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摘要 

 

 

本論文的目的在於建構一種分析法則，在未經處理的原始資料去除不必要的

隱藏訊息。此新的學習法則稱之調控式的部份最小平方法，是合併部份最小平方

法和規律法的優點，即使在雜訊的資料下，可避免過度配適的現象，得到較好的

估算結果。 

    在模擬數據分析部份，調控式部份最小平方法用來分析三種不同的波型，並

以均方根誤差做為判定的標準說明調控式部份最小平方法可得到較好的結果;實

際的測量數據分析部份，利用實際的聲音檔案以及血糖濃度的光譜資料來驗證所

提出的調控式部份最小平方法的確具備去除雜訊能力。 
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Abstract 

 

 

The main purpose of this thesis is to develop a method of analyzing and reducing 

the unseen or noisy information from the source data without preprocessing. Here 

presents a novel learning algorithm—partial regularized least squares (PRLS). It 

combines the advantages of both the partial least squares (PLS) and regularization 

technique to provide an efficient procedure to avoid the circumstance of overfitting 

and attain better results when calibrating under noisy data. 

In the simulated experiments, PRLS is applied to analyze the three different 

kinds of simulated waves. According to estimated standard of root mean square error, 

proving that PRLS has better performance than PLS. In real calibrated experiments, 

demonstrating PRLS certainly has the ability of noise reduction. 
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Chapter 1. Introduction 
 
1.1. Literature study 

Multivariate analysis is successfully applied to process signal information. The 

application field includes spectrum analysis [1], bio-signal process [2] and image 

processing [3] etc. In general, it can be divided into two categories: regressor and 

value iteration also named as artificial neural network (ANN). The wildly used 

regressors are: Least Squares (LS), Principal Component Analysis (PCA) [4] and 

Partial Least Squares (PLS) [5]. And the most practical model in ANN is Multiple 

Layer Perceptron (MLP) [6]. Regressor and ANN analyze data in different processes 

and the analyzed results are suitable for different applications. For example, Wang [7] 

used ANN to solve the problem, classification of oral submucous fibrosis and oral 

carcinogenesis. Hsiao [8] apply regressor to classify the difference between normal 

and dyplasia tissues.  

Hsiao [9] proposed a novel thought to hybrid regressive algorithm and ANN. In 

his study, the regressive algorithms can be treated as ANN architecture. For example, 

PLS can be treated as a three-layer ANN. For this view point, the research tracing 

path in this thesis will be illustrated in Figure 1.1.  
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Figure 1.1 Research tracing diagram 
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Oja [4], [10] proposed PCA to reduce the dimension of input data by K-L 

transformation. However it has a main drawback which PCA lacks for information 

about which principal components are important for desired output and how many 

components are needed to compress the input data. PLS is a calibrated regression in 

common use. The concept of PLS was developed from LS. PLS also can compress the 

input data and solve the main drawback of PCA. But PLS estimation suffers from 

overfitting is more serious than PCA [5]. Chen [11] proposed Orthogonal Least 

Squares (OLS) based on radial basis function network (RBFN) also suffered from the 

same circumstance. By applying the regularization technique, Chen [12] also 

constructed Regularized Orthogonal Least Squares (ROLS) to solve the problem of 

overfitting.  

In order to apply regularization technique to PLS, we represent PLS as three 

layer network. Following the example of ROLS computational architecture, we also 

modify the original PLS by combining the regularization to establish a novel 

calibrated model – partial regularized least squares (PRLS). 

 

1.2. Motivation  
PLS is a multivariate statistical technique that allows comparison between 

multiple response variables and multiple explanatory variables. It has been popular in 

many aspects. However there is a big problem that the predicted results would be 

influenced by outlier hidden in training data and lapse from output. The position is 

due to overtraining of system because we hope that executed outputs can approximate 

to desired outputs as far as possible. In ideal data, calibrated outcomes will be perfect 

but real data sets always have unseen information so that some results may reflect 

anomalies due to the information and poor accuracy for unseen examples. When 

training data goes along with noise, prediction often falls into a trap – overfitting [13]. 

Therefore we want to modify a usual method to acquire better performance than the 

original one when calibrating under noisy training data.  

 

1.3. Related work 
Pervious approaches have been proposed to solve the problem of overfitting.  
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Figure 1.2 Illustration of overfitting. 

 

The learner may adjust to specific features of the noisy training data that has no causal 

relation to calibration. To reduce the training error, the predicted curve would pass 

through each point possibly. At the same time, results would be influenced by the data 

with noise. 

 

In general, three common techniques are selected to do: 

1. Halt early – System would terminate training under a tolerant threshold. It is the 

simplest method but we have no idea when system must stop executing. If 

calculation process is terminated too early, results will be underfitting. Hence, it 

is difficult to determine when stopping working [6]. 

2. Postprocessing – System would select a validation data from original training 

data set and repeat until each observation in the set is used as validation data. 

The method also has the property of avoiding overfitting but it costs a large 

amount of computation [14]. 

3. Regularization – System would adopt iterative learning and calculate the 

probability distribution and acquiring the balance between overfitting and 

underfitting [12], [15], [16], [17], but it is hard to select regularized parameters 

appropriately. 

 - 3 - 



1.4. Contribution 
The contributions of this thesis can be summarized into two levels, as follow: 

1. Here established a novel method combines a usual regression model with 

regularization, named PRLS. It combines the advantages of PLS and 

regularization. 

2. Here also improved the accuracy of being calibrated by using PLS under the 

influence of noisy training data. 

 

1.5. Thesis organization 
Chapter 2 introduces the principle and architecture of several calibration models 

and further traces regularization technique [16], [17]. In Chapter 3, we discuss the 

relationship between PLS and regularization. Next, we propose a novel model - PRLS 

built by combining PLS with the technique. Chapter 4 shows the simulated 

experimental results of our purpose to evidence our theory. At last, the conclusion and 

further works are written down in Chapter 5. 
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Chapter 2. Methods and Materials 
 
2.1. Least Squares (LS) 
    Classical least squares regression consists of minimizing the sum of the squared 

residuals. The linear model is given by ipipii bxbxby ε++++= ...110  ( i = 1,…,n ), where 

the error iε  is usually assumed to be normally distributed with zero mean and 

standard deviation σ. The goal of multiple regression is to estimate  

from the data . The sum of square error (SSE) is calculated as below: 

),...,,( 10 pbbbb =

),,...,,1( 1 iipi yxx

                        (2-1) 2

1
110

1

2 ))...(( pip

n

i
ii

n

i
i bxbxbySSE ∑∑

==

+++−== ε

Partial difference by , then we can derive (2-2) jb

∑ =−+++−=
∂
∂

=

n

i
ijpipii

j

xbxbxby
b

SSE
1

110 0)1))(...((2             

(2-2) 

where  j = 1,2,…,p. 

If we transform to matrix form, we can get a two layer multivariate analysis system 

illustrated as Figure 2.1. Then Y  represents as matrix [ ]T1 ,..., nyy , real output 

 and . 
T

1 ],...,[ nyyY
∧∧∧

= ],...,[ 0 pbbb = , 1b

The LS procedure in matrix form is defined as: 

                       ε+= by X   (2-3) 

We calculate the weighting coefficients due to (2-3). 

by XXX TT ≈     (2-4) 

)(XX)(X yb T1T −≈                          (2-5) 
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Figure 2.1 Two layer LS architecture. 

 

In other words, LS method is to solve the approximated answer if there is no solution 

in geometry. We will use Figure 2.2, so as to explain 

 

 
Figure 2.2 Illustration of LS in geometry 

 

If  express the column vectors of can not span the vector . We define 

the vector space  because the equation 

bXY ≠ X Y

))(( XW colspan= bXY ≠ implies there is no 

solution. If we want to obtain the approximated answer, we have to reduce the 

residual ε . By the orthogonal projecting into vector space acquiring the 

approximation because vector  goes to space takes straightly being apart from 

as the shortest. 

W

Y W

 

bX

y

W

 

ε
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2.2. Principal Component Analysis (PCA) 
    PCA is a self-organizing learning rule through Karhunen-Loeve (K-L) 

transformation mapping into feature space [10].  Adaptive eigenvectors which were 

chosen construct subspace of the space. And data reconstruction is also using K-L 

transformation mapping into the subspace. 

    Given a set of data  with dimension n and mean vector . We 

can compute the covariance matrix . Through singular value 

decomposition (SVD) processing as follows: 

X 0][ == XEm

][ T XXC E=

 

      

Eigenvalues in order:  n21 λ...λλ ≥≥≥

Figure 2.4 Singular value decomposition of covariance matrix 

 
Final, selecting the p (p≦n) largest eigenvalues corresponding eigenvectors construct 

matrix  and discarding other eigenvectors in data representation. In regression, 

we shall add the LS phase after K-L transformation to estimate the curve fit. The 

regressive procedure is representable as: 

∗V

                                                    (2-6) ∗
∧

= XVX
Using LS method can acquire the weights. 

                       
∧∧

∧

=
XX

YXB T

T

                            (2-7) 
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Figure 2.5 Three layer PCA architecture 

 

2.3. Partial Least Squares (PLS) 
    PLS is one of the most general analysis methods in regression. Here we will 

show PLS mathematic decomposition, regression algorithm and architecture of three 

layer multivariate system.  

The independent variable matrix  decomposed into matrix  with 

corresponding weighting matrix  and dependent variable matrix  can be 

decomposed into matrix  with corresponding weighting matrix . The 

mathematic form is represented as follows: 

nxmX nxaU

1nxY

1axQ

mxaP

nxaV

               

( ) ( ) ( )

T

xx

TT

22
T

11

21

x

maan

aa

a

mn

Epupupu

E

PU

XXXX

=
+++=

++++=
∧∧∧∧∧∧

L

L

E+              (2-8) 

                

( ) ( ) ( )

1xx

2211

21
1

aan

aa

a
nx

Fqvqvqv

F

QV

YYYY

=
++++=

++++=
∧∧∧∧∧∧

L

L

F+                (2-9) 
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Figure 2.6 PLS algorithm flow chart 

 

After derivative, we exactly find out the residual matrix nxmE  and 1nxF  are 

minimized through the course of decomposing the matrix  and .When 

computational iteration equation to a (a≦n) or the residual small than a minimum, 

PLS would terminate. 

X Y

    Ham [18] and Hsiao [9] bring up an idea which regards PLS as one kind of 

artificial neural networks. In the purpose, transformation between independent and 

dependent variables can be represented as three layer network architecture. 
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Figure 2.7 Three layer PLS architecture 

 

2.4. Orthogonal Least Squares (OLS) 
    In this section, we describe OLS structure in the application for radial basis 

function networks (RBFN) to select adequate centers. This rational approach provides 

an efficient learning algorithm for fitting appropriate RBFN. Let  be 

independent matrix and be dependent matrix then the transformation 

can be written as: 

],...,[ 1 nxx=X

T
1 ],...,[ nyyy =

                        Ey += Pθ                          (2-10) 

where 
T

1 ],...,[ npp=P , )]([ jii xxp −= φ , (.)φ  is Gaussian function, with 1≦i,j≦n                     

T
1 ],...,[ nθθ=θ                                                       

T
1 ],...,[ neeE =                                                       

To make sense of the procedure clearly, we show the computational processing can be 

represented as: 
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E
Eθy
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Figure 2.8 OLS based on RBFN flow chart 

 

Simplifying the OLS computational flow, we replace Q-R decomposition with 

orthogonal processing. Orthogonal decomposition of P  can be obtained using 

Gram-Schmidt orthogonal processing computes a column of  and selects an 

adequate regressor vector  at a time. OLS makes a criterion to select the regressor 

vector and minimize the residual each iteration. The error criterion can be written: 

A

iw

                                    (2-11) ∑
=

+=
n

i
iii EEwwgyy

1

TT2T

Normalize (2-13) then we can acquire  due to error ratio (2-12) iw

            
outputdesired

ncalibratio
yy

EEyy
yy

wwg
n

i
iii

=
−

=
∑
=

T

TT

T
1

T2

          (2-12) 

According to (2-14), OLS can pick out an appropriate regressor vector  with the 

error ratio mostly approximates to one each iteration. 

iw
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                 Figure 2.9 Three layer OLS architecture 

 

     There is no transformation mapping during Gram-Schmidt orthogonal 

processing so we shall regard two computational phases in front as one layer in Figure 

2.9.  

 

2.5. Regularization 
    Regularization techniques have been used in the past to avoid overfit [12], [16] 

and error function of residual is minimized which depends on the network weights as 

well as the fit error [15]. Essentially it involves adding some multiple of a positive 

definite matrix to an ill-conditioned matrix so that the sum is no longer ill-conditioned 

and is equivalent to simple weight-decay in gradient descent methods. 
    Let’s define symbols to illustrate,  and  are two positive 

functions of , so we can try to determine  by either  

0][ >uA

u
0][ >uB

u
Minimize:      or                                     (2-13) ][uA ][uB

In summary, regularization is Lagrange multiplier equation combines with quadratic 

constraint to minimize the weighted sum ][][ uBuA λ+  and lead to a adequate 

solution for . u
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2.6. Regularized Orthogonal Least Squares (ROLS) 
    ROLS algorithm combines the advantages of both the orthogonal regression and 

regularization methods to provide an efficient and powerful procedure for 

constructing models [12]. 

    As mentioned earlier, the error criterion used in deriving the OLS algorithm is 

the total squared error . But the criterion in certain circumstances is prone to 

overfitting. To prevent overfitting, regularization method can be applied. Using (2-11), 

we define the residual squares error over the training set is 

EE T

                 ∑
=

−=
n

i
iiiD wwgyyE

1

T2T                     (2-14) 

And regularized term 

                 ∑
=

=
n

i
iR gE

1

2                              (2-15) 

According to the regularization technique, it can be shown that the regularized error 

criterion can be expressed as 

∑∑
==

+−=+=
n

i
i

n

i
iiiRDe gwwgyyEEE

1

2

1

T2T λλ , with 0≥λ .       (2-16) 

Minimizing the equation eE , we can get the appropriate term . iw

Finally, we will show diagram of ROLS architecture to understand which 

computational phase is modified in Figure 2.10. 

 

 - 13 - 



np1p 2p

1x 2x nx

1w

1a−

11

1a−

21

1a−

n1

11g

∑

y

...

...

...
np1p 2p

1x 2x nx

1w

1a−

11

1a−

21

1a−

n1

11g

∑

y

np1p 2p

1x 2x nx

1w

np np1p 1p 2p 2p

1x 2x nx

1w1w

1a−

11

1a−

21

1a−

n1

11g

∑∑

y

...

...

...

Weights G between
hidden and output layer

Hidden layer W

Gram-Schmidt 
Orthogonal 
processing

Symbol representation Calculate process

LS method

Regularized techniques

combination

+
LS method

Regularized techniques

combination

+

Gaussian mapping

Regard as
one layer

   
Figure 2.10 Three layer ROLS architecture 
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Chapter 3. A novel method - Partial Regularized Least 
Squares (PRLS) 

 
3.1. Relation between PLS and regularization 
    In this chapter, we will modify PLS architecture to reconstruct a novel 

calibration method, named as PRLS, to avoid overfitting which occurs when there is 

noise in the training data and the calibration system is flexible enough to fit to it. Here 

using the same symbols in section 2.3. 

    Original PLS calibrates during the processing of decomposing independent and 

dependent matrix, we only minimized the residual matrix nxmE  and 1nxF . In the 

ideal situation, the calibration will approximate the desired output as minimum as it 

can be. But real data always goes along with hidden information that we have no idea 

whether it will interference the prediction or not. In this circumstance, PLS calibration 

may fit the noisy data and the outcome will lapse from our desire. We shall use the 

property of regularization and apply it to original architecture to solve this problem. 

    As mentioned earlier, we exploit the concept of regularization techniques and 

rewrite the error criterion of PLS as: 

                 , qqEEEEE RDe
TT λλ +=+= 0≥λ                 (3-1) 

Where  is weighting vector which inferences the output directly. In order to 

interpret equation  and regularized parameter 

q

eE λ , we will illustrate using trade off 

curve as below 
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•Best agreement : Over-fitting
•Best solutions : Minimization of  the 

weighted sum (Equation)
achievable 
solutions

 
Figure 3.1 Trade off curve 

 

Figure 3.1 illustrates that all achievable solutions are above the trade off curve but 

some of them conform our desire. Original PLS calibration reduces the total error as 

far as possible but if there is noise in training data, prediction may also fit the noisy 

data. Vary of weighting coefficients  controls the curve motion and we add the 

term multiplies regularized parameter 

qqT

λ  to error criterion to make the calibration 

curve smooth without oscillating. In conclusion, PRLS keeps the calibration’s balance 

between smoothness of curve and accuracy. 

    

  

3.2. PRLS algorithm 
In the following, we will describe the modeling algorithm. Figure 3.2 points out 

the modulation to PLS. Although there are two computational phases using partial LS 

method, we only modify the later half because only the second half among two 

computational phases affects the executed output directly. Next, to understand the 

architecture obviously, we regard PRLS as a three layer neural network in Figure 3.3. 
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Figure 3.2 PRLS algorithm flow chart 

 

 
Figure 3.3 Three layer PRLS architecture 
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Chapter 4. Experiments and discussion 
 
    This chapter will demonstrate our simulation experiment results including 

simulation data and real data from 1D to 2D data and sound files. In the simulation 

data experiments, results show that PRLS has better performance than PLS and keep 

calibration stable with noise data. In the real data experiments, we apply our method 

to analyze environment sound measurement [19] and spectrum of blood glucose 

measurement [20]. 

 

4.1. Illustration  
 
4.1.1. Synthesized simulation data 

    In simulation data calculation, we use synthesize three kinds of testing data with 

noise to examine the efficiency of PRLS method. We add the noise generated by 

Gaussian probability density function with zero mean and set the value of standard 

deviation, so as to alter the level of noise. The noise to signal (N/S) ratio is also used 

to set up a standard of the variation. Given a signal data set  and Gaussian 

noise data set  with zero mean, 

isignal

inoise ni ≤≤1 . The mean of signal and noise data 

set are:  

n

signal
μ n

i∑
∀=  

n

noise
μ n

i

N

∑
∀=                       (4-1) 

The variance of a signal and noise data set are 

n

μsignal
signalVar n

i∑
∀

−
=

2)(
)(  

                  
n

μnoise
noiseVar n

Ni∑
∀

−
=

2)(
)(                (4-2) 

The noise to signal (N/S) ratio is 

                  
)(
)(

ratio  
signalVar
noiseVar

S
N =                   (4-3) 
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4.1.2. Criterion of estimation 

    Two kinds of familiar standards are used to verify the performance of PRLS. It is 

also used to show the improvement of PLS when calibrating training data with outlier, 

prediction may overfit to noise. One of them is correlation coefficient indicates the 

strength and direction of a linear relationship between two variables. It refers to the 

departure of two variables from independence. The other is root mean square error 

(RMSE). RMSE is one of many ways to quantify the amount by which an estimator 

differs from the true value of the quantity being estimated like as a loss function. 

Following, we will illustrate with simple graphs. 

 

Perfect positive relation Non- relation Perfect negative relation

+1 0 −1

Perfect positive relationPerfect positive relation Non- relation Perfect negative relation

+1 0 −1+1 0 −1

 
Figure 4.2 A sketch map of correlation coefficient 

Several data sets of (x,y) points, with the correlation coefficient of x and y for each set. 

More approaching positive one more keeping consistency of direction between 

variables and distributing linearly. On the contrary, closing negative one indicates that 

the direction is opposite but distribution is also linear. 
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Figure 4.3 Root mean square error 

 

Figure 4.3 shows that the main concept of RMSE is to calculate the average of the 

distance between prediction and desired output data. To acquire accurate prediction, 

we hope that RMSE minimizes as far as possible. 

 

4.1.2. Conditional training 

    Here we also calibrate the training data in different conditions — (1) 

self-calibration & self-prediction (SCSP) and (2) cross validation (CV). In order to 

understand easily what is difference between SCSP and CV. We use diagrams to 

illustrate. Figure 4.4 shows the principle of SCSP and Figure 4.5 shows CV. 

    SCSP is a traditional training mode and the training data set is also prediction 

data set. Usually the result of SCSP is ideal if there is no noise hidden in the source 

data. However data usually goes along with noise and SCSP would be influenced by 

hidden information so that results may not necessarily meet to desire.  

CV is also called leave one out (LOO) method because we select a validation 

data from original training data set and repeat until each observation in the set is used 

as validation data. The method also has the property of avoiding overfitting but costs 

heavy computation. Next, we will compare regularization technique and CV in 

simulation and real data experiments. 
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    Figure 4.4 Self-calibration & self-prediction (SCSP) 
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  Figure 4.5 Cross validation (CV) 

 

4.2. Simulation data 
    In this section, PRLS and PLS will calibrate sigmoid and polynomial function 

and imitative spectrum data under SCSP and CV. After predicting, we apply the 

criterion of estimation to examine which one is better among two methods and a brief 

discussion would be written down after experiments. 

 

4.2.1. Sigmoid function 

    PRLS and PLS are used to approximate to the sigmoid function. 

f(xi) = cos(xi), 0≦x≦2π                         (4-4) 

One hundred training data were generated from f(xi)+εi, where xi has take from the 

uniform distribution in (0,2π) and the noise ε had a Gaussian distribution with zero 

mean. The training data and the sigmoid function f(xi) are plotted in Figure 4.6. The 
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training data is highly ill-conditioned. Figure 4.7 depicts the correlation coefficient as 

a function of noise to signal ratio under SCSP and Figure 4.8 depicts the RMSE as a 

function of noise to signal ratio under SCSP. Figure 4.9 shows the network mapping 

constructed by PRLS and PLS algorithm with noise to signal ratio is 0.55. 

Under CV condition, we set N/S ratio = 0.55 and calibrate sigmoid function 

again. Figure 4.10 depicts correlation coefficient as a function of iteration. Figure 4.11 

depicts RMSE as a function of iteration. Figure 4.12 shows that network mapping 

constructed by PRLS and PLS with noise to signal ratio is 0.55 under CV. 
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  Figure 4.6 Noisy training data (points) and sigmoid function (curve) with N/S ratio 

= 0.55 

 

 - 22 - 



0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.28 0.55 0.85 1.13 1.41 1.69 1.94 2.18 2.56

Noise to Signal Ratio

C
or

re
la

ti
on

 C
oe

ff
ic

ie
nt

PLS

PRLS

 
Figure 4.7 Correlation coefficient as a function of N/S ratio under SCSP 
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Figure 4.8 RMSE as a function of N/S ratio under SCSP 

 

 - 23 - 



-2.0

-1.0

0.0

1.0

2.0

0.00 0.63 1.26 1.89 2.51 3.14 3.77 4.40 5.03 5.66 6.28

Input data

C
al

ib
ra

ti
on

 v
al

ue

PLS

PRLS

Desired output with Noise 

Desired output

  
Figure 4.9 Network mapping constructed by PRLS and PLS algorithm under 

SCSP with N/S ratio = 0.55 
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Figure 4.10 Correlation coefficient as a function of iteration under CV 
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Figure 4.11 RMSE as a function of iteration under CV 
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Figure 4.12 Network mapping constructed by PRLS and PLS algorithm under CV 

with N/S ratio = 0.55 

 

Table 4.1 Optimal CV results for sigmoid function data 

 PLS PRLS 

Correlation coefficient 0.9963 0.9971 
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RMSE 0.0772 0.0694 

Adequate iteration 3 3 

 

The results shown in above diagrams and table clearly demonstrate that the PRLS 

algorithm has better generalization properties 

 

4.2.2 Polynomial function 

    In this experiment, we use polynomial function to examine. 

f(x) = 8th polynomial , -1≦x≦1                  (4-5) 

We divide the range [-1,1] into one hundred parts and the training data were generated 

in the same way as 4.2.1. The noisy training data set and polynomial function were 

display in Figure 4.13. In the following, we will still estimate methods under SCSP 

and CV. Figure 4.14 depicts correlation coefficient as a function of noise to signal 

ratio and Figure 4.15 depicts RMSE as a function of noise to signal ratio under SCSP. 

PRLS and PLS prediction with noise to signal ratio is 0.55 under SCSP were plotted 

in Figure 4.16. 

    After examining under SCSP, we set constant noise to signal ratio to calibrate 

under CV and the records of correlation coefficient, RMSE and prediction were 

expressed in Figure 4.17, Figure 4.18 and Figure 4.19. 
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Figure 4.13 Noisy training data (points) and polynomial function (curve) with N/S 
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ratio = 0.55 
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Figure 4.14 Correlation coefficient as a function of N/S ratio under SCSP 
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Figure 4.15 RMSE as a function of N/S ratio under SCSP 
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Figure 4.16 Network mapping constructed by PRLS and PLS algorithm under SCSP 

with N/S ratio = 0.55 
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Figure 4.17 Correlation coefficient as a function of N/S ratio under CV 
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Figure 4.18 RMSE a function of N/S ratio under CV 
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Figure 4.19 Network mapping constructed by PRLS and PLS algorithm under CV 

with N/S ratio = 0.55 

 

Table 4.2 Optimal CV results for polynomial prediction data 

 PLS PRLS 
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Correlation coefficient 0.9959 0.9967 

RMSE 1.2738 1.1796 

Adequate iteration 2 2 

 

From experimental result, we can find out PRLS also has better performance than 

PLS whether the prediction is under SCSP or CV. 

 

4.2.3 Imitative spectrum 

    We would like to generate two Gaussian functions g(x) with mean = 400 and 

standard deviation = 20, h(x) with mean = 420 and standard deviation = 15. f(x) is the 

linear combination of g(x) and h(x) plotted in Figure 4.20. 
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Figure 4.20 Linear combination of two Gaussian functions with different mean and 

standard deviation 

 

The training data set Xi +ε can be created by linear combination of g(x) and h(x) 

with noise where x is the wavelength divided into one hundred identical parts. Desired 

output Y is the set of weighting coefficients. Figure 4.21 exhibits the training data. 

f(x)_i = Xi +ε= wi‧g(x) + (1/wi) ‧h(x) +ε, 1≦i≦10 

Y= [w1,w2,…,w10] = [1,1.5,2,…,5.5]                                   (4-6) 

 - 30 - 



0.00

0.05

0.10

0.15

0.20

0.25

380 390 400 410 420 430 440 450 460 470 480

Wavelength

f(
x)

f_01
f_02
f_03
f_04
f_05
f_06
f_07
f_08
f_09
f_10

 
Figure 4.21 Training data sets of imitative spectrum 

 

Next, we show the results of calibration, also divided into two conditions. The first 

result is under SCSP ( Figure 4.22 – Figure 4.24 ) and the second result is under CV 

( Figure 4.25 – Figure 4.27 ) . All of them are shown as below: 
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Figure 4.22 Correlation coefficient as a function of executable iteration under SCSP 
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Figure 4.23 RMSE as a function of executable iteration under SCSP 
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Figure 4.24 Network mapping constructed by PRLS and PLS algorithm under CV 

with N/S ratio = 0.55 
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Figure 4.25 Correlation coefficient as a function of executable iteration under CV 
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Figure 4.26 RMSE as a function of executable iteration under CV 
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Figure 4.27 Network mapping constructed by PRLS and PLS algorithm under CV 

with N/S ratio = 0.55 

 

Table 4.3 Optimal CV results for imitative spectrum prediction data 

 PLS PRLS 

Correlation coefficient 0.9980 0.9980 

RMSE 0.1570 0.1520 

Adequate iteration 2 2 

 

4.2.4. Discussion 

According to above diagrams and table, we can find out PRLS is improving and 

keeping prediction stable under noisy training data. Before applying our method to 

examine real data set, we have a brief discussion first. 

 

Table 4.4 Compilation of simulated experimental results 
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Condition

Criterion

SCSP CV

PRLS PLS PRLS PLS

Correlation
Coefficient

RMSE

Time
complexity

O(n) O(n2)

Condition

Criterion

SCSP CV

PRLS PLS PRLS PLS

Correlation
Coefficient

RMSE

Time
complexity

O(n) O(n2)

N/S N/S

N/SN/S

Index Index

IndexIndex

 
By observing results of simulation experiments, we made up table 4.4. Idealistically, 

we hope that result of prediction is high correlation coefficient, small RMSE and 

consumes light computation. Therefore we wish the height of correlation coefficient 

always keeps high and slop of RMSE is not abrupt and time complexity is as low as 

possible. From the table, we can clearly make out PRLS is advantageous among two 

methods in simulation data experiments. 

 

 

4.3. Real data 
 
4.3.1. Sound file 

    In the experiments, we would use ex-100 data to predict the 100th data with two 

kinds of noisy sound files: (a) Power-station-ambience and (b) Transformer hum. We 

select 100 data sets to calibrate. Following, we would show the results of experiments. 

(a) Power-station ambience 

 
Figure 4.28 Power station ambience source data 
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Figure 4.29 Correlation coefficient as a function of index of hidden node under SCSP 

 

 
Figure 4.30 RMSE as a function of index of hidden node under SCSP 
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Figure 4.31 Correlation coefficient as a function of index of hidden node under CV 
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Figure 4.32 RMSE as a function of index of hidden node under CV 

 

Table 4.5 Optimal CV results for power station ambience prediction data 

 PLS PRLS 

Correlation coefficient 0.5646 0.5658 
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RMSE 0.0415 0.0411 

Adequate iteration 6 6 

 

(b) Transformer hum 

 
Figure 4.33 Transformer hum source data 
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Figure 4.34 Correlation coefficient as a function of index of hidden node under SCSP 
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Figure 4.35 RMSE as a function of index of hidden node under SCSP 
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Figure 4.36 Correlation coefficient as a function of index of hidden node under CV 
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Figure 4.37 RMSE as a function of index of hidden node under CV 

 

Table 4.6 Optimal CV results for transformer hum prediction data 

 PLS PRLS 

Correlation coefficient 0.7490 0.7490 

RMSE 0.0340 0.0330 

Adequate iteration 6 6 

 

4.3.2. Blood glucose data 

    Diabetes mellitus is one of the most common diseases in the present day, we can 

analysis the blood glucose data and further control when the density is irregular. In the 

experiment, we select 37 data sets to evidence our purpose. Figure 4.28 shows blood 

glucose data with noise. In the following, we would show the results of calibration 

under SCSP and CV. Figure 4.29 shows that  
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Figure 4.38 Blood glucose data with noise 
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Figure 4.39 Correlation coefficient as a function of executable iteration under SCSP 
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Figure 4.40 RMSE as a function of executable iteration under SCSP 
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Figure 4.41 Network mapping constructed by PRLS and PLS algorithm under SCSP 
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Figure 4.42 Correlation coefficient as a function of executable iteration under CV 
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Figure 4.43 RMSE as a function of executable iteration under CV 
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Figure 4.44 Network mapping constructed by PRLS and PLS algorithm under CV 

 

Table 4.7 Optimal CV results for blood glucose data 

 PLS PRLS 

Correlation coefficient 0.8240 0.8320 

RMSE 42.280 40.993 

Adequate iteration 6 7 

 
4.3.3. Discussion 

    The same as the above section, we also draw a discussion. Due to the viewing 

results of real experiments, we made up table 4.7 to show which one has better 

performance in real data experiments. We hope that result of prediction is high 

correlation coefficient, small RMSE and consumes light computation. Therefore we 

wish the height of correlation coefficient always keeps high and slop of RMSE is not 

abrupt and time complexity is as low as possible. From the table, we can clearly make 

out PRLS is advantageous among two methods in simulation data experiments. 
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Table 4.7 Compilation of real experimental results 

Condition

Criterion

SCSP CV

PLS PRLS PLS PRLS

Correlation
Coefficient

RMSE

Time
complexity

O(n) O(n2)

Condition

Criterion

SCSP CV

PLS PRLS PLS PRLS

Correlation
Coefficient

RMSE

Time
complexity

O(n) O(n2)

Index Index

IndexIndex

IndexIndex

Index Index
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Chapter 5. Conclusion and future works 
 
5.1. Conclusion 

The purposed PRLS method is able to handle Gaussian noise under reasonable 

condition dataset. Although applying CV technique to calibration also has the same 

property. But we usually have no idea when prediction must terminate under CV in 

real data set. However our system can find out a value approximated to optimum in 

the end. Beside the time complexity of calculating under CV is O(N2), PRLS just 

consumes O(N). If we have a large amount of training data must calibrate, PLS is 

unsuitable.  

From results of simulated experiments, the proposed scheme shows the 

robustness against the random noise generated by the Gaussian probability density 

function. In the real data experimental results, system also has better performance 

than original PLS method when calibrating training data with noise. 

 

5.2. Future works 
One of the most important properties of online system is that the response time 

must minimize as far as it can be. Therefore we consider to apply PRLS to online 

calibrated system. Although it would cost additional computational time, the amount 

is not worth mentioning. For the application of neural network, we can combine PRLS 

with backpropagation networks (BPN). PRLS can be used to initialize the weighting 

coefficients of BPN to keep BPN stable under noisy training data. 

We only use linear transformation inside our scheme. In order to improve the 

efficiency of learning, developing the nonlinear model is necessary. For a high 

accuracy of calibration result, we can apply optimization algorithm to our purposed 

system to calculate the initial value of regularized parameter.  
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