
Chapter 1 

Introduction 

In the working environment, a human in drowsiness often exhibits relative inattention 

to environments, eye closure, less mobility, failure to motor control and decision 

making [1]. Therefore, many disasters and near-disasters can be caused by falling 

drowsiness especially for machine operators who pose a danger not only to 

themselves but often also to the public at large. Recently, safety driving has received 

increasing attention of the public due to the growing number of traffic accidents. 

Drivers’ fatigue has been implicated as a causal factor in many traffic accidents. The 

National Sleep Foundation (NSF) reported that 60% of adult drivers (about 168 

million people) felt drowsy while driving vehicles and 37% or 103 million people 

actually fell asleep during driving in 2005. Additionally, the sleep related crashes are 

most common in young people, especially for adult males and shift workers [2]. NSF 

also reported that adults aged between 18-29 years old are much more likely to drive 

while drowsy compared to other age groups. Males are more likely than females to 

drive while drowsy (56% vs. 45%) and males are almost twice as likely as females to 

fall asleep while driving (22% vs. 12%) investigated in 2002 [2]. Hence, drowsiness 

detection and prevention is very important to avoid disasters such as vehicle crashes 

in working environments. 
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1.1 Current researches of drowsiness 

Drivers’ fatigue is one of the primary causal factors for many road accidents and 

hence detection of drowsiness of drivers in real time can help preventing many 

accidents behind the steering wheel. In the field of safety driving, thus development 

of methodologies for detection drowsiness / departure from alertness in drivers has 

become an important area of research. Drowsiness leads to decline in drivers’ abilities 

of perception, recognition, and vehicle control and hence monitoring of drowsiness in 

derivers is very important to avoid road accidents.  It is known that various 

physiological factors co-vary with drowsiness levels [3–7].  Some such factors are 

eye activities, heart rate variability (HRV), and the electroencephalogram (EEG) 

activities. Since the effect of changes in cognitive state on EEG is quite strong, in this 

study we use EEG as our information source for detection of drowsiness.  Most of 

the earlier studies using EEG relating to assessment of changes in cognitive states are 

supervised in nature and have used the same detection model for all subjects [8-10]. 

But it is known that there existed relatively large subjective variability in EEG 

dynamics relating to drowsiness / departure from alertness. This suggests that for 

many operators, group statistics or a global model may not be effective to accurately 

predict changes in the cognitive states [11-14]. Subject-dependent models have also 

been developed to account for individual variability. Such personalized models 
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although can alleviate the problem of individual variability in EEG spectra; such 

methods cannot take into account the variability between sessions in EEG spectra due 

to various  factors such electrode displacements, environmental noises, 

skin-electrode impedance, and base-line EEG differences. One of the major problems 

in dealing with EEG signals in a real time driving environment is the presence of 

noise. Often independent component analysis (ICA) [15-19] is used for cleaning noise 

from EEG. However, selection of the noisy components in an automatic manner using 

ICA is still a difficult task. 

 

1.2. Kinesthetic perception during driving 

The driving motion is one of the most experienced kinesthetic perceptions in our life, 

in other word, the perception we sensed during the vehicle speed or direction change. 

Whenever the vehicle accelerates, decelerates or curves in a corner, we experience a 

force pulling our body against the direction of moving. For a driver, the perception to 

motion includes kinesthetic and visual stimulus. A driver does not sense only the 

pushing or pulling his/her body by a force, but also the scene change related to vehicle 

movement. The driving perception includes the co-stimulation of visual cue, 

vestibular stimulation, muscle reaction and skin pressure. It is indeed a complicated 

mechanism to understand. 
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There are numbers of difficulties in investigating the driving perception. First of all, 

the safety of subject must be guaranteed. Experiments should be held under a safe 

driving environment, it is very dangerous to conduct driving experiments on the road. 

Second, appropriate monitoring and data acquisition are needed to study the influence 

of kinesthetic stimuli. The stimulation should be simple enough and repeatable to 

keep experiment under control. Third, objective evaluation should be assessed in the 

studies. 

 

One of the solutions is to conduct driving experiments using a realistic simulator, 

which is widely used in driving related researches [20]. For the necessity of motion 

during driving, literatures showed that the absence of motion information increased 

reaction times to external movement perturbations [21], and decreased safety margins 

in the control of lateral acceleration in curve driving [22]. In real driving, improper 

signals from disordered vestibular organs were reported to determine inappropriate 

steering adjustment [23]. Moreover, the presence of vestibular information in driving 

simulators shows the importance for it influences the perception of illusory self-tilt 

and illusory self-motion [24]. All the above studies emphasized the importance of 

motion perception during driving with the assessment of driving performance and 

behavior. Our previous studies also demonstrated that multiple cortical EEG sources 
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responded to driving events differentially in dynamic and static environment. 

Specifically, the alpha band variations occurred in many components (Mu, parietal 

and occipital) during driving, especially when the vehicle is moving. It is still unclear 

to what extent the kinesthetic stimulation would interfere with the fluctuations of 

driver's global level of drowsiness accompanying changes in driver's performance.  

 

1.3. Virtual reality dynamic simulator 

Virtual reality (VR) technology is gradually being recognized as a useful tool for the 

study and assessment of normal and abnormal brain function, as well as for cognitive 

rehabilitation. Virtual Environments (VE) are created by powerful computers that 

generate realistic animated graphics in three dimensions. Creating carefully controlled, 

dynamic, 3D stimulus environments combined with physiological and behavioral 

response recording can be offer more assessment options that are not available by 

traditional neuropsychological methods. 

 

The VR technique allows subjects to interact directly with a virtual environment 

rather than monotonic auditory and visual stimuli. It is an excellent strategy for brain 

research on interactive and realistic tasks due to low cost and avoiding risk of 

operating on the actual machines. In recent years, some researchers designed the VR 
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senses to provide the appropriate environments for brain activity study [25-27]. 

Integrating the VR scene with dynamic motion platform is excellent for studying the 

influence of kinesthetic stimulus on cognitive state. Therefore, a VR-based dynamic 

motion platform combined with EEG measured system is an innovation in brain and 

cognitive engineering researches. 

 

1.4 Organization of this thesis 

In this investigation we introduce an unsupervised approach to estimate a model for 

the alert state of the subject. We shall refer to such models as alert-models. A part of 

this investigation has been reported in [28]. The proposed approach can account for 

the variability in EEG signals between individuals and between sessions with the 

same individual. This being an unsupervised approach we do not need a teacher or a 

labeled training data set with information on whether the driver is in a alert state or 

drowsy state at every time instant. In this approach, we derive models of the alert state 

of the subject as characterized by the EEG signal collected during the first few 

minutes of recording. We assume that during the first few minutes of driving, the 

driver (subject) will be in an alert state, although he/she may not be in a completely 

normal state as he/she might have walked some distance to reach the garage. This 

approach can account for baseline shifts and the variations in EEG spectra due to 
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changes in recording conditions in different driving sessions.  We find that the EEG 

log power in the alpha band (as well as in the theta band) and the driving performance 

exhibit a  rough linear relation suggesting  that changes in the cognitive state is 

reflected in the EEG power in the two specified bands. We then demonstrate that 

deviation of the EEG power from that of the alert model also follows a similar 

relation with the changes in driving performance, and hence with the changes in 

cognitive state. Consequently, a derivation from the alert model can be used to detect 

drowsiness and that is what we do in this investigation. 

 

This thesis is organized as follows. Chapter2 describes the EEG-based drowsiness 

experiment, VR-based driving environment, EEG data collection, instructions, and 

subjects in the experiments. Chapter3 shows the EEG analysis procedure including 

behavior analysis, spectra analysis, building alert model, and analyzing the deviation 

from alert model. Chapter4 shows the experimental results and the discussion is given 

in chapter5. Finally, we conclude our findings in chapter6. 
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Chapter 2 

System architecture and experimental design 

In this study, a VR-based driving system was applied for interactive driving 

experiment [28]. It included two major parts as shown in (1) the 3D highway driving 

scene based on the virtual reality technology and (2) the EEG physiological signal 

measurement system with 32-channel EEG sensors. The full details of experimental 

system architecture will describe as followers. 

 

2.1 3D virtual reality driving simulation environment 

In this study we use a virtual-reality based highway-driving environment to generate 

the required data.  Some of our previous studies to investigate changes in drivers’ 

cognitive states during a long-term monotonous driving have also used the same 

VR-based environment [29-30].  In this system, a real car mounted on a 

6-degree-of-freedom Stewart platform is used for the driving and seven projectors are 

used to generate 3-D surrounded scenes. During the driving experiments, all scenes 

move according to the displacement of the car and the subject’s maneuvering of the 

wheels which make the subject feel like driving the car on a real road. The VR 

environment is showing in Figure 1.  
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Figure 1.  The overview of surrounded VR scene. The VR-based highway scenes 

are projected into surround screen with seven projectors. 

 

In all our experiments we have kept the driving speed fixed at 100 km/hr and system 

automatically and randomly drifts the car away from the center of the cruising lane to 

mimic the effects of a non ideal road surface. The driver is asked to maintain the car 

along the center of the cruising lane. All subjects involved in this study have good 

driving skill and hence when the subject is alert, his/her response time to the random 

drift is short and the deviation of the car from the center of the lane is small. But, 

when the subject is not alert/ drowsy, both the response time and the car’s deviation 

are high. Note that, in all our experiments, the subject’s car is the only car cruising on 

the VR-based freeway. Although, both response time and the deviation from the 
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central line are related to the subject’s driving performance, in this study, we use the 

car’s deviation from the central line as a measure of performance of the subjects. The 

driving task is showing in Figure 2.  

 

 
 Figure 2.  The digitized highway scene. The width of highway is equally divided

 

into 256 units and the width of the car is 32 units. An example of the deviation event. 
The car cruised with a fixed velocity of 100 km/hr on the VR-based highway scene 
and it was randomly drifted either to the left or to the right away from the cruising 
position with a constant velocity. The subjects were instructed to steer the vehicle 
back to the center of the cruising lane as quickly as possible. 
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2.2 The EEG data collection 

The data acquisition system uses 32 sintered Ag/AgCl EEG/EOG electrodes with a 

unipolar reference at right earlobe and 2 ECG channels in bipolar connection which 

are placed on the chest. All EEG/EOG electrodes were placed following a modified 

International 10–20 system and refer to right ear lobe as depicted in Figure 3. We use 

the following notations: F: Frontal lobe. T: Temporal lobe. C: Central lobe. P: Parietal 

lobe. O: Occipital lobe. "Z" refers to an electrode placed on the mid-line. In this figure, 

A1 and A2 are two reference channels.  The two channels FP1 and FP2 are found to 

be quite noisy and hence we do not use the signals obtained from them. Thus we use 

data from 28 channels. Before the data acquisition, the contact impedance between 

EEG electrodes and cortex was calibrated to be less than 5 kΩ .We use the Scan 

NuAmps Express system (Compumedics Ltd., VIC, Australia) to simultaneously 

record the EEG/EOG data and the deviation between the center of the vehicle and the 

center of the cruising lane. The EEG data are recorded with 16-bit quantization level 

at the sampling rate of 500 Hz. To reduce the burden of computation, the data are then 

down-sampled to sampling rate of 250 Hz.  Since the objective is to develop 

methodologies that can be used in real time, we do not use sophisticated noise 

cleaning techniques such as ICA but we preprocess the EEG signals using a simple 

low-pass filter with a cutoff frequency of 50 Hz to remove the line noise (60 Hz and 
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its harmonics) and other high-frequency noise. 

 

 

Figure 3.  The 32 channel EEG cap and electrodes placement of international 
10–20 system. The letters used are: F: Frontal lobe. T: Temporal lobe. C: Central lobe. 
P: Parietal lobe. O: Occipital lobe. "Z" refers to an electrode placed on the mid-line. 

 

2.3 Subjects 

Here we provide a brief description of the EEG recording system as well as of the 

subjects involved in this study.  We have used a set of thirteen subjects (ages varying 

from 20 to 40 years old) to generate data for the investigation. Of this thirteen, ten 

subjects are the same as used in [28].  Statistical reports [31] suggest that people 

often get drowsy within one hour of continuous driving in the early afternoon hours. 

Moreover, after a good sleep in the night, people are not likely to fall sleep easily 

during the first half of the day. And hence, we have conducted all our experiments in 

the early afternoon after lunch so that we can generate more useful data. We have 
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explained the participants about the goal of these experiments and the general features 

of the driving task. We have also completed the necessary formalities to get their 

consent for these experiments. Each subject was asked to drive the car for 60-minutes 

with a view to keeping the car at the center of the cruising lane by maneuvering it 

with the steering wheel. Of the thirteen subjects, four struggled with mild drowsiness, 

while the remaining nine exhibited mild and deep drowsy episodes during the 1-hour 

driving session. 
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Chapter 3 

The unsupervised approach 

It is recognized that the changes in EEG spectra in the theta band (4~7Hz) and alpha 

band (8~11Hz) reflect changes in the cognitive and memory performance [32]. Other 

studies have reported that EEG power spectra at the theta band [33, 34] and/or alpha 

band [35, 36] are associated with drowsiness, and EEG log power and subject’s 

driving performance are largely linearly related. These findings have motivated us to 

derive the alert models of the driver using the alpha-band and theta-band EEG power 

spectrum computed using Oz channel output recorded in the first few minutes of 

driving. The choice of the Oz channel is explained in the Experimental Results section. 

We emphasize that the few minutes of data used to find the alert model are not 

necessarily collected from the very beginning of driving session  because different 

factors, such as walking of driver by a few meters to reach the garage,  may 

influence the EEG signal generated at the very beginning. The specific window to be 

used for generation of the alert model is selected by Mardia test (explained later) [37]. 

We assume that if the subject/driver is in an alert state, then the EEG power spectra 

relating to theta band (as well as that relating to alpha band) would follow a 

multivariate normal distribution. The parameters of the multivariate normal 

distributions characterize the models. Using the alpha-band and theta-band EEG 
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power, we identify two normal-distribution based models. Then, we assess the 

deviation of the current state of the subject from the alert model using Mahalanobis 

distance (MD). We assume that when the subject continues to remain alert, his/her 

EEG power should resemble the sample data used to generate the model and hence 

would match the alert model or template. If the subject becomes drowsy, then its 

power spectra in the alpha band (and also in theta band) will deviate from the 

respective model and hence MD will increase. With a view to reducing the effect of 

spurious noise, MDs are smoothed over a 90-sec moving windows, the window is 

moved by 2-sec steps. We then study the relationship between smoothed Mahalanobis 

distance and subject’s driving performance by computing the correlation between the 

two.  Figure 4 shows the overall flow of the EEG data analysis. In Figure 4, note that, 

after the models are identified, the preprocessed alpha band and theta band power data 

directly go to the blocks for computation of MDA and MDT, respectively. MDT and 

MDA are measure of deviations of the subject’s present state from the respective 

models, this will be clarified later. The block for computation of MDC makes a linear 

combination of MDT and MDA. Finally, all three, MDA, MDT and MDC are used in 

correlation analysis with the driver’s performance. 
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Figure 4.  The flowchart of the EEG analysis method. That Contains hehavior 
analysis and EEG analysis. We select theta and alpha-band power while the subject is 
alert to build two alert models. After the models are build, alpha and theta band power 
are used to compute deviaions (MD*) from the models.   We smooth the resultant 
MD* with a 90-sec moving window at 2-sec steps and calculate the correlation 
between subject’s driving performance and the smoothed MD*. 

 

3.1 Indirect measurement of alertness 

To investigate the relationship between the measured EEG signals and subject’s 

cognitive state, and to quantify the level of the subject’s alertness in our previous 

studies [38-40]. First, we need to quantify the volunteer’s drowsiness level in this 

experiment. When subjects fall drowsy, they often exhibit relative inattention to 

environments, eye closure, less mobility, failure to motor control and making decision. 
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Hence, the vehicle deviations were defined as the subject’s drowsiness index. The 

VR-based four-lane straight highway scene was applied in the experiment. In this 

scene, the four lanes from left to right are separated by a median stripe and the 

distance from the left side to the right side of the road was equally divided into 256 

points indicating the position of the vehicle as the digital output signal of the VR 

scene at each time instant. The width of each lane and the car is 60 units and 32 units, 

respectively. Figure 2 shows an example of the driving performance represented by 

the vehicle deviation trajectories. We have defined an indirect index of the subject’s 

alertness level (driving performance) as the deviation between the center of the 

vehicle and the center of the cruising lane. Typically the drowsiness level fluctuates 

with cycle lengths longer than 4 minutes [33, 34], and hence we smooth the indirect 

alertness level index using a causal 90-sec moving window advancing at 2-ses steps. 

This helps us to eliminate variance with cycle lengths shorter than 1-2 minutes. We 

emphasize that this index is used only to validate our approach, and it is not as an 

input to develop the model for the alert state of the subject. Figure 5 shows the 

processes of driving performance analysis as precedence.  
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Figure 5.  The process of driving performance . Step1: Finding the baseline 
(deviation onset), and remove it . Step2: Computing the absolute value for the same 
direction. Step3: Setting the threshold to correct value. Step4: Moving average.  

 

3.2 Smoothing of the Power Spectra.  

We use a component-wise median filter for smoothing the power spectrum data. We 

compute one data vector (a vector with power spectrum) in 20 dimensions using 2 

seconds signal using FFT.  Thus, we consider 500-point Hanning windows without 

overlap. Each windowed 500-point epoch is now sub-divided into 16 sub-epochs each 

with 125 points using a Hanning window. Each sub-epoch is shifted by 25-points. For 

example, the first sub-epoch uses points 1 through 125, the second sub-epoch uses 

points 26 through 150 and so on. Each sub-epoch is then extended to 256 points by 
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zero padding for a 256-point FFT. A moving median (computed using the 16 

sub-epochs) filter is used to minimize the presence of artifacts in the EEG records of 

all sub-windows. The median filter is realized by computing the median of each 

component. In other words, for 2 seconds signal, we have generated 16 vectors, each 

in 20 dimensions. Then we generate a new vector in 20 dimensions, where the ith 

component is the median value of the ith component of the 16 vectors. This new 

vector we call the moving median filtered data. This process is repeated for every two 

seconds without overlap. The moving- median filtered EEG power spectra are then 

converted to a logarithmic scale prior to further analysis. Logarithmic scaling 

linearizes the expected multiplicative effects of sub-cortical systems involved in 

wake-sleep regulation on EEG amplitudes [42]. Thus, for each session EEG log 

power time series at alpha band as well as at theta band with 2s (500-point, an epoch) 

time intervals are generated. These time series data are the inputs to our model. Figure 

6 shows the processes of spectra analysis as precedence.  
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Figure 6.  The EEG power spectral analysis procedure. The raw EEG data first 
accomplished using a 500-point Hanning window without overlap. Windowed 
500-point epochs were further subdivided into several 125-point subwindows using 
the Hanning window again with 25-point step. Each 125-point frame was extended to 
256 points by zero-padding to calculate its power spectrum by using a 256-point fast 
Fourier transform (FFT),resulting in power-spectrum density estimation with a 
frequency resolution near 1 Hz. 

 

3.3 Computation of the alert model of the subject 

In our approach for every subject in every driving session a new model will be 

constructed. Consequently the variability between subjects as well as the inter-session 

variability is no more important; these are taken into account automatically.  To 

develop the alert model we make a few mild but realistic assumptions as follows:   
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1. The subject is usually very alert immediately after he/she starts the driving 

session. 

2. Subject’s cognitive state can be characterized by the power spectrum of his/her 

EEG. 

3. When the person is in the alert state, it can be modeled reasonably well using a 

multivariate distribution of the power spectrum. 

4. The alert model expresses well the EEG spectra when the subject remains alert 

or return to alert state from drowsiness. 

 

One can argue that the subject may already be in a drowsy state when he/she begins 

driving. If that is really true, then that can be detected by checking the consistency 

between two alert models derived using data in two successive time intervals. In other 

words, we can check whether the two alert-models identifies in two successive time 

intervals are statistically same or not. If the subject was already in a drowsy state, then 

he/she will either move to a deep drowsy/sleepy state or will transit to an alert state. 

In both cases, the two models will not be statistically the same. 
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Here we use a multivariate distribution to model the distribution of power spectrum in 

the alert state. In particular, at every 2 second, we calculate the power spectrum vector 

in p dimension (in our experiment p = 4 (theta band) or p=5 (alpha band). In this way, 

a set of n=30 data vectors {x1,…,x30} is generated in every minute. We use 3 minutes 

of spectral data to derive the alert model. The alert model is represented and 

characterized by a multivariate normal distribution , where ),N( 2Σμ μ  is the mean 

vector and is the variance-covariance matrix.  Σ

 

We use the maximum likelihood estimates for μ  and 2Σ . After finding the alert 

model we check whether the EEG spectrum in the alpha band (also in theta band) 

indeed follows a multivariate normal using Mardia’s test [43-44]. If the model passes 

the Mardia’s test, we accept that model as the alert model. Otherwise, we move the 

data window by one minute and again use the next 3 minutes of data to derive and 

validate the model using Mardia’s test. Once a model is built, a significant deviation 

from the model can be taken as a departure from alertness. Note that, we are saying 

“departure from alertness” which is not necessarily drowsiness. For example, the 

subject could be excited over a continued conversation over a mobile phone. In this 

case, although the person is not drowsy, he/she is not alert as far as the driving task is 

concerned and hence needs to be cautioned. Thus our approach is more useful than 
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typical drowsiness detection systems.  A consistent and significant deviation for 

some time can be taken as an indicator of drowsiness.  

 

For the sake of completeness, we briefly explain the Mardia’s test of multi-variate 

normality. Given a random sample, X={x1,…,xn} in Rp, Mardia [43-44] defined the 

p-variate skewness and kurtosis as:  

 

31

1 1
2,1 )}(){(1b xxxx −′−= −

= =
∑∑ j

n

i

n

j
ip S

n
         (1) 

21

1
,2 )}()(1 xxxx −′−= −

=
∑ i

n

i
ip S

n
b              (2) 

 

In (1) and (2) x and S represent the sample mean vector and covariance matrix, 

respectively. In the case of university data, b1,p and b2,p reduces to the usual university 

measures skewness and kurtosis, respectively. If the sample is obtained from a 

multivariate normal distribution, then the limiting distribution of b1,p is a Chi-square 

with p(p + 1)(p + 2)/6 degrees of freedom, while that of 

)2(8/))2((n ,2 ++− ppppb p is N(0,1).  Hence we can use these statistics to test 

multi-variety normality. In all our experiments, we have used the routines available 

for Mardia’s test in the R-package [45].  
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3.4 Computation of the deviation from the Subject 

After the alert model is found, we use it to assess the subject’s cognitive state. This 

was done by finding how the subject’s present state, as represented by the EEG power 

spectra, and was different from the state represented by the alert model. The deviation 

of the present state from the model is computed using Mahalanobis distance [46] that 

can account for the covariance between variables while computing the distance. Let 

the alert model computed using the alpha band be represented by AS),(x  and that by 

the theta band be represented by TS),(x . Let x be a vector representing the power 

spectra in the alpha band (or in the theta band) of the EEG of the subject at some time 

instant, then the deviation of the present state from the model is:  

 

)-(S)-(  )(*MD 1-T xxxxx =                (3) 

 

In (3) if we use the alpha band model, then * is A, and for the theta band model and 

data, * will be T. Thus the deviation from the alpha band model will be denoted by 

MDA and that for the theta band model will be denoted by MDT.    Similar to the 

pre-processing of the indirect alertness level index (driving performance), the 

MDA/MDT is also smoothed by the moving average method using a window with a 

window of 90 seconds. The moving average window is shifted by just one value (i.e., 
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2 sec). For a better visual display, we have scaled the MD* values by subtracting the 

average MD* computed over the training data used for finding the alert model. 

 

We shall see later that the deviation from either the alpha band model (i.e., MDA) or 

the theta band model (i.e., MDT)  can be used to detect departure from the alart 

cognitive state. This raises a natural question, can a combined use of  MDA and 

MDT do a better job than individual ones. To explore such a possibility we use a 

linear combination MDA and MDT to compute a combined measure of deviation as 

. 10,).1(. ≤≤−+= aMDTaMDAaMDC

  

Now in order to demonstrate that MD* (*=MDA/MDT/MDC) can be used to detect 

changes in the cognitive states, we compute the linear correlation between the 

alertness level index (d) and the smoothed Mahalanobis distance (MD*). In our 

subsequent discussion MD* will represent the smoothed deviations; i.e., the smoothed 

value of MDA, MDT and MDC as the case may be.  The correlation coefficient is 

defined as:  

∑
∑=

22
*MDd,
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 Corr                               (4) 
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3.5 Sorted driving performance spectral analysis 

Since the driving performance is an indirect index of the alertness level, we propose 

the sorted analysis method that sorts the smoothed log power spectra and MD* 

according to the driving performance index to assess the brain dynamics 

corresponding to the transition from alertness (lower driving performance values) to 

drowsiness (larger driving performance values) in driving. This process is used to 

obverse the features change as the increase of driving performance index. 
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Chapter 4 

Results 

There are a few important issues to be resolved before we can proceed with the 

detailed analysis. The first issue is the optimal window size for feature extraction 

(computing FFT). For this we have tried various choices and have found that 2 sec 

signal does a reasonably good job and that is what we use here. Note that, one can use 

a more systematic approach using training and validation data to find the optimal 

window size. Figure 7 shows the example of MDA/MDT and their correlation with 

driving performance.  

 

4.1 The choice of channels 

The next issue is the choice of channels to be used for analysis. We have data from 28 

EEG channels and we wanted to use only one channel to minimize computational 

complexity. To find the most useful channel for the problem at hand, for each channel 

we compute the average correlation (averaged over all subjects) between MDA and 

the driving performance. Similarly, we also compute the average correlation between 

MDT and the driving performance. These correlation values are summarized in Table 

1. Table 1 reveals that, the highest correlation occurs for Channel Oz both with MDT 

and MDA. This suggests that the channel Oz is better than other channels in 
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discriminating departure from alertness. The channels O1 and O2 which are neighbors 

of Oz also exhibit very high correlations. Since we have decided to use only one 

channel, we have chosen channel Oz for further study. 

 

 

Figure 7.  Example of MDA, MDT, and driving performance. After finding the 
MDT and  MDA, we compute their correlations with driving performance.  
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TABLE 1 
THE AVERAGE CORRELATION BETWEEN MAHALANOBIS DISTANCE AND DRIVING 

PERFORMANCE OF ALL SUBJECTS FOR DIFFERENT CHANNELS 
Pole F7 F3 FZ F4 F8 FT7 FC3 FCZ FC4 FT8 

MDA 0.52 0.45 0.59 0.47 0.47 0.53 0.59 0.60 0.56 0.48 

MDT 0.13 0.25 0.42 0.23 0.09 0.27 0.56 0.60 0.46 0.13 

Pole T3 C3 CZ C4 T4 TP7 CP3 CPZ CP4 TP8 

MDA 0.60 0.58 0.58 0.54 0.48 0.54 0.57 0.57 0.51 0.52 

MDT 0.38 0.60 0.63 0.54 0.34 0.53 0.58 0.67 0.55 0.53 

Pole P7 P3 PZ P4 P8 O1 Oz O2 -- -- 

MDA 0.56 0.56 0.52 0.53 0.53 0.60 0.64 0.64 -- -- 

MDT 0.57 0.64 0.66 0.63 0.65 0.71 0.74 0.73 -- -- 

 

4.2 Performance sorted analysis 

To investigate the relationship between the driver’s performance and the concurrent 

changes in the EEG spectrum, we have sorted the EEG power spectra in alpha band 

by smoothed driving performance. The similar sorting is also done for power in the 

theta band. Figure 8(A) depicts the relation between the alpha power and the driving 

performance, while Figure 8(B) displays the same for theta power.  Figure 8(A) 

reveals that when the driving performance increases from 0 to 20, the mean of alpha 

(8~12Hz) power rises sharply and monotonically from 19 to 21dB, after that it slowly 

goes down a little bit.  While for the Theta (4~7Hz) power (Figure 8(B)), the mean 

power increases monotonically and steadily from 20 to 23 dB as the driving 

performance increases (alertness to deep drowsiness).  
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Figure 8.  Performance-sorted EEG spectra at Oz over 13 sessions. (A) The solid 
lines represent the grand mean power spectra and the dotted lines represent the 
standard deviations of the power spectra. When the driving performance increases 
from 0 to 20, the mean of alpha power (8~12Hz) rises sharply and monotonically 
from 19 to 21dB, after which it remains more or less stable near 2 dB above the 
baseline. (B) The mean of theta power (4~7Hz) increases monotonically and steadily 
from 20 to 23 dB as the driving performance increases (alertness to deep drowsiness). 

 

Our alert model does not use EEG power directly, but putative MDT and MDA. So 

next we check how strongly MDA and MDT are correlated with the driving 

performance.  Figure 9(A) shows the relation between driving performance and 

MDA (across the 13 test subjects/sessions) while Figure 9(B) exhibit the same for 

MDT. It is interesting to see that, Figure 8 and Figure 9 exhibit almost the same 

behavior; in fact, for Figure 9(B) we find that compared to Figure 8(B), the average 

MDT increases more steadily with driving performance.  
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Figure 9.  Performance-sorted MD for different sessions. (A) The solid lines 
represent the grand mean MD and the dotted lines represent its standard deviations. 
When the driving performance increases from 0 to 20, the MDA rises sharply and 
monotonically from 5 to 9, after which it remains more or less stable. (B) The MDT 
increases monotonically and steadily from 4 to 9 as the driving performance increases 
(alertness to deep drowsiness). 

 

4.3 Linear combination of model deviations  

Can we say that use of MD* would be more useful than the use of alpha and theta 

power? To address this question, for every subject we have computed the correlation 

between EEG power (in alpha and theta bands) and driving performance and also the 

correlation between MD* (MDA and MDT) and driving performance. Table 2 

summarizes the correlation values.  Table 2 reveals that of the 26 sets of correlation 

values, in 16 cases the correlation has increased with MD*. In a few cases, the 

increase in correlation is very high. For example, with subject S8, the correlation with 

alpha power is only 0.04 while that with MDA is 0.76. Similarly, for S6, the alpha 

power correlation is 0.26 which enhances to 0.63 for MDA. This clearly indicates the 
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effectiveness of the alert model.  Table 2 also displays the average correlation values. 

The average correlation with deviations from the model is increased by about 30% for 

alpha band while that for the theta band is increased by about 23%.  

 

TABLE 2 
THE COMPARISON OF THE CORRELATION BETWEEN POWER AND DRIVING PERFORMANCE 

AND MD* AND DRIVING PERFORMANCE FOR CHANNEL OZ 
drowsiness 

experiments 

Power Correlation 

(alpha / theta) 

Distance Correlation 

(MDA/ MDT) 

S1 0.57 / 0.34 0.75 / 0.73 

S2 0.70 / 0.51 0.69 / 0.47 

S3 0.63 / 0.60 0.67 / 0.65 

S4 0.26 / 0.14 0.47 / 0.41 

S5 0.66 / 0.79 0.62 / 0.85 

S6 0.26 / 0.88 0.63 / 0.85 

S7 0.66 / 0.97 0.57 / 0.96 

S8 0.04 / 0.72 0.76 / 0.80 

S9 0.41 / 0.78 0.39 / 0.77 

S10 0.60 / 0.87 0.76 / 0.88 

S11 0.40 / 0.57 0.53 / 0.90 

S12 0.35 / 0.52 0.24 / 0.62 

S13 0.40 / 0.94 0.45 / 0.95 

Average 0.45 / 0.62 0.58 / 0.76 

 

The analysis above provides strong and convincing evidence that changes in driving 

performance during a long driving session is related to the changes in the EEG power 

in the alpha and theta bands. In the given experimental set up, higher driving 

performance corresponds to departure from alert state of mind. Thus, departures from 
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alert cognitive state are reflected in the EEG power of the alpha and theta band. The 

change (correlation) is more strongly visible in the deviations from the alert model 

derived based on multivariate normal distribution. We have experimented with two 

models, one based on alpha band and other based on the theta band. Both appear quite 

effective. But can we improve it further using the two bands/models together? Figure 

10 displays the MDT and MDA as a function of driving performance. From these 

figures as well as from Table 2, we find that driving performance of mild drowsy 

cases are more strongly related to MDA while MDT is highly correlated with driving 

performance for cases when the subject went to a deep drowsy state. Thus, if we can 

use the right model, we can do a better detection. But in reality, we shall not know 

beforehand which model to use. So a combined model could be more useful. 
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Figure 10.  MDT and MDA vs. actual driving performance. Some subject such  
as S1 has experienced mild drowsiness and MDA is strongly correlated with subject’s 
driving performance. Another subject, S10, was in a deep drowsy state and for this 
subject MDT is highly correlated with his driving performance. 

 

To examine this possibility, we consider a very simple liner combination of MDA and 

MDT as 10,).1(. ≤≤−+= aMDTaMDAaMDC . There are infinitely possible choices 

for the constant a in the linear combination. We have used a grid search starting from 

a = 0 to a=1 with an increment of 0.1 and for every such linear combination we have 

computed the correlation of MDC with driving performance.  Based on the limited 

data set that we have used, we found a = 0.3 as the best choice.  Table 3 lists the 

correlation values for a few illustrative cases. Note that, in the second column we 
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have two correlation values x/y where x corresponds to MDA (i.e., a = 1) and y 

corresponds to MDT (i.e. a=0). Table3, in its last row, displays the average correlation 

values. Although the improvement in average correlation is marginal, what is 

important is that for the combined model for both deep drowsy and mild drowsy cases 

we get a very good correlation. As an example, for subject S9, if we use MDA, the 

correlation is only 0.39, while using MDC, for all combinations the correlation is 

higher than that with MDA. This justifies the utility of the combined model. Figure 11 

depicts the driving performance and the MDC for all 13 subjects. It is clear from these 

figures that on average, MDC is in more agreement with the driving performance. 
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Figure 11.  The time series of MDC (0.3MDA+.07MDT ) from Oz channel and 
the driving performance of all subjects. The black line represents driving performance 
and the blue line corresponds to  MDC. The MDC is found to be highly correlated 
with driving performance. 
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TABLE 3 
 THE CORRELATION VALUES BETWEEN DIRIVING PERFORMANCE AND MDC FOR VARIOUS 

COMBINATIONS OF MDA AND MDT OVER ALL SUBJECTS USING OZ CHANNEL 
drowsiness 

experiments 

Correlation 

(MDA / 

MDT) 

Correlation

0.1* MDA 

0.9* MDT 

Correlation

0.3* MDA 

0.7* MDT 

Correlation

0.5* MDA 

0.5* MDT 

Correlation 

0.7* MDA  

0.3* MDT 

Correlation

0.9* MDA 

0.1* MDT 

S1 0.75 / 0.73 0.75 0.78 0.77 0.77 0.75 

S2 0.69 / 0.47 0.59 0.67 0.69 0.69 0.69 

S3 0.67 / 0.65 0.66 0.68 0.69 0.69 0.68 

S4 0.47 / 0.41 0.43 0.46 0.48 0.48 0.47 

S5 0.62 / 0.85 0.84 0.80 0.75 0.70 0.65 

S6 0.63 / 0.85 0.86 0.86 0.85 0.83 0.74 

S7 0.57 / 0.96 0.95 0.92 0.84 0.74 0.62 

S8 0.76 / 0.80 0.80 0.81 0.82 0.81 0.79 

S9 0.39 / 0.77 0.77 0.75 0.69 0.58 0.45 

S10 0.76 / 0.88 0.88 0.88 0.87 0.85 0.81 

S11 0.53 / 0.90 0.92 0.9 0.86 0.74 0.60 

S12 0.24 / 0.62 0.64 0.65 0.67 0.65 0.45 

S13 0.45 / 0.95 0.95 0.93 0.87 0.75 0.56 

Average 0.58 / 0.76 0.77 0.78 0.76 0.71 0.64 
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Chapter 5 

Discussion 

In this study, we try to build an alert model to obverse subject’s stage from alertness 

to drowsiness depended on subject’s driving performance. Thus there are some issues 

that we are interested. 

 

5.1 Alertness model 

We have assumed that when a subject starts driving, he is in an alert state. However, 

this may not necessarily be true. If the person is not in an alert state (i.e., he /she is in 

a drowsy state)  then either he will move to a deep drowsy state or will get to the 

alert state with time. Thus his/her EEG power spectrum will change with time. This 

type of situations can be detected using a consistency check as explained earlier. For 

example, we can find two alert models of the person at time instant t sec and at t+δ 

sec, where δ may be 180 seconds. If the person is in an alert state, then these two 

models will statistically be the same. So we can use such hypothesis testing to 

authenticate whether the person is in an alert state at the beginning or not. If desired, 

this can be further strengthened having a stored alert model. If the consistency check 

explained above fails, then we can check the similarity between the stored model and 

the model just found. If these two models are also significantly different, this will 
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further suggest that the person is not in an alert state at the beginning. 

 

5.2 Feature selection 

The data set used in this study is not very big and not balance. Of the 13 subjects four 

subjects were mild drowsy during the driving experiments, while the remaining 

subjects went through episodes of mild drowsy to deep drowsy states. To demonstrate 

the effectiveness of this method, further investigation using a bigger set needs to be 

done. And, we have used only alpha band and theta band from Oz channel. Use of 

more signals (like EOG) and different spectra (like beta band) along with alpha band 

and theta band from Oz might improve the system performance.  

 

5.3 Supervised and unsupervised 

In this study, we use an unsupervised method to observe subject’s drowsy cognition. 

But a supervised method [18], flowchart will like Figure 12. In this figure, we can 

know several things:  

 

1. Supervised method needs data (trained before) feedback. So we will always need 

to take double of cost.  

2. Supervised method estimate driving performance. So, if some stage we did not 

learn at training data, we can not estimate it accurately.       
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Unsupervised method is good at out of illustrations above. But that is hard to define 

the output of result. In this paper, we try to find the most useful channels and using 

the drowsy related features (alpha/theta) to make sure the deviation from alert model 

is related to drowsiness. And, because of, the output of these two methods are 

different, we can not compare the performance between these two methods. But 

depend on correlation with driving performance; we had little lower value than 

supervised method. 

 

 

Figure 12.  The flowchart of supervised method. We need two sessions of 
experiments to perform this method. Using training experiment to produce model and 
estimation in testing experiment. 
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5.4 Threshold from alertness to drowsiness 

In this investigation, we have demonstrated the feasibility of an unsupervised subject 

and session independent approach to detect departure from alertness in driver. And we 

plan to identify thresholds on MDC which can be used to label the driver’s cognitive 

state as alert/drowsy. In figure13 depend on driving performance we get two values of 

17 to warn, and 32 to be dangerous. If car shifts 17 pixels, it maybe lost something of 

control. And if car shifts 32 pixels, it maybe hit other car on another lane.  

 

Then according to figure14, the sorted performance of MDC, we can get 2 thresholds 

of 3 and 5 to distinguish alertness to drowsiness. If the MDC value is under than 3 the 

subject may be alert. On the other hand, if the MDC value is bigger than 5 the subject 

may be drowsy. Then we plot these two thresholds with MDC of all subjects in 

figure15. 
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Figure 13.  Depend on driving performance we get two values of 17 to warn, and 
32 to be dangerous. If car shifts 17 pixels, it maybe lost something of control. And if 
car shifts 32 pixels, it maybe hit other car on another lane. 
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Figure 14.  The sorted performance of MDC, we can get 2 thresholds of 3 and 5 to 
distinguish alertness to drowsiness. If the MDC value is under than 3 the subject may 
be alert. On the other hand, if the MDC value is bigger than 5 the subject may be 
drowsy. 
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Figure 15.  MDC and the threshold from alertness to drowsiness. 

 

5.5 Estimative frequency 

In this study, we get the spectra vector every 2 seconds, so the estimative frequency is 

2 seconds. It may be dangerous for really case of driving. But, first human’s drowsy 

cognition is gradual change step by step. So, none will change soon from alertness to 

drowsiness. Otherwise, we can get an overlap from the spectra analysis to make the 

estimative frequency highly.  
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Chapter 6 

Conclusions 

In this study, we propose an unsupervised approach that in every driving session 

generates a statistical model of the alert state of the subject using a very limited data 

obtained at the beginning of the driving session. Our model makes a few very realistic 

assumptions to derive the alert-state model. We assume that the EEG power spectrum 

in an alert state can be reasonably modeled using a multivariate normal distribution. 

The model is first validated statistically and then used to asses the cognitive state of 

the driver. A significant deviation from the model is taken as a departure from the alert 

state. We also attempt to find good choices of channel(s) and EEG features for 

assessing the drowsiness-related EEG dynamics. We have found that Oz is an 

effective channel and the power spectra in the theta band and alpha band have good 

discriminating power.  We have derived three models, one based on alpha band 

spectrum, one based on the theta band power spectrum and the third one combines the 

deviations of the subject present cognitive state from the two models. We have 

demonstrated that deviation of the subject present cognitive state from the alert model 

co-varies with the driving performance which is an indirect measure of operators' 

changing levels of alertness when they perform a realistic driving task in a VR-based 

driving simulator. Unlike most supervised method, our method can account for large 
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individual and cross-session variability in EEG dynamics.  
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