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Study on Partial Regularized Least Squares Method

Student : Yu-Ren Chiou Advisor : Tzu-Chien Hsiao

Institute of Computer Science and Engineering College of Computer
Science

National Chiao Tung University

Abstract

The main purpose of this thesis is to develop a method of analyzing and reducing
the unseen or noisy information from the source data without preprocessing. Here

presents a novel learning algorithm—partial regularized least squares (PRLS). It

combines the advantages of both the partial least squares (PLS) and regularization
technique to provide an efficient procedure to avoid the circumstance of overfitting
and attain better results when calibrating under noisy data.

In the simulated experiments, PRLS is applied to analyze the three different
kinds of simulated waves. According to estimated standard of root mean square error,
proving that PRLS has better performance than PLS. In real calibrated experiments,
demonstrating PRLS certainly has the ability of noise reduction.
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Chapter 1. Introduction

1.1. Literature study

Multivariate analysis is successfully applied to process signal information. The
application field includes spectrum analysis [1], bio-signal process [2] and image
processing [3] etc. In general, it can be divided into two categories: regressor and
value iteration also named as artificial neural network (ANN). The wildly used
regressors are: Least Squares (LS), Principal Component Analysis (PCA) [4] and
Partial Least Squares (PLS) [5]. And the most practical model in ANN is Multiple
Layer Perceptron (MLP) [6]. Regressor and ANN analyze data in different processes
and the analyzed results are suitable for different applications. For example, Wang [7]
used ANN to solve the problem, classification of oral submucous fibrosis and oral
carcinogenesis. Hsiao [8] apply regressor to classify the difference between normal
and dyplasia tissues.

Hsiao [9] proposed a novel thought to hybrid regressive algorithm and ANN. In
his study, the regressive algorithms can be treated as ANN architecture. For example,
PLS can be treated as a three-layer ANN. For this view point, the research tracing

path in this thesis will be illustrated in Figure 1.1.

ANN Regressor
""" I T I
l . | | LS |
| |Multi-Layer Perceptron| I I
I : I I A 4 I
| : | Similar | PCA |I
: y | architecture | ! :
| OLS | | PLS |
I based on RBFN I I ) I
- __ I - ___ I

Regularization Regularization
Ny
---------- v % l/ R 2
ROLS PRLS

Figure 1.1 Research tracing diagram
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Oja [4], [10] proposed PCA to reduce the dimension of input data by K-L
transformation. However it has a main drawback which PCA lacks for information
about which principal components are important for desired output and how many
components are needed to compress the input data. PLS is a calibrated regression in
common use. The concept of PLS was developed from LS. PLS also can compress the
input data and solve the main drawback of PCA. But PLS estimation suffers from
overfitting is more serious than PCA [5]. Chen [11] proposed Orthogonal Least
Squares (OLS) based on radial basis function network (RBFN) also suffered from the
same circumstance. By applying the regularization technique, Chen [12] also
constructed Regularized Orthogonal Least Squares (ROLS) to solve the problem of
overfitting.

In order to apply regularization technique to PLS, we represent PLS as three
layer network. Following the example of ROLS computational architecture, we also
modify the original PLS by combining the regularization to establish a novel

calibrated model — partial regularized least squares (PRLS).

1.2. Motivation

PLS is a multivariate statistical technique that allows comparison between
multiple response variables and multiple explanatory variables. It has been popular in
many aspects. However there is a big problem that the predicted results would be
influenced by outlier hidden in training data and lapse from output. The position is
due to overtraining of system because we hope that executed outputs can approximate
to desired outputs as far as possible. In ideal data, calibrated outcomes will be perfect
but real data sets always have unseen information so that some results may reflect
anomalies due to the information and poor accuracy for unseen examples. When
training data goes along with noise, prediction often falls into a trap — overfitting [13].
Therefore we want to modify a usual method to acquire better performance than the

original one when calibrating under noisy training data.

1.3. Related work

Pervious approaches have been proposed to solve the problem of overfitting.

S



® Training data
—— Desired output
—— Calibrated output

/

2 4 6 8

Figure 1.2 Illustration of overfitting.

The learner may adjust to specific features of the noisy training data that has no causal
relation to calibration. To reduce the training error, the predicted curve would pass
through each point possibly. At the same time, results would be influenced by the data

with noise.

In general, three common techniques are selected to do:

1. Halt early — System would terminate training under a tolerant threshold. It is the
simplest method but we have no idea when system must stop executing. If
calculation process is terminated too early, results will be underfitting. Hence, it
is difficult to determine when stopping working [6].

2.  Postprocessing — System would select a validation data from original training
data set and repeat until each observation in the set is used as validation data.
The method also has the property of avoiding overfitting but it costs a large
amount of computation [14].

3. Regularization — System would adopt iterative learning and calculate the
probability distribution and acquiring the balance between overfitting and
underfitting [12], [15], [16], [17], but it is hard to select regularized parameters
appropriately.



1.4. Contribution
The contributions of this thesis can be summarized into two levels, as follow:

1. Here established a novel method combines a usual regression model with
regularization, named PRLS. It combines the advantages of PLS and
regularization.

2. Here also improved the accuracy of being calibrated by using PLS under the

influence of noisy training data.

1.5. Thesis organization

Chapter 2 introduces the principle and architecture of several calibration models
and further traces regularization technique [16], [17]. In Chapter 3, we discuss the
relationship between PLS and regularization. Next, we propose a novel model - PRLS
built by combining PLS with the technique. Chapter 4 shows the simulated
experimental results of our purpose to evidence our theory. At last, the conclusion and

further works are written down in Chapter 5.



Chapter 2. Methods and Materials

2.1. Least Squares (LS)
Classical least squares regression consists of minimizing the sum of the squared

residuals. The linear model is given by y, =b,+x,b +..+x,b,+& (i=1,...n), where
the error & 1is usually assumed to be normally distributed with zero mean and

standard deviation o. The goal of multiple regression is to estimate b =(b,,b,,...,0,)

from the data (1, x,,...,X,,, ;) . The sum of square error (SSE) is calculated as below:
SSE =Y &} = (v, = (by + x,b, +...4+x,,b,))’ (2-1)
i=1 i=1

Partial difference by bj , then we can derive (2-2)

62’%: 22(.)/, _(bo +xi1b] +"'+x’7’b”))(_1)xy =0

(2-2)
where j=1,2,...p.

If we transform to matrix form, we can get a two layer multivariate analysis system
illustrated as Figure 2.1. Then Y represents as matrix [yl,..., Vv, ]T , real output

AN N

Y =[5 ¥, 1" and b=[by.b,...5,].

The LS procedure in matrix form is defined as:

y=Xb+ ¢ (2-3)
We calculate the weighting coefficients due to (2-3).

X'y~ X"Xb (2-4)

b= (X'X)"(X"y) (2-5)



b, b

Figure 2.1 Two layer LS architecture.

In other words, LS method is to solve the approximated answer if there is no solution

in geometry. We will use Figure 2.2, so as to explain

[ s

Xb
W

Figure 2.2 Illustration of LS in geometry

If v = x» express the column vectors of X can not span the vector Yy . We define
the vector space W = span (col (X)) because the equation y = X» implies there is no
solution. If we want to obtain the approximated answer, we have to reduce the
residual ¢ . By the orthogonal projecting into vector space W acquiring the

approximation because vector Y goes to space W takes straightly being apart from

as the shortest.



2.2. Principal Component Analysis (PCA)

PCA is a self-organizing learning rule through Karhunen-Loeve (K-L)
transformation mapping into feature space [10]. Adaptive eigenvectors which were
chosen construct subspace of the space. And data reconstruction is also using K-L
transformation mapping into the subspace.

Given a set of data X with dimension n and mean vector m = E[X]=0. We
can compute the covariance matrix C = E[X " X] . Through singular value

decomposition (SVD) processing as follows:

(:: = ‘»7 Ai& 1‘]T

Eigenvalues in order: 4, 24, >...2 1,

Figure 2.4 Singular value decomposition of covariance matrix

Final, selecting the p (p =n) largest eigenvalues corresponding eigenvectors construct

matrix V  and discarding other eigenvectors in data representation. In regression,
we shall add the LS phase after K-L transformation to estimate the curve fit. The

regressive procedure is representable as:

X = XV* (2-6)
Using LS method can acquire the weights.
AT
XY
B=— (2-7)
X X



Lease
squares

K-L
transformation

Figure 2.5 Three layer PCA architecture

2.3. Partial Least Squares (PLS)

PLS is one of the most general analysis methods in regression. Here we will
show PLS mathematic decomposition, regression algorithm and architecture of three
layer multivariate system.

The independent variable matrix X, , decomposed into matrix U,, with
corresponding weighting matrix P, and dependent variable matrix Y, , can be
decomposed into matrix V,  with corresponding weighting matrix Q_,. The

mathematic form is represented as follows:

X . :X(1)+X(2)+--'+X(a)+E

nx

A A A A A A

=wp, +u.p, +-u.p, +E
=U _P +E 2-9)

nxa axm

Y 1:Y(1)+Y(2)+"-+Y(a)+F

nx

A A A A A A

=viq,tvaq,t---+v.q +F
=V,.Q.. +F (2-9)
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calculates the weight P q,, 6 = 5
v n T u:“TX,.m .-th vmr{
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Figure 2.6 PLS algorithm flow chart

After derivative, we exactly find out the residual matrix ||E

minimized through the course of decomposing the matrix X and Y .When

computational iteration equation to a (a=n) or the residual small than a minimum,

PLS would terminate.

Ham [18] and Hsiao [9] bring up an idea which regards PLS as one kind of

artificial neural networks. In the purpose, transformation between independent and

nxm

dependent variables can be represented as three layer network architecture.

and ”le




Parhal LS method

f{.): linear mapping
80 =¥

Partial LS method

Figure 2.7 Three layer PLS architecture

2.4. Orthogonal Least Squares (OLS)

In this section, we describe OLS structure in the application for radial basis
function networks (RBFN) to select adequate centers. This rational approach provides

an efficient learning algorithm for fitting appropriate RBFN. Let X=[x,,...,x,] be

independent matrix and y=[y,,...,y,]" be dependent matrix then the transformation
can be written as:

y=PO+E (2-10)
where
P=[p,..p, 1 ,p = [¢(Hx[ —x_l.H)] , @(.) is Gaussian function, with 1<1, j<n
0=[(0,..,0,]"

E=[e,...e,|"

To make sense of the procedure clearly, we show the computational processing can be

represented as:

-10 -



X = [xl,xz,...,xn]

Least squares method

#(.): Gaussian mapping 2 W'y
v ~ . - (W TW )—1
P=[p.p..p] —
Calibration

p,=l2(x -

Q-R decomposition

y~y=WG=WA)=P0
P — w A W: orthogonal matrix

A : strict upper triangle

y=W(AO)+ E
= WG + F

Figure 2.8 OLS based on RBFN flow chart

Simplifying the OLS computational flow, we replace Q-R decomposition with
orthogonal processing. Orthogonal decomposition of P can be obtained using

Gram-Schmidt orthogonal processing computes a column of A and selects an
adequate regressor vector W, at a time. OLS makes a criterion to select the regressor

vector and minimize the residual each iteration. The error criterion can be written:

y'y=2gww+EE (2-11)
i=1

Normalize (2-13) then we can acquire W, due to error ratio (2-12)

X 2. T
;g, o y'y-E'E _ calibration

= 2-12
Yy Yy desired output ( )

According to (2-14), OLS can pick out an appropriate regressor vector w, with the

error ratio mostly approximates to one each iteration.
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Figure 2.9 Three layer OLS architecture

There is no transformation mapping during Gram-Schmidt orthogonal
processing so we shall regard two computational phases in front as one layer in Figure

2.9.

2.5. Regularization

Regularization techniques have been used in the past to avoid overfit [12], [16]
and error function of residual is minimized which depends on the network weights as
well as the fit error [15]. Essentially it involves adding some multiple of a positive
definite matrix to an ill-conditioned matrix so that the sum is no longer ill-conditioned
and is equivalent to simple weight-decay in gradient descent methods.

Let’s define symbols to illustrate, A[u]>0 and B[u]>0 are two positive
functions of U, so we can try to determine U by either

Minimize:  Alu] or Blu] (2-13)

In summary, regularization is Lagrange multiplier equation combines with quadratic
constraint to minimize the weighted sum Au]+ AB[u] and lead to a adequate

solution for u.
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2.6. Regularized Orthogonal Least Squares (ROLS)

ROLS algorithm combines the advantages of both the orthogonal regression and
regularization methods to provide an efficient and powerful procedure for
constructing models [12].

As mentioned earlier, the error criterion used in deriving the OLS algorithm is

the total squared error £ "E . But the criterion in certain circumstances is prone to
overfitting. To prevent overfitting, regularization method can be applied. Using (2-11),

we define the residual squares error over the training set is

E, = (2-14)

yiy=Y gw'w,
i=1

And regularized term

n

> g

i=1

E, = (2-15)

According to the regularization technique, it can be shown that the regularized error

criterion can be expressed as

+1 ,with 1>0. (2-16)

E,=E,+AE, = Hy»ry—zgiziji
i1

n
2
Zgi
i=1

Minimizing the equation Eg , we can get the appropriate term  w, .

Finally, we will show diagram of ROLS architecture to understand which

computational phase is modified in Figure 2.10.
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Figure 2.10 Three layer ROLS architecture
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Chapter 3. A novel method - Partial Regularized Least
Squares (PRLS)

3.1. Relation between PLS and regularization

In this chapter, we will modify PLS architecture to reconstruct a novel
calibration method, named as PRLS, to avoid overfitting which occurs when there is
noise in the training data and the calibration system is flexible enough to fit to it. Here
using the same symbols in section 2.3.

Original PLS calibrates during the processing of decomposing independent and

dependent matrix, we only minimized the residual matrix |Enxm and . In the

anl

ideal situation, the calibration will approximate the desired output as minimum as it
can be. But real data always goes along with hidden information that we have no idea
whether it will interference the prediction or not. In this circumstance, PLS calibration
may fit the noisy data and the outcome will lapse from our desire. We shall use the
property of regularization and apply it to original architecture to solve this problem.

As mentioned earlier, we exploit the concept of regularization techniques and
rewrite the error criterion of PLS as:

E =E,+E,=E'E+1q"'q, A>0 (3-1)

Where ¢ is weighting vector which inferences the output directly. In order to

interpret equation E, and regularized parameter A, we will illustrate using trade off

curve as below
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I

I

I

I

|

I

|

I

solutions weighted sum (Equation)

Total error

Best solutions \_/Best agreement
—
Vary of weights qg 4

Figure 3.1 Trade off curve

Figure 3.1 illustrates that all achievable solutions are above the trade off curve but
some of them conform our desire. Original PLS calibration reduces the total error as
far as possible but if there is noise in training data, prediction may also fit the noisy

data. Vary of weighting coefficients ¢'g controls the curve motion and we add the

term multiplies regularized parameter A to error criterion to make the calibration
curve smooth without oscillating. In conclusion, PRLS keeps the calibration’s balance

between smoothness of curve and accuracy.

3.2. PRLS algorithm

In the following, we will describe the modeling algorithm. Figure 3.2 points out
the modulation to PLS. Although there are two computational phases using partial LS
method, we only modify the later half because only the second half among two
computational phases affects the executed output directly. Next, to understand the

architecture obviously, we regard PRLS as a three layer neural network in Figure 3.3.
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Figure 3.3 Three layer PRLS architecture
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Chapter 4. Experiments and discussion

This chapter will demonstrate our simulation experiment results including
simulation data and real data from 1D to 2D data and sound files. In the simulation
data experiments, results show that PRLS has better performance than PLS and keep
calibration stable with noise data. In the real data experiments, we apply our method
to analyze environment sound measurement [19] and spectrum of blood glucose

measurement [20].

4.1. Illustration

4.1.1. Synthesized simulation data

In simulation data calculation, we use synthesize three kinds of testing data with
noise to examine the efficiency of PRLS method. We add the noise generated by
Gaussian probability density function with zero mean and set the value of standard
deviation, so as to alter the level of noise. The noise to signal (N/S) ratio is also used

to set up a standard of the variation. Given a signal data set signal, and Gaussian
noise data set noise, with zero mean, 1<i/<n. The mean of signal and noise data

set are:

lLt =
n
Z noise,
Uy =L . (4-1)

The variance of a signal and noise data set are

Y (signal, — )’
Var(signal) =

n

D (noise; - )’
Var(noise) = -~ (4-2)
n

The noise to signal (N/S) ratio is

N . +Var(noise) 43
/9 ratio v Var(signal) (3
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4.1.2. Criterion of estimation

Two kinds of familiar standards are used to verify the performance of PRLS. It is
also used to show the improvement of PLS when calibrating training data with outlier,
prediction may overfit to noise. One of them is correlation coefficient indicates the
strength and direction of a linear relationship between two variables. It refers to the
departure of two variables from independence. The other is root mean square error
(RMSE). RMSE is one of many ways to quantify the amount by which an estimator
differs from the true value of the quantity being estimated like as a loss function.

Following, we will illustrate with simple graphs.

+1 0 -1

Perfect positive relation Non- relation Perfect negative relation

Figure 4.2 A sketch map of correlation coefficient
Several data sets of (x,y) points, with the correlation coefficient of x and y for each set.
More approaching positive one more keeping consistency of direction between
variables and distributing linearly. On the contrary, closing negative one indicates that

the direction is opposite but distribution is also linear.
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Figure 4.3 Root mean square error

Figure 4.3 shows that the main concept of RMSE is to calculate the average of the
distance between prediction and desired output data. To acquire accurate prediction,

we hope that RMSE minimizes as far as possible.

4.1.2. Conditional training

Here we also calibrate the training data in different conditions — (1)

self-calibration & self-prediction (SCSP) and (2) cross validation (CV). In order to
understand easily what is difference between SCSP and CV. We use diagrams to
illustrate. Figure 4.4 shows the principle of SCSP and Figure 4.5 shows CV.

SCSP is a traditional training mode and the training data set is also prediction
data set. Usually the result of SCSP is ideal if there is no noise hidden in the source
data. However data usually goes along with noise and SCSP would be influenced by
hidden information so that results may not necessarily meet to desire.

CV is also called leave one out (LOO) method because we select a validation
data from original training data set and repeat until each observation in the set is used
as validation data. The method also has the property of avoiding overfitting but costs
heavy computation. Next, we will compare regularization technique and CV in

simulation and real data experiments.
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Figure 4.4 Self-calibration & self-prediction (SCSP)
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Algorithm
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Predicting

Returned

Figure 4.5 Cross validation (CV)

4.2. Simulation data

In this section, PRLS and PLS will calibrate sigmoid and polynomial function
and imitative spectrum data under SCSP and CV. After predicting, we apply the
criterion of estimation to examine which one is better among two methods and a brief

discussion would be written down after experiments.

4.2.1. Sigmoid function
PRLS and PLS are used to approximate to the sigmoid function.
f(xi) = cos(xi), 0 =x=2=n (4-4)
One hundred training data were generated from f(x;)+e;, where x; has take from the
uniform distribution in (0,2w) and the noise ¢ had a Gaussian distribution with zero

mean. The training data and the sigmoid function f(x;) are plotted in Figure 4.6. The
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training data is highly ill-conditioned. Figure 4.7 depicts the correlation coefficient as
a function of noise to signal ratio under SCSP and Figure 4.8 depicts the RMSE as a
function of noise to signal ratio under SCSP. Figure 4.9 shows the network mapping
constructed by PRLS and PLS algorithm with noise to signal ratio is 0.55.

Under CV condition, we set N/S ratio = 0.55 and calibrate sigmoid function
again. Figure 4.10 depicts correlation coefficient as a function of iteration. Figure 4.11
depicts RMSE as a function of iteration. Figure 4.12 shows that network mapping

constructed by PRLS and PLS with noise to signal ratio is 0.55 under CV.

2.0 °

1.0

-1.0

-2.0
000 063 126 189 251 314 377 440 503 566 628

Input data x

Figure 4.6 Noisy training data (points) and sigmoid function (curve) with N/S ratio

=0.55
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Figure 4.7 Correlation coefficient as a function of N/S ratio under SCSP
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Figure 4.8 RMSE as a function of N/S ratio under SCSP
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Figure 4.9 Network mapping constructed by PRLS and PLS algorithm under
SCSP with N/S ratio = 0.55
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Figure 4.10 Correlation coefficient as a function of iteration under CV
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Figure 4.11 RMSE as a function of iteration under CV
2.0
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Figure 4.12 Network mapping constructed by PRLS and PLS algorithm under CV
with N/S ratio = 0.55

Table 4.1 Optimal CV results for sigmoid function data
PLS PRLS
Correlation coefficient 0.9963 0.9971
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RMSE 0.0772 0.0694

Adequate iteration 3 3

The results shown in above diagrams and table clearly demonstrate that the PRLS

algorithm has better generalization properties

4.2.2 Polynomial function

In this experiment, we use polynomial function to examine.

f(x) = 8" polynomial , -1 =x =1 (4-5)

We divide the range [-1,1] into one hundred parts and the training data were generated
in the same way as 4.2.1. The noisy training data set and polynomial function were
display in Figure 4.13. In the following, we will still estimate methods under SCSP
and CV. Figure 4.14 depicts correlation coefficient as a function of noise to signal
ratio and Figure 4.15 depicts RMSE as a function of noise to signal ratio under SCSP.
PRLS and PLS prediction with noise to signal ratio is 0.55 under SCSP were plotted
in Figure 4.16.

After examining under SCSP, we set constant noise to signal ratio to calibrate
under CV and the records of correlation coefficient, RMSE and prediction were

expressed in Figure 4.17, Figure 4.18 and Figure 4.19.

40

f(X)

-10 08 -06 -04 -02 0.0 0.2 04 0.6 0.8 1.0
Input data X

Figure 4.13 Noisy training data (points) and polynomial function (curve) with N/S
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Figure 4.14 Correlation coefficient as a function of N/S ratio under SCSP
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Figure 4.15 RMSE as a function of N/S ratio under SCSP
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Figure 4.16 Network mapping constructed by PRLS and PLS algorithm under SCSP
with N/S ratio = 0.55
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Figure 4.17 Correlation coefficient as a function of N/S ratio under CV
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Figure 4.18 RMSE a function of N/S ratio under CV
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Figure 4.19 Network mapping constructed by PRLS and PLS algorithm under CV
with N/S ratio = 0.55

Table 4.2 Optimal CV results for polynomial prediction data
PLS PRLS
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Correlation coefficient 0.9959 0.9967
RMSE 1.2738 1.1796

Adequate iteration 2 2

From experimental result, we can find out PRLS also has better performance than

PLS whether the prediction is under SCSP or CV.

4.2.3 Imitative spectrum
We would like to generate two Gaussian functions g(x) with mean = 400 and
standard deviation = 20, h(x) with mean = 420 and standard deviation = 15. f(x) is the

linear combination of g(x) and h(x) plotted in Figure 4.20.

0.05
—{(x)

0.04 A e
0.03 /\\\

w L AN

w /AN
SN N

380 390 400 410 420 430 440 450 460 470 480

f(x)

0.00

Wavelength

Figure 4.20 Linear combination of two Gaussian functions with different mean and

standard deviation

The training data set X; + & can be created by linear combination of g(x) and h(x)

with noise where x is the wavelength divided into one hundred identical parts. Desired
output Y is the set of weighting coefficients. Figure 4.21 exhibits the training data.
fix) i=Xi+te=wi+*gx)+(l/w;) hx)+e,1=i=10

Y= [wi,Wa,...,Wio] =[1,1.5,2,...,5.5] (4-6)
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Figure 4.21 Training data sets of imitative spectrum
Next, we show the results of calibration, also divided into two conditions. The first

result is under SCSP ( Figure 4.22 — Figure 4.24 ) and the second result is under CV
( Figure 4.25 — Figure 4.27 ) . All of them are shown as below:

1.0 @

®
®
®

-
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0.0
0 0.192 0.371 0.518 0.638 0.686 0.781 0.816 0.921 0.881

Nosie to signal ratio

Figure 4.22 Correlation coefficient as a function of executable iteration under SCSP
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Figure 4.23 RMSE as a function of executable iteration under SCSP
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Figure 4.24 Network mapping constructed by PRLS and PLS algorithm under CV
with N/S ratio = 0.55
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Figure 4.25 Correlation coefficient as a function of executable iteration under CV
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Figure 4.26 RMSE as a function of executable iteration under CV
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Figure 4.27 Network mapping constructed by PRLS and PLS algorithm under CV
with N/S ratio = 0.55

Table 4.3 Optimal CV results for imitative spectrum prediction data

PLS PRLS

Correlation coefficient 0.9980 0.9980

RMSE 0.1570 0.1520
Adequate iteration 2 2

4.2.4. Discussion

According to above diagrams and table, we can find out PRLS is improving and
keeping prediction stable under noisy training data. Before applying our method to

examine real data set, we have a brief discussion first.

Table 4.4 Compilation of simulated experimental results
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Condition SCSP CV
Criterion PRLS PLS PRLS PLS
Correlation EA—
Coefficient
N/é N/é Inde; Inde;
RMse [ (| Ty R e
N/S ] N/S Index Index
Time
tme. O(n) Oo?)
complexity

By observing results of simulation experiments, we made up table 4.4. Idealistically,
we hope that result of prediction is high correlation coefficient, small RMSE and
consumes light computation. Therefore we wish the height of correlation coefficient
always keeps high and slop of RMSE is not abrupt and time complexity is as low as
possible. From the table, we can clearly make out PRLS is advantageous among two

methods in simulation data experiments.

4.3. Real data

4.3.1. Sound file

In the experiments, we would use ex-100 data to predict the 100th data with two
kinds of noisy sound files: (a) Power-station-ambience and (b) Transformer hum. We
select 100 data sets to calibrate. Following, we would show the results of experiments.

(a) Power-station ambience
Sound data Sound dote [ ‘

0.4
-oz—
-0.4 -
-0.5-3
lm 'zmcrno 25m m ssum:n

Figure 4.28 Power station ambience source data
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Figure 4.29 Correlation coefficient as a function of index of hidden node under SCSP
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Figure 4.30 RMSE as a function of index of hidden node under SCSP
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Figure 4.31 Correlation coefficient as a function of index of hidden node under CV
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Figure 4.32 RMSE as a function of index of hidden node under CV

Table 4.5 Optimal CV results for power station ambience prediction data
PLS PRLS
Correlation coefficient 0.5646 0.5658
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RMSE 0.0415 0.0411

Adequate iteration 6 6

(b) Transformer hum

Sound dats Sound de=  [ERNE

a sad00 100000 150000 200000 250000
T

Figure 4.33 Transformer hum source data
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Figure 4.34 Correlation coefficient as a function of index of hidden node under SCSP
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Figure 4.35 RMSE as a function of index of hidden node under SCSP
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Figure 4.36 Correlation coefficient as a function of index of hidden node under CV
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Figure 4.37 RMSE as a function of index of hidden node under CV

Table 4.6 Optimal CV results for transformer hum prediction data

BIES PRLS

Correlation coefficient 0.7490 0.7490

RMSE 0.0340 0.0330
Adequate iteration 6 6

4.3.2. Blood glucose data

Diabetes mellitus is one of the most common diseases in the present day, we can
analysis the blood glucose data and further control when the density is irregular. In the
experiment, we select 37 data sets to evidence our purpose. Figure 4.28 shows blood

glucose data with noise. In the following, we would show the results of calibration

under SCSP and CV. Figure 4.29 shows that
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Figure 4.38 Blood glucose data with noise
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Figure 4.39 Correlation coefficient as a function of executable iteration under SCSP
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Figure 4.40 RMSE as a function of executable iteration under SCSP
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Figure 4.41 Network mapping constructed by PRLS and PLS algorithm under SCSP
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Figure 4.42 Correlation coefficient as a function of executable iteration under CV
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Figure 4.44 Network mapping constructed by PRLS and PLS algorithm under CV

Table 4.7 Optimal CV results for blood glucose data

HE PRLS

Correlation coefficient 0.8240 0.8320

RMSE 42.280 40.993
Adequate iteration 6 7

4.3.3. Discussion

The same as the above section, we also draw a discussion. Due to the viewing
results of real experiments, we made up table 4.7 to show which one has better
performance in real data experiments. We hope that result of prediction is high
correlation coefficient, small RMSE and consumes light computation. Therefore we
wish the height of correlation coefficient always keeps high and slop of RMSE is not
abrupt and time complexity is as low as possible. From the table, we can clearly make

out PRLS is advantageous among two methods in simulation data experiments.
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Table 4.7 Compilation of real experimental results

Condition SCSP CV
Criterion PLS PRLS PLS PRLS
. 1 .
Correlation i . A — Fennasenane
Coefficient
Index Index Index Index
A r A
RMSE E— _
Index Index Index Index
Time
_ O() Oo?)
complexity
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Chapter 5. Conclusion and future works

5.1. Conclusion

The purposed PRLS method is able to handle Gaussian noise under reasonable
condition dataset. Although applying CV technique to calibration also has the same
property. But we usually have no idea when prediction must terminate under CV in
real data set. However our system can find out a value approximated to optimum in
the end. Beside the time complexity of calculating under CV is O(N?), PRLS just
consumes O(N). If we have a large amount of training data must calibrate, PLS is
unsuitable.

From results of simulated experiments, the proposed scheme shows the
robustness against the random noise generated by the Gaussian probability density
function. In the real data experimental results, system also has better performance

than original PLS method when calibrating training data with noise.

5.2. Future works

One of the most important properties of online system is that the response time
must minimize as far as it can be. Therefore we consider to apply PRLS to online
calibrated system. Although it would cost additional computational time, the amount
is not worth mentioning. For the application of neural network, we can combine PRLS
with backpropagation networks (BPN). PRLS can be used to initialize the weighting
coefficients of BPN to keep BPN stable under noisy training data.

We only use linear transformation inside our scheme. In order to improve the
efficiency of learning, developing the nonlinear model is necessary. For a high
accuracy of calibration result, we can apply optimization algorithm to our purposed

system to calculate the initial value of regularized parameter.
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