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摘  要 

 

可調視訊編碼標準(SVC)使觀看裝置可以使用位元流擷取機制調整其視訊接收內

容。正因可調視訊編碼提供了結合空間、時間與畫質上的可調性，為不同觀看裝

置擷取適當的位元流時需要經過特別考慮，不適當的選擇經常會產生粗劣的觀賞

品質。在本論文中，我們提出了一個針對可調視訊編碼位元流進行位元率-失真

(R-D)最佳化擷取的方法。精確地說，我們針對可調視訊編碼壓縮時的量化參數

與跨層編碼相依性之設定，發展一組可適應性規則，遵循此規則所產生的良適性

可調視訊編碼位元流(Well-adapted SVC bitstream)可在連續增益步驟中所擷取之

可調層產生明顯較好的位元率-失真平衡。我們亦正式定義最佳化與近似最佳化

擷取路徑的概念，並設計了在運算量上相當有效率的擷取路徑搜尋策略。實驗的

結果展示出我們的位元率-失真最佳化的適應性設定方法與擷取策略可在不同觀

賞裝置的播放畫面品質達到重大的改善。特別的是，我們的可適應性規則可保證

沿著所找出的最佳擷取路徑之位元率-失真曲線具有凸狀的特性，並使得貪婪探

索式擷取策略(Greedy Heuristic)可用以找出最佳化或近似最佳化之路徑，而此最

簡單之搜尋策略比起暴力搜尋法(Exhaustive Search)只需要大約一半的運算複雜

度。 
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ABSTRACT 
 

The Scalable Video Coding (SVC) standard enables viewing devices to adapt their 

video reception using bitstream extraction. Since SVC offers spatial, temporal, and 

quality combined scalability, extracting proper bitstreams for different viewing 

devices can be a non-trivial task, and naive choices usually produce poor playback 

quality. In this thesis, we propose an approach for performing rate-distortion (R-D) 

optimal extraction of SVC bitstreams. Specifically, we developed a set of adaptation 

rules for setting the quantization parameters and the inter-layer dependencies among 

the SVC encoding layers. A well-adapted SVC bitstream thus produced manifest 

good R-D trade-offs when its scalable layers are extracted in successive refinement 

steps. We also formalized the notion of optimal and near-optimal extraction paths and 

devised computationally efficient strategies to search for the extraction paths. 

Experimental results demonstrated that our R-D optimized adaptation schemes and 

extraction strategies offer significant improvement in playback picture quality on 

various viewing devices. In particular, our adaptation rules promise R-D convexity 

along optimal extraction paths and permit the greedy heuristic extraction strategy to 

be used for discovering the optimal/near-optimal paths. This simplest strategy 

performs only half of the computation necessary for an exhaustive search. 
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CHAPTER 1

Research Overview

1.1 Introduction

Production of scalable bitstreams that can be played back by a garden variety of

viewing devices has been a long pursued goal of video compression technology. The

new scalable extension of H.264/AVC standard (referred hereafter as SVC) [12][16]

promises to achieve that goal by employing adaptive inter-layer prediction along with

hierarchical temporal reference. By encoding a video sequence into an inter-dependent

set of network abstraction layer (NAL) units, SVC allows different viewing devices to

extract and decode different scalable layers according to their display formats, process-

ing power, and/or transport network throughput. However, the parts of a bitstream

needed for providing good quality playback at different devices may differ significantly

depending on the visual characteristics of video programs, the quantization and depen-

dency settings of SVC encoders as well as the display formats of viewing devices. This

problem has prompted an intensified study of bitstream adaptation for viewing quality

optimization.

-1-



Chapter 1. Research Overview

1.2 Problem Statement

While offering the flexibility for discretionary bitstream extraction, the current stan-

dard does not specify what to produce and what to use if there are several extraction

possibilities. Several approaches have thus been proposed for finding optimal bitstream

adaptation/extraction schemes that ensure the best playback quality on a viewing de-

vice while making the best use of available transport bandwidth. Although the ex-

traction process can be improved by R-D optimization, the playback quality may still

be far from satisfactory. This is because the pre-encoded SVC bitstreams may not be

well-adapted, which could easily give rise to poor R-D performance. As a result, in this

thesis we propose a novel R-D optimization model to tackle the problem from both

encoder settings and extraction process. Experiments were conducted to illustrate

1. How the tuning of quantization parameters coupled with the changing of inter-

layer dependencies affects the R-D performance of SVC bitstreams,

2. What criteria on SVC encoder/decoder settings may ensure the existence of op-

timal or near-optimal extraction paths for different viewing devices,

3. And how the optimal extraction paths of different viewing devices can be found

using computationally efficient strategies especially when the SVC bitstream is

to be extracted through successive refinements.

Aiming at viewing quality optimization for bitstream adaptation of different de-

vices, this thesis provides an in-depth study on the relationship among video contents,

viewing device capability and searching strategies for finding an optimal extraction

path. Moreover, SVC inter-layer dependency and quantization parameter settings dur-

ing SVC encoding were investigated to discover some rules to produce well-adapted

SVC bitstream.

1.3 Contributions and Organization of Thesis

Specifically, our main contributions in this work include the following:

• We define the rate-distortion optimal bitstream extraction problem as a con-

strained optimization problem and create a R-D trellis diagram to model the

bitstream extraction process.

• We employ dynamic programming algorithm and propose a fast greedy heuristic

-2-



Chapter 1. Research Overview

search strategy for searching optimal extraction paths.

• We develop a set of adaptation rules for setting quantization parameters and

inter-layer dependencies during SVC encoding.

• We analyze a lot of experimental results to figure out how video contents, device

types, distortion measures and interpolation algorithms may affect the optimal

extraction paths.

Experimental results indicate that our optimization scheme makes a significant dif-

ference in improving viewing quality. Our adaptation rules promise the R-D convexity

of optimal extraction paths and enable the greedy heuristic scheme to achieve the

same or similar performance as the dynamic programming algorithm while reducing

the complexity by 50% or more.

The remaining of this thesis is organized as follows: Chapter 2 contains a review of

SVC dependency structure and related works for finding optimal bitstream extraction

schemes. Chapter 3 presents our R-D optimization model for bitstream extraction.

Chapter 4 introduces and analyses our strategies for finding an optimal/near-optimal

extraction path. Chapter 5 further describes the necessary criteria that must be satis-

fied during SVC encoding in order to guarantee the existence of optimal/near-optimal

extraction paths. Chapter 6 addresses the implementation issues of establishing well-

adapted inter-layer dependencies and provides a detailed analysis on the optimal ex-

traction paths and evaluates the performance of the greedy heuristic scheme in search

for the optimal path. The differences between our extraction scheme and other pre-

vious works are also compared. This thesis ends with a summary of our observations

and a list of future works in the conclusion.

-3-



CHAPTER 2

Background

2.1 Scalable Video Coding

2.1.1 Concept

The scalable video coding (SVC) standard [3][12][16] is an scalable extension of the

H.264/AVC standard developed by the Joint Video Team (JVT) that makes a single

bitstream to provide multiple frame sizes, frame rates and quality levels while achieving

a reasonable coding efficiency. A subset of SVC bitstreams can be extracted and

decoded to produce a lower playback quality rather than failed to decode under some

constraints of resources such as network throughput or power of devices.

SVC supports three types of scalabilities: spatial, temporal and quality scalabili-

ties. An SVC bitstream is organized into one base layer and one or more enhancement

layers in corresponding dimension if it provides certain scalability. The spatial scala-

bility bases on multilayer coding that uses separate encoder loops for different spatial

resolution layers and develops adaptive inter-layer prediction techniques to exploit cor-

relations among the layers. For each coding layer, the temporal scalability is provided

by hierarchical temporal prediction structures. Quality scalability in SVC is provided

-4-
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Temporal Id(T) 0 012 23 3 3 3
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QCIF  CGS1
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CIF
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(D,Q)

Playback order 0 842 61 3 5 7

Figure 2.1: SVC dependency structure

by two approaches: Coarse-grain quality scalable coding (CGS), which can be con-

sidered as a special case of spatial scalability with identical frame sizes for base and

enhancement layer, and medium-grain quality scalable coding (MGS), which provides

quality refinement layers inside each spatial layer and allows packet-based quality scal-

able coding.

Figure 2.1 depicts an example of SVC dependency structure. Each block denotes

a coded picture. The horizontal order presents playback order of frames and the ver-

tical stack appears the coding layers, as known as dependency layers, in spatial/CGS

scalabilities. The arrows present the dependency relations due to coding prediction

structures. Every dependency layer may choose one of lower layers as reference layer

for inter-layer prediction. To decode correctly, all of lower layers which target layer

directly or indirectly depends on for reference should appear while bitstream decoding.

2.1.2 Transport Interface of SVC

The coded video data and other side information in SVC bitstreams are encapsulated

as network abstraction layer (NAL) units. The NAL unit consists of a header followed

by payload data. The SVC NAL header consists of one-byte H.264/AVC header and

three-byte extended SVC header. The extended header includes syntax elements de-

-5-
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Figure 2.2: Scalable layers corresponding to Figure 2.1

pendency_id (D), temporal_id (T ) and quality_id (Q), which denote the identifier of

dependency layers, temporal layers and quality refinement layers respectively, as well

as other assisting information to support easy bitstream extraction. Another impor-

tant syntax element is the priority identifier priority_id, which can be used to signal

the importance of NAL unit.

The sets of NAL units with identical D, T and Q information are organized into

scalable layers. Here, the dependency and quality identifiers are combined as coding

layer identifier L. As shown in Figure 2.2, the NAL units in the SVC bitstream which is

depicted in Figure 2.1 can be grouped into scalable layers using coding layer identifier

L and temporal identifier T . A set of scalable layers which are required for decoding

certain corresponding scalable layer is known as scalable layer representation and de-

fined as S(L, T ) in this thesis. For instance, S(3, 2) includes all scalable layers with

identifiers L ≤ 3 and T ≤ 2 in Figure 2.2.

SVC also designs Scalability information Supplemental Enhancement Information

(SSEI) messages to carry the scalable layers information of bitstream such as spatial

resolution, bit rate and priority information of layers for assisting bitstream adaptation

processes.

-6-
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2.2 Related Works

2.2.1 Basic Extraction

Currently, the Joint Scalable VideoModel (JSVM) [11][15] provides three different ways

to perform bitstream extraction. The first one is to extract a substream according to a

bit rate constraint. The scalable layer representation thus extracted will have a bit rate

that is closest to but not greater than the target bit rate. The second one is to choose

a target scalable layer. The extractor will return the layer representations on which

the target layer directly or indirectly depends. The last one is to explicitly specify the

desired frame rate, frame size, and bit rate. However, the current standard does not

specify what to produce if there are several extraction possibilities.

In following subsection, we reviewed some approaches that have been proposed for

finding optimal bitstream extraction schemes.

2.2.2 Quality Information Table (QIT)

Kim et al. [4] evaluated the perceptual preference for spatial and temporal quality over

a range of bit rates to find preference paths of perceptual quality for bitstream extrac-

tion. The spatiotemporal switching points were recorded using Quality Information

Tables (QIT), which were further provided to the extractor.

The main idea is to figure out the optimal bit rate allocation strategy for three

scalabilities of SVC according to video classes. First of all, video segments are classi-

fied and represented using semantic concepts. Then, quality preference paths between

multidimensional scalabilities of different semantic concepts are determined by subjec-

tive testing while bit rate decreasing. For example, Figure 2.3[4] shows the preference

paths of scenery and active concepts in three-dimensional scalability. The quality pref-

erence path of each video class is recorded in quality information table, which contains

scalable layers information and relative bit rate of every switching point. After all, the

QITs are provided to extractor for bitstream adaptation.

This approach can find quality preference paths of perceptual quality for differ-

ent video classes. However, the display formats of target devices are not considered.

Furthermore, subjective testing is time consuming and hardly performed for all video

sequences.

-7-
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Figure 2.3: Preference path of perceptual quality [4] : (a) scenery concept, (b) action
concept

2.2.3 Quality Index (QI)

Unlike QIT used subjective testing as measurement, Lim et al.[7] defined a objec-

tive Quality Index (QI) to measure the perceptual quality and performed bitstream

extraction by maximizing the quality index of the resulting bitstream subject to the

bit rate constraint. The total QI is composed of weighted quality indexes of spatial,

temporal and quality scalabilities (denote as QISR, QIFR and QIPSNR, respectively)

of extracted bitstream. Among them, quality indexes for spatial scalability QISR and

quality scalability QIPSNR can be measured by PSNR value. While measuring QISR,

video segments are interpolated first to matching the playback format of target de-

vices. Quality index for temporal scalability QIFR, on the other hand, employs an

expo-logarithm function [5] as model to estimate subjective perceptual quality MOS.

This scheme measures QI of every scalable layer representations that can be ex-

tracted subject to the bit rate constraint and chooses the one that has maximum total

QI value. It obtains the sub-stream with best viewing quality measured by QI given

any bit rate. But, the arbitrary extracted scalable layers at different bit rates may

not support multiple adaptation of single extracted bitstream, which is an important

feature in some network applications such as video multicasting.
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Chapter 2. Background

Figure 2.4: Quality-Layer-based extraction [2]

2.2.4 Quality Layer Optimized Extraction

Amonou et al. [2] formulated the problem as a rate-distortion (R-D) optimization

process and shuffled the quality increments in an R-D sense for MGS/FGS enhancement

layers. The idea is similar to Quality Layers in JPEG 2000 [14].

Priorities are assigned to NAL units in SVC bitstream to represent virtual layered

organization of stream for further bitstream adaptation. First of all, R-D information

is calculated for quality increment of each picture at each quality refinement level using

independent or dependent distortion calculation. In dependent distortion calculation,

the distortion of a picture and the distortion of pictures which were predicted from it

are all considered. Namely, the impact on total rate and on the global reconstruction

quality of each quality increment is computed to measure its R-D performance (slope).

Based on the R-D information, the quality increments are sorted while the constraints

of temporal prediction dependency are respected. Finally, Quality Layers are assigned

to the quality increments according to the sorting results and stored in NAL header

using priority_id field or in SEI messages.

The Quality Layer optimized extraction can even apply to multiresolution bit-

stream. Figure 2.4 [2] illustrates Quality-Layer-based extraction. Each big block

represents a scalable layer refereed to as (Dd, Tt, Qq) where Dd indicates the spatial res-

olution, Tt for temporal layer and Qq for the quality level. The small blocks represent

the NAL units of quality enhancement layer in different spatial resolution: dark-gray
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blocks for D0 and gray ones for D1. The blocks are ordered according to their Quality

Layer information rather than quality levels. Therefore, NAL units with lower R-D

performance will be dropped first when bitstream extraction happened.

Quality Layer assignment makes quality increments are well prioritized, which in-

sures a simple parsing of the stream that can be performed in network transmission.

Nevertheless, the trade-off between spatial and temporal scalabilities is not considered

in this approach.

In summary, all of prior studies were designed to determine the bitstream extraction

order through different optimization schemes except the Basic Extraction approach.

Between them, the Quality-Layers-based extraction is the only one approach that can

produce extracted sub-streams which can support multiple adaptations. Moreover,

they all can be treated as post-processing of pre-encoded bitstreams. No suggestions

for proper parameter settings during SVC encoding have been proposed for benefiting

the bitstream extraction.

-10-



CHAPTER 3

Rate-Distortion Optimization of SVC

Bitstream Extraction

Our investigation began with an attempt to devise strategies for finding an optimal

extraction path of an SVC bitstream for a viewing device. The extraction path should

be amenable to successive refinement of the SVC bitstream for supporting multiple

adaptations. In this chapter, we describe the notion of successive refinement of optimal

extraction paths and define the R-D optimization of SVC bitstream extraction problem

as a constrained optimization problem. We further introduce a R-D trellis diagram

to model the bitstream extraction process. Based on R-D trellis diagrams, we can

employ dynamic programming algorithm to find the solution, and furthermore propose

a greedy heuristic scheme to achieve the same or similar performance while reducing

the complexity significantly.

3.1 Extraction Paths through SVC Bitstream

While playing back an SVC bitstream, a viewing device may choose to extract and

decode various sets of scalable layers (with possible use of error concealment) based
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on its display format, decoding capability and network throughput. A sequence of

these scalable layer sets arranged from lowest scalable layer (referred to as base unit,

S(L, T )) to the target scalable layer (referred to as target layer, S(L̂, T̂ )) according to

their dependence relations is known as an extraction path Π℘ for the viewing device.

The subscript ℘ indicates a denotation of the extraction path.

3.1.1 Successive Refinement

Beside of satisfying the dependence relations, one may want to fulfill some additional

criteria while choosing the extraction paths for one or more viewing devices:

1. One may want to feed a viewing device with scalable layer representations of

lower bit rates when the network throughput deteriorates. Such an act of bit-rate

adaptation enables a viewing device to support graceful degradation of playback

quality.

2. One may want to perform successive extraction en-route a multicasting tree. Sig-

nificant reduction of transport bandwidth can be achieved by having an up-stream

provider extracts only the scalable layers needed by its down-stream subscribers.

Careful selection of extraction paths for different down-stream subscribers may

minimize the bandwidth consumption of a multicasting session [9].

The two criteria of successive refinement of SVC bitstream imply that every element

along the extraction path must have the previous element being its proper subset

[Figure 6.9 (a)] for supporting multiple adaptations.

3.1.2 Incremental and Cumulative Rate-Distortion Performance

Several extraction paths are available for traversing an SVC bitstream between the base

unit and a target layer. These extraction paths are differentiated by their rate-distortion

(R-D) performance, which measures the effectiveness that an extracted bitstream uses

their data bits to enhance the quality of their playback pictures. The R-D performance

of an SVC bitstream can be quantified in two ways using: (1) a ratio between the

increase in bit rate and the decrease in playback distortion at every refinement step

and (2) the area underneath the R-D curve that spans the refinement steps. The two
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measurements are defined below and used in Chapter 4.

The first (incremental) measurement of R-D performance evaluates the R-D im-

provement1 Γ incurred through successive refinement2:

Γ (L, T ;L00, T 00) , −d (L
00, T 00)− d (L, T )

r (L00, T 00)− r (L, T )
(3.1)

where d (L, T ) is the distortion value and r (L, T ) is the total bit rate of S(L, T ). Note

that R-D improvement is path independent because each S(L, T ) has unique r, d values.

We further define the local R-D improvements γ of a single refinement step in either

L or T dimensions as

γL (L, T ) , −
d (L0, T )− d (L, T )

r (L0, T )− r (L, T )
(3.2a)

γT (L, T ) , −
d (L, T 0)− d (L, T )

r (L, T 0)− r (L, T )
(3.2b)

where L0 and T 0 denote the subsequent spatial or quality and temporal layers reached

through a single refinement step. Note that these local R-D improvements are uniquely

identified by their reference identifiers (L, T ). We also define the R-D improvement Γ0

of two successive refinement steps (one in each of L and T dimensions):

Γ0 (L, T ) , Γ (L, T ;L0, T 0) = −d (L
0, T 0)− d (L, T )

r (L0, T 0)− r (L, T )
(3.3)

This is the R-D improvement incurred during the traversal of a four-node trellis in

the grid of S(L, T ) [Section 4.1]. These traversals play a pivotal role in our proposed

strategies to search for an optimal extraction path.

The second (cumulative) measurement of R-D performance is the underlying area

Ω℘(L, T ; L̂, T̂ ) of an R-D curve corresponding to an extraction path Π℘(L, T ; L̂, T̂ ).

Unlike R-D improvement, Ω℘ depend on the chosen extraction path ℘. Also, rather

than measuring the rate of R-D improvement in a single refinement step, Ω℘ mea-

sures the efficiency of an SVC bitstream in using its data bits to enhance its play-

1The negation of the slope is used to ensure that a positive value reflects an improvement in
playback picture quality.

2In the definitions of R-D improvements and the equations hereafter, we use indices L0, T 0 to
denote the scalable layer representations that it can be reached through a single refinement step in
L or T dimensions from the reference representation S(L, T ) and use L00, T 00 to denote that it can be
reached through multiple refinement steps.
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back quality through a series of refinement steps along the path ℘. Furthermore,

Ω℘(L, T ; L̂, T̂ )/(r(L̂, T̂ ) − r(L, T )) can be interpreted as the average playback quality

along the extraction path.

3.2 Rate-Distortion Optimal Extraction Path

When we select an extraction path across an SVC bitstream for a specific viewing

device, we intend to choose the optimal extraction path that offers the viewing device

with best rate-distortion (R-D) performance as prescribed by the following criteria.

Criterion 1 Minimum Underlying Area for Corresponding R-D (MSE) Curve3. The

optimal extraction path Π℘ produced by successive refinement should be the one that

has minimum total underlying area Ω℘ for the corresponding R-D curve if mean square

errors4 (MSE) are used to measure the playback distortion of the extracted bitstream.

Criterion 2 Convexity of Corresponding R-D (MSE) Curve. The optimal extraction

path Π℘ produced by successive refinement should have the corresponding R-D curve

maintains its convexity5 at every refinement step. More precisely, the R-D curve should

have monotonically decreasing MSE values and R-D improvement γ at every step.

Note that among the two criteria, the first one is used as the optimization criterion,

which means the optimal path should have best average R-D performance over a bit rate

range, while the second one serves as a constraint to ensure that the optimal extraction

path has good properties in bitstream adaptation. Namely, it should produce maximal

quality improvement within least bit rate increasing or minimal quality degradation

within largest bit rate reduction.

3.3 Near-optimal Extraction Paths

In our experiments, we discovered in some rare cases (especially when subjective mea-

sures such as mean opinion scores are used to quantify playback picture quality), some

3In the cases that the peak signal-to-noise ratios (PSNR) are used as the measurement of playback
distortion, the minimum/maximum conditions of the criteria must be reversed.

4The uncompressed videos that match the display format of target devices are used as the refer-
ences for MSE computation. Also, we interpolate each intermediate representation to the same format
before measuring its MSE.

5A R-D curve with distortion measured in terms of mean square errors (MSE) is convex or concave
upward if and only if its epigraph (the sets of points lying on or above the curve) is a convex set.
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Figure 3.1: Measuring components of the deviation from convexity of a NAL cluster
along an SVC R-D curve

extraction paths with slightly non-convex R-D curves may have better performance

than the ones with convex R-D curves. In those cases, we should choose a near-optimal

extraction path that has the smallest area underneath its R-D curve while the deviation

from convexity of the R-D curve falls below a tolerance limit.

Criterion 3 Tolerance Limit for Deviation from Convexity. An SVC extraction path

can be considered as near optimal if and only if the deviation from convexity ζ of its

R-D curve at any refinement step (as defined by the following formula) lies within a

specified tolerance limit and the total underlying area of its R-D curve is minimum

among all the satisfying paths.

ζ(Sb) ,
�b
rac

=
racdab − rabdac

r2ac
(3.4)

Figure 3.1 illustrates the quantities appeared in Equation 3.4 and offers a physical

interpretation of the measurement ζ. As shown in the figure, ζ(Sb) is a ratio between

the increment in MSE distortion �b and the increment in bit rate rac within a non-

convex segment [Sa, Sb, Sc] of an R-D curve. This ratio must be small in order for the

deviation from convexity to be deemed acceptable. This is particularly true at the early

refinement steps, in which the increases in bit rates are moderate while the decreases

in distortion measures are steep. Only minute deviation of convexity can be tolerated

in those early steps.
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Searching for Optimal Extraction Paths

An exhaustive search can be used to find the optimal extraction path by decoding all

scalable layers and measuring R-D slope of every refinement step. While R-D perfor-

mance of all possible combinations of extraction paths are computed, it is easy to find

out which one not only maintains its convexity but also has minimal underlying area

for the corresponding R-D curve by exhaustively comparing. However, the decoding

process of all S(L, T ) embedded in an SVC bitstream is extremely time consuming.

Hence, the number of scalable layers required for decoding through searching processes

is treated as complexity measure in this thesis. In the following paragraphs, we intro-

duce graphical tools to model the process of successively refined bitstream extraction

and then design more efficient search strategies for searching optimal extraction path.

4.1 Graphical Tools

To aid our search for the optimal extraction path of an successively refined SVC bit-

stream, we developed two graphical tools and named them, the R-D mesh and the

trellis diagram of the bitstream. Following paragraphs explain the essence and the

uses of these tools.

-16-



Chapter 4. Searching for Optimal Extraction Paths

For the sake of examining the R-D improvement contributed by different refinement

steps, we displayed in a single diagram all the piecewise-linear R-D curves of the

extraction paths produced by successive refinement of an SVC bitstream. The R-D

curves form a mesh, which we call the R-D mesh of the SVC bitstream. Every node

in the R-D mesh represents a scalable layer representation S(L, T ) in the bitstream

and is labeled explicitly by its layer L and temporal T identifiers. The coordinates

(r, d) of the node represent the bit rate and the distortion of S(L, T ), which is decoded

and interpolated to fit the display format of target devices to measure viewing quality.

Every line segment in the mesh, on the other hand, corresponds to a refinement step

π in either L or T dimension:

πL(L, T ) : S(L, T )→ S(L0, T ) (4.1a)

πT (L, T ) : S(L, T )→ S(L, T 0) (4.1b)

where L0 and T 0 denote the subsequent spatial/CGS and temporal layers. The slope

of each segment equals to the negation of the R-D improvement contributed by the

corresponding refinement step.

Similarly, for the sake of exhibiting all possible extraction paths of an SVC bit-

stream, we superimpose them onto a grid of all scalable layer representations S(L, T )

embedded in the bitstream, and call the composite diagram, the trellis diagram of

the SVC bitstream. Again, every node and edge in the trellis diagram represents a

scalable layer representation and a refinement step respectively. In the trellis diagram,

however, the coordinates of the nodes are their identifier values (L, T ) while the edges

are explicitly labeled with the R-D improvement γL (L, T ) and γT (L, T ) offered by the

corresponding refinement steps. Plausible extraction paths and their segments are also

drawn on top of the trellis diagram to illustrate the process of searching for the optimal

path.

Figure 3.1 displays the R-D mesh and the trellis diagram of the Aikyo test sequence.

Box (a) shows the R-D mesh; box (b) shows the trellis diagram, and box (c) gives a

conceptual rendering of a simple trellis diagram. These tools are used in the rest of this

thesis both to expound the search strategies and to interpret the experiment results.
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Figure 4.1: R-D mesh and trellis diagram of an SVC test bitstream, Akiyo (CIF30)
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4.2 Search Strategy

4.2.1 Dynamic Programming Algorithm

Based on trellis diagrams, we can design search strategies to discover extraction paths

who have maintained the convexity for corresponding R-D curve (named as convex

extraction paths) by examining R-D performance of every refinement step from base

unit to target layer. After that, the underlying area of their R-D curve can be computed

and compared to find the optimal extraction path. Thinking of this process, dynamic

programming algorithm, which is the most classic optimization method, is an available

search strategy that can surely find the optimal extraction path if it is existent.

Utilizing dynamic programming to discover convex extraction paths is composed of

two iterative phases:

1. The trellis grows in both spatial/CGS and temporal dimensions from each exis-

tent path until the paths reach target layer. The word "grow" means to decode

subsequent scalable layers with one more spatial/CGS or temporal enhancement

layer and evaluate the incremental R-D ratio.

2. Non-convex paths are figured out and pruned at each stage by comparing R-

D performance with those of previous refinement step. Due to transitivity of

inequality (A > B ∧B > C ⇒ A > B > C), the convexity of extraction paths

can be maintained even if the incremental R-D performance only compared with

preceding one stage while pruning.

After all paths reaching the target scalable layer, the maintained paths are candi-

dates of optimal extraction path. Finally, the one with the smallest total area under-

neath its R-D curve is the optimal extraction path.

Figure 4.2 shows an example of process using dynamic programming algorithm as

search strategy to find the optimal extraction path. Each box in figure illustrates a

step. In these trellis diagrams, we denote block nodes as scalable layers that have been

decoded and white ones as those not have been decoded. Moreover, the refinement

steps depicted as thin edges to represent that their R-D information are evaluated. If

R-D curve of the extended path is convex, it would be maintained and depicted as

broader edge. Otherwise, the edge would be pruned and eliminated.

The process is described below.
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Figure 4.2: Example: using dynamic programming algorithm to find the optimal
extraction path.

Step 1 ) Trellis starts from base unit and grows in both L and T dimensions as shown

in Figure 4.2(a).

Step 2 ) These two paths are both kept as shown in Figure 4.2(b).

Step 3 ) Next iteration, trellises grow in two dimensions from existent two paths as

shown in Figure 4.2(c).

Step 4 ) Pruned πT (1, 0) since it can not construct a convex extraction path (0.9 <

38). The other three edges become broader to represent the paths are main-

tained as shown in Figure 4.2(d).

Step 5 ) Trellises grow from existent three paths as shown in Figure 4.2(e).

Step 6 ) Pruned πT (1, 1) since γL (0, 1) < γT (1, 1) (as shown in Figure 4.2(e), 2.5 <

20) and pruned the path with πT (2, 0) due to γL (1, 0) < γT (2, 0). The other

paths are kept as shown in Figure 4.2(f).

Step 7 ) Trellises grows in only L or T dimension because each of existent paths had

reached their target layer in another dimension as shown in Figure 4.2(g).

Step 8 ) Pruned the path with πT (2, 1) due to γL (1, 1) < γT (2, 1). After four grew

and pruned iterations, all paths reach target layer in both L and T and the

process stop.

In this example, the process left only one convex extraction path in the end, which
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is the optimal extraction path.

Although dynamic programming algorithm can ensure finding all convex extrac-

tion paths, its computational complexity is still considerable. It works better than

exhaustive search since some paths may be pruned without evaluation and even some

nodes (scalable layers) may be skipped without decoding. However, as we can see in

Figure 4.2, the gain over exhaustive search is insignificant in case that the size of trellis

diagrams are small because almost every nodes are required for decoding. On the con-

trary, if the number of scalable layers is large, the complexity of dynamic programming

algorithm grows exponentially. Therefore, we need more aggressive pruning rules in a

search strategy to discover convex extraction paths.

4.2.2 Greedy Heuristic Scheme

Since the efficiency of dynamic programming is not much better than exhaustive search,

we propose a greedy heuristic scheme to tackle the problem. The main concept of

"greedy" scheme is that every refinement step of extraction path is decided at every

stage without looking ahead. This approach also consists of two iterative phases:

1. The same as dynamic programming algorithm, trellises grow in both spatial/CGS

and temporal dimensions from existent paths.

2. The refinement step with worse incremental R-D improvement is pruned and only

one path would be kept at each stage.

In other words, the greedy heuristic scheme is performed as steepest-descent method.

While the path reaching target layer in any dimension, no more scalable layers are

needed to decode and evaluate since there is only one choice for further refinement

steps.

For instance, Figure 4.3 presents a process using greedy heuristic scheme as search

strategy to find the optimal extraction path. The process is described below.

Step 1 ) Trellis starts from base unit and grows in both L and T dimensions as shown

in Figure 4.3(a).

Step 2 ) Since γL (0, 0) is worse than γT (0, 0) (as shown in Figure 4.3(a), 0.9 < 74),

πL(0, 0) is pruned yet only πT (0, 0) is kept as shown in Figure 4.3(b).

Step 3 ) Trellis grows from the only one existent path as shown in Figure 4.3(c).

Step 4 ) πL(0, 1) is pruned yet πT (0, 1) is kept due to γL (0, 1) < γT (0, 1). As shown
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Figure 4.3: Example: using greedy heuristic scheme to find the optimal extraction
path.

in Figure 4.3(d), the existent path reach target layer in temporal dimension.

Step 5 ) No more scalable layers are needed to decode. The refinement step in spatial

dimension is included in the path as shown in Figure 4.3(e).

Step 6 ) Again, no more scalable layers are needed to decode. The path include the

left refinement step in spatial dimension thus reach the target layer in both

dimensions and end the process as shown in Figure 4.3(f).

The greedy heuristic scheme presents significant complexity reduction about 50%

or more. Even number of scalable layers is small, almost half of them not have to be

decoded [Figure 4.3 (f)]. Moreover, since always only one path is maintained through

whole process, the complexity of greedy heuristic scheme grows linearly while the num-

ber of scalable layers increasing.

Intuitively speaking, this approach seems no guarantee of optimality of solution.

Its pruning rules are designed neither with verification of R-D convexity nor with

comparison of underlying area for corresponding R-D curve. However, empirical finding

from our experimental results exposes that greedy heuristic scheme often can obtain

the optimal extraction paths or reveal a path with comparable R-D performance. For

instance, the previous example in Figure 4.3 obtained the same answer as the optimal

extraction path produced by dynamic programming algorithm in Figure 4.2. The
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surprisingly good performance of this scheme is theoretically analyzed in next section.

4.3 Analysis of Greedy Heuristic Scheme

We analyze the effectiveness of greedy heuristic scheme based on studying properties

of trellis diagrams. Started with convex segments across single trellis and along one

dimension, we discovered some satisfying conditions to construct convex extraction

paths or even optimal extraction paths.

4.3.1 Convex Segments and Global Condition

All R-D convex extraction paths can be constructed from two elementary types of R-D

convex segments as shown in Figure 3.1 (c):

1. Intra-trellis (local) convex segments, which consist of two refinement steps, one

of each in L and T dimensions:

Π0L(L, T ) = πL(L, T ) k πT (L0, T ) (4.2a)

Π0T (L, T ) = πT (L, T ) k πL(L, T 0) (4.2b)

Each of these convex segments traverses a single four-node trellis.

2. Inter-trellis (global) convex segments, which also consist of two refinement steps,

both of them in either L or T dimensions:

ΠL(L, T ;L
00, T ) : πL(L, T ) k πL(L0, T ) (4.3a)

ΠT (L, T ;L, T
00) : πT (L, T ) k πT (L, T 0) (4.3b)

Each of these inter-trellis convex segments traverses two connected trellises in L

or T dimensions.

The existence of intra-trellis segments Π0L and Π0T cannot be controlled directly by

the setting of SVC encoding process. However, they can be verified by comparing the

R-D improvement γL or γT of their first refinement steps {πL, πT} against the R-D
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improvement Γ0 of the intra-trellis segments {Π0L,Π0T}:

Π0L(L, T ) exists iff γL(L, T ) ≥ Γ0(L, T ) (4.4a)

Π0T (L, T ) exists iff γT (L, T ) ≥ Γ0(L, T ) (4.4b)

The existence of inter-trellis segments ΠL and ΠT , nonetheless, can be manipulated

indirectly by the setting of quantization parameter QP, inter-layer dependencies and

temporal dependencies among the SVC coding layers. In fact, as mentioned in Chapter

5, R-D convex paths in L and T dimensions may exist at every L and T values if para-

meter setting satisfy certain constraints for well-adapted SVC encoding. The discovery

of this correlation between SVC encoder setting and decoder (extraction) operation is

a major contribution of this thesis. Here, since the existence of convex R-D curves in

every spatial/quality and temporal layer was essential for forming convex extraction

paths, we referred it as the global condition.

4.3.2 Strong Local Conditions

The simplest composition of trellis diagram is single four-node trellis. We looked into

four-node trellises to figure out the conditions for existence of intra-trellis (local) convex

segments. We defined that it is strong local condition satisfied if one and only one intra-

trellis convex segment exists in every trellis. This situation arises when there is a clear

domination of R-D improvements in either L or T dimension:

Only Π0L(L, T ) exists iff min (γL (L, T ) , γL (L, T
0)) > max (γT (L, T ) , γT (L

0, T ))

(4.5a)

Only Π0T (L, T ) exists iff min (γT (L, T ) , γT (L
0, T )) > max (γL (L, T ) , γL (L, T

0))

(4.5b)

With this strong local condition and the global condition, the search for the optimal

extraction path can be perfectly performed using greedy heuristic scheme (steepest

descent method). This simple search strategy is feasible because there exists a unique

convex extraction path between the base unit S(L, T ) and any target layer S(L̂, T̂ )

if both strong local and global conditions of R-D performance are satisfied in an SVC

bitstream. Figure 4.4 illustrates a typical example. Notice that the intra-trellis convex
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Figure 4.4: A trellis diagram with convex segments satisfying strong intra-trellis
(local) and inter-trellis (global) R-D conditions

segments Π0L and Π
0
T tend to concentrate in two separate regions of the trellis diagram:

Π0L (drawn as magenta arrows) gathers in the upper-left corner while Π0T (drawn as

green arrows) gathers in the lower-right corner. Both types of convex segments bend

their paths towards the boundary that separates the two regions. This is owing to the

contradiction between global and strong local conditions. The inequalities in Equations

4.5a and 4.5b eliminate the chance forΠ0L (a magenta arrow) to appear underneath or to

the right of Π0T (a green arrow). The boundary between the two regions defines a convex

and optimal extraction path (with maximum convexity and minimum underlying area)

of the SVC bitstream because any other extraction path between the same end points

would inevitably traverse at least one intra-trellis non-convex segment and thus yield

a worse R-D performance. Hence, the traversal from S(L, T ) to S(L̂, T̂ ) through any

four-node trellis would follow the intra-trellis convex segments, which can be reduced

as choosing steepest descent refinement steps at any steps.

4.3.3 Weak Local Conditions

Among all the R-D trellises of an SVC bitstream, some of them contain R-D convex

segments but lack a clear domination of R-D performance in either L or T dimension.

We named it weak intra-trellis (local) condition if R-D performance of the four refine-

ment steps in four-node trellis satisfies Equations 4.4a and 4.4b but not Equations 4.5a
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Figure 4.5: A trellis diagram with convex segments satisfying weak intra-trellis (local)
and inter-trellis (global) R-D conditions

and 4.5b. In these cases, both Π0L and Π
0
T exist in each of these trellises. The existence

of multiple convex segments in one or more trellises revokes the unique existence of

convex extraction path. Hence, the greedy heuristic scheme could not promise to fine

the optimal extraction path. However, the difference in underlying area of two convex

R-D curves in single four-node trellis is usually insignificant. Furthermore, the trellises

that satisfied weak local condition almost appeared along the boundary between two

regions of strong local conditional trellises empirically. Figure 4.5 shows an example of

this situation. As a result, all the convex extraction paths may have similar underlying

area of R-D curves and the greedy heuristic scheme can find one of them. Even though

it may not be the optimal extraction path, it would have similar R-D performance.

4.3.4 Fractional Violation of Local Conditions

In some rare cases (when a subjective measures such as the mean opinion scores is

used to quantify playback picture quality), the local R-D condition (i.e. the existence

of intra-trellis R-D convex segments) may fail to be upheld. As a result, no convex ex-

traction path exists between some S(L, T ) and S(L̂, T̂ ) pairs. A near-optimal extraction

path with a slightly non-convex R-D curve [Section 3.3] may have to be accepted as a

substitute instead. In the search for the near-optimal extraction path, extraction path

segments with R-D curves that contain slight deviation from convexity [Criterion 3] are

included into consideration. Figure 4.6 provides an example that contains a violation
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Figure 4.6: R-D mesh and trellis diagram of an SVC bitstream with fractional viola-
tion of intra-trellis (local) R-D conditions

of local R-D condition in the lower-left trellis. A slightly non-convex segment Π0T (0, 0)

shown as a dashed magenta arrow would not be pruned during searching. In these cases,

the greedy heuristic scheme generally has no promise to find the optimal/near-optimal

extraction paths. However, the violation of local conditions rarely occurred.

4.4 Summary

In this chapter, we exploited dynamic programming algorithm and proposed greedy

heuristic scheme for searching optimal extraction paths. We reveal the effectiveness

and limit of the greedy heuristic scheme by analyzing proposed R-D trellis diagrams.

The global and local conditions promise the existence of optimal extraction paths. To

satisfy the global and strong local condition ensures that the optimal extraction path

can be found using efficient greedy heuristic scheme. The local condition depends

heavily on video contents and local R-D variations causing by measure schemes or

interpolation approaches, while global condition relies on well-adapted temporal and

inter-layer dependencies. In next chapter, we introduce proper settings of encoding

parameters to produce well-adapted SVC bitstreams for efficient searching optimal

extraction paths.
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CHAPTER 5

Production of Well-adapted SVC Bitstreams

The second part of our investigation aims at establishing the necessary criteria that

must be satisfied during SVC encoding in order to guarantee the existence of optimal

extraction paths. Specifically, we examined the combined effects of quantization para-

meter (QP) setting and inter-layer dependence relations on the R-D performance of

an SVC bitstream.

5.1 Settings of Quantization Parameters

One important issue in SVC encoding is to determine the QP values for spatial and

quality layers so that the resulting bitstream can meet the predefined quality or bit

rate constraints. While the application requirements seem to be arbitrary, it should

be noted that improper QP settings may produce ill-formed R-D performance and

redundant representations. To this end, we proposed two criteria for evaluating the

properness of QP assignment when combined scalability is in use.

Criterion 4 Monotonic Decrease in QP Value for Successive Refinement. In a given

spatial resolution, the QP value should decrease monotonically from one quality layer

to the next in order to successively refine texture information.
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Criterion 5 Elimination of Redundant Representations. For different spatial resolu-

tions, the high-resolution layers should have higher fidelity than the spatially interpo-

lated low-resolution layers in order to eliminate redundant representations.

Criterion 4 requires the picture quality to be successively refined as the size of the

bitstream increases by extracting more quality layers. Criterion 5 further prohibits

redundant layers from being encoded. We say that a high-resolution layer is redundant

if there exists another low-resolution layer that can provide the same or even higher

fidelity by spatial interpolation. Clearly, such redundancy should be detected and

removed during SVC encoding.

In particular, the two criteria specify only the relative QP level among the spatial

and quality layers–i.e., the exact values still need to be decided by the intended

applications. For instance, by focusing our attention on mobile streaming applications,

in our experiments the PSNR of spatial/quality layers is set to fall between 27dB and

35dB. Exhaustive encoding was carried out off-line to obtain the QP values for different

test sequences.

5.2 Settings of Inter-layer Dependencies

In our efforts to devise efficient search strategies for optimal/near-optimal extraction

paths, we discovered that the global condition can be satisfied by maintaining the con-

vexity of R-D curves across spatial/quality and temporal layers during SVC encoding.

With hierarchical and dyadic temporal dependencies, the cascading QP assignment

in current JSVM [11] can already make the R-D curves across temporal layers convex in

most cases, especially when MSE is used for distortion measure. This is because higher

temporal layers are coded with larger QP values, which inherently leads to diminishing

R-D improvement with increasing temporal level.

On the other hand, among the spatial and quality layers, the convexity of their R-D

curves can be guaranteed by satisfying the following criterion.

Criterion 6 Convexity of Rate-Distortion Curves across Spatial and Quality Layers.

An SVC encoder should produce an SVC bitstream according to a well-adapted inter-

layer (spatial and quality) dependence relation that ensures every successive refine-

ment of scalable layer representations exhibits a monotonic decrease in MSE dis-
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Figure 5.1: R-D performance of SVC bitstreams with different inter-layer dependency
settings. Labels A, B, C, D, and E denote five coding layers of different SNR levels
with E being the target layer for reconstruction.

tortion d(Li, bT ) > d(Li+1, bT ) as well as a monotonic decrease of R-D improvement

γL(Li, bT ) > γL(Li+1, bT ) > 0.
This criterion forbids the slope of the R-D curves to steepen (or equivalently their

R-D improvement to rise) as a viewing device takes in a sequence of coding layers in

successive refinement steps. Its practical implication can be explained using an example

shown in Figure 5.1. In the example, each layer (from B to E) in Setting #1 depends

on its previous layer; hence, the reconstruction of layer E requires the decoding of all

its dependent layers from A to D. However, because the R-D improvement produced

by D is not as good as the one produced by E, Setting #1 cannot maintain the R-D

convexity. In contrast, Setting #2, which links C directly to E by skipping D, is a

well-adapted dependency setting.

We must advise readers to exercise caution when they try to set up a well-adapted

inter-layer dependence relation because the adaptation can easily be overdone. In

Figure 5.1, although Setting #2 (which ensures R-D convexity along the spatial/quality

dimension) produces a better R-D performance for a single viewing device even if it

takes layer E in one moment and layer D in another, Setting #1 (which fails to maintain

R-D convexity) consumes less bandwidth when it comes to serving two viewing devices

existing in the same network. This observation confirms a well-known fact that the

SVC coding gain over simulcasting is at the cost of the R-D performance of individual

layers. Our advice of caution can be summarized in the following proposition.

Proposition 1 Minimal Adaptation of Successive Inter-layer Dependencies. An SVC

encoder should choose a successive inter-layer dependence relation, which usually pro-
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duces the lowest bit rates, to be the default dependency setting. The dependence re-

lation should only be modified at the refinement steps that produce non-convex R-D

improvements. At those refinement steps, the reference layers should be chosen to be

the nearest spatial/quality layers that can produce convex R-D improvements.

Again using the example in Figure 5.1, a proper adjustment of inter-layer dependen-

cies is to make layer E depend on layer C rather than layer B. This minimal adjustment

of inter-layer dependence relations shall only cause a small increase in the total data

rate of the SVC bitstream. We would like to emphasize that such strategy is to ensure

the global condition rather than to optimize the R-D performance of individual lay-

ers. For the later case, readers are referred to the paper by Yao and Li [17] for more

complete discussion.
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CHAPTER 6

Experiments

6.1 Implementation ofWell-adapted SVCBitstream

Having described our criteria for well-adapted bitstreams, this section further presents

a practical approach for generating well-adapted inter-layer dependencies.

6.1.1 Prediction of R-D Convexity

To predict the R-D performance of SVC along the spatial/quality dimension, one ef-

fective approach is to evenly add 10% or more redundancies1 to the R-D points of

H.264/AVC [13]. The results generally hold when multi-loop encoder control and fixed-

quality configurations are used [6][13]. Moreover, the predictability remains valid with

bottom-up encoding process [11] after taking into consideration that the enhancement

layers usually suffer more coding efficiency losses than the base layer. The observa-

tions enable us to predict the R-D convexity of SVC without the need of exhaustive

encoding.

1Comparing with the single layer coding, the coding efficiency loss of SVC is generally proportional
to the number of coding layers. In some cases, the R-D gap between H.264/AVC and SVC can be
much greater than 10%.
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Figure 6.1: Comparison of SVC dependency settings: (a) Mobile and (b) Foreman.
The results were produced with bottom-up encoding process and fixed-quality config-
urations.

For validation, several SVC bitstreams, each corresponds to one of the following

dependency settings, were encoded using bottom-up encoder control and fixed-quality

configurations. In particular, Setting #1 denotes the default dependency setting (which

yields a minimal total bit rate), whereas Settings #2 and #3 adapt the default setting

by merely changing the reference layer of layer B0. The R-D performances of these

dependency settings are compared with that of H.264/AVC in Figure 6.1.

• Setting #1: (QCIF A0←A1←A2), (CIF A2←B0←B1). (Default Setting)

• Setting #2: (QCIF A0←A1←A2), (CIF A1←B0←B1).

• Setting #3: (QCIF A0←A1←A2), (CIF A0←B0←B1).

Looking at the R-D points of H.264/AVC in Figure 6.1, one can readily predict that

Setting #3 would be a well-adapted setting for Mobile sequence, and the prediction

was confirmed by the corresponding SVC R-D curve. Likewise, in Foreman sequence,

both Settings #2 and #3 are likely to ensure R-D convexity. Although Setting #3 has

better R-D performance, we choose Setting #2 because, as will be seen in the next

section, the increase in total bit rate is minimized.

In Figure 6.2 we further present the results with fixed-rate configurations, in which

the quality (and the QP) of each layer is not fixed; rather, the cumulative rate to

each layer is kept constant regardless of dependency settings. Comparing with the

H.264/AVC, the coding efficiency loss of SVC can be seen from the drop of R-D curves.

Similar to the bit rate increase in fixed-quality configurations, the distribution of PSNR

drops helps to predict the R-D convexity of SVC. From Figure 6.2, we obtain exactly
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Figure 6.2: Comparison of SVC dependency settings: (a) Mobile and (b) Foreman.
The results were produced with bottom-up encoding process and fixed-rate configura-
tions.

the same dependency settings as with fixed-quality configurations. Interestingly, in

Foreman sequence there is a “bump” in the R-D curve with Setting #1. This is

because the QP value of layer B0 is improperly chosen to meet the bit rate constraint.

The result stresses the importance of proper QP settings.

The preceding discussions assume the availability of H.264/AVC R-D points. The

assumption does not generally hold unless each layer is pre-encoded with H.264/AVC.

Collecting these R-D data is indeed time-consuming, but performing exhaustive SVC

encoding is even worse. In addition, in our approach the R-D convexity is guaranteed

only at full frame rate. Nevertheless, the global condition requires R-D convexity at

all possible frame rates. We have found empirically that the convexity at full frame

rate would also likely to ensure the convexity at lower frame rates. After all, the R-D

behavior at full frame rate represents the average performance of all video frames.

6.1.2 Degradation in Coding Efficiency

The previous section has analyzed the SVC R-D convexity under various dependency

settings. We now turn our attention to the overall coding efficiency, which is charac-

terized by the total bit rate of an SVC bitstream. As described previously, long-term

inter-layer reference may be needed for the sake of R-D convexity. It is natural then

to question whether and to what extent the total bit rate will increase. The answers

can be found by the comparison shown in Figure 6.3. From there it can be seen that

the well-adapted dependency settings (Setting #2 for Foreman; Setting #3 for Mobile)
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Figure 6.3: Comparison of total bit rate for different dependence settings. Fixed-
quality (FQ) and fixed-rate (FR) configurations were used.

incur, on average, 15∼20% bit rate increase in comparison with Setting #1 (default

setting). The penalty arises mostly because layers A1 and A2 are not utilized for the

inter-layer prediction of layer B0 in Settings #2 and #3.

6.2 Analysis of Optimal Extraction Paths

In this section we present a detailed analysis on the optimal extraction paths in regard

to the following factors. The analysis is to understand how these factors may affect

the choice of optimal extraction paths.

• Video Contents: Static vs. Motion.

• Device Types: QCIF@30/15Hz, CIF@30/15Hz, and 4CIF@30/15Hz.

• Distortion Measures: Mean Squared Error vs. Mean Opinion Score.

• Temporal Interpolations: Frame Replication (F.R.) vs. B_Direct_16x16 (B.Direct).

Table 6.1 lists our testing conditions, in which the QP assignments and the inter-

layer dependence settings comply with the guidelines in Chapter 5. To simulate the

actual use of SVC, extracted videos were interpolated to the highest spatiotemporal

resolutions available on all viewing devices. The interpolation was accomplished by

the standard-compliant spatial filtering [11], followed by frame replication (F.R.) or

motion field estimation (B.Direct). While sophisticated interpolation techniques could

be used, we chose the straightforward implementation because of its simplicity and

popularity. In addition, in the experiments comparing subjective and objective dis-

tortion measures, we adopted the VQM software [1][10] to predict subjective quality
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Table 6.1: Testing conditions and encoder parameters

Software JSVM 9
Spatial Scalability QCIF (176x144), CIF (352x288), 4CIF (704x576)
Temporal Scalability GOP Size = 8, Frame Rate = 3.75Hz∼30Hz, Hierarchical B Pictures
SNR Scalability Coarse Granularity Scalability (CGS)
Inter-layer Encoding Adaptive motion, residual, textural predictions
Sequences Inter-layer Dependency QP Settings
Akiyo QCIF(A0←A1←A2), CIF(A1←B0←B1) QCIF(50, 43, 37), CIF(44, 40)
Foreman QCIF(A0←A1←A2), CIF(A1←B0←B1) QCIF(46, 40, 34), CIF(41, 34)
Football QCIF(A0←A1←A2), CIF(A0←B0←B1) QCIF(41, 35, 30), CIF(36, 30)
Mobile QCIF(A0←A1←A2), CIF(A0←B0←B1) QCIF(41, 35, 30), CIF(34, 28)
Harbor CIF(A0←A1←A2), 4CIF(A0←B0←B1) CIF(41, 36, 31), 4CIF(37, 29)
ICE CIF(A0←A1←A2), 4CIF(A1←B0←B1) CIF(45, 40, 35), 4CIF(41, 33)

and computed the Mean Square Error (MSE) between the original and the compressed

videos as an objective criterion.

6.2.1 Optimal Paths versus Video Contents

The optimal extraction paths depend heavily on video contents. This is because the

spatiotemporal characteristics of video signals crucially affect the efficiency of inter-

polation algorithm performed on viewing devices. Refining temporal quality normally

results in better R-D performance in fast-motion sequences, whereas maintaining spa-

tial or SNR quality is more beneficial in slow-motion sequences. The results can be

seen by comparing the optimal paths in Figure 6.4, where MSE and F.R. are used

for distortion measure and temporal interpolation, respectively. Interestingly, most of

the optimal paths preferentially improve temporal quality except the ones for Akiyo

sequence. The reasons are twofold. Firstly, MSE has difficulties in appreciating tem-

poral quality. Secondly, F.R. yields erroneous results in video frames undergoing rapid

temporal changes. The two facts together explain the dramatic increase in MSE if

video frames are skipped, and thereby justify the tendency of optimal paths to im-

prove temporal quality.

6.2.2 Optimal Paths versus Distortion Measures

In addition to video contents, distortion measures also influence the choice of optimal

paths. Figure 6.5 compares the paths found by using MSE and MOS criteria. It can be

readily seen that the MSE-based extraction paths are biased towards temporal quality

in comparison with the MOS-based solutions. The observation agrees with the general

fact that MSE is likely to overestimate the quality degradation caused by temporal
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Figure 6.4: Comparison of optimal extraction paths for different viewing devices: (a)
Mobile, (b) Foreman, (c) Akiyo, and (d) ICE. B.Direct and MSE are used for temporal
interpolation and distortion measure, respectively.
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Figure 6.5: Comparison of optimal extraction paths found by using MSE and MOS
as the distortion criterion: (a) Foreman CIF@30 and (b) Mobile CIF@30.

jerkiness even if the impairment in perceptual quality is insignificant. On the other

hand, the results using MOS, although correlate much well with perceptual quality,

are generally less analytical owing to the unpredictable nature of MOS. In view of the

pros and cons of each measure, experimental results that follow are provided with both

distortion criteria.

6.2.3 Optimal Paths versus Spatiotemporal Interpolation

Besides video contents and distortion measures, interpolation algorithms performed

by viewing devices also have a significant effect on the optimal paths. Moreover, the

temporal interpolation is more critical than the spatial interpolation because poor

efficiency could easily give rise to significant distortion and visible artifacts. To this

end, the influences on optimal paths are analyzed in Figure 6.6 by assuming the use

of frame replication (F.R.) and B_Direct_16x16 (B.Direct) on viewing devices. In

general, the B.Direct method provides better quality than the straightforward F.R.

due to better estimation of motion fields. The fact also explains why the B.Direct

method allows the extraction to improve more in spatial quality, while the F.R. causes

it to extract more temporal layers. The results also confirmed that further optimization

would be made possible if the interpolation algorithms performed by viewing devices

are provided.

Summarizing, in this section, we have shown that the choice of optimal extraction
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Figure 6.6: Comparison of optimal extraction paths using frame replication (F.R.)
and B_Direct_16x16 (B.Direct) for temporal interpolation: (a) Akiyo CIF@30 and
(b) Foreman QCIF@30.

paths is determined by several factors: the visual characteristics of video contents, the

distortion measures, and the spatiotemporal interpolation algorithms performed by

viewing devices. All these factors are related directly or indirectly to the final playback

quality and should be considered jointly in the extraction optimization process.

6.3 Performance of Greedy Heuristic Scheme

After the optimal extraction paths have been studied in details, this section evaluates

the performance of greedy heuristic scheme in search for optimal paths. Exhaustive

search is used as baseline for comparison.

6.3.1 Extraction Paths and R-D Performance

Based on the MSE criterion and well-adapted bitstreams, Table 6.2 compares the opti-

mal extraction paths found by the greedy heuristic scheme and exhaustive search. The

differences in path indices are contrasted utilizing exclusive-OR operation.

Clearly, from the table the two methods produce almost identical results. It has

been found from the R-D trellis diagrams that both global and strong local conditions

are met in most test sequences, which explains the fairly good performance of the

greedy heuristic scheme. The global condition results largely from the well-adapted

settings. The local condition, on the other hand, is more intricate in that it represents
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local R-D variations and may not be precisely controlled. In fact, no effort was made

to adapt the QP or coding to take into account the local condition. The reason that

the strong local condition holds in this particular set of experiments is mostly due to

the MSE effect. Most local trellises are found to have a much higher preference for

temporal quality.

The strong local condition, however, may be violated. One such example is the

extraction of Akiyo sequence for QCIF30 devices, in which only the weak local condition

is satisfied. It has been shown in our theoretical framework that the greedy heuristic

scheme may fail to find the optimal solution in such case. This can also be seen

practically from Figure 6.7 (a), where a wrong decision was made when encountering

the two convex R-D segments at the upper-left corner. However, even if the optimal

solution is not reached, we usually end up with a suboptimal path having very similar

R-D performance to the optimal one (See the R-D comparison in Figure 6.7 (b)). This

is because the greedy nature of the greedy heuristic scheme causes it to always pick

the R-D points that are closer to the convex hull.

Before closing this section, it is worth remarking on a few phenomena exhibited

by Figure 6.7 (b). First, there are R-D points violating the general expectation that

distortion should decrease as the bit rate increases, which is usually true when consid-

ering the R-D performance of video codecs. However, Figure 6.7 (b) describes the true

R-D behavior when decoded videos are presented on viewing devices; the distortion

is measured with respect to the interpolated videos rather than the decoded videos.

Apparently, the results depend not only on the encoding algorithm, but also on the

interpolation schemes implemented on viewing devices. Second, the R-D optimized

extraction offers significant improvement in playback picture quality. Without opti-

mization, one may possibly choose an extraction path that has extremely poor R-D

performance. An example of such a path is illustrated by the dash curve in Figure 6.7

(b).

6.3.2 Computational Complexity

The computationally most demanding part in search for optimal extraction paths is to

collect the R-D data associated with each decodable NAL set. While the exhaustive

search needs to actually decode all possible representations, the greedy heuristic scheme
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Figure 6.7: Comparison of extraction paths for the steepest-descent method and
exhaustive search: (a) R-D trellis diagram and (b) R-D curves.

Table 6.2: Comparison of extraction paths with MSE.

CIF30 CIF15 QCIF30 QCIF15
Exh. S.D. XOR Exh. S.D. XOR Exh. S.D. XOR Exh. S.D. XOR

MSE + F.R.
Akiyo 110100 110100 0 11010 11010 0 11000 10100 01100 1100 1100 0
Foreman 000111 000111 0 00111 00111 0 00011 00011 0 0011 0011 0
Mobile 00011 00011 0 0011 0011 0 00011 00011 0 0011 0011 0
Football 00011 00011 0 0011 0011 0 00011 00011 0 0011 0011 0

4CIF30 4CIF15 CIF30 CIF15
Harbor 00011 00011 0 0011 0011 0 00011 00011 0 0011 0011 0
ICE 000111 000111 0 001111 001111 0 00011 00011 0 0011 0011 0

MSE + B.Direct
Akiyo 111000 111000 0 11100 11100 0 11000 11000 0 1100 1100 0
Foreman 000111 000111 0 00111 00111 0 00011 00011 0 0011 0011 0
Mobile 00011 00011 0 0011 0011 0 00011 00011 0 0011 0011 0
Football 00011 00011 0 0011 0011 0 00011 00011 0 0011 0011 0

4CIF30 4CIF15 CIF30 CIF15
Harbor 00011 00011 0 0011 0011 0 00011 00011 0 0011 0011 0
ICE 000111 000111 0 001111 001111 0 00011 00011 0 0011 0011 0

reduces the computation by lazy evaluation. On average, only half (42 ∼ 58%) the

number of decodable NAL sets are required for evaluation in order to achieve the same

or similar performance. The gain is most obvious when an SVC bitstream contains a

large number of decodable NAL sets.

6.4 Comparisons with Other Extraction Schemes

We conducted experiments to compare our adaptation scheme with the Quality-Layers-

based approach [2] and Basic Extraction implemented in JSVM [11][8]. In our ex-

periments, we examine two types of scalability: (1) QCIF SNR and (2) QCIF/CIF

combined scalability. Two quality enhancements from the base quality are encoded for

QCIF SNR scalability, while each spatial resolution in QCIF/CIF combined scalability
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Figure 6.8: R-D preformance comparison of the proposed scheme with the Quality
Layer and Basic extractions in JSVM 9: (a) QCIF SNR Scalability, (b) QCIF/CIF
Combined Scalability.

is encoded with a base quality and one quality enhancement. Both experiments use the

MGS vector mode {3, 3, 4, 6} without key pictures. In addition, each layer is simply

predicted from the previous layer and the Quality Layers are assigned independently

across spatial layers, i.e., the QCIF substreams must be entirely extracted prior to the

extraction of the CIF layers.

From Figure 6.8, the proposed scheme is far superior to the other two approaches in

Akiyo sequence while showing comparable performance in Foreman sequence. The rea-

sons are twofold. Firstly, our scheme allows optimal extraction paths to preferentially

improve spatial quality without extracting the entire base layer. However, both the

Quality-Layers-based extraction and Basic Extraction must initially extract the base

layer at full frame rate. Secondly, our extraction paths are derived based on the real

R-D costs of scalable layers. Contrarily, the Quality Layers are computed by estimating

the R-D information.
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Figure 6.9: Bitstream extraction (a) with and (b) without successive refinement.
R1-R4 indicate the extracted NAL sets associated with increasing bit rate.

Finally, we compare and contrast the major differences of our proposed scheme

with other previous works, including the Basic Extraction in JSVM [11][8], the Qual-

ity Information Table [4], the Quality Index [7], as well as the Quality-Layers-based

approach [2].

• Applications: The Quality-Layers-based extraction [2] aims at medium-grain

quality adaptation, while the other schemes focus onmulti-dimensional adaptation

with combined scalability. In particular, the Quality-Layers-based approach [2]

is conditioned on the full extraction of the base layer, whereas the others allow

performing R-D optimal extraction without the presence of the entire base layer,

so does ours.

• Extraction Constraints: Both our scheme and the Quality-Layers-based ex-

traction must incrementally extract NAL units for successive refinement, while

the others allow discretionary extraction. Through successive refinement, coarser

representations are always embedded in finer ones, which leads to more efficient

use and share of extracted NAL sets among viewing devices. The differences in

bitstream extraction with and without successive refinement are shown in Figure

6.9 using Venn diagram.

• Extraction Criteria: All schemes perform bitstream extraction based on the

R-D performance of NAL units except the Basic Extraction approach, which

carries out extraction in such a way that the resulting bitstream must have a bit

rate that is closest to but not greater than the target bit rate. As it has been

shown in our R-D analysis, decoding a substream with a higher bit rate does

not necessarily produce better playback quality, especially when spatiotemporal
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interpolation is involved.

• Distortion Measurement: Both our scheme and the Quality-Index-based ap-

proach compute the R-D data with respect to interpolated videos rather than

decoded videos. Also, as indicated in our analysis, the interpolated videos can

more realistically reflect playback quality on viewing devices. An even more

direct approach is to acquire the perceptual preference, as used in the Quality

Information Table. However, it would be impossible to have subjective evaluation

for every video sequence.

• Rate-Distortion Performance: While most previous works simply try to con-

struct an R-D optimized extraction path for pre-encoded SVC bitstreams, in this

thesis we further recommended a set of criteria for generating well-adapted bit-

streams, which together with strong or weak local condition promise the R-D

convexity of optimal extraction paths.

• Search Strategy and Complexity: Through the use of well-adapted settings,

our greedy heuristic scheme can very often find the optimal/near-optimal can-

didates while reducing the complexity by 50% or more in comparison with the

exhaustive search that was adopted by most previous works.
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Conclusions

In our work, we attempted to approach the task of rate-distortion (R-D) optimized

SVC bitstream extraction from a new direction. Our approach was characterized by

three unique considerations: (1) the combined effect of proper encoder setting coupled

with matching bitstream extraction and decoding mechanisms, (2) the computation

efficiency of search strategies for R-D optimized extraction paths, and (3) the choice

of extraction paths amenable to successive refinement of SVC bitstreams.

Through theoretical analysis of SVC inter-layer dependence relations and empirical

study of the R-D performance of different encoded/extracted bitstreams, we obtain the

following discoveries:

1. An optimal extraction path (corresponding to a convex R-D curve with minimal

underlying area) can be found for an SVC bitstream if convex R-D performance

can be maintained at every spatial/quality layer as well as temporal layers (re-

ferred as the global conditions) and in every pair of successive refinement steps

(referred as the local conditions). If the convexity of R-D performance is violated

only by minor deviations occur in a small fraction of all refinement steps then a

near-optimal extraction path can be found.
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2. Convex R-D performance can be maintained across spatial/quality layers by

adapting the inter-layer dependencies between different layers and the quanti-

zation parameter QP of individual layer during SVC encoding. The R-D con-

vexity of SVC layers (especially the spatial layers) can be predicted by referring

to the R-D performance of corresponding H.264/AVC bitstreams encoded with

fixed-quality or fixed-rate settings. On the other hand, convex R-D performance

across temporal layers can be ensured by the proper cascade of QP values over

the hierarchy of temporal layers.

3. The greedy heuristic scheme can be employed to search for the unique optimal

extraction path if the SVC bitstream can satisfy both global R-D conditions

and strong local R-D conditions. The greedy heuristic scheme is most computa-

tionally efficient as it decodes only half of the scalable layer representations in

comparison with the exhaustive search strategy that was adopted by most pre-

vious works. Beside of being efficient, our experiments showed that the greedy

heuristic strategy is also relatively robust with respect to its search results. The

strategy can always find a sub-optimal extraction path close to the optimal path

even under weak local R-D conditions. The strategy can even find the near-

optimal extraction path when the global and local R-D conditions are violated in

parts as when a subjective quality measure such as mean opinion scores (MOS)

is used to quantify R-D performance.

Our work is still in its early stage, we plan to extend our investigation in several

directions: (1) to study R-D optimized encoding and bitstream extractions for the SVC

bitstreams with medium-grain scalability (MGS) support, (2) to conduct experiments

with error concealment techniques and finally, (3) to devise computationally efficient

strategies to search for optimal/near-optimal extraction paths under weak or fractional

violation of global and local R-D conditions.
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