

國 立 交 通 大 學

多媒體工程研究所

碩 士 論 文

支援多核心架構之程式轉換技術

Program Transformation for Multi-core Architecture

研 究 生：王勝保

指導教授：陳俊穎 教授

中 華 民 國 九 十 七 年 八 月

支援多核心架構之程式轉換技術

Program Transformation for Multi-core Architecture

研 究 生：王勝保 Student：Sheng-Pao Wang

指導教授：陳俊穎 Advisor：Jing-Ying Chen

國 立 交 通 大 學
多 媒 體 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Multimedia Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

Aug 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年八月

支援多核心架構之程式轉換技術

學生：王勝保 指導教授：陳俊穎 博士

國立交通大學多媒體工程研究所

摘 要

發展嵌入式系統時須考量不同軟硬體平台的特性及各類系統資源的有效運

用。在未來以多核心架構為基礎的嵌入式系統成為主流後，如何針對不同平台特

性設計系統提升整體效能，並同時降低發展成本變得更加重要。針對這個問題，

本論文提出使用程式轉換的技術，使得開發者可專心發展應用程式，不須考慮過

多軟硬體平台的細節，並能仰賴各種程式轉換工具針對不同的軟硬體特性產生適

用的程式碼。為了驗證此方法的可行性，我們以 Java 語言為基礎，在不同嵌入

式平台，包括一個雙核心架構的平台上作試驗，並得到實驗結果的支持。

i

Program Transformation for Multi-core Architecture

Student : Sheng-Pao Wang Advisors : Dr. Jing-Ying Chen

Institute of Multimedia Engineering
National Chiao Tung University

ABSTRACT

Embedded systems are characterized by their scarce computing resources and

heterogeneous hardware-software configurations. With multi-core architecture

entering the embedded systems market, developing efficient software applications,

and delivering them timely, becomes even more challenging. One main obstacle to

embedded software development is to tune applications for different system

configurations in order to maximize system performance in terms of execution speed,

memory, energy consumption, and so on. Often, a particular software design that

performs well in one configuration may work miserably in another. The objective of

this thesis is to investigate the use of program transformation techniques as a solution

to this problem. The idea is to have a framework where developers can concentrate on

developing applications without devoting excessive effort on low-level hardware and

system software details, and rely on different program transformation schemes to

produce programs for specific platforms. With the framework, we have experimented

with various Java benchmarks on different platforms, including an embedded

platform containing two cores. The result shows that program transformation can

improve performance significantly with considerably less development and tuning

effort.

ii

誌 謝

對於學位論文的完成，首先必須感謝我的指導教授陳俊穎老師，在研究所的

兩年求學生涯中，總給予我詳盡與切要的指導。指引我正確的研究方向，對於解

決問題的方法和研究態度上，也使我獲益良多；同時特別感謝口試委員楊武教授

與黃慶育教授在百忙之中給予許多寶貴的指導與建議，使得論文的內容更加完

備。

此外，感謝研究室一起奮鬥的伙伴們，亦超、宜涼，以及登揚諸位學長，以

及坤定、仁傑兩位學弟，在研究進行時給與我許多的支持與鼓勵，並伴我度過這

兩年的研究生涯。

最後，由衷地感謝我最親愛的家人們，正因他們全力支持與包容，才能促使

我順利的完成學業，願將這份成果共享於我的家人。

王勝保 謹誌 2008 年 8 月

於交通大學協同合作實驗室

iii

Table of Contents

摘 要 ... i

ABSTRACT... ii

誌 謝 ... iii

Table of Contents ... iv

List of Figures and Tables... vi

Chapter 1. Introduction ..1

Chapter 2. Background...4

Chapter 3. The Program Transformation Framework 11

3.1. Objective and Considerations.. 11

3.2. System Requirements .. 13

3.3. Architecture Overview... 15

3.4. Design Space Exploration ... 19

3.5. Code Generation .. 20

Chapter 4. Experiments ... 26

4.1. Simple Benchmarking ... 26

4.2. Scimark2 Benchmarking ... 29

iv

4.3. Code Refactoring ... 31

4.4. Image Filter Benchmarking ... 33

4.5. MPEG Decoder Benchmarking ... 34

4.6. Experiments on PAC and Inter-processor Communication 35

Chapter 5. Conclusion.. 39

References .. 40

Appendix: Benchmarks used in Section 4.1 ... 43

v

List of Figures and Tables

Figure 1. Portable PAC SoC Platform ...13

Figure 2. The Overall Program Transformation Framework.......................16

Figure 3. The Overview of the architecture of the JGene core....................17

Figure 4. JGene program attributes..18

Figure 5. Sample using interface of JGene ..19

Figure 6. Relation between JGenes and CLDC/MIDP27

Table 1. The performance results on various configurations.......................27

Figure 7. The 256x256 matrix multiplication execute result.......................28

Figure 8. The speedup of GCC optimization in recursion29

Table 2. The result of Scimark2 scores on CLDC and CDC platforms.......30

Figure 9. The result of CLDC/KNI Scimakr2 scores31

Table 3. The effort of refactoring FFT...33

Table 4. The image filter sample tests result ...33

Figure 10. The result of our image filter benchmarking..............................34

vi

Figure 11. The decoding flow of J2ME mpeg decoder35

Figure 12. The mpeg display fps before(L) and after(R) transform()35

Figure 13. The build environment ...36

Figure 14. MIDP examples on PAC ..36

Figure 15. Application examples on PAC LCD ..37

vii

Chapter 1. Introduction

Embedded systems range from tiny sensors that possess limited computing power but

consume little energy, to battery-powered hand-held devices supporting multiple software

applications interacting with users via various types of user interfaces, to set-top boxes with

increasing computing capability and more demanding energy requirement. Software

development plays an increasingly important role in any embedded system projects. To cope

with heterogeneous hardware/software configurations each with different budget in terms of

computing power, memory usage, energy consumption, and the types of peripherals, software

engineers need to spend a great deal of effort on configuration-specific customization, hoping

to tune the system for optimum performance within the given budget. Such relatively

“mundane,” time-consuming task, compared to the development of the applications for end

users, is becoming more burdensome when systems become more powerful capable of hosting

multiple applications simultaneously. The problem is further intensified by the fact that

multi-core architecture, developed mostly for higher-end, desktop systems previously, is also

gradually entering the embedded systems segment. The implication of such a shift is quite

significant for software engineers, because developing concurrent, multi-threaded programs

running on multiple processors simultaneously has always been challenging when compared

to single-threaded applications. As if it is not enough, concurrent programming is more

burdensome if the multiple processes are in fact heterogeneous each with special capabilities

(e.g. signal processing, graphics rendering, networking, etc.). When the universal

time-to-market factor dominates the entire development project, it is not surprising to see that

many delivered embedded systems operate in a sub-optimal mode.

Advanced CAD tools have always played a crucial role for hardware and other

engineering disciplines, to help engineers analyze, validate, and improve their designs

continuously and rapidly. Development of CAD tools for software engineering, although long

thought to be desirable and critical, has not kept up with the pace of advancement of software

development technologies. Although this thesis is not the place to investigate the main causes

of this issue, it is clear that for in the field such as embedded systems where innovations

emerge rapidly, sufficient CAD support will always lag behind. The question is how to

develop CAD tools that is sufficiently useful, fast enough, while keeping the development

code low so that the return of investment is justifiable.

1

It should be noted that the fundamental tool-chains and associated development

environment are always required for any embedded system project. What we mean by CAD

support are those “additional” tools that, among other things, help engineers visualize and

analyze the architecture, design, and implementation of the system under development.

Without CAD support, engineers mostly have to rely on manual programming and tuning of

the system, based on previously obtained execution history or performance measures.

Nevertheless, the scope of CAD support in general or for embedded system development

in particular, is still too large. What we are interested in are strategies and mechanisms that

help engineers derive applications for different system configurations easily without having to

modify these applications thoroughly. To be more specific, there are some questions we want

to address:

 How to adjust an application if the memory budget is low. What are the available

maneuvers that can be tried?

 How to partition an application into modules that can be deployed on different cores,

taking into account the necessary interface and communication changes between

modules.

 For an application written with single-thread execution in mind, how to adjust it in

case the underlying system support multi-threads.

 How to quickly obtain empirical feedback in order to understand the impact of

various optimizations, their improvement or mismatch between anticipated result and

actual result.

In this thesis we focus on program transformation techniques, and pay particular

attention to their usefulness for embedded software development. Such a source-level

transformation approach is highly portable from one processor to another and is

complementary to existing platform-specific, back-end optimizations. With sufficiently

powerful program transformation tools, the task of developing higher-level, end-user

applications can be decoupled from low-level system-specific optimization more desirably.

For example, instead of injecting various compiler flags and machine dependent code into the

main code base, the engineers may instruct the program transformer with various rules or

heuristics to produce final programs geared towards specific target platforms. Moreover, by

putting less effort into compiler development, the transformational approach help reducing

2

the time to market of the embedded system product while giving higher performance. Even

though it is arguable that the generated programs are still not optimum when compared with

those hand-crafted equivalents – just like the general perception that compiler-generated code

cannot compete with hand-crafted assembler code – we argue that software engineers gain

substantial advantages when they use program synthesizers properly. For example, it would

be faster to explore different alternatives and make better design decisions without indulging

prematurely into hand crafting tasks.

The rest of this thesis is organized as follow: in chapter 2 we will survey related areas in

compiler techniques and program transformation systems for embedded systems. In chapter 3

we will outline the design objective, considerations, and the architecture of our program

transformation framework. In chapter 4 we will describe and discuss some performance

studies using the transformation framework, as well as some experiments with an

experimental embedded system board. In chapter 6 we will conclude the thesis.

3

Chapter 2. Background

Embedded systems are essentially a highly dynamic field because of the fast pace of

innovations and development in hardware, operating systems, and application development

technologies. With the tremendous commercial potential at stake, as well as relatively smaller

investment companies require to join the game, it is not difficult to see the embedded systems

market is filled with a huge and diverse array of hardware devices and associated system

software platforms. This suggests that the dimensions of design space for embedded systems

also increase dramatically. One would have to consider target-system-specific transformations,

such as memory optimization requiring target architecture-dependent loop transformations,

optimized word length selection, and process restructuring for fine-grain load distribution, etc.

As stated in [Ernst], “the problem is worse here than with parallel compilers because of

architecture specialization.”

Research interests in optimization techniques for embedded systems have grown in

recent years, in an attempt to understand the various optimization strategies applicable to the

design of embedded systems in terms of time-space performance and/or power consumption.

For example, some conferences and workshops such as LCTES and ODES are devoted to

such goal. Compiler and optimization research for embedded systems shares the same

foundation with general compiler techniques, but has specific challenges to address:

 Energy awareness. Many approaches address the energy consumption issues that

are crucial for embedded systems (e.g. [Lambrechts], [VanderAa03],

[VanderAa05]).

 Memory hierarchy. Some compiler techniques explore the characteristics of

memory hierarchies that differ from one embedded system from another ([Chen],

[Grewal], [Ozturk], [Sanghai07]).

 Transformation and code generation. There are also efforts that propose code

generation and transformation techniques for embedded systems. In addition, there

are also efforts concerned with specific problem domains such as algorithms for FFT

or other multimedia applications, and develop specific code generation methods for

embedded systems. Examples include [Ali], [Alur], [Burgaard], [Cheng], [Franke],

[Hong].

4

 Multi-core architecture. Work in this category concerns the parallelization aspect

for multi-core embedded systems or more general multi-processor architecture

([Dupre], [Perkins], [Sanghai05]), and is closely related to traditional parallelizing

compiler research..

 Profiling-based optimization. Work in this category proposes methods that guide

compiler with profiling information, possibly obtained from actual execution of

automatically generated programs. ([Cavazos], [Peri], [Zhao05], [Suresh]).

 Framework and methods. There are also research efforts proposing general

framework and methods that can are applicable for embedded systems. ([Aarts],

[Barat], [Fulton], [Pan], [Vachharajani], [Zhao03]).

The references presented above are just samples from the vast literature in compiler

research. Furthermore, the categories above are not mutually disjoint, since it is often the case

that a research effort will consider multiple aspects simultaneously. In what follows we focus

on research and development relevant to the area of compiler techniques, or more specifically

program analysis and transformation systems for multi-core embedded systems, without

probing further into areas such as energy consumption or more hardware-oriented research.

For efforts related to program transformation, [Franke] investigates source-level

transformation for embedded systems, which incorporates a probabilistic feedback-driven

search for proper transformation sequences. Specifically, it combines a simple random search

for space exploration and a focused search based on a machine learning approach, in order to

help reducing the extremely huge search space. [Lee] investigates the case of dual instruction

set processors that are increasingly popular for embedded systems. Typically, programs

compiled with a reduced instruction set (16 bits/instruction) have smaller code size but run

slower, but run faster with larger code size when compiled with a full instruction set (32

bits/instruction). Thus [Lee] first compiles a program with the reduced instruction set first,

and then analyses and selects a set of basic blocks of the program and transforms them using

the full instruction set that gives the maximum performance gain while maintaining the code

size under a given upper bound.

When the development of the hardware is also part of an embedded system project, the

matter becomes more involved. [Ernst] provides an overview of research in

hardware/software co-design of embedded systems. [Bennett] proposes a framework that

5

combined automated code transformation and ISE generators to explore the potential benefits

of such a combination. Although the design space is even larger in the hardware/software

co-design context, what was discussed previously is still useful. Still, there are a number of

points worth pointing out:

 An integrated and coherent co-design system should capture the complete design

specification, including hardware and software models, and support design space

exploration with optimization based on this specification

 Synchronization and integration of hardware and software design becomes an issue.

 The boundary between hardware and software is interesting. Although this aspect

resembles the boundary between programs written in high-level languages and those

using assembly languages (to boost performance for a critical part), the

hardware/software boundary is “permanent” and thus requires much rigid analysis

and careful decisions.

General-purpose source code transformation frameworks are also relevant in our study.

For example, [Cordy] presents the TXL system that supports all aspects of parsing, pattern

matching, transformation rules, application strategies and unparsing within a specially

designed language with no dependence on other tools or technologies. [Bravenboer] is

another framework, called Stratego/XT, that is essentially a collection of reusable components

and tools for the development of transformation systems, where transformation components

are implemented using the Stratego language that provides rewrite rules for expressing basic

transformations, programmable rewriting strategies for controlling the application of rules,

concrete syntax for expressing the patterns of rules in the syntax of the object language, and

dynamic rewrite rules for expressing context-sensitive transformations.

Another important category of compiler research for embedded systems concerns

parallelization. For multi-core architecture this usually amounts to the partition of a program

into parts each may sit on different cores. [Suresh] provides both compiler-based and

simulation-based loop analyzers that profile an application, and a loop analysis toolset to

support hardware software partitioning. These tools are used to identify core fragments of

programs of many benchmarks that are executed most frequently. However, these core

fragments are factored out into hardware in a manual way. [Kim] presents a source code

analysis technique that, although not targeting embedded systems per se, is still relevant to

6

parallelization and program transformation. The technique attempts to extract so-called

pre-execution code from an ordinary program such that the pre-execution code can be placed

as another helper thread that runs “in spare hardware contexts ahead of the main computation

to trigger long-latency memory operations early, hence absorbing their latency on behalf of

the main computation that can be issued prior to the main program.”

When more general compiler techniques are concerned, the space for exploration

includes many dimensions. A particularly important dimension is the kinds of optimizations

that can be performed. This dimension is profound due to the ever increasing complexity of

hardware architecture. There are also enormous research efforts on applying existing, general

optimizations to embedded systems. An even more challenging dimension regards the

potential interferences among optimizations. It is well known that the order of optimizations

can affect the quality of the final result; some optimizations may enable or disable future

optimizations. [Zhao03] investigated the impact of optimizations to embedded systems.

[Franke] mentioned above also discusses its program transformation framework for embedded

systems from this optimization space exploration perspective. The iterative compiler approach

(e.g. [Aarts]) addresses this by performing optimizations in different ways, and observe the

performance characteristics of the actual generated code rather than relying on heuristics or

abstract performance models. [Triantafyllis] proposes a more elaborated framework for

exploring the space of optimizations. In this framework, a compiler optimizes each code

segment with a variety of optimization configurations and examines the code after

optimization to choose the best version produced. Because this finer-grained iterative

compiler approach results in larger search space, the framework also proposes methods to

reduce the search space. [Pan] builds a feedback-directed optimization orchestration

algorithm which searches for the combination of optimization techniques that achieves the

best program performance. The algorithm attempts to successively identify and removes

harmful optimizations, measured through a series of program executions, with the goal to

reduce the number of compilations while maintain the quality of the generated code.

Because our transformation framework is geared towards Java programs, it is also worth

considering related work for embedded Java. The Java Platform, Micro Edition (J2ME) is a

set of technologies and specifications developed for small devices like pagers, mobile phones,

and set-top boxes. J2ME uses smaller-footprint subsets of Java SE components, such as

smaller virtual machines and leaner APIs, and defines a number of APIs that are specifically

7

targeted at consumer and embedded devices. It is proposed to enable users, service providers,

and device manufacturers to take advantage of a rich portfolio of application content that can

be delivered to the user’s device on demand, by wired or wireless connections.

Although JVMs can be implemented using straightforward interpreters, the most popular

approach to improving JVM performance is to replace or augment the interpreter with a

just-in-time (JIT) compiler, which transforms the bytecode into machine code that can be

executed by the host machine directly. Depending on the level of optimization applied, the

translated machine code may even approximate the speed of equivalent programs written in

C.

However, the JIT compilation phase may be quite complicated, also depending on the

type of optimizations performed, and require substantial memory and processing time. In

addition, especially for embedded systems, the impact of this in terms of user experience can

be very significant, particularly at application start-up, as a device appears unresponsive for a

long period of time. It becomes obvious that compiling all bytecode into native code may

incur too much overhead, especially statistically speaking a large portion of the bytecode is

executed vary rarely or even not executed at all.

Accordingly, some researchers try to design lightweight and efficient JIT compilers. For

example, in [Tabatabai] a JIT compiler for the Intel IA32 architecture is proposed that

generates native IA32 instructions directly from the byte codes, in a single pass. Other than a

control-flow graph used for register allocation, the JIT does not generate an explicit

intermediate representation. Rather, it uses the byte codes themselves to represent expressions

and maintains additional structures that are managed on-the-fly. This is in contrast to other

Java JIT implementations which transform byte codes to an explicit intermediate

representation. Another example described in [Shudo] presents cost-effective code generation

and optimization methods by means of template connecting. The code generator basically

connects pre-fabricated templates of native code corresponding to internal instructions. In

addition to the technique, stack caching [Ertl] was implemented in the compiler and the

technique makes use of multiple registers over templates.

Therefore, most JIT compilers are selective about the bytecode to compile, often on a

method basis. That is, they collect the frequency of each loaded method and only compile

those methods that are (expected to be) frequent. Furthermore, because the more

8

optimizations to apply, the more memory and processing time are needed, many JIT

compilers have multiple levels of optimizations each with different memory and processing

time requirements, so that different optimizations can be applied to different methods based

on their relative frequencies.

Another way of addressing the issue of compilation overhead is through the so-called

dynamic adaptive compilers (DAC), sometimes also referred to as mix-mode interpreters. In a

DAC, bytecodes are initially executed by interpretation while software profiles the code and

determines key code sections to be compiled. Some variations avoid the interpretation all

together and convert the bytecode into native code immediately using inexpensive translation.

Once the key code sections, mostly methods, that are identified as hot, they are compiled

using more advanced optimization options. Furthermore, the available levels of optimizations

may be more than one, so that only extremely hot sections receive extensive analysis and

optimizations. The popular Jikes RVM (research virtual machine) employs such an MMI

approach.

Another category of JVM optimization that is more relevant to our study is the so-called

ahead-of-time (AOT) compilation. As the name suggests, if the Java programs and/or

bytecode are known prior to their execution, we can employ traditional compiler steps by

translating them into native code in advance. Extensive program analysis and optimizations

can therefore be applied without limitation. We believe AOT compilation is a very important

technique for embedded systems because there are often core applications that should be

bundled with a given embedded system. Note that if the embedded Java system is required to

download and execute bytecode dynamically, JIT compiler is still essential.

Optimized ahead-of-time compilation attempts to produce code having size and speed

comparable to code written in C/C++, while remaining compatible with the Java world,

allowing for the mixing and matching of code according to individual system requirements.

Some AOT compilers such as GCJ translate Java programs into native code (through the

common GCC backend), while others may translate Java into C and rely on C compiler to

perform sophisticated optimizations. Note that AOT compilation does not conflict with JIT

compilation. In fact, many AOT compilation frameworks still require JVMs to process and

execute bytecode if it is allowed to execute Java applications containing both natively

compiled part and bytecode part.

9

AOT compilers are usually not for dynamically downloaded classes. It is nevertheless

possible to invoke existing JIT compilers on bytecode to obtain and cache the compiled

machine “ahead of time,” thereby reducing the time for class loading and optimization

substantially. This simpler approach to AOT compilation comes almost free because it makes

use of the JIT compiler that already exists. CVM actually provides such facility that allows

engineers to customize additional classes for AOT compilation and to include them in the

final binary footprint. [Hong] also extends from the idea and that proposes a “client-side”

compilation during run time for downloaded classes. The idea works because in certain

embedded applications such as set-top boxes where applications may be executed many times

after they are downloaded, hence the time saved for class loading and optimizations can be

significant.

10

Chapter 3. The Program Transformation Framework

Program transformation is a powerful technique that has been used to support various

kinds of software engineering activities. In fact, refactoring – the process of restructuring

code with the purpose of making it easier to understand and maintain without changing its

observable behavior – is strongly coupled with program transformation. Nowadays, the use of

refactoring to increase quality is considered a very important development practice. For

instance, Extreme Programming, an agile approach to software development, includes

refactoring as a standard activity to improve software design continuously.

Unlike compilers, many program transformation tools are not language specific, being

able to transform programs from an arbitrary source language to an arbitrary destination

language. In general, a program transformation tool requires two kinds of user: the

transformation engineer, who configures the tool (encodes the transformations) and the

programmer, who uses the tool for software development (applies the transformations). While

this provides necessary flexibility, it complicates the use of the tools. As a result, making use

of program transformation in practical, large-scale projects to improve productivity is not

possible without sufficient tool support.

3.1. Objective and Considerations

Our goal is develop a program transformation framework that can benefit software

development in general and the development of multi-core embedded systems in particular. It

is beneficial to envision a full blown, fully integrated CAD environment that can assist

developers in all aspects, even though our actual goal here is far less ambitious. By

identifying the long-term directions, we hope to design an extensible framework that has core

assets sufficient for short-term needs and can be extended further for new, possibly much

more sophisticated features in the future. Hence below we proceed with the discussion of a

comprehensive program transformation system, its ideal features, requirements, and potential

issues.

A complete program transformation system should capture the complete design

specification of an embedded system, support design space exploration with optimization

based on this specification, and even to deal with different aspects of developing and

11

finalizing the embedded system. For example, some embedded systems may be equipped with

primitive operating system without real-time facilities. Generating programs for them will be

quite different from generating for other systems with real-time support. Yet, whenever

possible, one should avoid developing the same application twice just for these two classes of

embedded systems.

Without relying unrealistically on compilers to extract concurrency from an arbitrary

single-threaded program and to re-shuffle it to fit different target platforms, a more

cost-effective approach is to only work on programs that are written with certain styles,

possibly with additional annotations, to help generators generate target-specific programs

more suitably, or at least suggest potential improvements one can attempt to take better

advantage of the generators’ capability.

The goal of the generator can be further generalized to cover hardware/software

co-design or even co-synthesis. That is, within given hardware and software requirements and

application domains, it is possible to investigate different system-wise designs. To pursue this

goal, however, more detailed hardware model and software model should be used. Because of

the diversity in possible hardware and software models, developing a comprehensive

environment supporting all of them is probably too much.

In addition to the general objective and considerations mentioned above, we also have a

more project-specific objective and associated considerations. One of the major test beds of

our transformation framework is the PAC (Parallel Architecture Core) platform. Figure 1

depicts the overall architecture of the PAC platform, which is designed to provide a platform

for the next-generation mobile devices such as smart phone, PDA, and portable media players.

The PAC platform features a dual-core architecture, where the MPU core is designed to

execute system and application programs, while the DSP core is suitable to execute complex

computation programs, such as multi-media codes.

One of the major milestones of the PAC project is the development of a

high-performance compiler and related development environment for the DSP core. Therefore,

to help unveiling the potential power of the PAC platform, our framework should be used to

help offloading some of the computation tasks from the MPU core to the DSP code.

12

Figure 1. Portable PAC SoC Platform

A critical concern, however, is the fact that the benefit of such labor division may be

overshadowed by the incurred initialization and communication overhead. Furthermore, the

different computing models these two cores are based on can introduce additional overhead.

For example, when the MPU is running Java-based application while the DSP is based more

on C-style procedural execution, there will be additional run-time adaptation to cope with

object instantiations, structural traversals, as well as object-oriented inheritance mechanisms.

Clearly, the transformation framework should provide engineers with means to quickly assess

the potential gains or overhead of various load sharing schemes. It is also desirable that the

framework can analyze the initial program and suggests to the engineers promising candidates

or potential bottlenecks.

3.2. System Requirements

Based on the considerations given previously, we present a program transformation

framework with the following general objectives:

 It is able to explore large design space without particular restriction on target

Video Audio

Resource

Management

Micro

Kernel

IPC Drivers

F/W, Bootloader

DSP/IO MPU/IO

F/W, Bootloader

Drivers A/V Drivers IPC DPM

Embedded Kernel (Linux, ..)

User

Interface

A/V

Codecs

Multimedia Framework

Graphics

Libs

13

platforms. For different platforms, it is also able to recognize its strength and limits

to better harness their potential power.

 It is extensible in many dimensions: new target platforms, new generation and

optimization schemes, new source and target languages, and so on.

 It is relatively easy for engineers to experiment different exploration and generation

heuristics without writing intensive algorithms using the development programming

language.

 It provides sufficient facilities that help engineers obtain execution or simulation

feedbacks in a timely fashion; this requires the framework to streamline the

transformation process seamlessly.

Under the general requirements, our near-term goal is to mainly focus on Java as the

base language, with target platforms including X86 and ARM architecture, where the later

includes both emulated ARM machine as well as the PAC platform. Below is a list of specific

requirements for the near-term system

 It generates platform-specific C code from input Java programs, partly or whole.

When only part of the Java programs are generated, the communication between the

Java run-time and the C counterpart is through JNI (or KNI when the CLDC KVM

is used).

 It provides profiling and performance evaluation facilities by augmenting the JVM

with proper instrumentation mechanisms.

 It allows developers to experiment different exploration strategies easily, possibly

using a rule-based language. Of course, when innovative exploration schemes are

sought that are beyond what existing facilities are capable of describing, the

framework is still extensible, in terms of new analysis algorithms and search

procedures in Java (the implementation language of the framework), so that the user

has a systematic way to adjust the system for his/her investigation.

 When exploiting the multi-core architecture of the PAC platform, the framework

supports different communication schemes between the MPU and the DSP cores. In

particular, direct communication or inter-process communication via micro kernels

(and IO interrupts) should be considered.

14

It is also worth mentioning the long-term objective of our framework, which also

indicates the aspects that are not addressed in the short-term objectives.

 It supports multiple base languages. This is to recognize that most embedded

systems rely on C or C++ as the primary development languages. This is also

reflected by most research and development projects for embedded systems. As also

mentioned in Section 2, researchers also recognize the importance of generating

target-specific programs based on platform-neutral programs.

 It supports useful visual tools. There are different kinds of visual tools that can help

increasing the productivity and quality of the generation process, hence the overall

development process. For example, the user may describe an abstract machine

model with multiple cores and describe each core with specific characteristics. This

can be combined with the visualization of the input programs and generated

programs (as modules) to show the result of transformation or even the simulation or

execution results.

 It is self-applicable. This is an important long-term goal of our framework. Because

the rule-based language itself is also a powerful language, it also makes sense to

process the input rules and to generate optimized Java programs to speed up the

transformation process.

 It supports optimization-space exploration. Because there are potentially unlimited

optimizations conceivable for various program styles or other conditions, orchestrate

these optimizations suitably to achieve better results may be challenging. The

framework should permit semi-automatic to fully automatic means for engineers to

blend different optimizations or program refactoring.

3.3. Architecture Overview

In this section we outline the overall architecture of our framework. Figure 2 shows the

role of the transformation framework in the overall development and execution environment

of an embedded system.

15

 AOT

Figure 2. The Overall Program Transformation Framework

In this embedded system development environment, the developer is expected to write

pure Java programs that are intrinsic to the problem at hand, and then use the transformation

subsystem to selectively factor out part of the Java program into platform-specific C programs.

For different target platforms and different design constraints, the engineer needs to create

specific polices or rules to instruct the transformer, or even additional platform-specific

modules or utilities.

The JGene subsystem shown in Figure 2 is the core of the overall framework. It is an

extensible object-oriented framework for Java program transformation. One notable goal of

JGene is that the engineers could write embedded applications in pure Java and test their

functionalities immediately and translate critical parts into more efficient C/C++ programs.

This has great potential in reducing the turnaround time for (embedded) software

development.

KKVVMM // KKNNII

JJaavvaa
PPrrooggrraammss

bbyytteeccooddee

JGene

CC
java

**..oo **..ssoo

gc

Develop

CCVVMM // JJNNII Run-time
Policy

16

Figure 3. The Overview of the architecture of the JGene core

Figure 3 above shows in more detail the internal design of JGene. In addition to the

usual abstract syntax tree (AST) module, JGene places an attribute programming module at

the core. The attribute programming module basically provides the developers extension

mechanisms to define new types of attributes for Java ASTs, as well as the propagation rules

among them. Although the basic idea is almost the same as attribute grammars, there are

some differences. For example, many transformation tools, including back-end code

generation components that employ the attribute grammar, let developers define attributes and

auxiliary subroutines alongside the syntax definition (and rely on syntax-directed translation

to produce the final translator). Although compact and straightforward, this approach

introduces several problems. First, the resulting system tends to be large, cluttered with each

other and the syntax definition (also because the grammar itself is usually very large). More

importantly, this form of programming is not extensible, as new transformation scheme will

have to be written with substantial duplication.

Another limitation for typical transformation tools is the lack of flexible support for

controlling the propagation of attributes as well as reasoning with the interrelations with

attributes. Either these aspects are left as the developers’ responsibility, or they restrict what

17

the tools can support.

As an object-oriented framework, JGene provides a general model for defining and

programming with attributed defined by the developer. The idea is illustrated in Figure 4. The

attribute programming module provides core classes represents attributes: Attribute and its

subclass Choice. While most attributes are computed from ASTs and other contextual

information, Choice represents user’s decisions in some aspects defined by the user. The

example in Figure 4 indicates that, for some AST elements, the user may choose to generate

them into pure C program, JNI-compliant programs, or pure Java.

Figure 4. JGene program attributes

 In fact, each AST element may be generated into different types according to user-

defined attributes and some binding rules. We list a few important sample attributes below:

 PureC: the element is to be translated into (ANSI) C; the value may be true, false, or

undecided.

 JniC: the element is to be translated into JNI-compliant C; the value may be true,

false, or not-decided.

 Java: the element remains in pure Java; the value may be true, false, or undecided.

 UsesDefinedClassesOnly (UDCO): the element does not use system or external

library classes; the value may be true or false.

 MethodCallers: the sets of method invocations (which are AST elements) calling

this element, attribute value may be null or a set of elements.

18

3.4. Design Space Exploration

After attributes are defined, the developer in turn specifies the dependencies among

these attributes. Some attributes require input from the user; other attributes may depend on

these attributes. Moreover, because some choices may imply or invalidate other choices, the

attribute programming module in effect becomes a simple, but convenient constraint

programming tool.

Figure 5. Sample using interface of JGene

Figure 5 above shows a snapshot of the JGene in use, using the example attributes

described previously. Specifically, the user can examine the program structure and the

attributes for each AST elements. Some choices are disabled due to various rules (written in

Java). For the choices entered by the user, other choices may be filled or disabled accordingly.

Thus although there seem many user-entered choices in Figure 5, the user in fact only decide,

at method level, which methods are to be generated into pure C or JNI-compliant C.

19

For example, the PureC attribute may have associated rules defined by the developer:

 An element can be PureC, JniC, or Java, exclusively.

 It cannot be PureC if UsesDefinedClassesOnly is false

 It is PureC when its parent is PureC

 It is PureC if called by another PureC element

 It cannot be PureC if called by Java

All these rules are written as separate classes. In Figure 5, when the user chooses that the

method add() is PureC, the action triggers the re-evaluation of the method loop(), which

should have value undecided at the time. According to the rule, loop() cannot be Java (hence

the Java attribute becomes false), although it may still be PureC or PureC, which is to be

specified by the user later. Conversely, if the user select PureC for loop() first, then add()

must be PureC according to the rules, thus its JniC and Java attributes all become false.

3.5. Code Generation

In this section we show some examples of program transformation using JGene. Before

going into the example, we first describe briefly about the Java Native Interface (JNI). JNI is

a programming framework that allows Java code running in Java VM to call and be called by

native applications and libraries written in other languages such as C, C++ and assembly. To

bind native method code to the Java application, a native method interface is used, which has

been standardized across most JVMs. This interface is used to write native methods to handle

situations when an application cannot be written entirely in the Java programming language

such as when the standard Java class library does not support the platform-dependent features

or program library. It is also used to modify an existing application, written in another

programming language, to be accessible to Java applications.

For example, consider the pure java program below:

public class adder {
void exec() {
int x = add(1, 2);
System.out.println(x);

}

int add(int i, int j) {

20

return i + j;
}

}

The corresponding JNI-compliant C program may be generated below:

// Java
public class adder {
public void exec() {
int x = add(1, 2);
System.out.println(x);

}

public native int add(int i, int j);

}

// JNI
JNIEXPORT jint JNICALL Java_adder_add(JNIEnv *env, jclass cl, jint
i, jint j) {
return i+j;

}

In the context of embedded systems, the overhead to support JNI becomes large and may

not justify the gain. The main reason is that JNI is intended to be standardized across multiple

JVMs, so that the same native C/C++ code may still be portable, but the benefit of this

approach is less relevant for embedded systems. KVM Native Interface (KNI) is a

trimmed-down version of JNI for KVM - a small Java VM written for embedded systems.

Unlike JNI, KNI is essentially implementation specific, not intend to be standardized.

Another VM for embedded systems, CVM, is a larger JVM implementation that complies

with the JNI standard, has more advanced JIT compiler technology inside, and hence requires

more resources than KVM. Note that many of the standard library classes depend on KNI to

provide functionality to the developer and the user, e.g. I/O file reading and sound capabilities.

Including performance- and platform-sensitive API implementations in the standard library

allows all Java applications to access this functionality in a safe and platform-independent

manner.

Below we illustrate the transformation targeting KNI using the same example given

previously. Currently, the transformation framework only works for a subset of input

programs, namely, Java programs with certain syntactical restrictions. The goal is to

investigate the potential usefulness of the transformation approach in general and the internals

of the KVM and CVM. We show the generated KNI C program below.

// Java
public class Adder
{

21

public void exec() {
int x = add(1, 2);
System.out.println(x);

public native int add(int i, int j);

}

// KNI
KNIEXPORT KNI_RETURNTYPE_INT adder_add()
{

jint i=KNI_GetParameterAsInt(1);
jint j=KNI_GetParameterAsInt2);
KNI_ReturnInt(i + j);

}

// Modified Java class
public class Test
{

public native int loop(n);
}

As the example above shows, when targeting KNI, the generated C function needs to

comply with the programming model defined by KNI. In particular, parameter passing is done

through explicit stack operations using predefined KNI macros like

KNI_GetParameterAsInt(). KNI also defines macros for accessing objects inside KVM. Note

that this indicates some potential issues when the generated C function is to be placed on a

different core than the one running the KVM.

Another more involved example is a Lens Blur Filter (see Chapter 4), as shown below:

public static int[] lensBlurFilter(int[] rgbIn, int width, int height)
{
...
ImageFFT fft = new ImageFFT(Math.max(log2rows, log2cols));

int[] rgb = new int[w*h];
...
// Create the kernel
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
...

}
}

// Normalize the kernel
i = 0;
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
mask1[i] /= total;
i++;

}
}

fft.transform2D(mask1, mask2, w, h, true);

for (...) {
for (...) {

22

...
//src image getRGB
...

}
}

// Transform into frequency space
fft.transform2D(ar1, ar2, cols, rows, true);
fft.transform2D(gb1, gb2, cols, rows, true);

// Multiply the transformed pixels by the transformed kernel
...
// Transform back
fft.transform2D(ar1, ar2, cols, rows, false);
fft.transform2D(gb1, gb2, cols, rows, false);
...
//dst Image setRGB
...

Return ...;

}

public void transform2D(float[] real, float[] imag, int cols, int
rows, boolean forward)

{
...
// FFT the rows
for (int y = 0; y < rows; y++) {
...
transform1D(rtemp, itemp, log2cols, cols, forward);

 ...
}

// FFT the columns
for (int x = 0; x < cols; x++) {
...
transform1D(rtemp, itemp, log2rows, rows, forward);
...

}
}

The most frequently invoked method in the Lens Blur Filter is transform2D(). Indeed,

after profiling, we found that transform2D() occupied most of the run time. Naturally, we

would like to make transform2D() native, although we could also translate all lensBlurFilter(),

including transform2D() and the other methods it calls into pure C code. But this may result

in excessive code size. Using JGene, we are able to explore both approaches quickly. Chapter

4 will show the performance results.

Consider the case where only transform2D() is made native. The following code shows

that transform2D() is generated in KNI-compliant format and transform1D() in pure C

format.

KNIEXPORT KNI_RETURNTYPE_VOID
Java_ccl_midlet_image_ImageFFT_transform2D()

{
 /* Get the java input parameter */

23

 KNI_StartHandles(5);

 KNI_DeclareHandle(handle1);
 KNI_GetParameterAsObject(1, handle1);
 jint handle1_len = KNI_GetArrayLength(handle1);
 jfloat real [handle1_len];
 KNI_GetRawArrayRegion(handle1, 0, handle1_len*sizeof(jfloat),
(jbyte*)real);

 ...
 jint cols = KNI_GetParameterAsInt(6);
 jint rows = KNI_GetParameterAsInt(7);
 jboolean forward = KNI_GetParameterAsBoolean(8);
 // start real java code here
 ...

 // FFT the rows
 for (int y = 0; y < rows; y++) {

...
transform1D(rtemp, itemp, w1, w2, w3, log2cols, cols, forward);

 ...
}

// FFT the columns
for (int x = 0; x < cols; x++) {
...
transform1D(rtemp, itemp, w1, w2, w3, log2rows, rows, forward);

 ...
 }
 // end real java code
 KNI_SetRawArrayRegion(handle1, 0, handle1_len*sizeof(jfloat),
(jbyte*)real);

 KNI_SetRawArrayRegion(handle2, 0, handle2_len*sizeof(jfloat),
(jbyte*)imag);

 KNI_EndHandles();
}

void transform1D(float *real, float *imag, float *w1, float *w2, float
*w3, int logN, int n, bool forward)

{
 scramble(n, real, imag);
 butterflies(n, logN, forward ? 1 : -1, real, imag, w1, w2, w3);
}

Note that static program transformation also has intimate relation with the dynamic JIT

compiler. For example, in some situation, a method may become too big to compile

dynamically by the JIT compiler, because the embedded system may not provide sufficient

memory. One example is the FFT benchmark in Scimark2 (see Chapter 4). In this case we try

to rewrite the main method of transformInternal(), the goal is try to reduce the original

method code size by dividing transformInternal() into several smaller methods. With the help

of JGene, the user can easily perform the necessary refactoring and explore the differences in

terms of memory cost and speed-ups. In our experiment, after proper refactoring, the new

version of transformInternal() could be translated into native format easily, and the original

transformInternal() can be JIT-compiled again.

24

Although the JGene offer an automatic translation mechanism, it does not guarantee the

translated code work exactly the same as the original code. The engineer should look at the

generated code along with its Java counterpart to ensure that the translation scheme is valid.

Because of this, no extensive compiler background needed to extend and use JGene unless

one wants to provide more advanced analyses.

25

Chapter 4. Experiments

For general benchmarking, we use the SciMark2 benchmark, which is a composite Java

benchmark measuring the performance of numerical codes occurring in scientific and

engineering applications. It consists of five computational kernels which are chosen to

provide an indication of how well the underlying JVM/JIT compilers perform on applications

utilizing these types of algorithms. SciMark2 includes the following kernels:

 Fast Fourier Transform (FFT): performs a one-dimensional forward transform of

4K complex numbers. This kernel exercises complex arithmetic, shuffling,

non-constant memory references and trigonometric functions.

 Successive Over-relaxation (SOR): on a 100x100 grid exercises typical access

patterns in finite difference applications, for example, solving Laplace's equation in

2D with Drichlet boundary conditions.

 Monte Carlo: integration approximates the value of Pi by computing the integral of

the quarter circle y = sqrt(1 - x^2) on [0,1]. It chooses random points with the unit

square and compute the ratio of those within the circle.

 Sparse Matrix Multiply: uses an unstructured sparse matrix stored in

compressed-row format with a prescribed sparse structure.

 Dense LU matrix factorization: Computes the LU factorization of a dense 100x100

matrix using partial pivoting.

As mentioned, our framework relies primarily on JNI and/or KNI to connect the virtual

machine with external C modules.

4.1. Simple Benchmarking

For experiment purpose, we developed a CCL_PKG package alongside with other JSRs

in the PhoneMe CLDC/MIDP distribution, where the native Java methods are also placed in

this package. The framework is streamlined so that after the user makes transformation

decisions, the resulting programs, including Java and C ones, will be placed in suitable places

and the whole distribution can be rebuilt.

26

Figure 6. Relation between JGenes and CLDC/MIDP

Note that there is an adaptive, just-in-time (JIT) compiler in the CLDC HotSpot

Implementation virtual machine. The CLDC JIT compiler is a one-pass compiler that

provides a number of basic optimizations. The compiler makes a preliminary scan of a

method to determine entry points, and then a target-dependent optimizer makes a final pass

through the generated code.

Here we develop a sample test suite to compare run-time performance with or without

AOT transformations. In this test suite we use simple routines such as prime search, recursion

Fibonacci, recursion accumulator and 2D matrix multiplication. Detailed description of the

test suite is given in Appendix. The result is shown in Table 1. (Time unit is millisecond,

PrimSearch range is 1~50000, Fibonacci N=42, Accumulator N=2500 Cycle=100000,

Matrix is 256x256 double array).

Table 1. The performance results on various configurations

Type CLDC/JIT
CLDC/No

JIT
CLDC/KNI CVM/JNI GCJ

PrimSearch 5999 17138 4037 4238 4237

Fibonacci 15192 96302 7315 9539 9491

Accumulator 5606 29128 185 913 1811

MatrixMulti 13635 14005 59 59 127

MatrixMulti
(Native product)

700 827 -- 404 --

JGenes

Transformer
Java New Java
Code Code

Native

Code
CLDC MIDP

CCL PKG JSRs

Run

Patching

27

Figure 7 shows the performance results for matrix multiplications. We found that the

CLDC/KNI case gets better performance because the critical code becomes native. The

CLDC/JIT case uses the JIT compiler to speedup the execution, but it has almost no

improvement for matrix multiplications. After further investigation, we found that the

problem is due to its slow execution for floating numbers. In the CLDC/KNI case, on the

other hand, the C compiler helps to generate more efficient code for floating point operations.

Thus we found the performance improvement for CLDC/KNI from 13.635 sec to 59 msec. On

the other hand, if we isolated the dot product operation to a new method and running in native,

we still get a great improvement for CLDC/JIT with this re-factored Java code. This also

shows the advantage of our framework that helps developers in exploring various

combinations of AOT and JIT compilations strategies.

0

2

4

6

8

10

12

14

16

18

CLDC/JIT CLDC (no

JIT)

CLDC/KNI J2SDK/JNI GCJ

Type

tim
es

/s
e MatrixMulti

MatrixMulti (Native dot

product)

Figure 7. The 256x256 matrix multiplication execute result

Figure 8 shows the results for recursive calls (recursive accumulator and Fibonacci

function). CLDC/JIT could not handle too many recursive calls due to limited heap and stack

sizes, even it is better than without using JIT compiler. The big improvement demonstrated by

the CLDC/KNI and CLDC/JNI cases is due to the fact that with –o3 flag turned on, the GCC

28

compiler performs tail recursion optimization when applicable. Even when recursive calls are

not in a tail-recursion form, such as in the Fibonacci test case, CLDC/KNI still reduce the

execution time more than the CLDC/JIT case (7.315 vs. 15.192 times per second) without

increasing the code size.

0

1

2

3

4

5

6

CLDC/JIT CLDC (no

JIT)

CLDC/KNI J2SDK/JNI GCJ

type

tim
es

/s
e

Fibonacci

Accumulator

Figure 8. The speedup of GCC optimization in recursion

4.2. Scimark2 Benchmarking

As indicated before, Scimark2 is an open source benchmark for Java. In this experiment

we translated the five functions in Scimark2 into native C programs. For example, a core

method called measureFFT() is shown below, in which the method transformInternal() is

made native:

29

native static void transformInternal(double data[], int direction);

public static double measureFFT(int N, double mintime, Random R)
{
...
while(time slot) {
...
for (int i=0; i<cycles; i++) {
FFT.transform(x); // forward transform
FFT.inverse(x); // backward transform

}
...

}
...

// approx Mflops
return FFT.num_flops(N)*cycles/ Q.read() * 1.0e-6;

 }

public static void transform(double data[]) {
transformInternal(data, -1);

}

public static void inverse(double data[]) {
transformInternal(data, +1);
// Normalize
int nd=data.length;
int n =nd/2;
double norm=1/((double) n);
 for(int i=0; i<nd; i++)

data[i] *= norm;
}

// KNI part
KNIEXPORT KNI_RETURNTYPE_VOID
Java_scimark_org_FFT_transformInternal()

{
 //do real fft transformation
 ...
}

The performance results for various Scimark2 benchmarks are shown in Table 2 on our

x86 testing platform:

Table 2. The result of Scimark2 scores on CLDC and CDC platforms

Type CLDC/JIT CLDC/KNI CDC(no JIT) CDC/JIT

FFT 1.115 47.982 3.402 9.850

SOR 2.260 404.822 10.846 20.420

Monte Carlo 1.388 26.715 2.417 3.010

Spares Matmult 2.206 517.886 5.951 21.141

LU 2.151 334.476 6.902 17.380

30

As shown in Figure 9, the improvement achieved via native method is significant; only

the Monte Carlo case performs relatively weak compared to the other cases. The reason is

due to excessive use of Java objects.

0

100

200

300

400

500

600

FFT SOR Monte Carlo Spares Matmult LU

Sc
o
r

CLDC/JIT

e CLDC/KNI

CDC(no JIT)

CDC/JIT

Figure 9. The result of CLDC/KNI Scimakr2 scores

4.3. Code Refactoring

In this experiment we use the FFT benchmark in Scimark2 to illustrate the benefit of

refactoring combined with Java native support. As described previously, FFT invokes

transformInternal() extensively. The original transformInternal() is sketched below:

protected static void transformInternal(double data[], int
direction)

{
...
bitreverse(data);

/* apply fft loop */
for (int bit = 0, dual = 1; bit < logn; bit++, dual *= 2) {
...
/* a = 0 */
for (int b = 0; b < n; b += 2 * dual) {

31

...
}

/* a = 1, (dual-1) */
for (int a = 1; a < dual; a++) {
for (int b = 0; b < n; b += 2 * dual) {
...

}
}

}
}

After refactoring, the inner loop is changed to fftLoop(), as indicated below:

protected static void transformInternal (double[] data, int
direction)

{
...
bitreverse(data) ;

/* apply fft loop */
for (int bit = 0, dual = 1; bit < logn; bit++, dual *= 2) {
fftLoop(data, n, dual, direction);

}
}

This kind of refactoring is worse than the original one in general, provided that the JVM

has abundant resources and powerful JIT compilation. For embedded systems, however, the

original method maybe too large to compile, while in the refactored version the fftLoop() may

still be dynamically compilable. When AOT transformation is concerned, it is also possible

that the original method cannot be translated due to many rules (e.g. some methods it calls are

external classes), yet in the refactored case the fftLoop() is simple enough to translate, as

shown below:

KNIEXPORT KNI_RETURNTYPE_VOID Java_FFTRefactor_fftLoop() {
...
/* a = 0 */
for (int b = 0; b < n; b += 2 * dual) {
fftLoopA0(data, b, dual);

}

/* a = 1 */
for (int a = 1; a < dual; a++) {
fftLoopA1(data, n, a, dual, direction, w_real, w_imag);

}
...

}

The java modified FFT test performance results are given in Table 3 (FFT size=8,

cycles=70000, unit=msec):

32

Table 3. The effort of refactoring FFT

Type No JIT CLDC/JIT CLDC/JIT
(Mini cache)

CLDC/KNI

Original FFT 9755 9205 16067 701

Refactor FFT 10709 9608 10083 871

The results indicated that with static program transformation still outperform JIT

compilation. More interestingly, it is also shown that programs will smaller methods may

work more stably across different configurations than those that contain large blocks of code.

This is seen in the “Mini cache” case in which we limit the CLDC JIT code cache to be quite

low such that the original big method cannot be compiled into CLDC JIT cache, and the

attempt is tried many times.

4.4. Image Filter Benchmarking

To test our approach for more general applications, we developed a simple image filter

toolkit which offers several simple filters. The main functions of this tool are gray, sobel, box

blur, and lens blur filters. The first three filters are space domain array masks. All space

domain filters work by sliding a rectangular array of numbers over target image. This array is

called the convolution kernel. For every pixel in the image, we take the corresponding

numbers from the kernel and the pixels they are over, multiply them together and add all the

results together to make the new pixel. The lens blur filter is handled by performing

frequency-domain Discrete Fourier Transform successively. In this experiment we focus on

these kernel operations. The run time results are showed in Table 4 (The sample image size is

240x320 pixels).

Table 4. The image filter sample tests result

Type CLDC/JIT CLDC(no JIT) CLDC/KNI

Gray(1K cycle) 3987 55671 643

Sobel(1K cycle) 5622 192139 2656

Box Blur(1K cycle) 3793 251430 2489

Len Blur 21941 22947 111

Len Blur FFT/KI 1197 1211 -

33

We found that CLDC/JIT gets a big improvement in first three filters but performs badly

for Len Blur. The reason is the same as which discussed before, that the Len Blur filter does

many floating point operations, revealing the poor handling of floating point instructions in

CLDC/JIT. Since the Len Blur invoking FFT many times, we still could get much better

performance than original if we only translated the FFT method. Figure 10 shows the results

more clearly.

Figure 10. The result of our image filter benchmarking

4.5. MPEG Decoder Benchmarking

J2ME mpeg decoder is our mpeg decoder test application. It is an open source suite

(http://wiki.forum.nokia.com). The decoding algorithm is illustrated in Figure 11:

34

http://wiki.forum.nokia.com/

Display

[From http://wiki.forum.nokia.com/index.php/J2ME]

Figure 11. The decoding flow of J2ME mpeg decoder

Specifically, the Bitmap Java class performs the conversion from Y'CbCr 4:2:0 to RGB.

We use JGene to translate the transform() method into KNI method, improving the frame rate

from 8 fps to 11 fps (sample file is 160x120).

Figure 12. The mpeg display fps before(L) and after(R) transform()

4.6. Experiments on PAC and Inter-processor Communication

We have conducted several preliminary investigation and experiments on the PAC

development board. As part of the PAC project goal is to construct an embedded Java

35

execution environment, we have integrated various components into a more stream-lined

development environment. Figure 13 below illustrates the layout of the environment, where

the toolchain is based on Scratchbox – a cross compilation toolkit. It also provides a full set of

tools to integrate and cross compile an entire Linux distribution.

JVM

Exec bin
JVM src

gcc src

PAC/ARScratchbox

glibc

Linux

Kernel Linux src

Figure 13. The build environment

As shown in the figure, platform-specific gcc and glibc ports (e.g. ARM-based

arm-none-linux-gnueabi-gcc) are built with Scratchbox, which in turn becomes the build

environment for Linux and JVM. In addition to ARM-based architectures, such as the

emulator shipped with Scratchbox or PAC, other platforms such as Intel Xscale (IXDP425)

combined with other operating systems such as (MontaVista) have also been used. Figure 14

and Figure 15 demonstrates some examples running on the PAC platform:

Figure 14. MIDP examples on PAC

36

Linux / PAC (ARM 920T)

Figure 15. Application examples on PAC LCD

On the PAC platform we have also perform many benchmarking experiments, including

Scimark2, JBenchmark1, and JBenchmark2.

The PAC platform includes an implementation of inter-process communication (IPC) for

bridging the MPU core and the DSP. Specifically, a micro kernel has been developed that

provides simple task scheduling as well as interrupt-based programming interface. Such an

IPC mechanism has many implications for the JGene transformer. Although the

communication is interrupt-based, the programming model for IPC can be either synchronous

or asynchronous. For the synchronous case, the micro kernel implementation includes an

associated library allowing the programmer to communicate with the DSP core in an RPC

style. For the asynchronous case, the programmer is responsible of creating suitable interrupt

routines, and the main program (in the MPU side) needs to adopt an event-driven

programming model. It is worth noting that with suitable generation rules, JGene can be used

to cope with both IPC styles.

We have also developed some simple programs to test the IPC with the DSP core via

micro kernel. Below are some examples:

37

// Modified Java class
public class Test {
 public native int loop();
}

// Generated C function on the ARM side
KNIEXPORT KNI_RETURNTYPE_INT Java_loop() {
 TASKID tid = pac_create(_PAC_loop, 2);
 pac_rpc(tid);
 pac_wait(tid);
 pac_read32(0x9000);
 KNI_ReturnInt(result);
}

// Generated C function on the DSP side
int PAC_loop() {
 int a, b, i, result = 0;
 for (i = 0; i < 10; ++i) {

 a = 3 + i; b = 4 - 2 * i;
 ...
 }

 //memory write with result for arm get
 *(unsigned int *) (0xC2009000) = result;

syscall(…); // trigger ARM
}

In the example above, for KVM to interact with the DSP core without modifying KVM

itself, we generate a dispatcher function using KNI, and generate a C function managed by the

micro kernel on the DSP core. Clearly, procedures about IPC can be placed in the dispatcher

code, while the actual code for computation can be build by DSP-targeted compiler and run

on the DSP core. It is possible to adjust the IPC parameters or even change to a different IPC

model by altering the generation rule for the dispatcher code.

38

Chapter 5. Conclusion

In this thesis we argued the benefits of using program transformation to reduce the

burden of developing applications for embedded systems. We have investigated research

areas on program transformation and compiler techniques, with a focus on embedded

software development. We showed that the design space to be explored is extremely large for

a generator to generate suitable programs, and existing techniques often tackle only the design

space partially. We proposed a transformation framework aiming at equipping engineers with

flexible and extensible means to explore the design space more efficiently. We focus on

transforming Java programs into a mixture of Java and platform-specific C programs, and

develop associated tools to streamline the process. A near-term goal is to add profiling

capability into JGene so that profiling information gathered from actual program execution

can be used by JGene again to aid the user in exploring the design space. Despite the

requirement of using Java as the base language, we believe our framework is already

powerful for many practical scenarios. We hope the framework’s extensible design can lend

itself into a more powerful and comprehensive system that matches the need of embedded

systems development in the future.

39

References

[Aarts] B. Aarts, M. Barreteau, F. Bodin, P. Brinkhaus, Z. Chamski, H.-P. Charles, C.
Eisenbeis, J. Gurd, J. Hoogerbrugge, P.Hu,W. Jalby, P.Knijnenburg, M. O’Boyle, E.
Rohou, R. Sakellariou, H. Schepers, A. Seznec, E. A. Sthr,M. Verhoeven, and
H.Wijshoff, “OCEANS: Optimizing compilers for embedded HPC applications,” Lecture
Notes in Computer Science, August 1997.

[Ali] Ayaz Ali and Lennart Johnsson, Dragan Mirkovic, “Empirical Auto-tuning Code
Generator for FFT and Trigonometric Transforms”, Workshop on Optimizations for DSP
and Embedded Systems, March 11, 2007.

[Alur] Rajeev Alur, Franjo Ivancic, Jesung Kim, Insup Lee, Oleg Sokolsky, “Generating
Embedded Software from Hierarchical Hybrid Models”, ACM SIGPLAN Notices,
Proceedings of the 2003 ACM SIGPLAN conference on Language, compiler, and tool for
embedded systems LCTES '03, Volume 38 Issue 7. pp. 171-182

[Barat] F. Barat, T. Vander Aa, M. Jayapala, G. Deconinck, R. Lauwereins, and H. Corporaal,
“Methodology for building processor design space exploration frameworks”, 3th Workshop
on Optimizations for DSP and Embedded Systems, March 20, 2005.

[Bennett] Richard Vincent Bennett Alastair Colin Murray Bjorn Franke Nigel Topham,
“Combining Source-to-Source Transformations and Processor Instruction Set Extensions
for the Automated Design-Space Exploration of Embedded Systems”, LCTES’07 June
13–15, 2007. pp. 83-93

[Bravenboer] Martin Bravenboer, Karl Trygve Kalleberg, and Rob Vermaas, “Stratego/XT
0.16: Components for Transformation Systems”, ACM/SIGPLAN Workshop Partial
Evaluation and Semantics-Based Program Manipulation Proceedings of the 2006 ACM
SIGPLAN symposium on Partial evaluation and semantics-based program manipulation,
2006. pp. 95-99.

[Burgaard] Kim Burgaard, Flemming Gram Christensen, Jørgen Lindskov Knudsen, Ulrik
Pagh Schultz, “Compiling Java for Low-end Embedded Systems”, ACM SIGPLAN
Notices , Proceedings of the 2003 ACM SIGPLAN conference on Language, compiler, and
tool for embedded systems LCTES '03, Volume 38, Issue 7. pp. 42-50

[Cavazos] John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F. P.
O'Boyle, and Olivier Temam, “Rapidly Selecting Good Compiler Optimizations Using
Performance Counters”, International Symposium on Code Generation and Optimization
(CGO), 2007. pp. 185-197

[Chen] C. Chen, J. Chame, and M. Hall, “Combining Models and Guided Empirical Search to
Optimize for Multiple Levels of the Memory Hierarchy”, 2005 International Symposium
on Code Generation and Optimization (CGO), 2005. pp. 111-122

[Cheng] Allen Cheng, Gary Tyson, and Trevor Mudge, “FITS: Increasing Code Density for
Embedded Systems with a Cost-Effective 16-bit Synthesis Technique”, Workshop on
Optimizations for DSP and Embedded Systems, March 21, 2004. pp. 920-923

[Cordy] James R. Cordy, “Source Transformation, Analysis and Generation in TXL”,
ACM/SIGPLAN Workshop Partial Evaluation and Semantics-Based Program
Manipulation Proceedings of the 2006 ACM SIGPLAN symposium on Partial evaluation
and semantics-based program manipulation, 2006. pp. 1-11

40

[Dupre] Michael Dupre, Nathalie Drach, Olivier Temam, “VHC: Quickly Building an
Optimizer for Complex Embedded Architectures”, International Symposium on Code
Generation and Optimization (CGO), 2004. pp. 53-64

[Ernst] Ernst, R., “Codesign of embedded systems: status and trends”, Design & Test of
Computers, Apr-Jun 1998, Vol. 15, No. 2. pp. 45-54

[Ertl] M.A. Ertl, “Stack caching for interpreters,” Proc. ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pp.315–327, 1995.

[Franke] Björn Franke, Michael F. P. O'Boyle, John Thomson, Grigori Fursin, “Probabilistic
source-level optimisation of embedded programs”, Proceedings of the 2005 ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES'05). pp. 78-86

[Fulton] Mike Fulton and Mark Stoodley, “Compilation Techniques for Real-Time Java
Programs”, International Symposium on Code Generation and Optimization (CGO), 2007.
pp. 221-231

[Grewal] Gary Grewal, S. Coros, “A Novel Scatter Search Procedure for Effective Memory
Assignment for Dual-Bank DSPs”, Workshop on Optimizations for DSP and Embedded
Systems, March 11, 2007.

[Hong] SungHyun Hong, et al, “Java Client Ahead-of-Time Compiler for Embedded
Systems”, ACM SIGPLAN Notices , Proceedings of the 2007 ACM SIGPLAN/SIGBED
conference on Languages, compilers, and tools LCTES '07, Volume 42, Issue 7. pp. 63-72

[JNI] Sun Microsystems Inc. Java Native Interface Specification.
http://java.sun.com/products/jdk/1.2/docs/guide/jni/index.html

[Kim] Dngkeun Kim and Donald Yeung, “A Study of Source-Level Compiler Algorithms for
Automatic Construction of Pre-Execution Code”, ACM Transactions on Computer Systems,
Vol. 22, No. 3, August 2004, Pages 326–379

[Lambrechts] Andy Lambrechts, Praveen Raghavan, David Novo and Estela Rey Ramos,
“Enabling WordWidth Aware Energy and Performance Optimizations for Embedded
Processors”, 5th Workshop on Optimizations for DSP and Embedded Systems, March
11, 2007.

[Lee] Sheayun Lee, Jaejin Lee, Chang Yun Par, and Sang Lyul Min, “Selective Code
Transformation for Dual Instruction Set Processors”, ACM Transactions on Embedded
Computing Systems, Vol. 6, No. 2, Article 10, May 2007.

[Nacul] André C. Nácul and Tony Givargis, “Synthesis of time-constrained multitasking
embedded software”, ACM Transactions on Design Automation of Electronic Systems, Vol.
11, No. 4, October 2006, pp. 822–847

[Ozturk] O. Ozturk, M. Kandemir, and S. W. Son, “ILP-based management of multi-level
memory hierarchies”, Workshop on Optimizations for DSP and Embedded Systems, March
26, 2006.

[Pan] Zhelong Pan, Rudolf Eigenmann, “Fast and Effective Orchestration of Compiler
Optimizations for Automatic Performance Tuning”, International Symposium on Code
Generation and Optimization (CGO), 2006. pp. 319-332

[Panda] Panda et al, “Data and Memory Optimization Techniques for Embedded Systems”,
ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 2, April 2001,
pp. 149–206

41

[Peri] Ramesh V Peri, Zino Benaissa, and Sri Doddapaneni, “A Binary Rewriting Tool for
DSPs to Optimize Programs Based on Profile Information”, Workshop on Optimizations
for DSP and Embedded Systems, March 21, 2004.

[Perkins] Michael Perkins, Graeme Roy, and Andrew Higham, “Profile-guided Optimization
in the Cross-core Production C/C++ DSP Compilers”, Workshop on Optimizations for DSP
and Embedded Systems, March 23, 2003.

[Sanghai05] K. Sanghai, D. Kaeli, and R. Gentile, Code and data partitioning on the Blackfin
561 dual-core platform, Workshop on Optimizations for DSP and Embedded Systems,
March 20, 2005.

[Sanghai07] Kaushal Sanghai and David Kaeli, Alex Raikman and Ken Butler, “A Code
Layout Framework for Embedded Processors with Configurable Memory Hierarchy”,
Workshop on Optimizations for DSP and Embedded Systems, March 11, 2007.

[Shudo] Kazuyuki Shudo, Satoshi Sekiguchi, Yoichi Muraoka, “Cost-effective compilation
techniques for Java Just-in-Time compilers”, Systems and Computers in Japan, Volume 35,
Issue 12, pp. 10-24

[Suresh] Dinesh C. Suresh, Walid A. Najjar, Frank Vahid, “Profiling Tools for
Hardware/Software Partitioning of Embedded Applications”, ACM SIGPLAN Notices,
Proceedings of the 2003 ACM SIGPLAN conference on Language, compiler, and tool for
embedded systems LCTES '03, Volume 38 Issue 7. pp. 189-198

[Tabatabai] Ali-Reza Ad-Tabataba, Michal Cierniak, Guei-Yuan Lueh, Vishesh M. Parikh,
James M. Stichnoth, “Fast, Effective Code Generation in a Just-In-Time Java Compiler”,
SIGPLAN '98, pp. 280-290.[Vachharajani] Manish Vachharajani, Neil Vachharajani, and
David August, Compiler Optimization-Space Exploration, Spyridon Triantafyllis,
International Symposium on Code Generation and Optimization (CGO), 2003. pp. 204-
215.

[VanderAa03] Tom Vander Aa, Murali Jayapala, Francisco Barat, Geert Deconinck, Henk
Corporaal, and Francky Catthoor, “Software Transformations to Reduce Instruction
Memory Power Consumption using a Loop Buffer”, Workshop on Optimizations for DSP
and Embedded Systems, March 23, 2003.

[VanderAa05] T. Vander Aa, M. Jayapala, F. Barat, H. Corporaal, F. Catthoor, and G.
Deconinck, “A high-level memory energy estimator based on reuse distance”, Workshop
on Optimizations for DSP and Embedded Systems, March 20, 2005.

[Zhao03] Min Zhao, Bruce Childers, Mary Lou Soffa, “Predicting the Impact of
Optimizations for Embedded Systems”, ACM SIGPLAN Notices , Proceedings of the
2003 ACM SIGPLAN conference on Language, compiler, and tool for embedded
systems LCTES '03, Volume 38 Issue 7. pp. 1-11

[Zhao05] M. Zhao, B. Childers, and M. L. Soffa, “A Model-based Framework: an
Approach for Profit-driven Optimization”, 2005 International Symposium on Code
Generation and Optimization (CGO), 2005. pp. 317-327

42

Appendix: Benchmarks used in Section 4.1

Prime Search:

public int primeSerach(long max) {
 int no = 0;
 for (long i = 0; i < max; i++) {
 if (isPrime(i)) {
 no = no + 1;
 }
 }
 return no;
}

private boolean isPrime(long i) {
 for (long test = 2; test < i; test++) {
 if (i % test == 0) {
 return false;
 }
 }
 return true;
}

Fibonacci Test:

public long fib(long i) {
 long res = calcFib(i);

 return res;
}

public long calcFib(long n) {
 if (n <= 1)
 return n;
 else
 return calcFib(n - 1) + calcFib(n - 2);
}

Accumulator Test:

public long accumulator(long n) {
 if (n == 0)
 return 1;

 return acc(n, 1);
}

private long acc(long n, long sum) {
 if (n == 1)
 return sum;
 else
 return acc(n-1, sum + n);
}

43

Matrix Multiplication test:

public void matrixMulti(int N) {
 Random R = new Random();

 double[][] A = new double[N][N];
 double[][] B = new double[N][N];
 double[][] C;

 for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 A[i][j] = R.nextDouble();

 for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 B[i][j] = R.nextDouble();
 C = new double[N][N];
 // Order: jik optimized ala JAMA

 double[] bj1 = new double[N];
 for (int j = 0; j < N; j++) {
 for (int k = 0; k < N; k++)
 bj1[k] = B[k][j];
 for (int i = 0; i < N; i++) {
 C[i][j] = dotProduct(A[i], bj1, N);
 }
 }
}

double dotProduct(double[] ai, double[] bj, int N) {
 double s = 0;
 for (int k = 0; k < N; k++) {
 s += ai[k] * bj[k];
 }

 return s;
}

44

