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Using Forehead-Channel Activities to Detect Driver’s

Drowsiness in a VR Based Driving Environment

Student :  Po-Chuan Chen Advisor :  Prof. Chin-Teng Lin

Institute of Multimedia Engineering
National Chiao Tung University

Abstract

Previous studies showed that the alpha power increases in the occipital lobe
highly related to human drowsiness. However, the acquisition of occipital EEG
signals with the traditional electrode:.cap is‘inconvenient. Thus, the main purpose of
this study was to confirm whethet the forehead EEG signals could reflect the driver’s
drowsiness and be able to use to estimate driver’s driving trajectory for constructing a
feasible detecting system that can be applied in real life.

Brain signals acquired from theogcipital-and the frontal lobe were analyzed and
compared in this study. The frequency power.changes in these components were used
as features and fed into linear regression model to predict driver’s driving
performance. Results showed the highest estimation accuracy was yielded with the
features extracted from the occipital ICs cluster.

We also found that there is another drowsiness-related brain source located in the
frontal lobe. Furthermore, the increases of the theta power in the frontal lobe also
highly correlated to the driver’s drowsiness. Comparing the conventional methods
using the occipital activities, the estimation accuracy using the forehead signals is
slightly lower but the estimation accuracy was still higher than 0.8.

Results demonstrated that forehead signals could be used to estimate the drivers’
drowsiness. The new detecting system, using forehead signals, not only can correctly
estimate the user’s drowsiness but also can drastically reduce the preparation time. In
the future, such detection system will be easily and widely applied in the real

operational environments.

Keywords: Drowsiness, Electroencephalogram (EEG), Forehead Channel, Virtual
Reality (VR), Linear Regression Model, Independent Component Analysis (ICA)
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1. Introduction

1.1 Importance of the drowsiness detecting

Driving has become one of the most indispensable cognitive behaviors in our
daily life. Such a cognitive performance highly involves attention, decision making,
information perception and awareness, and coordination of sensorimotor systems.
Therefore, decrease in driver’s attention or, more precisely, vigilance level may
deteriorate driver’s driving performance and potentially cause car accidents. National
Highway Traffic Safety Administration (NHTSA) in the US reported at least 100,000
car crashes were caused by drivers’ falling.asleep [4]. Other studies also pointed out
that fatigue, which, in turn, caused drowsiness or falling asleep, was one of the major
causes of car accidents [1]-[3}. Such dramatic amount of tragic events caused by
drivers’ drowsiness call for the attention and-demand in devising an online, real-time
drowsiness detection and monitoring system"to assist and warn drivers when they
become drowsy, such that we can best reduce the car accidents caused by drivers’

decreasing driving performance due to drowsiness.

1.2 Drowsiness measurements

In previous studies, drivers’ drowsiness states were mostly derived from
different physiological measures based on either signal- or image-based technique.
The image-based technique employs video camera to detect, such as, eyelid closure,
eyes’ gaze positions, head movements, etc., and derive, for example, the consecutive

time periods of eyes closing, duration of gaze fixation, or alike, from such measures



to correlate with drivers’ drowsiness levels [7]-[13]. Such image-based technique
requires nearly no preparation, in terms of applying electrodes or sensors, to drivers.
However, image-based methods may suffer from the environments with which the
video cameras need to interact. For example, in the limited space of driving cabin, it is
difficult to find a place to mount two video cameras, in the same time, without

blocking the perception of the video cams by the handling wheel.

1.2.1 Signal-based drowsiness system

Most signal-based drowsiness monitoring systems use electrocardiograph
(ECQG), electroencephalograph (EEG) [17]-[22], or electrooculograph (EOG) [15][16]
to monitor drivers’ physiological changes related to their drowsiness levels. However,
among these physiological changes, heart rate variability (HRV) [14] derived from
ECG measures can be altered by all.sorts of physiological or cognitive states and lack
of specificity as an index of drowsiness levels--On the other hand, although EOG was
used to index the decline of saccade frequency and velocity, which was proved highly
related to the driving performance, it suffered from long average windows to establish
the evidence for drowsiness and could not be used as a real-time warning system.
Other method, such as monitoring the patterns of drivers” moving handle wheel as
used by Toyota Motor Company[5][6], may also highly depend on drivers’ driving
behaviors and experience, road conditions, and all other environmental variables, and
thus is difficult to be generalized for regular use. As a result, EEG remains the most

popular modality used to monitor drowsiness state in real-time.

1.2.2  ABetter EEG Measure Technology



The power changes in EEG alpha (8-12 Hz) and theta (4-7 Hz) bands have
been widely used to index the alertness levels of human subjects in other literature
[23]. Recently, novel dry EEG electrodes based on Micro-Electro-Mechanical System
(MEMS) technology have been invented and introduced to build wireless EEG
acquisition and analysis systems [29]. This, in turn, greatly advanced the EEG
recording technique in real-time operational environment and thus achieved
EEG-based drowsiness monitoring system being used in driving simulation and even
in real driving conditions. In the past, EEG has long been remained one of the
laboratory devices for recording human brain waves due mainly to the professional
preparation with injecting conducting paste into the electrodes to maintain the low
contact impedance with scalp needed to assure good quality EEG signals. Let along
the professional clean-up procedute needed aftet.every experimental session. Such
inconvenience prevent EEG device from being used-in real operational environment,
which needs easy-to-prepare and easy-to-maintain as well as wearable and long-term
operation based only on battery+ power. . Fhe  state-of-the-art dry MEMS EEG
electrodes well fulfill the requirements as an easy-to-apply front end for EEG signal

acquisition in the operational environment.

1.3  The frontal signals

However, as the current development of the dry MEMS electrodes, which
consist of self-stabilized pin-shaped microelectrodes, they may not be easily applied
to the hairy scalp surface. As a result, it may be more applicable to apply the dry
MEMS celectrode on the human forehead surface. Nonetheless, although the dry

MEMS electrodes were already implemented on a baseball cap so that they can be



easily applied to human forehead surface with neither skin preparation (e.g., scratch
the skin surface of scalp) nor application of conducting gel, it raised another issue
here if the EEG signals acquired from forehead channels contain any detectable

feature revealing drowsiness level.

1.4  The aims of this study

Therefore, here, we would like to explicitly compare the drowsiness features
extracted using independent component analysis (ICA) to decompose the EEG data
acquired simultaneously from both standard EEG channels as well as the forehead
channels in a long-distance driving EEG, experiment on a virtual-reality moving
platform. In such comparisons,“the drowsiness level-dependents components are
extracted and selected by correlating the EEG spectra with the driving performance,
which is used to index subjects’ drowsiness-level as used in the previous studies
[24][25]. In addition, the source of these drowsiness level-dependent components will
be compared to see if these sources are commonly derived from the same EEG
process, which may be located in the parietal/occipital cortex and mainly make up
most of the drowsiness relevant EEG components as found in the past. The alternative
can be that the drowsiness component extracted from the forehead EEG channels can
be a useful feature, which is located in close to the frontal brain areas and can be

readily picked by forehead EEG setup with novel dry MEMS EEG electrodes.



2.Materials and Methods

The aim of this study was to determine the drowsy related EEG features which
could be easily applied in a driving environment for reducing the car crashes caused
by the drowsy driving. This study was performed in a dynamic driving environment
included a 3D surrounded virtual reality (VR) based highway driving scene and a real
car without unnecessary parts mounted on a motion platform, which has 6 degree of
freedom (DOF). The brain activities were recorded by a 43-channel
electroencephalographic (EEG) system. Details of the experiment setups and

procedures were described in the following sections.

2.1  Virtual-reality-based-highway driving simulator

For simulating the real driving environment, a VR based highway-driving
environment was developed int our previous studies [30][31]. Fig. 2-1 shows VR
based driving environment including a 3-D surrounded scene projected from seven
projectors (A, C) and a real car mounted on a 6 DOF Stewart platform (B). The
dynamic motion platform provided the kinesthetic stimuli which experienced in the

real driving.

2.2  Subjects

Ten volunteers (ages from 19 to 25 years, 7 males and 3 females) with normal or
corrected-to-normal vision and with driving license were paid to participate in the
experiment. Previous studies [32][33] suggested that drowsiness easily occurs from
late night to early morning and during the early afternoon hours. Therefore, all

experiments in this study began around one hour after the lunch. Before each session,
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participants were required to practice to keep the car at the center of the cruising lane
by maneuvering the car with the steering wheel at least for 5 min until reaching
satisfactory performance. Each subject had to complete two 60-min sessions on two

separated days.

2.3  The lane keeping driving task

For monitoring the driver’s alertness, lane keeping driving task was designed to
index the subject’s drowsiness status. Fig 2-2 shows the digitalized highway scene
that used in drowsiness experiment. This scene was divided into 256 points and the
width of each lane and the car were 60 and 32 points respectively. The refresh rate of
highway scene was set at 60Hz, which can properly emulate a car driving at a fixed
speed of 100 km/hr on the highway. All scenes®were updated according to the
displacement of the car and the subject’s wheel handling. The car was randomly
drifted away from the center of the cruising lane; which was controlled and triggered
from the WTK program, to mimic the consequences of a non-ideal road surface. The
inter-deviation intervals were varied from 5 to 10 sec and the car was deviated either
left or right with the equal chance. This task required subjects to compensate the
drifting by manipulating the steering to keep the car on the center of third cruising
lane (from left to right counted). Each subject practiced the driving task until reaching
the satisfactory performance after the placement of the EEG cap and electrodes.
During the experiment, subjects were instructed to continuously perform the task as
best as they could even if they began to feel drowsy. No intervention was made when
the subjects was occasionally fell asleep and stopped responding. After such
non-responsive periods subjects resumed task performance without experimenter

intervention. The onset of each deviation and the subject’s reaction time were
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recorded at the rate of 60 times per second via a synchronous pulse marker train that
was recorded in parallel by the EEG acquisition system for the further off-line
analysis. Fig. 2-3 illustrates the experimental paradigm and the temporal profile of a

typical deviation event in the lane-keeping driving task.

2.4 EEG data acquisition

During each driving session, subjects were with a movement-proofed electrode
cap with 43 sintered Ag/AgCl electrodes for measuring the electrical activates of the
brain and that is the electroencephalogram (EEG). The 43-channel -EEG electrodes
were composed by 28channels (from a 30—channel’s 10-20 standard system but
excluded the FP1, Fp2) and the hand-madeforehead 15 channels (Fig. 2-5). A
rectangular 5x3 forehead electrode arrays were embedded on a soft material which is
made of high density of ethylene vinyl acetate (EVA) foam (Length x Width: 10cm x
6cm) and the inter-electrode distance was 1.5 cm: The position of channel-12 and -14
were located at the positions corresponded to the Fpl, Fp2 of the 30 channel’s 10-20
standard system. The 15 EEG channel covered the whole forehead region, thus we
could collect all signals emitting from the frontal lobe region. Before data collection,
the contact impedance of the EEG electrodes was less than 5 kQ. The EEG activities
were recorded and amplified by the SynAmps” NeuroScan Systems (Compumedics

Ltd., VIC, Australia) with the sampling rate of 500 Hz and 32-bit vertical resolution.

2.5 Behavioral data analysis

In each 60-min session, around 200~300 deviation events were recorded. Similar
to real-world driving experience, the vehicle did not always return to the same

cruising position after each compensatory steering maneuver. Therefore, during each
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drift/response trial, driving error was measured by maximum absolute deviation from
the previous cruising position. Fig 2-4 shows the procedures of behavioral data
analysis. The Fig. 2-4A shows the original driving trajectories, and the red, green and
yellow dots represent the time occurrences of the deviation onset, response onset and
response offset respectively. The driving errors of each session were first computed
by subtracting the baseline (the car position before event onset). Second, a threshold
(85) was used to correct the different maximum value of drifting to left or right. Third,
the temporal profile of the corrected driving errors were smoothed using a causal
90-second square moving-averaged filter advancing at 2-second steps to eliminate
variance at cycle lengths shorter than 1-2 minutes since the fluctuates of drowsiness
level with cycle lengths were in general longer than 4 minutes (D) [34][35]. Since
subjects easily exhibited relative: inattention to. environments, eye closure, less
mobility, slow or worse motor eontrol or respenses or decision making [63], the local
driving error is varied along with dtivers’-alertness conditions. Therefore, we had a
drowsiness index: local driving érror.(LDE). For instance, when the driver was
drowsy, the local driving errors were increased. In the contrary, the local driving

errors were decreased when the driver was alert.

2.6 EEG data analyses

The fig. 2-6 shows the flowchart of EEG data analysis. The detail procedures

were described as the followings.

2.6.1 EEG Data pre-processing

EEG signals were first filtered with a simple low-passed and a high-passed filter

13



with the cut-off frequencies at 50 Hz and 0.5 Hz to remove the line noise, other
high-frequency noises and electrogalvanic signals. The filtered EEG signals were
screened and rejected grossly data contaminated by other artifacts including muscle
contractions the body movement artifacts, and bad channels before the further EEG

analysis (fig. 2-7).

2.6.2 Independent Component Analysis

Independent component analysis (ICA) method (fig. 2-8) has extensively applied
to blind source separation problem since 1990s [36]-[44]. Subsequent technical
reports [45]-[52] demonstrated that ICA is a suitable solution to the problem of EEG
source segregation, identification, and Jocalization. Applying ICA algorithm on EEG
raw data in drowsiness experimeft could'temove the EEG artifacts including the eye
blinking as well as the eye movements and could further extract EEG sources
associated with human drowsiness. In.this-study, 43-independent components (ICs)
were calculated from applying ICA algorithm on 43-channel EEG data. The fig. 2-9
shows the 43 ICs of a single subject (subject 1). The IC-1, -2,-3, -4, -6, -8, -11 were
identified as EEG sources and the IC-5, -10, -13, -14, -16, -17, -18, -19, 20, -21, -23,
-24, -25, -27, -28, -31, -33, -34, -35, -36, -37, -38, -39, -40, -41, -42, -43 were
identified as noise components. The frontal central midline (FCM), occipital-midline
(OM) and bi-lateral occipital (BLO) components were selected by visual inspection of
scalp topography and then the component signals were used for advancing analysis. In
order to extract EEG source related to drowsiness only from forehead, we also applied
the ICA algorithm on forehead 15 channels. Although these forehead EEG channel
signals were similar on time domain and their topographical locations were very close,

ICs related to drowsiness could still be decomposed from these similar channel
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signals after applying the ICA algorithm.

2.6.3 Dipole source localization

In order to find the stable and inter-subject consistent sources related to the
drowsiness, the FCM and OM ICs were selected from all volunteers. For each IC
activation map, we performed an EEG source localization procedure to locate its
single dipole. By localizing multiple dipoles independently, we substantially reduced
our search complexity and increased the likelihood of efficiently converging on the
correct solution. The independent EEG processes and their equivalent dipole source

locations were obtained by using the EEGLAB toolbox [53].

2.6.4 Moving-averaged power spectra analysis

The fig. 2-10 shows the mieving-averaged spectral analysis of the extracted 43
ICs/channel data. Signals were first" accomplished by using a 750-point Hanning
window overlapped with 250-point. The 750-point epochs were further subdivided
into several 125-point sub-windows using the Hanning window again advanced by
25-point step. Each 125-point sub-window was zero padded into 256 points and
applied by a 256-point fast Fourier Transform (FFT). A moving median filter was
then used to minimize the presence of artifacts in all sub-windows. The
moving-averaged power spectra were further converted into a logarithmic scale for
spectral correlation and driving performance estimation. Each session were consisted
of 43 ICs logged power spectra were then estimated across 50 frequencies (from 1 to
50 Hz) stepping at a 2-second (500-point, an epoch) time interval. The fig. 2-12A

shows the temporal changes of the theta-band power, which is smoothed using a
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causal 90-second square moving-averaged filter advancing at 2-second steps, and the

LDE.

2.6.5 Correlation analysis

To select drowsiness-related components, we correlated the smoothed IC power
spectrum with the LDE. Since the alertness level was fluctuated with cycle lengths
longer than 4 minutes, we smoothed the temporal profile of the power spectra and
driving performance with a causal 90-second square moving-averaged filter. The
Pearson’s correlations coefficients between changes in the ICs log power spectrum

and driving performance at each EEG frequencies are expressed as

Corryy = (X(x—%) ok (y— 7))/ Z(x —%)2 k3 (y — )
The ICs with the highest correlation coefficients ‘among several frequency bands
located in FCM and OM were selected for "drowsiness estimation. The same

correlation estimating processes were also applied on 15 forehead components.

2.6.6 Feature extraction and drowsiness estimation

In this study, we used a multivariate linear regression model [54] to estimate the
subject’s LDE based on the power spectra of several signals (FCM, OM, forehead ICs,
and forehead channel). The 5-Hz band power with the highest correlation coefficient
was selected from each subject as inputs to train the individual linear regression
model. For each subject, the ICA unmixing matrix obtained from the training session
was applied on testing session which the data were collected in different day. The
estimated LDE traces were obtained by multiplying the selected features obtained

from the testing session and the linear regression model. The fig. 2-11 shows that the
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estimation results of a single subject (subjectl). The correlation coefficients between
the estimated and actual LDE traces were 0.85 and 0.9 for the within-session testing

and the cross-session testing respectively.

2.6.7 LDE sorted spectral analysis

The power changes in theta and alpha bands were sorted according to LDE. The
LDEs from 5 to 85 were evenly divided into 80 bins and the corresponded alpha- and
theta-band power in each bin was averaged. The fig. 2-12B shows the average LDE

sorted theta band power.

2.6.8  Coherence analysis

The EEG coherence is a normalized measurement of the coupling between two
signals at any given frequencies {55]{56].-"Fhe-coherence value of each frequency bin
was calculated by

(2
_ o )]
Cohyy(4) = Ry ()| = ——F——.

: () fer()fy(4)

, which is the extension of Pearson’s correlation coefficient to complex number pairs.

In this equation, f denotes the spectral estimate of two EEG signals x and y for a given
frequency bin (4). The numerator contains the cross-spectrum for x and y (#+,), while

the denominator contains the respective autospectra for x (£.) and y (f,,). For each
frequency bin (4), the coherence value (Cohyy) is obtained by squaring the magnitude
of the complex correlation coefficient R. This procedure yields a real number between
0 (no coherence) and 1(maximal coherence). In this study, the coherence of FCM and

OM IC signals were evaluated from 20 sessions across 10 subjects.
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3. Results

Previous studies showed that the strongest response related to human drowsiness
was mainly found in the occipital lobe with alpha power increases. However, in order
to improve the acquisition procedure in the future, brain activities were not only
collected with traditional 32 channel electrode cap but also from subjects’ forehead.
We first applied ICA on the collected EEG signals (including the 15 forehead
channels and the 28 traditional channels) to isolate brain sources. Then, coherence
analysis was used to find out the coupling relationship between FCM and OM
component.

Two ICA components, FCM and OM, were selected to compare with the 15
forehead components and the 15 forehead channels. The ICA sub-band power of FCM,
OM, forehead components and’forehead channels were extracted from the first
session experiment of each subject. The sub-band powers were then used as features
to estimate the driver’s drowsinéss state with-linear regression model.

In order to investigate the relationship between power changes and LDE, the
LDE were then sorted to find out the power change from alert to drowsy. The power
changes of FCM, OM, and forehead components were then characterized by

comparing their power responses. The following paragraphs showed detailed results.

3.1 OM and FCM ICs clusters

Plenty of brain sources involved in the drowsiness experiments. The ICs were
extracted by applying ICA algorithm to 43-channel EEG artifact-free data. According
to previous studies, the drowsy-related brain activities were found in the occipital lobe,
thus we first focus on the brain activities in this region.

In order to discuss the variance of component in each session, topography map,

18



power spectrum, dipole location of OM in all sessions were grouped in one figure. Fig.
3-1 shows the power spectrum, dipole location and scalp topographies of ICA
back-projection matrix W' of OM components in 20 sessions. Twenty OM
components provide strong evidence that EEG source occur on occipital lobe is stable
among all subjects during drowsy experiment, and correlation coefficient between
each scalp map and mean scalp map ICA back projection matrix W is 0.87+0.2. The
spectrum of each OM component and pair correlation coefficient is 0.904+0.6 (panel
B). Small scalp map of panel C shows that the OM components appearing in all the
20 sessions, and the bigger scalp topography in the left-upper corner is the scalp map
of average ICA back-projection matrix W™. Note that dipole of OM components
mainly located on occipital lobe, but there are four dual-dipoles that belong to
bilateral occipital component in Fig: 3-1.

In addition to OM compenent that' activated- from alert to drowsy, FCM
components were found stable appearing.in.out, twenty sessions (Fig. 3-2). Fig. 3-2C
shows the average FCM scalp map'and FCM scalp maps appearing in each session,
and the correlation coefficient matrix of W' is 0.94+0.06. Fig. 3-2B shows the
spectrum of each FCM component and pair correlation coefficient is 0.917+0.25.
Spectrum profile of OM component had a peak in alpha band, but the spectrum
characteristics in FCM had a peak in theta band and 15 Hz. In addition to spectrum
and scalp topographies, fig. 3-2A shows the different view point of dipole source,
dipoles of FCM component mainly located at the midline of frontal lobe, but some
dipoles located near thalamus due to indirect channel locations or experimental setup
error. Overall, OM and FCM components were found and having stable profile in
dipole location, spectrum and topography during the drowsiness experiment.
According to our results, OM and FCM components can be used as EEG features to

estimate driver’s drowsiness.

19



3.2  Coherence between FCM and OM component

In order to figure out the synchronization between FCM and OM ICs, coherence
analysis was applied to these two ICs. The coherence value was counted between the
one-hour signals from FCM&OM component in each session. Fig. 3-3 illustrates the
mean coherence in 1~30 Hz between FCM & OM from 20 sessions, the coherence
value donates the coupling degree between two time series. The coherence value in
alpha band (around 11Hz) is lower than other frequency band, but higher in theta band
(4~7Hz), and the peak appears at 15 Hz. Coherence result shows that phase
synchronization in theta band and 15 Hz is higher than alpha band between FCM and

OM ICs. Phenomenon appearing in frontal.and occipital lobe is similar in theta band.

3.3 Relationship between FECM Component and Forehead

Component

In order to collect more signal from frontal lobe, forehead patch were developed.
The 15 forehead components were extracted from the 15 forehead EEG signals.
Although these forehead EEG channel signals were similar on time domain and their
topographical locations were very close, but ICs related to drowsiness could still be
decomposed from these similar channel signals after applying the ICA algorithm.

The 15 forehead components were decomposed from 15 forehead channel EEG
signals, and the forehead component with highest correlation coefficient between
spectrum and LDE was selected and then back-projected to the 15 forehead channels
with matrix W'. The result of back projection with the forehead component was
shown in Fig. 3-4. These 15 color blocks present the ICA back-projection matrix W™

value of a forehead component, and figure shows that the component weight is higher
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in superior way (away from eye) and symmetry in the vertical direction (channel 13).

Furthermore, correlation coefficients between forehead and FCM component
signals on the time course were calculated (0.64+0.17). In addition to FCM
component, correlation coefficient between forehead signal and OM component time
series is 0.06+0.04.

The forehead components were proved highly correlated to the FCM components,
while the correlation coefficients between forehead components and the OM
components are very low. These results suggest that there is a brain source located in
frontal lobe response to drowsiness and it can be easily collected from forehead EEG

signals.

3.4 LDE Estimation

In last section, we have-proved that the forehead components were highly
correlated to FCM components-and- thus'can also- be used as features to estimate
subjects’ cognitive state.

In order to monitor subject’s cognitive state, LDE is an indirect index to measure
subject’s cognitive stage. The car in the VR scene was designed to drift from the
middle of driving lane to test the subjects’ cognitive response. The distance between
the middle of the car and the middle of cruising lane was defined as local driving error,
which can be used to study the subjects’ cognitive state. For example, if the subject is
alert, the car-drifting can be detected and LDE can be minimized by the subject with
the steering wheel. In contrast, LDE will become very large if the subject is drowsy.

We use a least-square multivariate linear regression model to estimate subject’s
LDE according to the information obtained from the sub-band power spectra analysis

of ICs and EEG channel. The OM and FCM components decomposed from 43-ch
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EEG signals, the 15 forehead channels and the 15 forehead components were used as
drowsiness-related brain signals in this study. For each signal source, the optimal
frequency bands were selected according to the correlation coefficients between ICA
power spectrum and LDE in the training session. The single-subject model was
trained with the EEG features that extracted from the first session experiment for each
subject and then used to estimate subject’s driving performance with the EEG features
in second session. The results shown in Table 1 are the correlation coefficients
between the estimated driving error and the real LDE acquired in the second session.
In reverse, the EEG signals and LDE collected in the second session were used to
train the model and the features extracted from the first session signals were used to
estimate the driving error. (i.e. S2 est S1)

In Table 1, the averaged cortelation coefficient between the estimated driving
error and the real driving error.is highest: (0.894+0.04) when the features were
extracted from the OM components, and.it’s.0.83+0.07 when FCM features were used.
The result suggests that there is anothetr.drowsiness-related brain source located in the
frontal lobe. Besides, the forehead signals yield better estimation accuracy than FCM
component, which means even without complicated application of electrode cap,
forehead signals can be used to estimate the subjects’ cognitive state. The correlation
coefficients were very similar when the forehead components and the forehead
channels were used, the application of ICA thus become unnecessary for this study. In
order to investigate the difference between results of four groups, we first applied the
Kolmogorov-Smirnov test (KS test) to each group, all groups are not normal
distribution, and second we applied the Wilcoxon Signed-Rank test between the
groups. The difference between the OM and the other three groups are significant
(p<0.05). Furthermore, there is no significant difference between FCM ICs, forehead

ICs, forehead channel through the Wilcoxon Signed-Rank test.
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According to our results, the OM lobe is the area that most correlated to
drowsiness, but frontal lobe features are also good for the estimation of driving
performance. These results suggest that we can detect drowsiness by using a single
forehead channel and thus save lots of preparation comparing to wearing the electrode

cap.

3.5 LDE sorted spectral analysis of ICA components

In order to investigate the brain dynamics corresponding to the transition from
alertness (lower LDE) to drowsiness (larger LDE) in the experiments, the ICA log
power spectra were sorted according to their LDE. The smoothed results were given
in Fig. 3-5.

The sorted LDE values were'shown/inrascending order in x-axis and the transient
frequency band mean power and standard deviation power corresponding to the sorted
driving performance values were shown-in-y-axis: It can be found that the alpha
power increased sharply at lower LDE ((around 30) and starting decrease latter as
ascending driving performance in OM and forehead component. Oppositely, alpha
power of FCM increased 2 dB from LDE 5 to 85. Changes in theta band of all
components increase from LDE 5 to 85, but OM component have higher increasing
power. Power in theta band increased 6 dB from LDE 5 to 85, and this phenomenon
can be used to detect driver’s cognitive state from alert to drowsy. In addition, theta

band is a better index than alpha band.
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4. Discussion

4.1 Drowsiness detection

In the study, the brain dynamic related to drowsiness during lane keeping driving
task recorded by using EEG and VR-based realistic driving environment was
investigated. First of all, the signal from occipital lobe is mostly high correlated to
drowsiness state, and Fig. 3-1 show that the OM ICs activated in one-hour drowsiness
experiment. The correlation are particularly strong at posterior area, which are similar
to the result of previous studies in the drowsy experiments [20][22]. In our previous
study [57] showed that selecting 2 channel, which was highest drowsiness related, the
mean correlation coefficient between estimating and actual driving performance is
0.862+0.072 for within-session testing and 0.882+0.048 for cross-session testing. The
accuracy in this study using OM |component:is 0.89+0.04 is consistent to our
previous finding [57]. In addition to OM.ICs clusters,'that FCM ICs clusters exhibited
the power changes in theta band was also suggested highly correlated to the
drowsiness [59].

To confirm if the forehead-chanel signals could reflect the activities in the frontal
lobe, we compared the LDE sorted alpha and theta power changes of the forehead
signals and of the frontal IC clusters decomposed by application of ICA on the
43-channel signals. Results suggested that signals recorded from the forehead
channels could full reflect the changes in the frontal regions. In addition, given use
signals recorded from one forehead channel could still accurately detect the
drowsiness. Results demonstrated that the signals recorded from the forehead
channels can directly applied in the drowsiness estimation, and therefore can
drastically reduce the data processing time, which means that the drowsiness detection

can be more closely to the real time.
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4.2  Coupling between FCM and OM ICs clusters.

In order to figure out the phase synchronization between frontal and occipital
lobe, we computed the coherence value between FCM and OM components.
Computing coherence value between these signals from frontal and occipital lobe
were not found in other studies. Fig 3-3 shows the theta band and 15Hz have higher
coherence than alpha band. In order to find out the detailed changes between two ICs
clusters, power changes in different band in time series was plotted. Fig. 4-4 shows
the different band (theta, alpha and 15 Hz) power changes in time course and relative
LDE. Note that power change in theta band and 15 Hz in FCM and OM are similar
during high LDE (red shading) and Jow LEDE (green shading) period. But OM power
changes in alpha band are larger than :FCM changes in low LDE period (green
shading). Coherence is a method to evaluate the synchronization between two signals;
therefore Fig. 4-4 explained low coherence value in alpha band between FCM and

OM due to the different power trends.

4.3 EEG phenomenon comparing to other studies

Fig. 3-5 shows that theta band power increased monotonically in the OM and
FCM components The alpha band power linearly increased when the LDE less than
30, but the power was decreased when the LDE more than 30 in OM and forehead
component. The changes of the alpha band power in our study are opposite to
previous studies [61][62][64], which indicated that, alpha power decreases during the
transition from wakefulness to sleep onset. We speculated the inconsistency probably

due to the different experimental design.
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4.4  Comparison of selecting several forehead channels

In order to investigate the number of forehead channel that is sufficient to detect
drowsiness. 1~5 channels were selected from forehead channel 11~15. Channels were
randomly selecting then used for estimation. Table 2 shows that the accuracy
decreased dramatically after using 5 channels (0.69), but it remains above 0.80 using
1~4 channels. This result indicated that using 1 channel or 4 channels didn’t have

large different.
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5.Conclusions

Drowsiness detection is an important safe issue to the public, but the present
detecting system using EEG signals encountered a problem, which this system needs
lots of preparation before driving and the driver easily felt uncomfortable and
incontinent while wearing electrode cap. Therefore, to develop an easy preparation
and comfortable detecting system is great of urgency. In this study, we demonstrated
that changes of frontal lobe activities were highly correlated to drowsiness. In the
future, the new generation EEG based drowsiness detecting system can directly
applied the dry MEMS recording electrodes on the forehead and this detecting system
will be able to drastically reduce the drowsiness related injuries and deaths in the real

operational environments.
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Dynamic Driving Simulator 360 Degree View

Fig. 2-1: Pictures show the dynamic virtual reality (VR) driving environment. (A):
The picture shows the 3D surrounded VR driving scenes. (B) The picture shows a real
car mounted on a 6-degree-of-freedom Stewart platform. (C) A schematic picture

shows 360 degree VR scene is projected from seven projectors.
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Fig. 2-2: The four-lanes road of the VR scene is separated by a median strip and the
distance between the left and right sides of the road is equally divided into 255
points (digitized into values 0-255), where the width of each lane and the car is 60
and 32 units, respectively.
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Fig. 2-3: A bird’s eye view of the lane keeping driving event. The car cruises with a
fixed velocity of 100 km/hr on the VR-based highway scene and every 5-10 sec the
car is randomly drifted either to the left or to the right from the cruising position to
mimic the non-ideal road surface. Subjects are instructed to steer the vehicle back to
the center of the cruising lane as quickly as possible. The duration between

deviation onset and response onset is the reaction time.
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Fig. 2-4: The analysis of driving trajectories. (A) One hour driving trajectories of the subject 7. The red dots
represent the occurrences of the car drifting, the green dots represent the response onsets, and the yellow dots
represent response offset. (B) The results of the baseline removal from the raw driving trajectories show in
the (A). (C) The driving errors derived by getting the absolute values and adjusting values from (B) to
eliminate the diversity of maximum deviation between left and right drifting. (D) The one-hour driving errors
are smoothed by a 90-sec square moving-averaged filter advancing at 2-second step, and the result of

smoothed driving errors is called local driving error (LDE).
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A Schematic Picture
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Fig. 2-5: Pictures shows the placement and the positions of the forehead 15-channel. (A) The
schematic picture showing the placement of forehead 15-channel patch. (B) Photograph shows
the arrangement of the hand-made forehead electrode patch. The forehead 15-channel patch is
composed by 15 regular wet electrodes (3 rows, 5 columns) manually sewed on a piece of elastic

material (size 10 cm by 6 cm), which can be fit on subjects’ forehead for long-term EEG

recordings. The distance between each electrode pair is 1.5 cm.

(1) (2) (3)
EEG Data — |Artifact Rejection |—»| I[ICA |— Moving Average
Spectrum Analysis

o (5) (4)1
. ) Linear
Estimation Regression Feature | | Correlation
Accuracy Model | L_Selection Analysis

Fig. 2-6: The flowchart of the EEG signal analysis. (1): A low-pass filter is applied to remove the
line noise, extreme high frequencies (>50Hz) noise, and simultaneously remove artifact EEG and
behavior data manually. (2) Independent component analysis (ICA) was used to separate EEG
brain resource from underlying artifacts. (3) Moving averaged spectral analysis was used to
calculate the EEG log power spectrum of each independent component. (4) Correlation analysis
was used to choose bands of component correlating to behavior. (5) Four features, FCM, OM, and
forehead components as well as forehead channels, which highly correlated with LDE, are
selected. (6) Linear regression models are built based on changes of EEG power and LDE from
training session of the individual subject, and then the model is evaluated by continuously

estimating the individual subject’s LDE in the test session.
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Fig. 2-7: The picture shows the identiﬁéd"ﬁttjfaqxs;_iﬁvﬁi'ch generated by the muscle contraction,

movement, eye blinking and bad channels, and the artifacts and their corresponded behavioral

eye-

signals (channel 44) are rejected before the furthering signal process.
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Fig. 2-8: The flowchart of the Indépéndenf !éé)ﬁ'lp'drierit énalysis (ICA). ICA finds an “unmixing”
matrix W that “decomposes” or hnearly unmlxes the multlchannel EEG data x into a sum of
maximally temporally independent and. spatl ally fixed components u, where u=WX. The rows of

the output data matrix U are time courses.of act1vat10n of the independent components (ICs).
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Fig. 2-9: The scalp topographies of T(’?__A-Weighting matrix W by spreading each Wj; into the plane of
the scalp corresponding to the j;, ICA components based on International 10-20 system. 43
components are listed above, and the frontal central midline (FCM) and occipital midline (OM)

components are selected according to scalp map.
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Fig. 2-10: The flowchart of the time-frequency analysis. The EEG signals of the extracted
ICA components are first applied by a 750-point Hanning window with 250-point overlap.
The 750-point epochs are further subdiyided itito.several 125-point Hanning sub-windows
advanced at the step of 25 points. Each 125-peint fraine is zero padded into 256 points for
the 256-point fast Fourier transform (FET). The frequency resolution of the resultant
power-spectrum density is around-1Hz."A moving median filter was used in 750-poing
window. Then, the log power spectrum i“s, smoothed by'a casual 90-second square

moving-filter advancing at 2-second steps.
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Fig. 2-11. Pictures show the actual (blue lines) and estimated LDE (red lines) by using the

linear regression model in the training (A) and testing (B) sessions from the subject 1. The
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local driving errors are estimated by a linear regression model with the log power spectra at
frequency bands 4 ~ 8 Hz of forechead component, which are known to well correlated with
LDE). Note: the results show that the estimated LDE are highly correlated with the actual
LDE in both testing (corr coeff. =0.85) and training sessions (corr coeff. =0.9).
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Fig. 2-12: The LDE sorted spectrum analyéis. (A): the actual LDE (blue line), and theta band power (red
line). (B): the profile of the LDE sorted theta band power. Note: the theta power raises with the increasing
LDE, and profile had minus the theta power while LDE 0.
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Fig. 3-1: Equivalent dipole source location, spectra, and the scalp maps of the occipital component
across 20 sessions from 10 subjects. (A): locations of equivalent dipole source and their projection onto
average brain images. (B): the power spectra across 20 sessions and the grand mean of the power
spectrum (red line). The spectrum correlation coefficient between each session is 0.87+0.2. (C) The
topography maps of the occipital component across the 20 sessions. The top left inset shows the grand
mean of the scalp topography. The averaged correlation coefficient of the pair component W' matrix is
0.90+0.06.
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Fig. 3-2: Equivalent dipole source locatlorp spezctq and! fﬁe sé&lp maps of the occipital component across
20 sessions from 10 subjects. The man of thé ‘palr spectrum ‘correlation coefficient is 0.917+0.05. The

averaged correlation coefficient of pair component ‘W 'matrix is 0.94+0.06. Panels as Fig. 3-1.
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Fig 3-3: The coherence between the frontal and the occipital component across 20 sessions.

Note: the higher coherences are observed in the delta, theta and low beta band.
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Fig. 3-4. The grand means of the frontal component (A) and the forehead component (B).

The ICA algorithm is applied to 15 forehead channels and 43 channels (30 channels on cap and
15 forehead channels) respectively, then the correlation coefficient of these two component
signals is further evaluated. In each session the forehead component is selected by the highest
correlation coefficient with frontal or occipital component. Results show that the forehead
component is highly correlated (0.64+0.17) with frontal component than that with the occipital
component (0.06+0.04). In addition, the average component weight of chosen forehead
component is symmetric to five columns and having more weight on superior row, thus these
highest weight channel can be used instead of forehead component if we didn’t have enough

channels to decompose the drowsiness-related component.

44




Signal oM FCM Forehead Forehead
Subject(Sessio channel component

Subject 1 ( S1 est S2) .83 .82 87 .88
(S2est S1) .92 91 94 90

Subject 2 ( S1 est S2) .78 91 .89 .84
(S2 est S1) . 86 .85 .78 79

Subject 3 ( S1 est S2) .93 .89 .90 75
(S2estSl1) .89 .92 91 81

Subject 4 ( S1 est S2) . 87 .76 91 .88
(S2est S1) .84 .78 .86 74

Subject 5 ( S1 est S2) 94 . 86 94 .89
(S2 est S1) . 83 73 91 .88

Subject 6 ( S1 est S2) .86 a7 .87 .85
(S2est S1) .85 .88 81 .82

Subject 7 ( S1 est S2) .87 .90 81 .83
(S2est S1) .94 .87 93 .89

Subject 8 ( S1 est S2) 93 .83 92 .89
(S2 est S1) 87 .92 .84 .80

Subject 9 ( S1 est S2) .90 15 .88 .85
(S2est S1) .86 .73 .88 .85

Subject 10 ( S1 est S2) .94 .69 93 .84
(S2est S1) .87 .78 .86 73

Mean (SD)[ 0.89 (0.04) 0.83(0.07) 0.88(0.04) | 0.83(0.05)

Table 1: The summary of driving performance estimation
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Fig 3-5: The grand mean and the standard error (SD).of the LDE sorted theta (A) and alpha (B) band
power from the forehead (black line), FCM(blue litie); and OM (red line) component. Note: the theta
band power increases monotonically with the driving error. The maximal theta band power is in the
occipital component and the powers are arou‘nd‘3 dBrattenuated in the frontal and forehead components.

46




Number of channel 1 2 3 4 5
Subject(Session)

Subject 1 ( S1 est S2) .87 .85 .83 8 .61
(S2estSl1) .94 94 .92 91 .89

Subject 2 ( S1 est S2) .89 .89 81 .79 73
(S2estS1) .78 75 .70 .68 .59

Subject 3 ( S1 est S2) .90 .90 .89 .85 73
(S2estS1) 91 91 .90 .88 .83

Subject 4 ( S1 est S2) 91 .93 .92 91 .79
(S2estSl1) .86 .86 .85 .85 .80

Subject 5 ( S1 est S2) .94 .92 91 91 8
(S2estS1) 91 94 .93 9 .56

Subject 6 ( S1 est S2) .87 .85 .80 17 v
(S2estSl1) 81 81 .79 67 51

Subject 7 ( S1 est S2) 81 .83 .83 .82 .78
(S2estSl1) .93 91 9 .84 12

Subject 8 ( S1 est S2) .92 91 .89 .87 .86
(S2estS1) .84 .85 74 .70 .67

Subject 9 ( S1 est S2) .88 .84 81 .8 .33
(S2estS1) .88 .88 .84 84 .78

Subject 10 ( S1 est S2) .93 .85 .87 46 41
(S2estSl1) .86 81 .84 .80 75

Mean ( SD )| 0.88(0.04) | 0.87(0.05) | 0.84(0.06) | 0.80(0.1) [0.69(0.14)
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Table 2: The comparison of driving performance estimation using forehead channel
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