from the camera. Through imaging with the camera, 

3D world coordinate systems are mapped into 2D image coordinate systems. However, 

there is ambiguity in the inverse mapping from a 2D image point to its corresponding 

3D world location because each point in the image is the projection result of a light 

ray onto the image sensor. The light ray can be described by a longitude angle and a 

latitude angle in the 3D world space. To define the corresponding longitude and 

latitude angles (or simply called longitude and latitude in the sequel) of each point in 

images, Wang and Tsai [1] proposed a method of 2D mapping to achieve the goal of 

angular-mapping camera calibration. 

However, some steps repeat and incur error easily in their method. We will 

propose a method which simplifies the steps of camera calibration and is suitable for 

common users. In Section 3.2.3, we will review the method of angular-mapping 
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camera calibration. In Section 3.2.4, we will describe the proposed method. 

Before describing the above-mentioned methods, we first introduce the 

definitions of the coordinate systems and the directional angle of the camera used in 

this study in Section 3.2.2. 

3.2.2 Coordinate Systems and Directional Angles of 

Camera 

Four coordinate systems are utilized in this study which describes the relative 

locations between the vehicle and encountered objects. The coordinate systems are 

shown in Figure 3.1. The definitions of all the coordinate systems are stated in the 

following. 

(1) Image coordinate system (ICS): denoted as (u, v). The uv-plane of the system is 

coincident with the image plane and the origin I of the ICS is placed at the center 

of the image plane. 

(2) Global coordinate system (GCS): denoted as (x, y). The x-axis and the y-axis are 

defined to lie to on the ground, and the origin G of the global coordinate system is 

a pre-defined point on the ground. In this study, we define G as the starting 

position of the person-following process. 

(3) Vehicle coordinate system (VCS): denoted as (Vx, Vy). The VxVy-plane is 

coincident with the ground. And the origin V is placed at the middle of the line 

segment that connects the two contact points of the two driving wheels with the 

ground. The Vx-axis of the system is parallel to the line segment joining the two 

driving wheels and through the origin V. The Vx-axis is perpendicular to the x-axis 

and goes through V. 

(4) Spherical coordinate system (SCS): denoted as (ρ, θ, φ). This system is proposed 
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by Wang and Tsai [1]. It is a 3D polar coordinate system and we explain this 

system in terms of the 3D Cartesian coordinate system with coordinates (i, j, k) for 

convenience. The origin S of the spherical system, which is also the origin of the 

Cartesian system, is the optical center of the camera. The ij-plane of the Cartesian 

system is parallel to the uv-plane in the ICS. A point P at coordinates (i, j, k) in the 

Cartesian space is represented by a 3-tuple (ρ, θ, φ) in the spherical space. The 

value ρ with 0ρ ≥  is the distance between the point P and the origin S. The 

longitude θ is the angle between the positive k-axis and the line from the origin S 

to the point P projected onto the ik-plane. The latitude φ is the angle between the 

ik-plane and the line from the origin S to the point P. 

 

Two kinds of directional angles of a camera are used in this study. One is the pan 

angle and the other the tilt angle. The pan angle of the camera is defined in the VCS, 

denoted by θc. It represents the degree of horizontal rotation of the camera and is 

important for coordinate transformation. 

u

w

I

 

(a) 

Room     

             

x

y

G

 

(b) 

Figure 3.1 The coordinate systems used in this study. (a) The image coordinate system. 
(b) The global coordinate system (c) The vehicle coordinate system. (d) The 
spherical coordinate system. 
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(c)  

(d) 

Figure 3.1 The coordinate systems used in this study. (a) The image coordinate system.  
(b) The global coordinate system (c) The vehicle coordinate system. (d) The 
spherical coordinate system. (continued) 

We define the direction of the y-axis to be zero. The value of θc is exactly the 

angle between the camera direction and the direction of the y-axis. The range of θc is 

between 0 and π if θc is in the first and fourth quadrants and between 0 and –π if θc is 

in the second and third quadrants, as shown in Figure 3.2. The tilt angle of the camera 

is defined as the angle between the optical axis of the camera and the ground. The 

angle, denoted as φc, represents the vertical tilting of the camera. We define the angle 

to be zero when the optical axis of the camera is parallel to the ground. The range of 

φc is between 0 and π/2 if the camera tilts up, and is between 0 and –π/2, else, as 

shown in Figure 3.3. 

3.2.3 Review of Adopted Camera Calibration Method 

Wang and Tsai [1] proposed a nonlinear angular mapping method to precisely 

obtain the angular transformation from the real world to the image. By the angular 
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information of the light rays and the height of the camera, we can know the relative 

distances of targets in images.  

 

(a) 
 

(b) 

Figure 3.2 The pan angle of the camera. (a) 0 cθ π≤ ≤ . (b) 0 cθ π≥ ≥ − . 

The coordinate system used in this method is shown in Figure 3.4, which 

includes the previously-mentioned image coordinate system (ICS) described by image 

coordinates (u, v) and the spherical coordinate system (SCS) described by parameters 

(ρ, θ, φ). The latter is a 3D polar coordinate system which can be explained in terms 

of the 3D Cartesian coordinate system with coordinates (i, j, k). The ij-plane of the 

Cartesian system is parallel to the uv-plane in the ICS. The origin S of the SCS, which 

is also the origin of the Cartesian system, is the optical center of the camera. A point P 

at coordinates (i, j, k) in the Cartesian space is represented by a 3-tuple (ρ, θ, φ) in the 

SCS where ρ is the distance between the point P and the origin S. The longitude θ  is 

the angle between the positive k-axis and the line from the origin S to the point P 

projected onto the ik-plane, and the latitude φ is the angle between the ik-plane and 

the line from the origin S to the point P. 
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p/2

-p/2

(b) 

Figure 3.3 The tilt angle of the camera. (a) 0
2c
πϕ≤ ≤ . (b) 0

2c
πϕ≥ ≥ − . 

A grid board is used in this method. It has m vertical lines and n horizontal lines, 

and is attached on a wall which is perpendicular to the ground. Because the longitude 

and the latitude values of the intersection points in the grid have been known in 

advance, the longitude and the latitude values of the other pixels in the image can be 

computed by an interpolation method. In this way, the longitude and the latitude 

values of each pixel in the image can be obtained. In Figure 3.5, we can see the 

respective positions of the grid board and the camera use in this method. And the 

views from the camera are shown in Figure 3.6. The intersections of the lines are 

marked by yellow points. 

After knowing the longitude and the latitude values of the yellow points in the 

image by previously-mentioned nonlinear angular mapping, we can use an 

interpolation method to compute the longitude and the latitude values of the other 

pixels in the image. 
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Figure 3.5 Camera calibration by a vertical grid board. (a) An illustration of 
attaching the lines on the wall. (b) The intersections seen by camera are 
marked by yellow points. 

 
Figure 3.4 An illustration of transformation between image coordinate system (ICS) 

and spherical coordinate system (SCS). 
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(a) (b) 

Figure 3.6 The camera views of Figure 3.5. (a) View of Figure 3.5(a). (b) View of 
Figure 3.5(b). 

3.2.4 Proposed Cross Shape Detection Technique 

By using the camera calibration method which is mentioned in Section 3.2.2, we 

can convert the coordinate values of every pixel in the image coordinate system (ICS) 

into the spherical coordinate system (SCS). An important step is to mark the 

intersection points in an image of the grid board. However, it is required to point out 

every intersection point manually in this method. The work is repeated many times 

and is prone to incur errors. To deal with this problem, we propose a technique of 

cross shape detection which can be adopted to locate the intersection points in the 

image automatically. 

A look of a cross shape which has two lines intersecting each other is shown in 

Figure 3.7(a). For detecting the cross shape, we have to find out its property. A 

different definition of cross shape is a shape which has a center point C with four lines 

L1, L2, L3 and L4 emerging out of the center in four directions, as shown in Figure 

3.7(b). Let C denote the center. After we draw a circle, it can be divided into four 
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curve parts, P1P2, P3P4, P5P6 and P7P8, intersecting the four lines of the cross shape 

respectively, as shown in Figure 3.7(c). By a careful observation around the circle, we 

can discover a common property of the eight intersection points, P1 to P8, that is, the 

positions of the eight points are located at places where the cross shape changes its 

color from white to black or from black to white. That means if we choose a point on 

the grid board randomly, let the point be the center to draw a circle, and find out the 

color changes eight times through the circle, then we can decide that the point is the 

center point of a cross shape. On the contrary, if we choose a point on the grid board 

randomly, let the point be the center to draw a circle, and find out that the color 

changing times are not equal to eight, then we can say that the point is not the center 

point of the cross shape. 

We can simplify this technique by using four lines instead of using the circle, as 

shown in Figure 3.7(d). That is, we check every point of the foreground on the grid 

board by using a matrix, which is shown in Figure 3.8, to scan the four lines 

composed of yellow cells and count the times of color changing. If the color of the 

grid board changes eight times, then we can decide C to be the center of the cross 

shape. The detailed process is described in the following as an algorithm. 

An experimental result of cross shape detection is shown in Figure 3.9. Figure 

3.9 shows the image captured from the camera. Figure 3.9(b) is the thresholding result 

of Figure 3.9(a). In Figure 3.9(c), many groups of centers of cross shapes are detected. 

Figure 3.9(d) shows the final result in which the real center of every cross shape have 

been found out. We conducted the calibration work and saved the longitude and the 

latitude values of every pixel in the image into a bmp image as shown in Figure 3.9(e). 

Figure 3.10 shows the program windows for camera calibration. 
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Figure 3.7 Detection of the cross point of a cross shape. (a) The look of a cross shape. 
(b) A center point and four lines composing the cross shape. (c) A circle 
with four intersections with the cross shape. (d) Use of four lines to detect 
the cross shape. 
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Figure 3.8 The matrix used to detect the cross shape. 

Algorithm 3.1. Computing the intersection points in a calibration target image. 

Input: An image taken from camera Ic, and the gray version Ig of Ic. 

Output: A set S of intersection points of the image Ic, with coordinates (xc1, y c1), (xc2, 

y c2), …, (xcn, y cn) 

Steps: 

Step 1. Calculate a threshold value T of the gray value which can differentiate the 

background and the foreground of Ic. 
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Step 2. Reset the gray value gpi of every pixel pi in the image Ig in the following 

way: 

If gpi > T is satisfied, set gpi as a foreground point; 
else, 

if gpi ≤ T is satisfied, set gpi as a background point. 

Step 3. Calculate the times ti of color changing around every pixel of the 

foreground. 

Step 4. Delete the point pi whose value ti is not equal to eight, and consider the 

remaining points as centers. 

Step 5. Calculate the centroid of every group of centers and find out the 

intersection points by Eqs. (3.1) and (3.2) below: 

1

1 n

c i
i

x x
n =

= ∑ ; (3.1)

1

1 n

c i
i

y y
n =

= ∑ . (3.2)

 

 

 

(a) 

 

(b) 

Figure 3.9 Some experimental results of cross shape detection. (a) Original Image. (b) 
After thresholding. (c) Find groups of centers. (d) Center detected. (e) The 
bmp image with camera calibration information. 
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(c) 

 

(d) 

 

(e) 

Figure 3.9 Some experimental results of cross shape detection. (a) Original Image. (b) 
After thresholding. (c) Groups of centers detected. (d) Centers detected. (e) 
The bmp image with camera calibration information. (continued) 

 

 
Figure 3.10 The program window of camera calibration. 
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3.3 Odometer Calibration by 
Quadratic Functions 

3.3.1 Idea of Odometer Calibration 

The vehicle moving direction is another important information factor for guiding 

the vehicle to navigate in indoor environments. The direction information is provided 

by the odometer of the vehicle. However, the vehicle cannot navigate by using the 

odometer information only because the incremental mechanical errors might result in 

imprecise odometer data. Hence, in order to keep the navigation in the path, odometer 

calibration must be carried out to eliminate the errors. 

The vehicle we use in this study has mechanical errors, as mentioned. It deviates 

gradually to left when it moves forward on a straight line, as observed in our 

experiments. In this study, we propose a technique to collect the data of the deviation, 

and analyze the data to build an odometer calibration model. In Section 3.3.2, we will 

describe the details of the odometer calibration model we adopt which can eliminate 

the mechanical errors. After finding out the deviation values in every different 

distance, we want to apply this model to compute the deviations of all distances by a 

curve fitting scheme which we will discuss in Section 3.3.3. The use of such 

calibration results is described in Section 3.3.4. 

3.3.2 Odometer Calibration Model 

Before building an odometer calibration model, we prepare some equipment for 

our experiment. We use a sticky tape, a measuring tape, an autonomous land vehicle, 

and a computer. First, we fix the initial position O of the vehicle and mark the position 
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by pasting a sticky tape on the ground. Second, we fix the initial direction of the 

vehicle and paste a straight line L along the direction on the ground by using a stick 

tape. Third, we send commands to drive the vehicle forward on a straight line, and 

then commands to stop the vehicle. Fourth, we mark the terminal position T of the 

vehicle by pasting a piece of sticky tape on the ground. Fifth, we find the node P on 

the straight line L which is the vertical projection of the terminal position T. Sixth, we 

measure the distance D1 between O and T which is the move distance of the vehicle, 

and the distance D2 between T and P which is the deviation produced by mechanical 

errors. Seventh, we compute the angle Θ of the inverse sine value of D2/D1 which is 

the angle of the deviation. We repeat the steps at least twenty times and let the 

distance the vehicle moves be different every time. An illustration of the experiment is 

shown in Figure 3.11. The resulting values are shown in Table 3.1 and the distribution 

of the results is shown in Figure 3.12. 

Algorithm 3.2. Building an odometer calibration model. 

Input: None. 

Output: An odometer calibration model. 

Steps: 

Step 1. Fix the initial position O and initial direction line L of the vehicle. 

Step 2. Send commands to let the vehicle move forward and then stop. 

Step 3. Mark the terminal position T of the vehicle. 

Step 4. Find the vertical projection node P of the terminal position T of the 

vehicle on the straight line L. 

Step 5. Measure the distance D1 between O and T and the distance D2 between T 

and P. 
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Step 6. Compute the angle Θ of inverse sine value of D2/D1. 

Step 7. Repeat Step 1 to Step 6 at least twenty times and let the distance the 

vehicle moves every time be different. 

 

 

Figure 3.11 An illustration of the experiment. 
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Figure 3.12 The distribution of the angles of the deviations. 
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Table 3.1 The results of the experiment of building an odometer calibration model. 

Move Distance (cm) Distance of Deviation (cm) Angle of Deviation 

45.6 1.3 5.13 

70.3 2.1 5.38 

87.9 2.4 4.91 

102.7 2.8 4.91 

113.1 2.8 4.46 

148.7 3.5 4.24 

175.6 4.2 4.31 

197.6 5.7 5.19 

225.9 6.4 5.10 

246.5 6.7 4.89 

281.6 11.1 7.10 

290.7 11.4 7.06 

317.6 12.5 7.09 

359.3 12.8 6.41 

389.4 17.1 7.91 

403.8 18.8 8.38 

443.4 20.8 8.45 

469.9 18.3 7.01 

515.1 23.6 8.25 

577.3 28.3 8.83 

3.3.3 Curve Fitting 

After measuring the values of the angles of deviations, we found out that the 



 38

distribution of data has a trend which may be roughly described as a curve of the 

second order with respect to the vehicle move distance value. Therefore, we use a 

least squares error (LSE) fitting method to fit the data with a curve. And then we can 

use the resulting curve for odometer calibration while patrolling. The method is 

explained as follows. 

First, we generalize a straight line to a curve of the kth-degree polynomial: 

k
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or, in matrix form, 
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This is a Vandermonde matrix. We can also obtain the matrix for a least squares fit by 
writing: 
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As before, given n points, a fitting of them with polynomial coefficients a0, a1, ..., 
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ak gives 
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In matrix notations, the equation for a polynomial fit is given by 

XAY = . (3.16)

This can be solved by pre-multiplying by the matrix transpose as follows:  

XAXYX TT = . (3.17)

This matrix equation can be solved numerically, or can be inverted directly if it is well 
formed, to yield the solution vector: 

YXXXA TT 1)( −= . (3.18)

The result of curve-fitting of the previously-mentioned set of angle data of 
deviations is shown in Eq. (3.19) below and illustrated in Figure 3.13. 

2( ) 0.00000476 0.00592048 4.16437951f x x x= × + + . (3.19)

 
Figure 3.13 The results of line fitting of the angle of deviation. 



 41

3.3.4 Navigation by Odometer Calibration 

In Section 3.3.2 and Section 3.3.3, we have described the process of building the 

odometer calibration model and found a quadratic function which can show the 

relationship between the distance the vehicle moves and the angles of deviations 

caused by the mechanical errors. In this section, we describe the process about using 

the quadratic function to calibrate the odometer while navigating the vehicle in indoor 

environment. 

We guide the vehicle most of the time while navigation by the command: “move 

to front.” But the vehicle always has a leftward deviation while moving forward. To 

deal with this problem, we use the odometer calibration model to balance the 

deviation. First, we have to know the distance D we want the vehicle to move forward. 

Second, we substitute the value D into Eq. (3.19) to get the angle of deviation Θ. That 

means if we command the vehicle to move to D centimeters ahead of the original 

position, then the vehicle should be instructed to deviate rightward for the angle of 

Θ. Therefore, we issue a command of right turn of angle Θ before commanding the 

vehicle to move forward. In this way, we can balance the deviation. The major steps 

are shown in Figure 3.14. 
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Figure 3.14 An illustration of odometer calibration. 
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Chapter 4  

Learning Procedures 

4.1 Introduction 

In this chapter, we introduce the details of the proposed learning procedures. Two 

kinds of environment features are used for learning in this study. The first is path 

data. In the procedures, the vehicle learns path data while following a person. An 

adopted method and an improved method of human following are described in 

Section 4.2. In Section 4.3, we describe how to gather path data when the vehicle 

follows a person in an indoor environment. 

The second feature is 2D object. In the learning procedures, the vehicle learns 

2D objects if it detects the situation that the person stops and faces to the left or right 

side. An adopted method and an improved method of human facing direction 

detection are described in Section 4.4. For object monitoring, how to detect the 2D 

object automatically is the key issue, and we propose a method for it in Section 4.5. 

An illustration of the learning procedures is shown in Figure 4.1. 

4.2 Human Following 

4.2.1 Review of Adopted Method 

Wang and Tsai [1] proposed a person following method which can conduct a 
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work of following a specified person by motion analysis of human clothes. The 

system user learned the clothes of the target person manually. The user decided the 

start point and the boundary box in the image for region growing of the clothes. After 

learning the image part of the person’s clothes, the system will enter the human 

tracking process. The major steps are shown in Figure 4.2. 

Following

Learning

Human detection

Person following

Learning path data

Human facing direction 
detection

The person stops and 
faces to  lateral side

Learning object data

Start of learning

The person still in 
front of vehicle?

Yes

Path data

Object 
data

Person tracking strategy

No

No

Yes

 

Figure 4.1 An illustration of proposed learning procedures. 

To detect the location of the target person by clothes, the system uses a clothes 
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intersection region to predict the direction of the target person. The proposed method 

only computes the directional variation of the target person. The detail of the 

proposed clothes region intersection is described in the following algorithm. 

Algorithm 4.1. Clothes region intersection. 

Input: Clothes image Iclothes, and the initial region Rinitial which is the target clothes 

region. 

Output: The current region Rcurrent of the person’s clothes in the image. 

Steps: 

Step 1. Capture an image Icurrent. 

Step 2. Subtract Iclothes from Icurrent pixel by pixel in Rinitial, and get a new image 

Iintersect as the result, which is the intersection of the two images in the 

region Rintersect. 

Step 3. Calculate the centroid of Iintersect in Rintersect and that of Iclothes in Rinitial, 

denoted as Cintersect and Cinitial, respectively. 

Step 4. Compute Ccurrent, the centroid of the clothes region location in the current 

image, by 
2

initial current
intersect

C CC +
= . Also calculate the region Rcurrent by 

Ccurrent with its width and height being those of Rinitial, respectively. 

Step 5. Let initial currentR R= , and repeat the steps. 

4.2.2 Proposed Improvement of Adopted Process 

The vehicle can follow persons by the method mentioned previously in indoor 

environments with uniform illumination. Unfortunately, the illumination in common 

indoor environments is not actually uniform, especially in the hallway environment 
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where there are more than one light and the illumination between two lights is darker 

than the illumination under either light. A vertical view of the lighting condition under 

two lights is shown in Figure 4.3. 

Person following

Clothes learning strategy

Human tracking module

Finish

Clothes 
image Face detected

Target person 
disappears

 

Figure 4.2 The application for person following. 

The method mentioned in Section 4.2.1 uses the value of Cb and Cr which are 

detected at the initial time. However, if the vehicle follows a person and keeps using 

the value detected at the initial time, then it may lose the tracking of the person 

because the illumination over the vehicle changes while the vehicle moves in the 

environment. 
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Figure 4.3 The top-view of light and illumination in the hallway. 

To deal with the problem, we propose an improvement of an adopted process 

which dynamically adjusts the values of Cb and Cr for detecting the color of the 

clothes. First, when we detect the clothes of a person, we collect the pixels p1, p2, …, 

pn of the clothes in the image. Second, we get the values of Cb and Cr of all the pixels 

p1, p2, ..., pn, named Cb1, Cb2, ...,Cbn and Cr1, Cr2, ...,.Crn, respectively. Third, we 

calculate the average values Cb,average and Cr,average of all the values of Cbi and Cri  by 

Eqs. (4.1) and (4.2) below: 

,
1

1 n

b average bi
i

C C
n =

= ∑ , (4.1)

,
1

1 n

r average ri
i

C C
n =

= ∑ . (4.2)

Fourth, we detect persons by using the new values Cb,average and Cr,average. Instead of 

using pre-selected fixed values, the vehicle uses dynamic values of Cb,average and 

Cr,average in each cycle to detect and follow the person and overcomes the problem of 

luminance changes under different lighting conditions. The major steps are shown in 

Figure 4.4. 



 48

4.2.3 Person Tracking Strategy 

When the person being followed turns fast in front of the vehicle, it is difficult 

for the vehicle to keep track of the person. Chen and Tsai [2] proposed a method of 

recording the disappearing direction of a fast-moving person by an arm equipped on 

the vehicle. Our system records the direction of disappearance by using the capability 

of panning of a PTZ camera. 

Start person following

Detect clothes by new standard 
values

Renew the standard values
New standard 

values of 
clothes

Follow Person
 

Figure 4.4 An illustration of improvement of adopted process. 

When the person turns fast in front of the vehicle, we can find out his/her turning 

direction, left or right, and guide the vehicle to turn for a large angle, θfind, to the 

direction to find the disappearing person. If the disappearing person appears in the 

view of the camera after the vehicle turning, then the vehicle will follow the person 

again and continually. But, if the vehicle cannot find the disappearing person after 

turning, then it turns again until the sum of the multiple turning angles is equal to 
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180°. When the vehicle turns 180o (half of a circle), we can be sure that the person 

disappears in the direction which the system recorded. Then the system will end the 

process of learning. We save the positions of this kind of loss-of-tracking point, where 

the vehicle turns the angle of θfind, as the turning point data in this study and use them 

in the patrolling process. An illustration of the previously-described person tracking 

strategy is shown in Figure 4.5, and an example of results is shown in Figure 4.6. 

Is human in front of 
vehicle?

Turn an angle to find human 

Vehicle turns a half of 
circle?

No

Yes

End of learning

Person following

Learning process

Yes

Human 
direction 

information
No

Figure 4.5 An illustration of person tracking strategy. 
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(a) (b) 

(c) (d) 

 

(e) 

Figure 4.6 An example of person tracking results. (a) A vehicle is following a person. 
(b) The person turns fast to right. (c) The vehicle turns an angle θfind to find 
the person. (d) The vehicle finds the person. (e) The vehicle follows the 
person again. 
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4.3 Learning of Path Data 

When the vehicle is following a person, the odometer provides continuously the 

current position data of the vehicle in the global space with respect to the start point of 

the current navigation session, and the ultrasonic sensors provide continuously the 

current distance data with respect to the surrounding objects or walls. The position 

data, which are provided by the odometer, consist of the vehicle coordinates (x, y) in 

the vehicle coordinates system. And the distance data, which are provided by the 

ultrasonic sensors, consist of the left and right side distances (dl, dr) from the vehicle 

to the upholstery of concern in the environment. We record both the position and the 

distance data as the path data in this study. 

We save once every second the coordinates (x, y) and the distances (dl, dr) 

integrally as a node Ni. Each node is labeled with a serial number. These nodes form a 

graph of the learned path. After learning, we have a set of nodes, denoted as Npath. We 

will use the path data in the process of path planning. Additionally, we can use the 

data to draw a draft of the map of the environment. Two drafts of maps of two 

different environments are shown in Figure 4.7. 

 

(a) 

 

(b) 

Figure 4.7 Drafts of maps. (a) Map of an open indoor environment. (b) Map of a 
hallway environment 
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4.4 Detection of Human Facing 
Direction 

4.4.1 Review of Adopted Process 

We can know the direction of the monitored object by detecting the human 

facing direction. Chen and Tsai [2] proposed a method for human facing direction 

detection, which can decide what direction a person is facing to, based on the use of 

the change of the ratio of the width of the person’s clothes to the height. When the 

person turns, this ratio becomes smaller because the shape of the clothes extracted in 

the image becomes thinner. Then the distribution of the person’s hair and skin is used 

to judge whether the person turns to the right or to the left. For this, the center of the 

face is found out first and the colors of the pixels in a horizontal line which passes this 

center point are collected to compute the color distribution of the hair and skin in the 

person’s face. 

If the person is facing to the vehicle, then most pixels on the horizontal scan line 

are of the skin color; if the vehicle is at the back of the person, then most pixels on the 

line are of the hair color. When the person turns to the right, the hair is at the left side 

of the face and the skin is at the right side, so most pixels at the left side of the scan 

line are of the hair color and most pixels at the right side of the scan line are of the 

face color, and vice versa. An illustration of human facing direction detection is 

shown in Figure 4.8. An illustration of the facing direction of the person is shown in 

Figure 4.9. 
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Figure 4.8 An illustration of detection of a person’s facing direction. 
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(d) 

Figure 4.9 An illustration of the facing direction of the person. (a) Front. (b) Back. (c) 
Left. (d) Right. 
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4.4.2 Proposed Improvement of Adopted Process 

The proposed method mentioned in Section 4.4.1 detects the human facing 

direction by using a scan line. However, it gets a false result easily, because the scan 

line is thin and the numbers of pixels on the scan line are little. For this situation, 

instead of using the scan line, our system uses a scan rectangle to increase pixels for 

detection and enhance the accuracy of detection. The details of the improved method 

are described in the following algorithm and an illustration is shown in Figure 4.10. 

Algorithm 4.2. Finding the facing direction of a person. 

Input: The current image Ic, the clothes center Ca (ic, jc) and the four corner points 

PTopLeft (itl, jtl), PTopRight (itr, jtr), PBottomLeft (ibl, jbl), and PBottonRight (ibr, jbr) of the 

clothes region, the length of the person’s face Lface, a region of the color of 

blackness, Black, the skin color region Skin, a minimum threshold T2 and a 

maximum T3 threshold, a width value Lwide of the scan rectangle. 

Output: The facing direction of the person, Direction. 

Steps: 

Step 1. Scan the column of the image Ic, which contains the pixel Ca (ic, jc) to find 

the first pixel Hair (ihair, jhair) with the color of the hair, Black. 

Step 2. Find the center of the face Cface (iface, jface) by the following way: 

cface ii = ; (4.3)

2
face

hairface

L
jj += . (4.4)

Step 3. Because the range of the width of the face will not exceed the clothes, limit 
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the horizontal search region to be from PTopLeft (i) to PTopRight (i). 

Step 4. Find the value RTop and RBotton by the following way, and limit the vertical 

search region to be from RTop to RBotton: 

2
wide

Top face
LR j= − ; (4.5)

2
wide

Botton face
LR j= + . (4.6)

Step 5. Measure the values of Cb and Cr of the pixels inside the left half of the scan 

rectangle position of the horizontal direction from itl to iface and the vertical 

direction from RTop to RBotton. If the values fall into the region Black, set the 

number NLblack of black color as 

1+= BlackBlack NLNL . (4.7)

If the values fall into the region Skin, set the number NLskin of skin color as 

1+= skinkskin NLNL . (4.8)

Step 6. Measure the values of Cb and Cr of the pixel inside the right half of the scan 

rectangle from the horizontal position iface to itr and from the vertical 

position RTop to RBotton. If the values fall into the region Black, set the 

number NRblack of black color as 

1+= BlackBlack NLNR . (4.9)

If the value falls into the region Skin, set the number NLskin of skin color as 
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1+= skinkskin NRNR . (4.10)

Step 7. Check the sizes of the distributions of the colors of the skin and the hair as 

follows: 

2TNRNL blackblack <+ ; (4.11)

3TNRNL skinskin >+ ; (4.12)

blackblack NRNL > ; (4.13)

Skinskin NRNL < . (4.14)

If Inequalities (4.11) and (4.12) are satisfied, set Direction as “Front”;  
else, 

if Inequalities (4.13) and (4.14) are satisfied, set Direction as “Right”; 
else, as “Left”. 
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Figure 4.10 An illustration of the scan rectangle for human facing direction detection. 
(a) Front. (b) Back. (c) Left. (d) Right. 
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4.5 Learning of 2D Objects 

4.5.1 Review of adopted algorithm for learning of 

objects 

In order to learn concerned objects, Chen and Tsai [9] designed a user interface 

to help users specify the object which they want to monitor. While the user controls 

the vehicle to the front of the object to be monitored, they can move the PTZ camera 

toward the object. Then, they can select the object in the image by the use of the 

mouse connected to the computer to drag a rectangle as an interesting region to cover 

the object which appears in the image, as shown in Figure 4.11(a). After that, the 

system applies the simplified SIFT algorithm [9] to obtain the feature set of the 

interesting region. 

During the learning phase, if the user gives a horizontal line, which is parallel to 

the floor plane in the 3D global coordinate system in the image as shown in Figure 

4.11(b), the system can acquire the same line found in the image taken in the 

navigation phase by applying this affine transformation. Then, by some analytic 

mathematics analysis on this horizontal line found in the image taken in the 

navigation phase, the proposed system could obtain the relative position C(xr, yr) and 

the relative angle θr of the vehicle in the world coordinate system with respect to the 

monitored object, as shown in Figure 4.12. 

Then, the user saves the vehicle location, the PTZ position, the feature set, and 

the interesting region into the storage of the computer. The last thing is to save the 

calibration information data including the start point (u1, v1) of the horizontal line, the 

coefficients b and c in the equation 0u bv c+ + =  of the horizontal line, the relative 
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position (xr, yr), and the relative angle θr for use in adjusting the vehicle location in 

the navigation phase. The detailed learning process is described in the following. 

(a) (b) 

Figure 4.11 (a) A red rectangle including the monitored object as an interesting region. 
(b) A user interface to specify the horizontal line. 

 

 
Figure 4.12 The relative position C(xr, yr) of the vehicle with respect to the start 

point in the world coordinate system. 
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Algorithm 4.3. Learning of a monitored object. 

Input: The position P of a monitored object. 

Output: A calibration information data. 

Steps: 

Step 1. Drive the vehicle to the monitored object position P. 

Step 2. Move the PTZ camera toward the object and take an image I. 

Step 3. Drag a rectangle on the image I as an interesting region. 

Step 4. Apply the simplified SIFT algorithm [9] on the interesting region to extract 

the feature set. 

Step 5. Select the start point (u1, v1) and the end point (u2, v2) of the horizontal line 

in the image I which is parallel to the floor plane in the 3D global 

coordinate system. 

Step 6. Compute the coefficients b and c by solving the equation 0u bv c+ + =

with (u1, v1) and (u2, v2). 

Step 7. Apply the location estimation algorithm proposed in [9] to find the relative 

position C(xr, yr) and the relative angle θr with respect to the start point in 

the 3D global coordinate system as an origin. 

Step 8. Save the vehicle location, the PTZ position, and the feature set of the 

interesting region as monitored object information data. 

Step 9. Save the start point (u1, v1), the coefficients b and c, the relative position 

(xr, yr), and the relative angle θr as calibration information data for a 

monitored object. 

Step 10. Save the interesting region in the image. 
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4.5.2 Learning 2D Objects Automatically 

The proposed method of learning 2D objects described in Section 4.5.1 need to 

be performed manually. In our system, the vehicle learns 2D objects and follows a 

person in the mean time. It is unreasonable to let the user controls the computer and 

leads the vehicle at the same time. Hence, we propose a method which can learn 2D 

objects automatically. 

Because of the vehicle always detects the facing direction of the user, if there is a 

picture on a wall and we hope that the vehicle could remember the picture, the user 

just need to stand in front of the picture and face to it for a while, and then the vehicle 

will go to the position where the user stands and pan the angle of camera to the same 

direction as the user. The vehicle remembers the view of the camera frame as image I. 

The system finds the interesting region of the 2D object and a horizontal line L, which 

is parallel to the floor plane in the 3D global coordinate system in image I. We save 

the positions of this kind of nodes where the vehicle learns 2D objects, as monitoring 

point data in this study and it will be used in the patrolling process. 

The system uses the method of the simplified SIFT algorithm [9] to obtain the 

feature set of the picture and applies the location estimation algorithm proposed in [9] 

to find the relative position C(xr, yr) and the relative angle θr with respect to the start 

point of the horizontal line L in the 3D global coordinate system as an origin. Finally, 

we save the information into the storage of the computer. The detail process is 

described in the following algorithm, and a flowchart is illustrated in Figure 4.13. 
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Algorithm 4.4. Learning of a monitored object automatically. 

Input: A vehicle and a user. 

Output: Monitored object information data. 

Step 1. Follow the user. 

Step 2. Detect the human facing direction, if the user stops and turns to left or right 

for a while, go to Step 3, else go back to Step 1. 

Step 3. Go to the position of the user and pan the camera to the picture. 

Step 4. Remember the view of camera frame as image I. 

Step 5. Find the interesting region of the 2D object and a horizontal line L, which 

is parallel to the floor in the image I.  

Step 6. Calculate the position of the vehicle with respect to the horizontal line L. 

Step 7. Calculate the feature set of the 2D object. 

Step 8. Save information. 

4.5.3 Finding Regions of 2D Objects 

There are two crucial techniques in the method of learning 2D objects 

automatically. The first is finding the interesting region of the 2D object in the image I 

and the other is finding the horizontal line L, which is parallel to the floor plane in the 

3D global coordinate system in image I. For finding the interesting region, we deal 

with image I by using thresholding and region growing methods. The detail process is 

described in the following algorithm. Additionally, we will describe the method of 

finding the horizontal line L automatically in Section 4.5.4. 
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User stops and faces to 
lateral side for a while?

Start

Find interesting region of the 
picture in the image I

Follow the user

Go to the position of user and 
pan the camera to the picture

Obtain the feature Set of the 
picture

Yes

No

Find a horizontal line L which 
is parallel to the floor

Save data

Image I

Calculate the position of the 
vehicle

Vehicle 
position

Feature set

Figure 4.13 An illustration of learning of a monitored object automatically. 
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Algorithm 4.5. Finding the interesting region in the image. 

Input: An image I with a monitored object, and the gray version Ig of I. 

Output: Four corner points PTopLeft(il, jt), PTopRight(ir, jt), PBottomLeft(il, jb), and 

PBottonRight(ir, jb) of an interesting region, and the horizontal line L. 

Step 1. Calculate the threshold value T of the gray value which can differentiate 

background and foreground of I. 

Step 2. Reset the gray value gpi of every pixel pi in the image Ig in the following 

way: 

If gpi > T is satisfied, set gpi as a foreground point; 

else, 

if gpi ≤ T is satisfied, set gpi as a background point. 

Step 3. Conduct region growing from the center of Ig and get the top and bottom 

vertical coordinate values GT and GB, the leftmost and rightmost horizontal 

coordinate values GL and GR. 

Step 4. Set the coordinate values il, ir, jt and jb for corner points PTopLeft(il, jt), 

PTopRight(ir, jt), PBottomLeft(il, jb), and PBottonRight(ir, jb) of the interesting region 

by the following way 

l Li G= ; (4.15)

r Ri G= ; (4.16)

t Tj G= ; (4.17)

b Bj G= . (4.18)
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4.5.4 Finding the Horizontal Line Automatically 

If we want to find the horizontal line, then we need to find the set of edge points 

by edge detection in the image first. There are many different operators which can 

find edges in an image, for example, the Laplacian operator, Marr-Hildreth operator 

and Canny operator, etc. In our system, we detect edges by using the Sobel operator 

as shown in Figure 4.14. Let T be the threshold value of the Sobel operator. 
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Figure 4.14 Sobel Operator (a) x direction (b) y direction. 

We apply the Sobel operator on a pixel pi, and let rpi be the resulting value. If 

Inequalities (4.19) below is satisfied, then we mark the pixel pi as an edge point. 

pir T>  (4.19) 

After checking very pixel pi in the interesting region which was obtained from Section 

4.5.3, we can get a set of edge points, EP. 

Now we can find the line by using the Hough Transform. It is a method of line 

detection by a voting technique and the relationship between the parameter space and 

the normal distance-normal angle space is as shown in Figure 4.15. 
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Figure 4.15 The relationship with x-y space and γ-θ space. 

At first, we divide the range of angles, [0, π], in to n part, Θ0, Θ1, …, Θn, and 

calculate the length rregion of a diagonal of the interesting region. We prepare next an 

accumulation array A, whose size is n×rregion, and set the value of every cell to zero, as 

shown in Figure 4.16. 

T 0 T 1 T n-1 T n

r0

r1

rregion

...

...

T

r
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Figure 4.16 The accumulation array A of the Hough Transform. 

We substitute a point (x, y) in the edge point set EP and Θi into Eq. (4.20) below 

to get a value r and put a vote into the cell (r, Θi):  

cos sini ir x yθ θ= + . (4.20)

We repeat this step of voting in the cells for every edge point and every Θi. After 

voting, we find the cell (γ, θ) with the maximum number of votes to obtain a line 

which has the intercept γ and the angle θ in the normal distance-normal angle space. 

There is a restriction in our method, that is, the heights of monitored objects 

must be of fixed values known in advance. By the progressive method as described 

above, we can find the interesting region of the concerned 2D object in the image I 

and the horizontal line L, which is parallel to the floor plane in the 3D global 

coordinate system in image I, as shown by the example in Figure 4.17 and Figure 

4.18. 

(a) (b) 
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Figure 4.17 An example of detection of information of monitored object by the 
progressive method. (a) An image with a monitored object. (b) The 
thresholding result. (c) The interesting region. (d) The horizontal line. 

(c) (d) 

Figure 4.17 An example of detection of information of monitored object by the 
progressive method. (a) An image with a monitored object. (b) The 
thresholding result. (c) The interesting region. (d) The horizontal line. 
(continued) 

 

(a) (b) 

Figure 4.18 Another example of detection of information of monitored object by the 
progressive method. (a) An image with a monitored object. (b) The 
thresholding result. (c) The interesting region. (d) The horizontal line. 
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(c) (d) 

Figure 4.18 Another example of detection of information of monitored object by the 
progressive method. (a) An image with a monitored object. (b) The 
thresholding result. (c) The interesting region. (d) The horizontal line. 
(continued) 
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Chapter 5  

Path Planning by Minimizing Mean 
Square Errors Using Ultrasonic 
Signals 

5.1 Introduction 

After learning the path and the monitored object data, the system will refine the 

path data before the vehicle navigates to the start point. The path data are composed 

of many path nodes. Two extreme examples of path planning results are shown in 

Figure 5.1(a) and Figure 5.1(b). The First example is a path for backing to the start 

point directly which is very simple and crude, and there might have some obstacles on 

the path. The second example is a path stepping on every node precisely. It may not 

seem smart because the path could be rough or tortuous. Hence, we desire the planned 

path could be smooth but not lose the original trend, as the illustration shown in 

Figure 5.1(c). We describe the details of the proposed path planning process in 

Section 5.2. 

The system performs the path planning process by using the MSE criterion. In 

the MSE criterion, the system needs to set a threshold value which is used to control 

the precision of the path. Hence, the choice of the threshold value is very important. 

Our system uses a technique which can choose the threshold value by adapting to 

different environments. We describe the detail of the proposed process in Section 5.3. 

In Section 5.4, we will describe the details of the patrolling technique of our system. 
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Start

End

(a) 

Start

End

(b) 

Start

End

(c) 

Figure 5.1 Illustrations of path planning. (a) Backing to the start point directly. (b) 
Stepping on every path node precisely. (c) The planned path we desire. 

5.2 Path Planning by MSE criterion 

The path data are composed of path points. As a start, the system finds out n path 

points where we learned monitored objects, and separates the path into n+1 segments 

by the n path points. Then we construct an empty queue Q, and push the n+1 

segments into Q. 

The system pops out a segment of the path, and uses the line fitting technique 

which is described in Section 3.3.3, to find a linear equation of a line L in two 

variables, x and y, like the formula of Eq. (5.1) below, where A, B and C are constants: 

: 0L Ax By C+ + = . (5.1)

We calculate the distance values di from every path point Pi(xi, yi) in this segment to 

the line L by 

2 2

i i
i

Ax By C
d

A B

+ +
=

+
. (5.2)



 71

The value of the induced square error E of the line L can be calculated by 

( )2

1

1 m

i
i

E d
m =

= ∑ . (5.3)

The system uses a threshold value Tmse as the upper bound of the square error value. If 

the error E is smaller than Tmse, then the system considers the currently-processed 

segment of the path smooth enough. But if the error E is larger than Tmse, then the 

system considers the segment not smooth enough, and we need to do more processing 

for this path. 

It is proposed in this study to choose a cut point from the path points P1, P2, …, 

Pm of the segment of the path which is not smooth enough. If we cut on the point Pj, 

then we need to find the line L1j and Ljm by using the line fitting method again and 

calculate the values of the two mean square errors E1j and Ejm separately. Then, the 

square error of cutting on the point Pj is 

After cutting the path m-2 times on P2, …, Pm-1, we can get m-2 mean square errors E2, 

E3, …, Em-1. We then find the minimum value Ek from the m-2 error values, with Ek 

meaning that if we cut the path on Pk, then we can get the least error value. We finally 

push the two shorter paths P1, P2, …, Pk and Pk+1, Pk+2, …, Pm into the queue Q. 

The system executes the above process repeatedly, until the queue is empty, and 

at that time the original path has been cut into many segments which are smooth 

enough. Finally, we save every start point of these segments of the path as the 

navigation path data. An illustration of the path planning process is shown in Figure 

5.2. 

1j j jmE E E= + . (5.4)
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Allowed the part of path

Start of path planning

The queue is empty

Cut the path on point Pj

Point data

If E<Tmse ?

Path data

Separate path and push path 
data into an empty queue

Object 
data

Pop a segment of path P1, 
P2…Pm from queue

Yes

End of path planning

Line fitting

Calculate MSE

Line fitting and find error 
value Ej = E1j + Ejm

j = m-1 ?
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j = j +1

Find minimum Ek of
E2…Em-1

Push P1, P2…Pk and Pk+1, 
Pk+2…Pm into the queue

No
Yes

Yes

No

No

Figure 5.2 Illustration of proposed path planning. 
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5.3 Dynamic Path Decomposition 

The threshold value of the MSE criterion is used to tolerate the value of the error. 

The larger the threshold, the cruder the path decomposed. There is no advantage if the 

threshold is very large or very small. The choice of the threshold should adapt to the 

environment of the path. Moreover, the environment could be different at different 

parts of a path, and each different part of the path should be decomposed by a 

different degree of precision. We propose a technique here which chooses the 

threshold value dynamically. 

Except the coordinates of path points, the distances are also part of the 

information of path data which are learned in the learning process by using ultrasonic 

sensors. Our system knows the breadth of the environment of a path by analyzing the 

distance data collected by the ultrasonic sensors. In the learning process, the system 

learned the left and right distances (dl,i, dr,i) of every path point Pi with respect to the 

obstacle or the wall around the point. We simplify such distance data to get a single 

distance value Di of every path point by 

Considering the correlation of the connected segments of the path, our system 

calculates the threshold value of one segment by using the distance values of not only 

the path points in this segment but also five points before and five points behind this 

segment. Additionally, the composite the mean square error for this segment is taken 

to be the average of the squares of the error distances, as Eq. (5.3), and the threshold 

value is related to the mean square error. So we derive the equation of Eq. (5.6) below 

to calculate the threshold value of a segment with n points; 

( ), ,min ,i l i r iD d d= . (5.5)
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where k is a constant. 

We decompose the path dynamically by recalculating the above threshold value 

in every cycle of a navigation session. An illustration of the proposed dynamic path 

decomposition scheme is shown in Figure 5.3. 

Path Planning

If the queue is empty? End of path planning

Pop a segment of path Pi~Pj
from queue

Calculate MSE Eij

If Eij<Tmse,i,j ?

Calculate Tmse,i,j

Decompose Pi~Pj into Pi~Pk
and Pk~Pj

Push Pi~Pk and Pk~Pj into 
queue

Yes

No

Yes

No

Figure 5.3 An illustration of proposed dynamic path decomposition. 
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5.4 Vehicle Navigation by 2D Object 
Image Matching 

After planning the path, the last process of the system is vehicle patrolling from 

the end to the start position of the path obtained from the path planning process. In a 

patrolling session, the vehicle navigates along a learned path by visiting each path 

point consecutively. The learned navigation path, which consists of a set Npath of 

points and we specify the last point of Npath to be the initial position of the navigation 

path. Then, the vehicle reads the next node data Ni+1(xi+1, yi+1) and computes a turning 

angle and a moving distance by Eqs. (5.7) and (5.8) in the following algorithm, for the 

vehicle to move to the next position Ni+1(xi+1, yi+1), as shown in Figure 5.4. 

Algorithm 5.1. Process of vehicle guidance by a learned path. 

Input: A set Npath of nodes. 
Output: The vehicle navigates to the start point in the learning process. 
Steps: 

Step 1. Start vehicle navigation from the starting node N0 in Npath. 

Step 2. Let the current position be Ni(xi, yi), and the direction read from the 

odometer be θodo. 

Step 3. Scan Npath to read the next node Ni+1(xi+1, yi+1). 

Step 4. Compute the moving direction as a vector iV  by using the following 

equation:  

1

1

i i i
i

i i i

X x x
V

Y y y
−

−

−⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

. (5.7)

Step 5. Compute the direction angle θnew for the vehicle to turn toward the node 
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Ni+1 by using the following equation: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

i

i
new X

Y1tanθ . (5.8)

Step 6. Compute the navigation distance for the vehicle to advance as id V= . 

Step 7. Calculate the odometer calibration angle θcali using the following equation 

obtained from Section 3.3.3: 

20.00000476 0.00592048 4.16437951cali d dθ = × + × + . (5.9)

Step 8. Compute the rotation angle for the vehicle as θturn = θnew − θodo + θcali. 

Step 9. Turn the vehicle leftward for the angle θturn if θturn is larger than zero; 

otherwise, turn the vehicle rightward for the angle θturn. 

Step 10. Move the vehicle forward for the distance d. 

Step 11. Read the next node data. If there exist remaining nodes, repeat Steps 3 

though 8; else, finish the navigation. 

 

 
Figure 5.4 Computation of the turning angle and move distance. 
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Additionally, the navigation path is composed of two kinds of special path points. 

The first kind is turning point where the vehicle turns a large angle θfind, obtained 

from Section 4.2.3. Because θfind is a large angle, we hope the vehicle can really turn 

this angle in the navigation process; otherwise, the resulting vehicle trajectory will be 

too far away from the desired path learned in the learning stage, according to our 

experience of experiments conducted in this study. Hence, when the vehicle navigates 

to this kind of path point, it is commanded to turn to the inverse direction of the angle 

θfind + θcali instead of the angle θturn calculated in the algorithm above. The second 

kind of path point is monitoring point where the vehicle learned a 2D object, obtained 

from Section 4.5.2. When the vehicle navigates to this kind of path point, the vehicle 

will “see” the 2D object again and the system will monitor this object. After 

successfully monitoring an object, we can take advantage of the matching result to 

adjust the vehicle location [9]. An illustration of the patrolling process is shown in 

Figure 5.6. Some examples of experimental results are shown in Figure 5.5 and Figure 

5.7. 

 

Figure 5.5 An example of a planned path of an ellipse shape. 
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Current point is a 
turning point ?

End of patrolling
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Figure 5.6 An illustration of proposed patrolling process. 
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(a) (b) 

 

(c) (d) 

 

(e) 

Figure 5.7 An example of experimental results. (a) The vehicle monitors an object. (b) 
The vehicle walks to a turning point (c) The vehicle monitors another 
object. (d) The vehicle goes back to the original start point. 
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Chapter 6  

ALV Navigation by Ultrasonic Signal 
Sequences 

6.1 Ultrasonic sensing in ALV System 

The vehicle of our system has eight ultrasonic sensors that facilitate 

implementations of object detection and range finding functions for collision 

avoidance, recognition, localization, and navigation. The ultrasonic sensors are 

equipped in the vehicle at fixed locations around the vehicle: one on each side and six 

facing outward at twenty degree intervals, as shown in Figure 6.1. 

The ultrasonic sensors may be used to obtain the information of distances by 

calculating the time spent from the start of firing an ultrasonic sound to the end of 

receiving a reflected sound. The distance data could have errors if the plane, which 

receives the incident, is not perpendicular to the fired sound ray. If the angle of 

incidence grows, then the erroneous distance values will grow, too. This phenomenon 

needs to be noticed when using this kind of sensor. 

In our system, we set the left distance DL as the value detected from ultrasonic 

sensor No. 0 plus half of the width of the vehicle, set the right distance DR as the 

value detected from ultrasonic sensor No. 7 plus half of the width of the vehicle, and 

set the front distance DF as the average value of those detected from ultrasonic 

sensors No. 3 and No. 4. The system catches the reflected values Femit times every 

second as a sequence of distance data. 
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LeftRight

 

Figure 6.1 The positions of ultrasonic sensors around the vehicle. 

6.2 Principle of Navigation 

6.2.1 Learning Strategy 

The navigation paths in an indoor environment are usually composed of some 

straight lines which are connected by turning points. Before navigation, the vehicle 

has to learn the parameters of Width, Directionturn, Directiondetect, and Distancedetect of 

the environment. For a straight line of a path in the indoor environment, if it is a 

hallway with two walls at both the left and the right sides, then the value Width is set 

equal to the width of the hallway. But if the straight path only has one wall at the left 

or the right side, then Width is set equal to double the distance between the vehicle 

and the wall. An illustration is shown in Figure 6.2. For a turning point of the path, if 

the vehicle needs to turn to the right at the turning point, then we set Directionturn = 

right, and if the vehicle needs to turn to the left, we set Directionturn = left. 
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Width

(a) 

1
2

Width×

(b) 

Figure 6.2 An illustration of the parameter of Width. (a) The hallway with two walls. 
(b) The hallway only has one wall. 

Additionally, the vehicle has to know the conditions of turning points. Turning 

points are usually located at the end of a wall or a hallway. The distance values caught 

from the ultrasonic sensors will vary to large values at the position of the end of a 

wall. The parameter Directiondetect is used to save the direction where the environment 

has caused such a kind of large-value variation and the vehicle can detect such 

variations to find out turning points. If a turning point is located at the end of the left 

wall, then we set Directiondetect = left; otherwise, we set Directiondetect = right. 

Moreover, we set Directiondetect = left or right to mean that the turning point is located 

at the end of the left or the right wall, respectively. If the turning point is located at the 

end of the hallway, it means that there is something stopping the hallway. In that case, 

we set Directiondetect = front. The last parameter needs to learn is Distancedetect which 

is the distance between the turning point and the start position of the end of the wall in 

the environment. An illustration is shown in Figure 6.3. 

6.2.2 Navigation Strategy 

After learning the navigation path in the environment, the vehicle can navigate 

along the learned path by analyzing the sequential signals acquired by the ultrasonic 
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sensors. The vehicle has two missions, one to navigate along the middle line of the 

hallway, and the other to keep the direction of navigation parallel to the hallway. 

Turning Point

Distancedetect

 
(a) 

Turning Point

Distancedetect

 
(b) 

Turning Point

Distancedetect

 

(c) 

Turning Point

Distancedetect

 

(d) 

Figure 6.3 An illustration of the parameter of Directiondetect (a) Directiondetect = left. 
(b) Directiondetect = right. (c) Directiondetect = left + right. (d) Directiondetect 
= front. 

We begin a navigation session at a start position in the hallway, and let it go 

forward by a fixed speed Speed. From the ultrasonic sensors, the system retrieves 

distance information Di which includes the left and the right distances (Di,L, Di,R) at 

time i, and analyzes n sets of data, Di-n, Di-n+1, …, Di, before time i. The vehicle needs 

to adjust its direction in four situations. When the vehicle moves close to the wall at 

the left side gradually, the system could find out the fact that the left distance of the 

vehicle is reducing or that the right distance of the vehicle is growing. Then, if the 

vehicle is close enough to the left wall, that is, if the right distance of the vehicle 
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exceeds half of the width of the hallway, then the vehicle turns an angle θlittle to the 

right, that is, the vehicle turns when the following conditions are met: 

, 1,k L k LD D −> , (6.1)

or , 1,k R k RD D −< , (6.2)

with ,
1
2k RD Width< × , (6.3)

for every k between i − n and i. 

On the other hand, when the vehicle moves close to the wall at the right side 

gradually, the system could find out the fact that the right distance of the vehicle is 

reducing or that the left distance of the vehicle is growing. Then, if the vehicle is close 

enough to the right wall, that is, if the left distance of vehicle exceeds half of the 

width of the hallway, the vehicle turns an angle θlittle to the left, that is, the vehicle 

does so if 

, 1,k L k LD D −< , (6.4)

or , 1,k R k RD D −> , (6.5)

with ,
1
2k LD Width< ×  (6.6)

for every k between i − n and i. An illustration of the situation of adjusting the 

direction of the vehicle is shown in Figure 6.4. An illustration of navigation in a 

hallway is shown in Figure 6.5. 

It is seems superfluously if we both consider Eq. (6.1) and (6.2), but it is 

necessary. The walls in environments are not completely planar and the sensor could 

get some noise, so we need to consider the data from both sides of the wall. Eq. (6.4) 
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and (6.5) are for use to handle the same situation as above. 
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(b) 

Figure 6.4 An illustration of the situation of adjusting the direction of the vehicle. (a) 
The vehicle should turn an angle to the right (b) The vehicle should turn an 
angle to the left 
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Figure 6.5 An illustration of navigation in a hallway. 
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For detection of a turning point, we have learned the parameters of the direction 

to detect Directiondetect and the distance to detect Distancedetect in the learning stage. If 

the parameter Directiondetect is left or right, the system calculates the times N to detect 

the changes of the environment by: 

detect
emit

DistanceN F
Speed

⎛ ⎞
= ×⎜ ⎟

⎝ ⎠
. (6.7)

And it also detects the changes of Directiondetect, and if the times reach N, then the 

vehicle arrives the turning point and turns to Directionturn. If the parameter 

Directiondetect is front, then the vehicle will keep detecting the front distance until the 

distance is smaller then Distancedetect. Then we consider that the vehicle has arrived at 

the turning point and command the vehicle to turn to the direction Directionturn. 

6.3 Applications in Tour Navigation 

A set of path information Pi of a straight line and a turning point is compose by 

four parameters Widthi, Directionturn,i Directiondetect,i, and, Distancedetect,i. We can 

construct a complete navigation path by learning many sets of such path information, 

P1, P2, …, Pn. While navigation, every time the vehicle goes through the turning point, 

the system reads the next set of path information and detects the next turning point. 

The navigation path can be considered as a simple automaton as shown in Figure 6.6. 

6.4 Experimental Results 

In this section, we show some experimental results of the proposed navigation 
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system. In Figure 6.7, the vehicle navigates on a path. 
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Figure 6.6 The navigation path. (a) An example of paths. (b) The path is transformed 
into an automation 
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Figure 6.7 An experimental result of navigation in an indoor environment. (a) The 
vehicle navigates on the path. (b) The navigation map. 
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Figure 6.7 An experimental result of navigation in an indoor environment. (a) The 
vehicle navigates on the path. (b) The navigation map. (continued) 
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Figure 6.7 An experimental result of navigation in an indoor environment. (a) The 
vehicle navigates on the path. (b) The navigation map. (continued) 
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Figure 6.7 An experimental result of navigation in an indoor environment. (a) The 
vehicle navigates on the path. (b) The navigation map. (continued) 
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Chapter 7  

Experimental Results and 
Discussions 

7.1 Experimental Results 

In this section, we will show some experimental results of the proposed person 

following and patrolling system and the navigation system in indoor environments. 

Experiments for this study were performed at the hallway out of the Computer Vision 

Laboratory at the Department of Computer Science in Engineering 3 Building, and 

the hallway of the sixth floor of the Microelectronics and Information Systems 

Building, all in National Chiao Tung University. 

The user interface of the person following and patrolling system is shown in 

Figure 7.1. The proposed system has four modes: detection, following, learning and 

turning. The system will detect humans in acquired images in the detection mode. In 

the following mode, the system will follow a target person by the use of the extracted 

clothes features. After a user presses the start button, the system will start the 

detection mode and detects any person’s clothes. Then the system will extract the 

clothes region; and if it decides a person to be existent, it will change the detection 

mode to the following mode, and then finish the current cycle, as shown in Figure 7.2. 

After changing to following mode, the vehicle will follow the person and calculate a 

new value of the color of clothes of the target person at the same time, the reference 

value of clothes will renew continually. 

When the person turns to a direction to face a picture, then the vehicle will enter 
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the learning mode. If the person turns to the right or left for a while, the vehicle will 

go to the position where the person stands and turn to the same direction to see and 

remember the view. Then, the system will analyze the view and find the region and 

the horizontal line of the 2D object, as shown in Figure 7.3 and Figure 7.4. 

Besides, when the vehicle follows the person, if the person turns fast in front of 

the vehicle, the system will change to the turning mode. Then the vehicle will turn a 

big angle to the right direction to search the disappearing person, as shown in Figure 

7.5. 

A record map of navigation session is shown in Figure 7.6. After path planning, 

the vehicle will go back to the start point in the learning process, and monitor the 

learned objects, as shown in Figure 7.7. An illustration of the experimental process is 

shown in Figure 7.8. 

 

Figure 7.1 An interface of the experiment. The green box shows the image stream 
and the blue box shows the input image at this moment. The yellow box 
shows the difference image and the red box shows the draft of the map. 
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(a) (b) 
Figure 7.2 An experimental result of extraction of the clothes. (a) The input image. 

(b) The image of the extracted clothes. 

 

t = 1 

  

t = 2 

  

 (a) (b) 

Figure 7.3 An experimental result of the learning mode. (a) The input image. (b) The 
position of the vehicle. 

For the second type of vehicle system using ultrasonic sensors, the user interface 

of the system is shown in Figure 7.9. We simulate the vehicle as a guiding vehicle for 

guiding visitors from the door area of an elevator into an office. An illustration of the 

learned data, the navigation map, and the actual navigation path created in the 

experiment is shown in Figure 7.10 and the record map of navigation session is shown 

in Figure 7.11. 
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(a) (b) (b) 

Figure 7.4 An example result of learning a 2D object. (a) The input image. (b) The 
region of the 2D object. (c) The horizontal line of the 2D object. 
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 (a) (b) 
Figure 7.5 An experimental result of following a person turning fast. (a) The input 

image. (b) The position of the vehicle. 
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t = 3 

  

 (a) (b) 

Figure 7.5 An experimental result of following a person turning fast. (a) The input 
image. (b) The position of the vehicle. (continued) 

 

 
Figure 7.6 An experimental result of navigation. The blue line segments show the 

planning result. And the red points show the real patrolling path of the 
vehicle. 

After a user presses the start button, the system will read the path data and start 

the navigation. In the hallway environment, the vehicle will adjust the direction by 

analyzing sequence of signals detected from ultrasonic sensors and navigation on the 

middle of the hallway. When the vehicle arrive the detection node, it will start 

detecting the position of turning node by the learned information of the distance and 

the direction, and take a turn. The experimental results are as shown in Figure 7.12. 
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1. 

 
 

2. 

 
 

(a) (b) (c) 

Figure 7.7 The experimental result of object monitoring and navigation path 
correction. (a) The numbers of monitored objects. (b) The vehicle 
monitors the objects. (c) The matching result and the horizontal line used 
for path correction. 
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Figure 7.8 An illustration of the path of following a person and monitoring objects 

in an experiment. 
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Figure 7.9 Interfaces of the experiment. 
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Figure 7.10 An illustration of learned data and navigation path. 

 

 
Figure 7.11 An experimental result of navigation. 
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t = 1 

  

t = 2 

  

t = 3 

  

 (a) (b) 

Figure 7.12 The experimental result of the vehicle guide a person. (a) Navigation in a 
hallway. (b) Navigation at a turning point. 

7.2 Discussions 

By analyzing the experimental results of person following and guidance, some 

problems are identified as follows. 

(1) We built an odometer calibration model to calibrate the deviation angle which is 

made by the action of moving forward of the vehicle. But there are still some 

deviations made by the action of turning of the vehicle which should be 
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calibrated. 

(2) The human following process by the use of the clothes color might incur errors 

due to other people wearing clothes of the same color. When different people 

wear clothes of the same color, the system will be confused and cannot decide 

which person is the target to follow. 

(3) In the detection of the facing direction, we use the color of the hair, i.e., the 

black color, for judging the facing direction of the person. If the hair of the 

person is dyed or if the person has no hair, the system cannot work. 

(4) In our system, there are some restrictions to finding 2D objects in images, for 

example, the height of 2D objects must be fixed and the objects need be pasted 

on a wall of light color. But pictures in common environment are not always 

pasted at the same height, and the paint of the wall is not always light. This 

problem should be solved in the future. 

(5) The maps of paths are drawn by the coordinate data which are provided by the 

odometer in our systems. But the path in the map is ‘curved’ and different from 

the traversed path, because of the imprecise odometer data resulting from the 

incremental mechanical errors. 
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Chapter 8  

Conclusions and Suggestions for 
Future Works 

8.1 Conclusions 

Several techniques and strategies have been proposed in this study and integrated 

into two autonomous vehicle systems for navigation in indoor environments: one with 

human following and object monitoring capabilities, and the other with person 

guidance capability. 

At first, a method of improving the practicability of a camera calibration method 

has been proposed. Some steps in a past method for finding the intersection points on a 

grid board repeat incurring errors easily. We use the property of the cross shape, 

which has eight points with color changes around the center point, to detect the cross 

shape. Besides, a method of calibrating the odometer equipped on the vehicle has 

been proposed. For the purpose of reducing the incremental mechanical errors 

suffered by the vehicle, we built an odometer calibration model by using a curve 

fitting technique to calculate a smooth curve of the values of the angle of deviation in 

different distance moves taken by the vehicle. 

The proposed system for patrolling in the indoor environment has three 

processes: the following process, the path planning process, and the patrolling process. 

The system is in the following process at the beginning. When the vehicle is 

following a person, the illumination in common indoor environments is not actually 
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uniform. If the vehicle keeps using the value detected at the initial time to follow a 

person, then it may lose the tracking of the person because the illumination over the 

vehicle changes while the vehicle moves in the environment. We have proposed an 

improvement of an adopted process to dynamically adjust the values of Cb and Cr for 

detecting the changing color of the clothes of a followed person. 

Then, a method for detecting a disappearing person who turns fast in front of the 

vehicle has been proposed for use in the person following process. When the person 

makes a fast turn at a corner, the system will use the recorded information to 

command the vehicle to turn to the right direction for searching the disappearing 

person in the acquired image. 

When the vehicle follows a person, it will also detect the facing direction of a 

person by using a scan line. It gets a false result easily, because the scan line is thin 

and the numbers of pixels on the scan line are little. So, we have proposed a method 

by using a scan rectangle to increase the number of pixels for detection and enhance 

the accuracy of detection. 

After detecting the facing direction of a person, the vehicle goes to the position 

where the person just stands and turns to the same direction of the person, and then 

analyzes the view to find a 2D monitored object. We have proposed a method by 

using region growing and the Hough transform to find the region and a horizontal line 

of the object. And we save these data of objects and use them in the patrolling 

process. 

The vehicle collects the path data of positions and distances from the odometer 

and the ultrasonic sensors, and uses these data to refine the path into a smooth path. A 

method of path planning by using the MSE criterion has been proposed. Also 

proposed is a method to adjust the MES threshold automatically, by which the 

planned path can adapt to different environments. 
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In another system for navigation in indoor environment, we have proposed a 

method of analyzing ultrasonic signals for the vehicle to navigate in a corridor 

environment. The vehicle can navigate in the middle of paths and detect the learned 

turning point. The system can be applied to be a guiding vehicle in the office 

environment, which can guide visitors and make some introduction to them. 

The experimental results shown in the previous chapters have revealed the 

feasibility and practicality of the proposed systems. 

8.2 Suggestions for Future Works 

The proposed strategies and methods, as mentioned previously, have been 

implemented on a vehicle system. Several suggestions and related interesting issues worth 

further investigation in the future are stated in the following. 

(1) Improving the extraction of clothes colors, such as a pattern on the cloth. 

(2) Conducting human following by different features, such as texture and shape, to 

eliminate errors caused by the case that the different people may wear clothes of 

the same color. 

(3) Following a person by use not only the feature of color, like using the ultrared 

rays to detect the heat of a person, for overcoming huge changes of the 

luminance. 

(4) Improving the detection of a person’s facing direction by learning other hair and 

skin colors or using the position of the mouth to know the direction which a 

person faces to. 

(5) Adding a judgment of the position of a person’s body. When a person slips and 

falls over, the person’s body may fall down on the floor. If this situation 
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continues for a long time, the vehicle can issue an emergence signal to call 

someone for help. 

(6) Detecting the heights of monitored objects by using two pictures captured at 

different positions. 

(7) Using a top view camera to make sure the computed position of the vehicle. 
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