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摘 要       

發展嵌入式系統時須考量不同軟硬體平台的特性及各類系統資源的有效運

用。在未來以多核心架構為基礎的嵌入式系統成為主流後，如何針對不同平台特

性設計系統提升整體效能，並同時降低發展成本變得更加重要。針對這個問題，

本論文提出使用程式轉換的技術，使得開發者可專心發展應用程式，不須考慮過

多軟硬體平台的細節，並能仰賴各種程式轉換工具針對不同的軟硬體特性產生適

用的程式碼。為了驗證此方法的可行性，我們以 Java 語言為基礎，在不同嵌入

式平台，包括一個雙核心架構的平台上作試驗，並得到實驗結果的支持。 
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ABSTRACT 

Embedded systems are characterized by their scarce computing resources and 

heterogeneous hardware-software configurations. With multi-core architecture 

entering the embedded systems market, developing efficient software applications, 

and delivering them timely, becomes even more challenging. One main obstacle to 

embedded software development is to tune applications for different system 

configurations in order to maximize system performance in terms of execution speed, 

memory, energy consumption, and so on. Often, a particular software design that 

performs well in one configuration may work miserably in another. The objective of 

this thesis is to investigate the use of program transformation techniques as a solution 

to this problem. The idea is to have a framework where developers can concentrate on 

developing applications without devoting excessive effort on low-level hardware and 

system software details, and rely on different program transformation schemes to 

produce programs for specific platforms. With the framework, we have experimented 

with various Java benchmarks on different platforms, including an embedded 

platform containing two cores. The result shows that program transformation can 

improve performance significantly with considerably less development and tuning 

effort. 

 

 

 

 

ii 



 

誌 謝         

對於學位論文的完成，首先必須感謝我的指導教授陳俊穎老師，在研究所的

兩年求學生涯中，總給予我詳盡與切要的指導。指引我正確的研究方向，對於解

決問題的方法和研究態度上，也使我獲益良多；同時特別感謝口試委員楊武教授

與黃慶育教授在百忙之中給予許多寶貴的指導與建議，使得論文的內容更加完

備。 

此外，感謝研究室一起奮鬥的伙伴們，亦超、宜涼，以及登揚諸位學長，以

及坤定、仁傑兩位學弟，在研究進行時給與我許多的支持與鼓勵，並伴我度過這

兩年的研究生涯。 

最後，由衷地感謝我最親愛的家人們，正因他們全力支持與包容，才能促使

我順利的完成學業，願將這份成果共享於我的家人。 

 

王勝保 謹誌 2008 年 8 月 

於交通大學協同合作實驗室 

iii 



 

Table of Contents 

摘 要      ....................................................................................................... i 

ABSTRACT......................................................................................................... ii 

誌 謝      ..................................................................................................... iii 

Table of Contents ............................................................................................... iv 

List of Figures and Tables................................................................................. vi 

Chapter 1. Introduction ..............................................................................1 

Chapter 2. Background...............................................................................4 

Chapter 3. The Program Transformation Framework ........................ 11 

3.1. Objective and Considerations............................................................ 11 

3.2. System Requirements ........................................................................ 13 

3.3. Architecture Overview....................................................................... 15 

3.4. Design Space Exploration ................................................................. 19 

3.5. Code Generation ................................................................................ 20 

Chapter 4. Experiments ........................................................................... 26 

4.1. Simple Benchmarking ....................................................................... 26 

4.2. Scimark2 Benchmarking ................................................................... 29 

iv 



 

4.3. Code Refactoring ............................................................................... 31 

4.4. Image Filter Benchmarking ............................................................... 33 

4.5. MPEG Decoder Benchmarking ......................................................... 34 

4.6. Experiments on PAC and Inter-processor Communication .............. 35 

Chapter 5. Conclusion.............................................................................. 39 

References .......................................................................................................... 40 

Appendix: Benchmarks used in Section 4.1 ................................................... 43 

 

 

 

 

 

 

 

 

 

 

 

 

 

v 



 

 

List of Figures and Tables 

Figure 1. Portable PAC SoC Platform .........................................................13 

Figure 2. The Overall Program Transformation Framework.......................16 

Figure 3. The Overview of the architecture of the JGene core....................17 

Figure 4. JGene program attributes..............................................................18 

Figure 5. Sample using interface of JGene ..................................................19 

Figure 6. Relation between JGenes and CLDC/MIDP ................................27 

Table 1. The performance results on various configurations.......................27 

Figure 7. The 256x256 matrix multiplication execute result.......................28 

Figure 8. The speedup of GCC optimization in recursion ...........................29 

Table 2. The result of Scimark2 scores on CLDC and CDC platforms.......30 

Figure 9. The result of CLDC/KNI Scimakr2 scores ..................................31 

Table 3. The effort of refactoring FFT.........................................................33 

Table 4. The image filter sample tests result ...............................................33 

Figure 10. The result of our image filter benchmarking..............................34 

vi 



 

Figure 11. The decoding flow of J2ME mpeg decoder ...............................35 

Figure 12. The mpeg display fps before(L) and after(R) transform() .........35 

Figure 13. The build environment ...............................................................36 

Figure 14. MIDP examples on PAC ............................................................36 

Figure 15. Application examples on PAC LCD ..........................................37 

vii 



 

Chapter 1. Introduction 

Embedded systems range from tiny sensors that possess limited computing power but 

consume little energy, to battery-powered hand-held devices supporting multiple software 

applications interacting with users via various types of user interfaces, to set-top boxes with 

increasing computing capability and more demanding energy requirement. Software 

development plays an increasingly important role in any embedded system projects. To cope 

with heterogeneous hardware/software configurations each with different budget in terms of 

computing power, memory usage, energy consumption, and the types of peripherals, software 

engineers need to spend a great deal of effort on configuration-specific customization, hoping 

to tune the system for optimum performance within the given budget. Such relatively 

“mundane,” time-consuming task, compared to the development of the applications for end 

users, is becoming more burdensome when systems become more powerful capable of hosting 

multiple applications simultaneously. The problem is further intensified by the fact that 

multi-core architecture, developed mostly for higher-end, desktop systems previously, is also 

gradually entering the embedded systems segment. The implication of such a shift is quite 

significant for software engineers, because developing concurrent, multi-threaded programs 

running on multiple processors simultaneously has always been challenging when compared 

to single-threaded applications. As if it is not enough, concurrent programming is more 

burdensome if the multiple processes are in fact heterogeneous each with special capabilities 

(e.g. signal processing, graphics rendering, networking, etc.). When the universal 

time-to-market factor dominates the entire development project, it is not surprising to see that 

many delivered embedded systems operate in a sub-optimal mode. 

Advanced CAD tools have always played a crucial role for hardware and other 

engineering disciplines, to help engineers analyze, validate, and improve their designs 

continuously and rapidly. Development of CAD tools for software engineering, although long 

thought to be desirable and critical, has not kept up with the pace of advancement of software 

development technologies. Although this thesis is not the place to investigate the main causes 

of this issue, it is clear that for in the field such as embedded systems where innovations 

emerge rapidly, sufficient CAD support will always lag behind. The question is how to 

develop CAD tools that is sufficiently useful, fast enough, while keeping the development 

code low so that the return of investment is justifiable. 
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It should be noted that the fundamental tool-chains and associated development 

environment are always required for any embedded system project. What we mean by CAD 

support are those “additional” tools that, among other things, help engineers visualize and 

analyze the architecture, design, and implementation of the system under development. 

Without CAD support, engineers mostly have to rely on manual programming and tuning of 

the system, based on previously obtained execution history or performance measures. 

Nevertheless, the scope of CAD support in general or for embedded system development 

in particular, is still too large. What we are interested in are strategies and mechanisms that 

help engineers derive applications for different system configurations easily without having to 

modify these applications thoroughly. To be more specific, there are some questions we want 

to address: 

 How to adjust an application if the memory budget is low. What are the available 

maneuvers that can be tried? 

 How to partition an application into modules that can be deployed on different cores, 

taking into account the necessary interface and communication changes between 

modules. 

 For an application written with single-thread execution in mind, how to adjust it in 

case the underlying system support multi-threads. 

 How to quickly obtain empirical feedback in order to understand the impact of 

various optimizations, their improvement or mismatch between anticipated result and 

actual result. 

In this thesis we focus on program transformation techniques, and pay particular 

attention to their usefulness for embedded software development. Such a source-level 

transformation approach is highly portable from one processor to another and is 

complementary to existing platform-specific, back-end optimizations. With sufficiently 

powerful program transformation tools, the task of developing higher-level, end-user 

applications can be decoupled from low-level system-specific optimization more desirably. 

For example, instead of injecting various compiler flags and machine dependent code into the 

main code base, the engineers may instruct the program transformer with various rules or 

heuristics to produce final programs geared towards specific target platforms. Moreover, by 

putting less effort into compiler development, the transformational approach help reducing 
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the time to market of the embedded system product while giving higher performance. Even 

though it is arguable that the generated programs are still not optimum when compared with 

those hand-crafted equivalents – just like the general perception that compiler-generated code 

cannot compete with hand-crafted assembler code – we argue that software engineers gain 

substantial advantages when they use program synthesizers properly. For example, it would 

be faster to explore different alternatives and make better design decisions without indulging 

prematurely into hand crafting tasks. 

The rest of this thesis is organized as follow: in chapter 2 we will survey related areas in 

compiler techniques and program transformation systems for embedded systems. In chapter 3 

we will outline the design objective, considerations, and the architecture of our program 

transformation framework. In chapter 4 we will describe and discuss some performance 

studies using the transformation framework, as well as some experiments with an 

experimental embedded system board. In chapter 6 we will conclude the thesis. 
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Chapter 2. Background 

Embedded systems are essentially a highly dynamic field because of the fast pace of 

innovations and development in hardware, operating systems, and application development 

technologies. With the tremendous commercial potential at stake, as well as relatively smaller 

investment companies require to join the game, it is not difficult to see the embedded systems 

market is filled with a huge and diverse array of hardware devices and associated system 

software platforms. This suggests that the dimensions of design space for embedded systems 

also increase dramatically. One would have to consider target-system-specific transformations, 

such as memory optimization requiring target architecture-dependent loop transformations, 

optimized word length selection, and process restructuring for fine-grain load distribution, etc. 

As stated in [Ernst], “the problem is worse here than with parallel compilers because of 

architecture specialization.” 

Research interests in optimization techniques for embedded systems have grown in 

recent years, in an attempt to understand the various optimization strategies applicable to the 

design of embedded systems in terms of time-space performance and/or power consumption. 

For example, some conferences and workshops such as LCTES and ODES are devoted to 

such goal. Compiler and optimization research for embedded systems shares the same 

foundation with general compiler techniques, but has specific challenges to address: 

 Energy awareness. Many approaches address the energy consumption issues that 

are crucial for embedded systems (e.g. [Lambrechts], [VanderAa03], 

[VanderAa05]). 

 Memory hierarchy. Some compiler techniques explore the characteristics of 

memory hierarchies that differ from one embedded system from another ([Chen], 

[Grewal], [Ozturk], [Sanghai07]). 

 Transformation and code generation. There are also efforts that propose code 

generation and transformation techniques for embedded systems. In addition, there 

are also efforts concerned with specific problem domains such as algorithms for FFT 

or other multimedia applications, and develop specific code generation methods for 

embedded systems. Examples include [Ali], [Alur], [Burgaard], [Cheng], [Franke], 

[Hong]. 
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 Multi-core architecture. Work in this category concerns the parallelization aspect 

for multi-core embedded systems or more general multi-processor architecture 

([Dupre], [Perkins], [Sanghai05]), and is closely related to traditional parallelizing 

compiler research.. 

 Profiling-based optimization. Work in this category proposes methods that guide 

compiler with profiling information, possibly obtained from actual execution of 

automatically generated programs. ([Cavazos], [Peri], [Zhao05], [Suresh]). 

 Framework and methods. There are also research efforts proposing general 

framework and methods that can are applicable for embedded systems. ([Aarts], 

[Barat], [Fulton], [Pan], [Vachharajani], [Zhao03]). 

The references presented above are just samples from the vast literature in compiler 

research. Furthermore, the categories above are not mutually disjoint, since it is often the case 

that a research effort will consider multiple aspects simultaneously. In what follows we focus 

on research and development relevant to the area of compiler techniques, or more specifically 

program analysis and transformation systems for multi-core embedded systems, without 

probing further into areas such as energy consumption or more hardware-oriented research. 

For efforts related to program transformation, [Franke] investigates source-level 

transformation for embedded systems, which incorporates a probabilistic feedback-driven 

search for proper transformation sequences. Specifically, it combines a simple random search 

for space exploration and a focused search based on a machine learning approach, in order to 

help reducing the extremely huge search space. [Lee] investigates the case of dual instruction 

set processors that are increasingly popular for embedded systems. Typically, programs 

compiled with a reduced instruction set (16 bits/instruction) have smaller code size but run 

slower, but run faster with larger code size when compiled with a full instruction set (32 

bits/instruction). Thus [Lee] first compiles a program with the reduced instruction set first, 

and then analyses and selects a set of basic blocks of the program and transforms them using 

the full instruction set that gives the maximum performance gain while maintaining the code 

size under a given upper bound. 

When the development of the hardware is also part of an embedded system project, the 

matter becomes more involved. [Ernst] provides an overview of research in 

hardware/software co-design of embedded systems. [Bennett] proposes a framework that 

5 



 

combined automated code transformation and ISE generators to explore the potential benefits 

of such a combination. Although the design space is even larger in the hardware/software 

co-design context, what was discussed previously is still useful. Still, there are a number of 

points worth pointing out: 

 An integrated and coherent co-design system should capture the complete design 

specification, including hardware and software models, and support design space 

exploration with optimization based on this specification 

 Synchronization and integration of hardware and software design becomes an issue. 

 The boundary between hardware and software is interesting. Although this aspect 

resembles the boundary between programs written in high-level languages and those 

using assembly languages (to boost performance for a critical part), the 

hardware/software boundary is “permanent” and thus requires much rigid analysis 

and careful decisions. 

General-purpose source code transformation frameworks are also relevant in our study. 

For example, [Cordy] presents the TXL system that supports all aspects of parsing, pattern 

matching, transformation rules, application strategies and unparsing within a specially 

designed language with no dependence on other tools or technologies. [Bravenboer] is 

another framework, called Stratego/XT, that is essentially a collection of reusable components 

and tools for the development of transformation systems, where transformation components 

are implemented using the Stratego language that provides rewrite rules for expressing basic 

transformations, programmable rewriting strategies for controlling the application of rules, 

concrete syntax for expressing the patterns of rules in the syntax of the object language, and 

dynamic rewrite rules for expressing context-sensitive transformations. 

Another important category of compiler research for embedded systems concerns 

parallelization. For multi-core architecture this usually amounts to the partition of a program 

into parts each may sit on different cores. [Suresh] provides both compiler-based and 

simulation-based loop analyzers that profile an application, and a loop analysis toolset to 

support hardware software partitioning. These tools are used to identify core fragments of 

programs of many benchmarks that are executed most frequently. However, these core 

fragments are factored out into hardware in a manual way. [Kim] presents a source code 

analysis technique that, although not targeting embedded systems per se, is still relevant to 
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parallelization and program transformation. The technique attempts to extract so-called 

pre-execution code from an ordinary program such that the pre-execution code can be placed 

as another helper thread that runs “in spare hardware contexts ahead of the main computation 

to trigger long-latency memory operations early, hence absorbing their latency on behalf of 

the main computation that can be issued prior to the main program.” 

When more general compiler techniques are concerned, the space for exploration 

includes many dimensions. A particularly important dimension is the kinds of optimizations 

that can be performed. This dimension is profound due to the ever increasing complexity of 

hardware architecture. There are also enormous research efforts on applying existing, general 

optimizations to embedded systems. An even more challenging dimension regards the 

potential interferences among optimizations. It is well known that the order of optimizations 

can affect the quality of the final result; some optimizations may enable or disable future 

optimizations. [Zhao03] investigated the impact of optimizations to embedded systems. 

[Franke] mentioned above also discusses its program transformation framework for embedded 

systems from this optimization space exploration perspective. The iterative compiler approach 

(e.g. [Aarts]) addresses this by performing optimizations in different ways, and observe the 

performance characteristics of the actual generated code rather than relying on heuristics or 

abstract performance models.  [Triantafyllis] proposes a more elaborated framework for 

exploring the space of optimizations. In this framework, a compiler optimizes each code 

segment with a variety of optimization configurations and examines the code after 

optimization to choose the best version produced. Because this finer-grained iterative 

compiler approach results in larger search space, the framework also proposes methods to 

reduce the search space. [Pan] builds a feedback-directed optimization orchestration 

algorithm which searches for the combination of optimization techniques that achieves the 

best program performance. The algorithm attempts to successively identify and removes 

harmful optimizations, measured through a series of program executions, with the goal to 

reduce the number of compilations while maintain the quality of the generated code. 

Because our transformation framework is geared towards Java programs, it is also worth 

considering related work for embedded Java. The Java Platform, Micro Edition (J2ME) is a 

set of technologies and specifications developed for small devices like pagers, mobile phones, 

and set-top boxes. J2ME uses smaller-footprint subsets of Java SE components, such as 

smaller virtual machines and leaner APIs, and defines a number of APIs that are specifically 
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targeted at consumer and embedded devices. It is proposed to enable users, service providers, 

and device manufacturers to take advantage of a rich portfolio of application content that can 

be delivered to the user’s device on demand, by wired or wireless connections. 

Although JVMs can be implemented using straightforward interpreters, the most popular 

approach to improving JVM performance is to replace or augment the interpreter with a 

just-in-time (JIT) compiler, which transforms the bytecode into machine code that can be 

executed by the host machine directly. Depending on the level of optimization applied, the 

translated machine code may even approximate the speed of equivalent programs written in 

C. 

However, the JIT compilation phase may be quite complicated, also depending on the 

type of optimizations performed, and require substantial memory and processing time. In 

addition, especially for embedded systems, the impact of this in terms of user experience can 

be very significant, particularly at application start-up, as a device appears unresponsive for a 

long period of time. It becomes obvious that compiling all bytecode into native code may 

incur too much overhead, especially statistically speaking a large portion of the bytecode is 

executed vary rarely or even not executed at all.  

Accordingly, some researchers try to design lightweight and efficient JIT compilers. For 

example, in [Tabatabai] a JIT compiler for the Intel IA32 architecture is proposed that 

generates native IA32 instructions directly from the byte codes, in a single pass. Other than a 

control-flow graph used for register allocation, the JIT does not generate an explicit 

intermediate representation. Rather, it uses the byte codes themselves to represent expressions 

and maintains additional structures that are managed on-the-fly. This is in contrast to other 

Java JIT implementations which transform byte codes to an explicit intermediate 

representation. Another example described in [Shudo] presents cost-effective code generation 

and optimization methods by means of template connecting. The code generator basically 

connects pre-fabricated templates of native code corresponding to internal instructions. In 

addition to the technique, stack caching [Ertl] was implemented in the compiler and the 

technique makes use of multiple registers over templates. 

Therefore, most JIT compilers are selective about the bytecode to compile, often on a 

method basis. That is, they collect the frequency of each loaded method and only compile 

those methods that are (expected to be) frequent. Furthermore, because the more 
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optimizations to apply, the more memory and processing time are needed, many JIT 

compilers have multiple levels of optimizations each with different memory and processing 

time requirements, so that different optimizations can be applied to different methods based 

on their relative frequencies. 

Another way of addressing the issue of compilation overhead is through the so-called 

dynamic adaptive compilers (DAC), sometimes also referred to as mix-mode interpreters. In a 

DAC, bytecodes are initially executed by interpretation while software profiles the code and 

determines key code sections to be compiled. Some variations avoid the interpretation all 

together and convert the bytecode into native code immediately using inexpensive translation. 

Once the key code sections, mostly methods, that are identified as hot, they are compiled 

using more advanced optimization options. Furthermore, the available levels of optimizations 

may be more than one, so that only extremely hot sections receive extensive analysis and 

optimizations. The popular Jikes RVM (research virtual machine) employs such an MMI 

approach. 

Another category of JVM optimization that is more relevant to our study is the so-called 

ahead-of-time (AOT) compilation. As the name suggests, if the Java programs and/or 

bytecode are known prior to their execution, we can employ traditional compiler steps by 

translating them into native code in advance. Extensive program analysis and optimizations 

can therefore be applied without limitation. We believe AOT compilation is a very important 

technique for embedded systems because there are often core applications that should be 

bundled with a given embedded system. Note that if the embedded Java system is required to 

download and execute bytecode dynamically, JIT compiler is still essential. 

Optimized ahead-of-time compilation attempts to produce code having size and speed 

comparable to code written in C/C++, while remaining compatible with the Java world, 

allowing for the mixing and matching of code according to individual system requirements. 

Some AOT compilers such as GCJ translate Java programs into native code (through the 

common GCC backend), while others may translate Java into C and rely on C compiler to 

perform sophisticated optimizations. Note that AOT compilation does not conflict with JIT 

compilation. In fact, many AOT compilation frameworks still require JVMs to process and 

execute bytecode if it is allowed to execute Java applications containing both natively 

compiled part and bytecode part. 
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AOT compilers are usually not for dynamically downloaded classes. It is nevertheless 

possible to invoke existing JIT compilers on bytecode to obtain and cache the compiled 

machine “ahead of time,” thereby reducing the time for class loading and optimization 

substantially. This simpler approach to AOT compilation comes almost free because it makes 

use of the JIT compiler that already exists. CVM actually provides such facility that allows 

engineers to customize additional classes for AOT compilation and to include them in the 

final binary footprint. [Hong] also extends from the idea and that proposes a “client-side” 

compilation during run time for downloaded classes. The idea works because in certain 

embedded applications such as set-top boxes where applications may be executed many times 

after they are downloaded, hence the time saved for class loading and optimizations can be 

significant. 
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Chapter 3. The Program Transformation Framework 

Program transformation is a powerful technique that has been used to support various 

kinds of software engineering activities. In fact, refactoring – the process of restructuring 

code with the purpose of making it easier to understand and maintain without changing its 

observable behavior – is strongly coupled with program transformation. Nowadays, the use of 

refactoring to increase quality is considered a very important development practice. For 

instance, Extreme Programming, an agile approach to software development, includes 

refactoring as a standard activity to improve software design continuously. 

Unlike compilers, many program transformation tools are not language specific, being 

able to transform programs from an arbitrary source language to an arbitrary destination 

language. In general, a program transformation tool requires two kinds of user: the 

transformation engineer, who configures the tool (encodes the transformations) and the 

programmer, who uses the tool for software development (applies the transformations). While 

this provides necessary flexibility, it complicates the use of the tools. As a result, making use 

of program transformation in practical, large-scale projects to improve productivity is not 

possible without sufficient tool support. 

3.1. Objective and Considerations 

Our goal is develop a program transformation framework that can benefit software 

development in general and the development of multi-core embedded systems in particular. It 

is beneficial to envision a full blown, fully integrated CAD environment that can assist 

developers in all aspects, even though our actual goal here is far less ambitious. By 

identifying the long-term directions, we hope to design an extensible framework that has core 

assets sufficient for short-term needs and can be extended further for new, possibly much 

more sophisticated features in the future. Hence below we proceed with the discussion of a 

comprehensive program transformation system, its ideal features, requirements, and potential 

issues. 

A complete program transformation system should capture the complete design 

specification of an embedded system, support design space exploration with optimization 

based on this specification, and even to deal with different aspects of developing and 
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finalizing the embedded system. For example, some embedded systems may be equipped with 

primitive operating system without real-time facilities. Generating programs for them will be 

quite different from generating for other systems with real-time support. Yet, whenever 

possible, one should avoid developing the same application twice just for these two classes of 

embedded systems.  

Without relying unrealistically on compilers to extract concurrency from an arbitrary 

single-threaded program and to re-shuffle it to fit different target platforms, a more 

cost-effective approach is to only work on programs that are written with certain styles, 

possibly with additional annotations, to help generators generate target-specific programs 

more suitably, or at least suggest potential improvements one can attempt to take better 

advantage of the generators’ capability.  

The goal of the generator can be further generalized to cover hardware/software 

co-design or even co-synthesis. That is, within given hardware and software requirements and 

application domains, it is possible to investigate different system-wise designs. To pursue this 

goal, however, more detailed hardware model and software model should be used. Because of 

the diversity in possible hardware and software models, developing a comprehensive 

environment supporting all of them is probably too much. 

In addition to the general objective and considerations mentioned above, we also have a 

more project-specific objective and associated considerations. One of the major test beds of 

our transformation framework is the PAC (Parallel Architecture Core) platform. Figure 1 

depicts the overall architecture of the PAC platform, which is designed to provide a platform 

for the next-generation mobile devices such as smart phone, PDA, and portable media players. 

The PAC platform features a dual-core architecture, where the MPU core is designed to 

execute system and application programs, while the DSP core is suitable to execute complex 

computation programs, such as multi-media codes. 

One of the major milestones of the PAC project is the development of a 

high-performance compiler and related development environment for the DSP core. Therefore, 

to help unveiling the potential power of the PAC platform, our framework should be used to 

help offloading some of the computation tasks from the MPU core to the DSP code. 
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Figure 1. Portable PAC SoC Platform 
 

A critical concern, however, is the fact that the benefit of such labor division may be 

overshadowed by the incurred initialization and communication overhead. Furthermore, the 

different computing models these two cores are based on can introduce additional overhead. 

For example, when the MPU is running Java-based application while the DSP is based more 

on C-style procedural execution, there will be additional run-time adaptation to cope with 

object instantiations, structural traversals, as well as object-oriented inheritance mechanisms. 

Clearly, the transformation framework should provide engineers with means to quickly assess 

the potential gains or overhead of various load sharing schemes. It is also desirable that the 

framework can analyze the initial program and suggests to the engineers promising candidates 

or potential bottlenecks. 
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platforms. For different platforms, it is also able to recognize its strength and limits 

to better harness their potential power. 

 It is extensible in many dimensions: new target platforms, new generation and 

optimization schemes, new source and target languages, and so on. 

 It is relatively easy for engineers to experiment different exploration and generation 

heuristics without writing intensive algorithms using the development programming 

language. 

 It provides sufficient facilities that help engineers obtain execution or simulation 

feedbacks in a timely fashion; this requires the framework to streamline the 

transformation process seamlessly. 

Under the general requirements, our near-term goal is to mainly focus on Java as the 

base language, with target platforms including X86 and ARM architecture, where the later 

includes both emulated ARM machine as well as the PAC platform. Below is a list of specific 

requirements for the near-term system 

 It generates platform-specific C code from input Java programs, partly or whole. 

When only part of the Java programs are generated, the communication between the 

Java run-time and the C counterpart is through JNI (or KNI when the CLDC KVM 

is used). 

 It provides profiling and performance evaluation facilities by augmenting the JVM 

with proper instrumentation mechanisms.  

 It allows developers to experiment different exploration strategies easily, possibly 

using a rule-based language. Of course, when innovative exploration schemes are 

sought that are beyond what existing facilities are capable of describing, the 

framework is still extensible, in terms of new analysis algorithms and search 

procedures in Java (the implementation language of the framework), so that the user 

has a systematic way to adjust the system for his/her investigation. 

 When exploiting the multi-core architecture of the PAC platform, the framework 

supports different communication schemes between the MPU and the DSP cores. In 

particular, direct communication or inter-process communication via micro kernels 

(and IO interrupts) should be considered. 
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It is also worth mentioning the long-term objective of our framework, which also 

indicates the aspects that are not addressed in the short-term objectives. 

 It supports multiple base languages. This is to recognize that most embedded 

systems rely on C or C++ as the primary development languages. This is also 

reflected by most research and development projects for embedded systems. As also 

mentioned in Section 2, researchers also recognize the importance of generating 

target-specific programs based on platform-neutral programs. 

 It supports useful visual tools. There are different kinds of visual tools that can help 

increasing the productivity and quality of the generation process, hence the overall 

development process. For example, the user may describe an abstract machine 

model with multiple cores and describe each core with specific characteristics. This 

can be combined with the visualization of the input programs and generated 

programs (as modules) to show the result of transformation or even the simulation or 

execution results. 

 It is self-applicable. This is an important long-term goal of our framework. Because 

the rule-based language itself is also a powerful language, it also makes sense to 

process the input rules and to generate optimized Java programs to speed up the 

transformation process. 

 It supports optimization-space exploration. Because there are potentially unlimited 

optimizations conceivable for various program styles or other conditions, orchestrate 

these optimizations suitably to achieve better results may be challenging. The 

framework should permit semi-automatic to fully automatic means for engineers to 

blend different optimizations or program refactoring. 

3.3. Architecture Overview 

In this section we outline the overall architecture of our framework. Figure 2 shows the 

role of the transformation framework in the overall development and execution environment 

of an embedded system.  
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Figure 2. The Overall Program Transformation Framework 

 
In this embedded system development environment, the developer is expected to write 

pure Java programs that are intrinsic to the problem at hand, and then use the transformation 

subsystem to selectively factor out part of the Java program into platform-specific C programs. 

For different target platforms and different design constraints, the engineer needs to create 

specific polices or rules to instruct the transformer, or even additional platform-specific 

modules or utilities. 

The JGene subsystem shown in Figure 2 is the core of the overall framework. It is an 

extensible object-oriented framework for Java program transformation. One notable goal of 

JGene is that the engineers could write embedded applications in pure Java and test their 

functionalities immediately and translate critical parts into more efficient C/C++ programs. 

This has great potential in reducing the turnaround time for (embedded) software 

development.  
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Figure 3. The Overview of the architecture of the JGene core 

 
Figure 3 above shows in more detail the internal design of JGene. In addition to the 

usual abstract syntax tree (AST) module, JGene places an attribute programming module at 

the core. The attribute programming module basically provides the developers extension 

mechanisms to define new types of attributes for Java ASTs, as well as the propagation rules 

among them. Although the basic idea is almost the same as attribute grammars, there are 

some differences. For example, many transformation tools, including back-end code 

generation components that employ the attribute grammar, let developers define attributes and 

auxiliary subroutines alongside the syntax definition (and rely on syntax-directed translation 

to produce the final translator). Although compact and straightforward, this approach 

introduces several problems. First, the resulting system tends to be large, cluttered with each 

other and the syntax definition (also because the grammar itself is usually very large). More 

importantly, this form of programming is not extensible, as new transformation scheme will 

have to be written with substantial duplication. 

Another limitation for typical transformation tools is the lack of flexible support for 

controlling the propagation of attributes as well as reasoning with the interrelations with 

attributes.  Either these aspects are left as the developers’ responsibility, or they restrict what 
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the tools can support. 

As an object-oriented framework, JGene provides a general model for defining and 

programming with attributed defined by the developer. The idea is illustrated in Figure 4. The 

attribute programming module provides core classes represents attributes: Attribute and its 

subclass Choice. While most attributes are computed from ASTs and other contextual 

information, Choice represents user’s decisions in some aspects defined by the user. The 

example in Figure 4 indicates that, for some AST elements, the user may choose to generate 

them into pure C program, JNI-compliant programs, or pure Java.  

 
Figure 4. JGene program attributes 

 

 In fact, each AST element may be generated into different types according to user- 

defined attributes and some binding rules. We list a few important sample attributes below:  

 PureC: the element is to be translated into (ANSI) C; the value may be true, false, or 

undecided. 

 JniC: the element is to be translated into JNI-compliant C; the value may be true, 

false, or not-decided. 

 Java: the element remains in pure Java; the value may be true, false, or undecided. 

 UsesDefinedClassesOnly (UDCO): the element does not use system or external 

library classes; the value may be true or false. 

 MethodCallers: the sets of method invocations (which are AST elements) calling 

this element, attribute value may be null or a set of elements. 
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3.4. Design Space Exploration 

After attributes are defined, the developer in turn specifies the dependencies among 

these attributes. Some attributes require input from the user; other attributes may depend on 

these attributes. Moreover, because some choices may imply or invalidate other choices, the 

attribute programming module in effect becomes a simple, but convenient constraint 

programming tool. 

 

Figure 5. Sample using interface of JGene 
 

Figure 5 above shows a snapshot of the JGene in use, using the example attributes 

described previously. Specifically, the user can examine the program structure and the 

attributes for each AST elements. Some choices are disabled due to various rules (written in 

Java). For the choices entered by the user, other choices may be filled or disabled accordingly. 

Thus although there seem many user-entered choices in Figure 5, the user in fact only decide, 

at method level, which methods are to be generated into pure C or JNI-compliant C. 
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For example, the PureC attribute may have associated rules defined by the developer:  

 An element can be PureC, JniC, or Java, exclusively. 

 It cannot be PureC if UsesDefinedClassesOnly is false 

 It is PureC when its parent is PureC 

 It is PureC if called by another PureC element 

 It cannot be PureC if called by Java 

All these rules are written as separate classes. In Figure 5, when the user chooses that the 

method add() is PureC, the action triggers the re-evaluation of the method loop(), which 

should have value undecided at the time. According to the rule, loop() cannot be Java (hence 

the Java attribute becomes false), although it may still be PureC or PureC, which is to be 

specified by the user later. Conversely, if the user select PureC for loop() first, then add() 

must be PureC according to the rules, thus its JniC and Java attributes all become false. 

3.5. Code Generation 

In this section we show some examples of program transformation using JGene. Before 

going into the example, we first describe briefly about the Java Native Interface (JNI). JNI is 

a programming framework that allows Java code running in Java VM to call and be called by 

native applications and libraries written in other languages such as C, C++ and assembly. To 

bind native method code to the Java application, a native method interface is used, which has 

been standardized across most JVMs. This interface is used to write native methods to handle 

situations when an application cannot be written entirely in the Java programming language 

such as when the standard Java class library does not support the platform-dependent features 

or program library. It is also used to modify an existing application, written in another 

programming language, to be accessible to Java applications.  

For example, consider the pure java program below: 

 
public class adder { 
void exec() { 
int x = add(1, 2); 
System.out.println(x); 

} 
 
int add(int i, int j) { 
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return i + j; 
} 

} 
 

The corresponding JNI-compliant C program may be generated below: 

 
// Java 
public class adder { 
public void exec() { 
int x = add(1, 2); 
System.out.println(x); 

} 
 
public native int add(int i, int j); 

}  
 
// JNI 
JNIEXPORT jint JNICALL Java_adder_add(JNIEnv *env, jclass cl, jint 
i, jint j) { 
return i+j; 

} 
 

In the context of embedded systems, the overhead to support JNI becomes large and may 

not justify the gain. The main reason is that JNI is intended to be standardized across multiple 

JVMs, so that the same native C/C++ code may still be portable, but the benefit of this 

approach is less relevant for embedded systems. KVM Native Interface (KNI) is a 

trimmed-down version of JNI for KVM - a small Java VM written for embedded systems. 

Unlike JNI, KNI is essentially implementation specific, not intend to be standardized. 

Another VM for embedded systems, CVM, is a larger JVM implementation that complies 

with the JNI standard, has more advanced JIT compiler technology inside, and hence requires 

more resources than KVM. Note that many of the standard library classes depend on KNI to 

provide functionality to the developer and the user, e.g. I/O file reading and sound capabilities. 

Including performance- and platform-sensitive API implementations in the standard library 

allows all Java applications to access this functionality in a safe and platform-independent 

manner. 

Below we illustrate the transformation targeting KNI using the same example given 

previously. Currently, the transformation framework only works for a subset of input 

programs, namely, Java programs with certain syntactical restrictions. The goal is to 

investigate the potential usefulness of the transformation approach in general and the internals 

of the KVM and CVM. We show the generated KNI C program below. 

 
// Java 
public class Adder  
{ 
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public void exec() { 
int x = add(1, 2); 
System.out.println(x); 

  
public native int add(int i, int j); 

} 
 
 
// KNI 
KNIEXPORT KNI_RETURNTYPE_INT adder_add()  
{  

jint i=KNI_GetParameterAsInt(1); 
jint j=KNI_GetParameterAsInt2); 
KNI_ReturnInt(i + j); 

} 
 
// Modified Java class 
public class Test  
{ 

public native int loop(n); 
} 
 

As the example above shows, when targeting KNI, the generated C function needs to 

comply with the programming model defined by KNI. In particular, parameter passing is done 

through explicit stack operations using predefined KNI macros like 

KNI_GetParameterAsInt(). KNI also defines macros for accessing objects inside KVM. Note 

that this indicates some potential issues when the generated C function is to be placed on a 

different core than the one running the KVM. 

Another more involved example is a Lens Blur Filter (see Chapter 4), as shown below: 

 
public static int[] lensBlurFilter(int[] rgbIn, int width, int height)  
{ 
... 
ImageFFT fft = new ImageFFT( Math.max(log2rows, log2cols) ); 

  
int[] rgb = new int[w*h]; 
... 
// Create the kernel 
for ( int y = 0; y < h; y++ ) { 
for ( int x = 0; x < w; x++ ) { 
... 

} 
} 

     
// Normalize the kernel 
i = 0; 
for ( int y = 0; y < h; y++ ) { 
for ( int x = 0; x < w; x++ ) { 
mask1[i] /= total; 
i++; 

} 
} 

 
fft.transform2D( mask1, mask2, w, h, true ); 

 
for (...) { 
for (...) { 
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... 
//src image getRGB 
... 

} 
} 

 
// Transform into frequency space 
fft.transform2D( ar1, ar2, cols, rows, true); 
fft.transform2D( gb1, gb2, cols, rows, true); 

 
// Multiply the transformed pixels by the transformed kernel 
... 
// Transform back 
fft.transform2D( ar1, ar2, cols, rows, false ); 
fft.transform2D( gb1, gb2, cols, rows, false ); 
... 
//dst Image setRGB 
... 

 
Return ...; 

} 
 
 
public void transform2D( float[] real, float[] imag, int cols, int 
rows, boolean forward )  

{ 
... 
// FFT the rows 
for ( int y = 0; y < rows; y++ ) { 
... 
transform1D(rtemp, itemp, log2cols, cols, forward); 

  ... 
} 

 
// FFT the columns 
for ( int x = 0; x < cols; x++ ) { 
... 
transform1D(rtemp, itemp, log2rows, rows, forward); 
... 

} 
} 
 

The most frequently invoked method in the Lens Blur Filter is transform2D(). Indeed, 

after profiling, we found that transform2D() occupied most of the run time. Naturally, we 

would like to make transform2D() native, although we could also translate all lensBlurFilter(), 

including transform2D() and the other methods it calls into pure C code. But this may result 

in excessive code size. Using JGene, we are able to explore both approaches quickly. Chapter 

4 will show the performance results. 

Consider the case where only transform2D() is made native. The following code shows 

that transform2D() is generated in KNI-compliant format and transform1D() in pure C 

format. 

 
KNIEXPORT KNI_RETURNTYPE_VOID 
Java_ccl_midlet_image_ImageFFT_transform2D()  

{ 
 /* Get the java input parameter */ 
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 KNI_StartHandles(5); 
  
 KNI_DeclareHandle(handle1); 
 KNI_GetParameterAsObject(1, handle1); 
 jint handle1_len = KNI_GetArrayLength(handle1); 
 jfloat real [handle1_len]; 
 KNI_GetRawArrayRegion(handle1, 0, handle1_len*sizeof(jfloat), 
(jbyte*)real); 

 ... 
 jint cols = KNI_GetParameterAsInt(6); 
 jint rows  = KNI_GetParameterAsInt(7); 
 jboolean forward  = KNI_GetParameterAsBoolean(8); 
 // start real java code here 
 ... 
 
 // FFT the rows 
 for (int y = 0; y < rows; y++) { 

... 
transform1D(rtemp, itemp, w1, w2, w3, log2cols, cols, forward); 

   ... 
} 

 
// FFT the columns 
for (int x = 0; x < cols; x++) { 
... 
transform1D(rtemp, itemp, w1, w2, w3, log2rows, rows, forward); 

   ... 
 } 
 // end real java code 
 KNI_SetRawArrayRegion(handle1, 0, handle1_len*sizeof(jfloat), 
(jbyte*)real); 

 KNI_SetRawArrayRegion(handle2, 0, handle2_len*sizeof(jfloat), 
(jbyte*)imag); 

  
 KNI_EndHandles();  
} 
 
void transform1D(float *real, float *imag, float *w1, float *w2, float 
*w3, int logN, int n, bool forward)  

{ 
 scramble(n, real, imag); 
 butterflies(n, logN, forward ? 1 : -1, real, imag, w1, w2, w3); 
} 
 
 

Note that static program transformation also has intimate relation with the dynamic JIT 

compiler. For example, in some situation, a method may become too big to compile 

dynamically by the JIT compiler, because the embedded system may not provide sufficient 

memory. One example is the FFT benchmark in Scimark2 (see Chapter 4). In this case we try 

to rewrite the main method of transformInternal(), the goal is try to reduce the original 

method code size by dividing transformInternal() into several smaller methods. With the help 

of JGene, the user can easily perform the necessary refactoring and explore the differences in 

terms of memory cost and speed-ups. In our experiment, after proper refactoring, the new 

version of transformInternal() could be translated into native format easily, and the original 

transformInternal() can be JIT-compiled again. 
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Although the JGene offer an automatic translation mechanism, it does not guarantee the 

translated code work exactly the same as the original code. The engineer should look at the 

generated code along with its Java counterpart to ensure that the translation scheme is valid. 

Because of this, no extensive compiler background needed to extend and use JGene unless 

one wants to provide more advanced analyses. 
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Chapter 4. Experiments 

For general benchmarking, we use the SciMark2 benchmark, which is a composite Java 

benchmark measuring the performance of numerical codes occurring in scientific and 

engineering applications. It consists of five computational kernels which are chosen to 

provide an indication of how well the underlying JVM/JIT compilers perform on applications 

utilizing these types of algorithms. SciMark2 includes the following kernels: 

 Fast Fourier Transform (FFT): performs a one-dimensional forward transform of 

4K complex numbers. This kernel exercises complex arithmetic, shuffling, 

non-constant memory references and trigonometric functions.  

 Successive Over-relaxation (SOR): on a 100x100 grid exercises typical access 

patterns in finite difference applications, for example, solving Laplace's equation in 

2D with Drichlet boundary conditions.  

 Monte Carlo: integration approximates the value of Pi by computing the integral of 

the quarter circle y = sqrt(1 - x^2) on [0,1]. It chooses random points with the unit 

square and compute the ratio of those within the circle.  

 Sparse Matrix Multiply: uses an unstructured sparse matrix stored in 

compressed-row format with a prescribed sparse structure. 

 Dense LU matrix factorization: Computes the LU factorization of a dense 100x100 

matrix using partial pivoting. 

As mentioned, our framework relies primarily on JNI and/or KNI to connect the virtual 

machine with external C modules. 

4.1. Simple Benchmarking 

For experiment purpose, we developed a CCL_PKG package alongside with other JSRs 

in the PhoneMe CLDC/MIDP distribution, where the native Java methods are also placed in 

this package. The framework is streamlined so that after the user makes transformation 

decisions, the resulting programs, including Java and C ones, will be placed in suitable places 

and the whole distribution can be rebuilt.  
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Figure 6. Relation between JGenes and CLDC/MIDP 
 

Note that there is an adaptive, just-in-time (JIT) compiler in the CLDC HotSpot 

Implementation virtual machine. The CLDC JIT compiler is a one-pass compiler that 

provides a number of basic optimizations. The compiler makes a preliminary scan of a 

method to determine entry points, and then a target-dependent optimizer makes a final pass 

through the generated code. 

Here we develop a sample test suite to compare run-time performance with or without 

AOT transformations. In this test suite we use simple routines such as prime search, recursion 

Fibonacci, recursion accumulator and 2D matrix multiplication. Detailed description of the 

test suite is given in Appendix. The result is shown in Table 1. (Time unit is millisecond, 

PrimSearch range is 1~50000, Fibonacci N=42, Accumulator N=2500 Cycle=100000, 

Matrix is 256x256 double array). 

 
Table 1. The performance results on various configurations 
 

Type CLDC/JIT 
CLDC/No 

JIT 
CLDC/KNI CVM/JNI GCJ 

PrimSearch 5999 17138 4037 4238 4237 

Fibonacci 15192 96302 7315 9539 9491 

Accumulator 5606 29128 185 913 1811 

MatrixMulti 13635 14005 59 59 127 

MatrixMulti 
(Native product) 

700 827 -- 404 -- 

JGenes 

Transformer
Java New Java 
Code Code

Native 

Code
CLDC MIDP 

CCL PKG JSRs 

Run 

Patching
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Figure 7 shows the performance results for matrix multiplications. We found that the 

CLDC/KNI case gets better performance because the critical code becomes native. The 

CLDC/JIT case uses the JIT compiler to speedup the execution, but it has almost no 

improvement for matrix multiplications. After further investigation, we found that the 

problem is due to its slow execution for floating numbers. In the CLDC/KNI case, on the 

other hand, the C compiler helps to generate more efficient code for floating point operations. 

Thus we found the performance improvement for CLDC/KNI from 13.635 sec to 59 msec. On 

the other hand, if we isolated the dot product operation to a new method and running in native, 

we still get a great improvement for CLDC/JIT with this re-factored Java code. This also 

shows the advantage of our framework that helps developers in exploring various 

combinations of AOT and JIT compilations strategies. 
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Figure 7. The 256x256 matrix multiplication execute result 
 

Figure 8 shows the results for recursive calls (recursive accumulator and Fibonacci 

function). CLDC/JIT could not handle too many recursive calls due to limited heap and stack 

sizes, even it is better than without using JIT compiler. The big improvement demonstrated by 

the CLDC/KNI and CLDC/JNI cases is due to the fact that with –o3 flag turned on, the GCC 
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compiler performs tail recursion optimization when applicable. Even when recursive calls are 

not in a tail-recursion form, such as in the Fibonacci test case, CLDC/KNI still reduce the 

execution time more than the CLDC/JIT case (7.315 vs. 15.192 times per second) without 

increasing the code size. 
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Figure 8. The speedup of GCC optimization in recursion 
 

4.2. Scimark2 Benchmarking 

As indicated before, Scimark2 is an open source benchmark for Java. In this experiment 

we translated the five functions in Scimark2 into native C programs. For example, a core 

method called measureFFT() is shown below, in which the method transformInternal() is 

made native: 
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native static void transformInternal(double data[], int direction); 
 
public static double measureFFT(int N, double mintime, Random R)  
{ 
... 
while(time slot) { 
... 
for (int i=0; i<cycles; i++) { 
FFT.transform(x); // forward transform 
FFT.inverse(x); // backward transform 

} 
... 

} 
... 
 
// approx Mflops 
return FFT.num_flops(N)*cycles/ Q.read() * 1.0e-6;  

 } 
 
public static void transform(double data[]) { 
transformInternal(data, -1);  

} 
 
public static void inverse(double data[]) { 
transformInternal(data, +1);   
// Normalize 
int nd=data.length; 
int n =nd/2; 
double norm=1/((double) n); 
  for(int i=0; i<nd; i++) 

data[i] *= norm; 
} 
 
// KNI part 
KNIEXPORT KNI_RETURNTYPE_VOID 
Java_scimark_org_FFT_transformInternal()  

{ 
 //do real fft transformation 
  ... 
} 
 

The performance results for various Scimark2 benchmarks are shown in Table 2 on our 

x86 testing platform: 

 
Table 2. The result of Scimark2 scores on CLDC and CDC platforms 
 

Type CLDC/JIT CLDC/KNI CDC(no JIT) CDC/JIT 

FFT 1.115 47.982 3.402 9.850 

SOR 2.260 404.822 10.846 20.420 

Monte Carlo 1.388 26.715 2.417 3.010 

Spares Matmult 2.206 517.886 5.951 21.141 

LU 2.151 334.476 6.902 17.380 
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As shown in Figure 9, the improvement achieved via native method is significant; only 

the Monte Carlo case performs relatively weak compared to the other cases. The reason is 

due to excessive use of Java objects. 

0

100

200

300

400

500

600

FFT SOR Monte Carlo Spares Matmult LU

Sc
o
r

CLDC/JIT

e CLDC/KNI

CDC(no JIT)

CDC/JIT

 

Figure 9. The result of CLDC/KNI Scimakr2 scores 
 

4.3. Code Refactoring 

In this experiment we use the FFT benchmark in Scimark2 to illustrate the benefit of 

refactoring combined with Java native support. As described previously, FFT invokes 

transformInternal() extensively. The original transformInternal() is sketched below: 

 
protected static void transformInternal(double data[], int 
direction) 

{ 
... 
bitreverse(data); 

 
/* apply fft loop */ 
for (int bit = 0, dual = 1; bit < logn; bit++, dual *= 2) { 
... 
/* a = 0 */ 
for (int b = 0; b < n; b += 2 * dual) { 
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... 
} 

 
/* a = 1, (dual-1) */ 
for (int a = 1; a < dual; a++) { 
for (int b = 0; b < n; b += 2 * dual) { 
... 

} 
} 

} 
} 
 
 

After refactoring, the inner loop is changed to fftLoop(), as indicated below: 

protected static void transformInternal (double[] data, int 
direction)  

{ 
... 
bitreverse(data) ; 

 
/* apply fft loop */ 
for (int bit = 0, dual = 1; bit < logn; bit++, dual *= 2) { 
fftLoop(data, n, dual, direction); 

} 
} 
 
 

This kind of refactoring is worse than the original one in general, provided that the JVM 

has abundant resources and powerful JIT compilation. For embedded systems, however, the 

original method maybe too large to compile, while in the refactored version the fftLoop() may 

still be dynamically compilable. When AOT transformation is concerned, it is also possible 

that the original method cannot be translated due to many rules (e.g. some methods it calls are 

external classes), yet in the refactored case the fftLoop() is simple enough to translate, as 

shown below: 

 
KNIEXPORT KNI_RETURNTYPE_VOID Java_FFTRefactor_fftLoop() { 
... 
/* a = 0 */ 
for (int b = 0; b < n; b += 2 * dual) { 
fftLoopA0(data, b, dual); 

} 
   
/* a = 1 */ 
for (int a = 1; a < dual; a++) { 
fftLoopA1(data, n, a, dual, direction, w_real, w_imag); 

} 
... 

} 
 
 

The java modified FFT test performance results are given in Table 3 (FFT size=8, 

cycles=70000, unit=msec): 
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Table 3. The effort of refactoring FFT 

Type No JIT CLDC/JIT CLDC/JIT 
(Mini cache) 

CLDC/KNI 

Original FFT 9755 9205 16067 701 

Refactor FFT 10709 9608 10083 871 

 

The results indicated that with static program transformation still outperform JIT 

compilation. More interestingly, it is also shown that programs will smaller methods may 

work more stably across different configurations than those that contain large blocks of code. 

This is seen in the “Mini cache” case in which we limit the CLDC JIT code cache to be quite 

low such that the original big method cannot be compiled into CLDC JIT cache, and the 

attempt is tried many times. 

4.4. Image Filter Benchmarking 

To test our approach for more general applications, we developed a simple image filter 

toolkit which offers several simple filters. The main functions of this tool are gray, sobel, box 

blur, and lens blur filters. The first three filters are space domain array masks. All space 

domain filters work by sliding a rectangular array of numbers over target image. This array is 

called the convolution kernel. For every pixel in the image, we take the corresponding 

numbers from the kernel and the pixels they are over, multiply them together and add all the 

results together to make the new pixel. The lens blur filter is handled by performing 

frequency-domain Discrete Fourier Transform successively. In this experiment we focus on 

these kernel operations. The run time results are showed in Table 4 (The sample image size is 

240x320 pixels). 

 
Table 4. The image filter sample tests result 

Type CLDC/JIT CLDC(no JIT) CLDC/KNI 

Gray(1K cycle) 3987 55671 643 

Sobel(1K cycle) 5622 192139 2656 

Box Blur(1K cycle) 3793 251430 2489 

Len Blur 21941 22947 111 

Len Blur FFT/KI 1197 1211 - 
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We found that CLDC/JIT gets a big improvement in first three filters but performs badly 

for Len Blur. The reason is the same as which discussed before, that the Len Blur filter does 

many floating point operations, revealing the poor handling of floating point instructions in 

CLDC/JIT. Since the Len Blur invoking FFT many times, we still could get much better 

performance than original if we only translated the FFT method. Figure 10 shows the results 

more clearly. 

 

Figure 10. The result of our image filter benchmarking 

4.5. MPEG Decoder Benchmarking 

J2ME mpeg decoder is our mpeg decoder test application. It is an open source suite 

(http://wiki.forum.nokia.com). The decoding algorithm is illustrated in Figure 11: 
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Display

[From http://wiki.forum.nokia.com/index.php/J2ME]  

Figure 11. The decoding flow of J2ME mpeg decoder 
 

Specifically, the Bitmap Java class performs the conversion from Y'CbCr 4:2:0 to RGB. 

We use JGene to translate the transform() method into KNI method, improving the frame rate 

from 8 fps to 11 fps (sample file is 160x120). 

 

Figure 12. The mpeg display fps before(L) and after(R) transform() 
 

4.6. Experiments on PAC and Inter-processor Communication 

We have conducted several preliminary investigation and experiments on the PAC 

development board. As part of the PAC project goal is to construct an embedded Java 
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execution environment, we have integrated various components into a more stream-lined 

development environment. Figure 13 below illustrates the layout of the environment, where 

the toolchain is based on Scratchbox – a cross compilation toolkit. It also provides a full set of 

tools to integrate and cross compile an entire Linux distribution. 

JVM  

Exec bin 
JVM src 

gcc src 

PAC/ARScratchbox 

glibc 

Linux  

Kernel Linux src 

 

Figure 13. The build environment 
 

As shown in the figure, platform-specific gcc and glibc ports (e.g. ARM-based 

arm-none-linux-gnueabi-gcc) are built with Scratchbox, which in turn becomes the build 

environment for Linux and JVM. In addition to ARM-based architectures, such as the 

emulator shipped with Scratchbox or PAC, other platforms such as Intel Xscale (IXDP425) 

combined with other operating systems such as (MontaVista) have also been used. Figure 14 

and Figure 15 demonstrates some examples running on the PAC platform: 

 

Figure 14. MIDP examples on PAC 
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Linux / PAC (ARM 920T)

 

Figure 15. Application examples on PAC LCD 
 

On the PAC platform we have also perform many benchmarking experiments, including 

Scimark2, JBenchmark1, and JBenchmark2. 

The PAC platform includes an implementation of inter-process communication (IPC) for 

bridging the MPU core and the DSP. Specifically, a micro kernel has been developed that 

provides simple task scheduling as well as interrupt-based programming interface. Such an 

IPC mechanism has many implications for the JGene transformer. Although the 

communication is interrupt-based, the programming model for IPC can be either synchronous 

or asynchronous. For the synchronous case, the micro kernel implementation includes an 

associated library allowing the programmer to communicate with the DSP core in an RPC 

style. For the asynchronous case, the programmer is responsible of creating suitable interrupt 

routines, and the main program (in the MPU side) needs to adopt an event-driven 

programming model. It is worth noting that with suitable generation rules, JGene can be used 

to cope with both IPC styles. 

We have also developed some simple programs to test the IPC with the DSP core via 

micro kernel. Below are some examples: 
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// Modified Java class 
public class Test {  
    public native int loop(); 
} 
 
// Generated C function on the ARM side 
KNIEXPORT KNI_RETURNTYPE_INT Java_loop() { 
    TASKID tid = pac_create(_PAC_loop, 2); 
    pac_rpc(tid); 
    pac_wait(tid); 
    pac_read32(0x9000); 
    KNI_ReturnInt(result); 
} 
 
// Generated C function on the DSP side 
int PAC_loop() { 
   int a, b, i, result = 0; 
   for (i = 0; i < 10; ++i) { 

       a = 3 + i; b = 4 - 2 * i;  
       ... 
   } 
 
  //memory write with result for arm get 
   *(unsigned int *) (0xC2009000) = result; 
 
syscall(…); // trigger ARM 
} 

 

In the example above, for KVM to interact with the DSP core without modifying KVM 

itself, we generate a dispatcher function using KNI, and generate a C function managed by the 

micro kernel on the DSP core. Clearly, procedures about IPC can be placed in the dispatcher 

code, while the actual code for computation can be build by DSP-targeted compiler and run 

on the DSP core. It is possible to adjust the IPC parameters or even change to a different IPC 

model by altering the generation rule for the dispatcher code. 
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Chapter 5. Conclusion 

In this thesis we argued the benefits of using program transformation to reduce the 

burden of developing applications for embedded systems. We have investigated research 

areas on  program transformation and compiler techniques, with a focus on embedded 

software development. We showed that the design space to be explored is extremely large for 

a generator to generate suitable programs, and existing techniques often tackle only the design 

space partially. We proposed a transformation framework aiming at equipping engineers with 

flexible and extensible means to explore the design space more efficiently. We focus on 

transforming Java programs into a mixture of Java and platform-specific C programs, and 

develop associated tools to streamline the process. A near-term goal is to add profiling 

capability into JGene so that profiling information gathered from actual program execution 

can be used by JGene again to aid the user in exploring the design space. Despite the 

requirement of using Java as the base language, we believe our framework is already 

powerful for many practical scenarios. We hope the framework’s extensible design can lend 

itself into a more powerful and comprehensive system that matches the need of embedded 

systems development in the future.
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Appendix: Benchmarks used in Section 4.1 

Prime Search: 

public int primeSerach(long max) { 
 int no = 0; 
 for (long i = 0; i < max; i++) { 
  if (isPrime(i)) { 
   no = no + 1; 
  } 
 } 
 return no; 
} 
 
private boolean isPrime(long i) { 
 for (long test = 2; test < i; test++) { 
  if (i % test == 0) { 
   return false; 
  } 
 } 
 return true; 
} 
 
 

Fibonacci Test: 

 
public long fib(long i) { 
 long res = calcFib(i); 
 
 return res; 
}  
 
public long calcFib(long n) { 
 if (n <= 1) 
  return n; 
 else 
  return calcFib(n - 1) + calcFib(n - 2); 
} 
 
 

Accumulator Test: 

public long accumulator(long n) { 
 if (n == 0) 
  return 1; 
 
 return acc(n, 1); 
} 
 
private long acc(long n, long sum) { 
 if (n == 1) 
  return sum; 
 else 
  return acc(n-1, sum + n); 
} 
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Matrix Multiplication test: 

public void matrixMulti(int N) { 
 Random R = new Random(); 
  
 double[][] A = new double[N][N]; 
 double[][] B = new double[N][N]; 
 double[][] C; 
 
 for (int i = 0; i < N; i++) 
  for (int j = 0; j < N; j++) 
   A[i][j] = R.nextDouble(); 
 
 for (int i = 0; i < N; i++) 
  for (int j = 0; j < N; j++) 
   B[i][j] = R.nextDouble(); 
 C = new double[N][N]; 
 // Order: jik optimized ala JAMA 
 
 
 double[] bj1 = new double[N]; 
 for (int j = 0; j < N; j++) { 
  for (int k = 0; k < N; k++) 
   bj1[k] = B[k][j]; 
  for (int i = 0; i < N; i++) { 
   C[i][j] = dotProduct(A[i], bj1, N); 
  } 
 } 
} 
  
double dotProduct(double[] ai, double[] bj, int N) { 
 double s = 0; 
 for (int k = 0; k < N; k++) { 
  s += ai[k] * bj[k]; 
 } 
 
 return s; 
} 
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