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ABSTRACT

Simulating hair motion is difficult due to their high-stiffness property, which usu-
ally causes numerical stability problem and needs the numerical simulation be
performed at a small time step. We observed that a force applied to one part of
a strand will transport to other parts of the strand where the force can contribute
the deformation of the strand. We model this force transport process and simplify
the special Cosserat Theory to simulate inextensible hair strands. Our experi-
ments show that the proposed approach can simulate hair dynamics robustly and
efficiently such that hair simulation with user interaction can be executed in real
time.
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CHAPTER 1

Introduction

Realistic hair has been studied for years, including modeling, simulating, and
rendering. Simulating hair strands is hard because of their high stiffness property.
Simulating such hair usually surfers from numerical stability problem. It needs a
very small time step to simulate high stiffness of hair.

The focus of this thesis is the transport of force in a hair strand with one fixed
end and one free end. Finding where the force contributes is helpful to the stabil-
ity of strand simulation, especially in high stiffness model, because force will not
take so many time steps to transport. In experiment, our method indeed gives fast
stability and good performance in hair simulation and make it be real-time.

For high-stiffness strands, we observed that forces applied to one segment will
transport to root segment by segment to find where to contribute deformation. In
a zero stiffness model, force is transported along the tangent of the strand, which
is called the axial force. In a high stiffness model, force is not only transported by
the axial force but also the stiffness torque which generate by material properties.
The speed of transport through energy method is bounded by simulation time step
and spatial step,though the speed is fast in high stiffness material. Too slow force
transport also reduces stability of simulation. This is the bottleneck of traditional
energy methods, like the spring-damping model. Finding the Jacobian matrix to
map a local force to global may help, but update the matrix is a huge overhead.



We observed that hair strands is a constrained object rather than a free-deform
object.The difference of hair shape at each time step is small. That means the
motion of hair strand is more similar to a rigid body than a free rigid body chain.
Therefore we assume that there will be no large local change in hair shape between
two time step, and hair strands tend to have a global motion. Shape and stiffness
torques will be similar between two time step. This make it able to compute the
distribution of forces from its current shape and stiffness torques.

We then use the the Special Cosserat Theory[1] to model the curliness of
strands; However solving the Special Cosserat Theory is hard and computation-
ally expensive[2], which is not suitable for real time simulation. We did some
simplification to make it suitable for our force distribution.



CHAPTER 2

Related Work

There have been much work on hair simulation, including hairstyle modeling,
hair dynamics, and hair rendering. It is beyond the scope of this thesis to survey
all literature here. As our goal is to simulate hair motion, we will only review
the related work on the physics-based model of single hair strand motion in this
chapter. For a thorough survey on hair simulation, please see [3].

2.1 Spring-Damper Model

The spring-damper model is a popular model for simulating elastic objects for
its simplicity. In this model, a hair strand is often modeled as a chain of connected
particles[4][5]. This method is fast and easy to implement, but is not suitable for
simulating high-stiffness objects, like hair. Since the stiff dynamics usually re-
quire using small time step, hair motion simulation is usually a bottleneck of the
whole system. Additionally,simulating torsion or curliness of hair is also a hard
problem. Although Selle et al.[6] simulates torsion and curliness successfully,
their solution for spring stretch still makes it lack of physical accuracy.
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2.2 Rigid-body Chain Model

In order to simulate high stiffness of hair, the Rigid-body Chain model is more
appreciated. The Rigid-body Chain removes stretching DOFs of strand, makes
each strand inextensible[7][8]. The Rigid-body Chain model needs more compu-
tation than the Spring-Damper Model, but still an O(n) algorithm[9]. Although
Rigid-body Chain solve the high stiffness problem of the Spring-Damper model,
it still has problem in simulating curliness.

2.3 Cosserat Model

Cosserat Rod is first introduced to the computer graphics field by Pai [10] in
2002. The kinematic state of a Cosserat rod is generated by integrating the spatial
speed and spatial angular speed over the rod, which can preserve local coordinate
at every point of the whole strand. Therefore, Cosserat Rod model can model tor-
sion and torsion stiffness. Pai used the Cosserat model to get only the statics of a
whole strand, not the dynamics.

Bertails et al. (Super Helices)[11] simulated curly hair dynamics using the
Cosserat Rod. They assumed a curly hair strand can be discretized into several
segments. This method preserves torsion of curly hair and improves computa-
tional efficiency with reduced DOFs. When the hair length is long, external force
is applied or hair strands interact with other objects, curly hair needs to be simu-
lated using more DOFs. The computational cost grows rapidly as O(n?) where n
is the DOFs of the hair strand.

Spillmann et al. also proposed a 1-D elastic model [12] based on Cosserat Rod.
They suggested the strand is composed of many finite elements. The dynamics of
the model can be solved in O(n). Unlike the Super-Helices, the method proposed
by Spillmann et al. simulated each control point on the strand. A drawback of
their method is that the stability of the method will be affected by increasing num-
ber of segments when we model high stiffness of hair.



CHAPTER 3

Strand Simulation

In this chapter, we describe our strand simulation method. First, we briefly
review the Cosserat Model and Special Cosserat Theory. Second, we describe
our reduced coordinate that makes the conversion between torque and force pos-
sible and reduces the computational time. Third, we describe our forces transport
method. Then we rewrite the Special Cosserat Theory to obtain the dynamics
equation. Finally we solve this equation numerically to simulate hair motion.

3.1 The Cosserat Model and Special Cosserat The-
ory
Cosserat Rod was first introduced to the computer graphics field by Pai [10]

in 2002. The dynamics of the rod is governed by an integration of positional
variation and orientational variation' over the rod:

ds’' =uxd; i=1to3, (3.1)

where d; is the local axes on the rod as shown in Fig 3.1, and w is the Darboux
vector. In order to model the unstretchedness, the tangent along the center line of

1Notation: We use f to denote spatial derivative along the center line of a strand, ' = df/0s,
and f = 0f /0t to denote time derivative.
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s=0

Figure 3.1: Rod Representation

the rod is:
Tyl (3.2)

where r is the center line position of the strand. If we integrate 7’ along the center
line, we can get the position of the Cosserat Rod (Strand):

r(l) = /0 ds(s)ds + r(0) (3.3)

where [ is the distance from the root along the center line and r(0) is the position
of the root of the strand.

Because the Cosserat Strand can model torsion and curliness of strands, we use
this model as our hair strand model.

The Special Cosserat Theory uses two equations to describe the dynamics of
the strand. One is for position:

n' 4+ df = pA¥ (3.4)

where n’ is the constraint force generated by the material law, df is an external
force applied to an infinitesimal segment, p is the linear density, and A is the area
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of the cross section. This is basically Newton’s Second Law. Because n is af-
fected by the shape of strand and torque, n usually does not have a simple formula
to compute[2]. The other equation of the Special Cosserat Theory describing the
orientation of the rod is:

m +r' xn+dr = plw (3.5)

where m/ is the torques of stiffness generated by the material law, d7 is an ex-
ternal torque applied on infinitesimal segment, / is the moment of inertia of an
infinitesimal segment,and w is the angular velocity.

In the Special Cosserat Theory, there are two unknowns, n and w)in the equa-
tion. The resulting acceleration is affected by the force and torque simultaneously.

From Equation 3.4, we know that a force that do not contribute to the linear
acceleration of the strand will become an internal force. Furthermore, we know
that the component of a force that does not induce any effective torque at a point
of the rod will also become an internal force. Based on these two findings, we
compute the effects of any external force applied to the rod by propagating the
force segment by segment. We consider this problem as a force transport problem
by finding where the force contributes to effective torque. However, different from
the Special Cosserat Theory, this force will be the summation of many segments’s
force. We need to consider the affected mass point when we compute dynamics.
After computing transport forces, we use an approximated equation of Equation
3.5 to compute strand dynamics.

3.2 Representing the Rod State in Reduced Coordi-
nate

In order to represent the 3D position and 4D quaternion orientation of an in-
finitesimal segment on a rod and their derivatives, a 14-dimension vector is needed
to represent the state of the strand. However, based on the Cosserat Model’s def-
inition, we can compute the position and velocity of each point on the centerline
using Equation 3.3.

Also, from the rigid body dynamics we know:

dgszdg
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where w is the angular velocity.

Therefore the speed on center line, which is the temporal differentiation of
equation 3.3, is

! !
(1) :/ dsds = / (w x d3)ds (3.6)
0 0
The temporal derivative of ds is
ds = (W x ds 4+ w x ds) = (& X dg +w X (w X d3))

so the linear acceleration on the center line is

l l
(1) = / dsds = / (% ds +w X (w X dg))ds (3.7)
0 0

which means the position of a segment on the rod can be obtained from the ori-
entation of the segment if we add the centrifugal force to the external force. The
centrifugal force will be described in the appendix. Therefore, we only need an
8-dimensional vector to represent the state of the rod.

3.3 Force Transport

From the classical mechanics, we know that a force f applies to a point with
distance [/, to the rotation center can be converted into a torque 7:

lsdg x FF=17= 1w (3.8)

This means a non-twisting force can be transformed into a bending torque. There-
fore, we can find where the force results a torque by checking shapes and torque
on one strand. This equation makes our force transport possible.

Beginning from the tip, we find where force becomes a torque segment by seg-
ment using Equation 3.8. In a strand segment, force can be decomposed into two
components,tangential force and normal force, as shown in Fig 3.2. We observed
that there are two situations that force will be transported to proximal segment:

1. Tangential Force
A force component, which is a tangential force, results no effective torque.
It will be transported to next segment.
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2. Normal Force which results no ineffective Force
A force component, which neutralized by a applied torque, will result no
effective torque. It will be transported to next segment.

We will describe these two cases below.

3.3.1 Tangential Force

It is obvious that a tangential force does not induce any torque on the segment,
and 1s just transported to other segments as shown in Fig 3.3. If a tangential force
is transported to a segment that can induce a torque to the segment, we remove it
from the transported force and set is as a torque to bend the segment.

The net force F;, at position r([) is the sum of the external force applied to
the position 7 (1) and the tangential force transported from the position (I + ds).

Finl) = (fuall) + Fr(l + ds)) (3.9)

where f., is the external force, and Fip(l) = (Fin (1) - d3(1))ds(l) is the tangential
force at r(1). Fy,(1) is the summation of external force and transported axial force.
Thus, we can obtain the normal force £ (1) atr(l)-

Ey(l) = Fiu(D) - Pr(1) (3.10)

The normal force will result a torque at ({).

3.3.2 Normal Force

Recall our assumption in Section 3.1 that the component of force which can
not result a effective torque will become a internal force. When torques involves,
we need to compute how much the effective torque resulted by F. We call the
component of force which results a torque as fef fectives

feffecti'ue(l) = FN - Fneutralized(l)

Ercutralizea 1 the component of force neutralized by stiffness torque, which can
be written as:

Fneutralized(l) =cv (311)
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Figure 3.2: Tangential Force and Normal Force: The component of F;,, parallel to
ds is the tangential force, and the other is the normal force.

Figure 3.3: Transport of Tangential Force, the component parallel to d3 of force
in segment ¢ will be transported to proximal segment ¢ — 1.
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d,

N

4
_Fneu:ra]ized = ﬂh E

1Rl FT\'

Figure 3.4: Normal Force and Torque: d; and ds are the axes of the local co-
ordinate on centerline. Fly is the normal force, and 7 f is the local force trans-
formed from torque. F'y is a normalized vector of Fy. The neutralized part is

Fy\T
maz (|| Fyll, ~ 20 Fy
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where c is a constant and 7 is a normalized vector of Fiy([).

In order to compute ¢, we transform the total torque 7 applied here to a force
to find Fy’s contribution.

tf =T x ds/ls (3.12)
where [, is the length of segment. Then the length of Fy neutralized by ¢ f is:
. 0, if (projLength(Fy(1),tf(l)) > 0

| min(—projLength(Fn(l),tf(1)),||Fx(1)]]) otherwise
(3.13)
projLength is:
tf(l) - En(l

projLength(Fy(1),tf(l)) = L0 Entl) (3.14)

[ Fn (Dl

The force neutralized by torque is also shown in Fig 3.4.

We need to rewrite Equation 3.9 for F),.utralized:

-Fi (l) = f(l) A FT(Z 5 dS) = Fneutrulized(l + dS) (315)

After integrating from tip to root, we get a series of F}, which is the force
make the strand deform.

3.4 Discretization of Strand Dynamics Equation of
the strand

We describe how we discretize the Special Cosserat Theory in this section. As
we only concern the orientation of the rod, we do not need to discretize Equation
3.4. Recall that the orientation equation of the Special Cosserat Theory is:

m' + 71" xn+dr=plw

If we discrete it, we get

Am;/As + (ds; x n;) + 71/ As = plw;
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Am; + (dz; x n;) - As+ 7 = plw; - As (3.16)

Equation 3.16 is only for single segment case. In practice, the torque applied
to a segment will result accelerations of other segments and decrease the accelera-
tion of itself. The resulting acceleration is d3 X n. Since n does not have a simple
formula , we approximate n by considering segments that are accelerated by ;.

First we need to know how many segments will be accelerated by the torque.
We observe that in a high-stiffness strand, the local deformation caused by other
segments’ acceleration will be canceled by stiffness very fast. This is similar to a
rotating rigid body.

So we consider the number of segments being accelerated by the force. We
assume that the accelerated segments are located at the distal side of the segment.
The total mass will be z-mass which z is the number of the accelerated segments.

If we consider the force contributed to acceleration of z - mass as (z - mass)f.
Then the dynamics equation will become:

(dg - ls) X (F — (x - mass)it) = plw

where /' = 7 X dj is the bending force transformed from torque, and [; is the
length of segment. Then we write 7* as angular acceleration:

ds x F = pliy+ (z - mass)(ds x w x ds)(l,)?
If we consider it in bending direction (torque on d; or ds):
ds x F = (pI + (x-mass) - (I,)})w

Therefore the bending moment of inertia will be I+ (z-mass)-(ls)?. This equation
is the same with Equation 3.16 where n is approximated by —(z - mass)i - [;.
Since we have find a approximated n, we can solve Equation 3.5.
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3.5 Dynamics Integration

From above section, we know the approximation of Equation 3.5 will have
this form:

8[&)1'
= Ttotal,i
ot
where Tio1q1 18
o stif fness external damping
Tiotali = Fri X d3 + 7 +7; + 7 (3.17)

We use Spillmann’s method to compute the stiffness torquer*!//¢ss The detail

is describe in the appendix.
Tdamping is

i L D ) (3.18)
where D, is the damping constant. Then we can solve w;:
Wi = Tiotalj — Wi X Tw; (3.19)
Then integrate w:
%Hh = [_1(Tgotal,i—wi><lwi)h + Wf (3.20)

Here we use a method similar as Spillmann’s semi-implicit method[12] but
remove dimensions of position.
First, transform w to quaternion velocity ¢:

: 1 0
q; = §Qi ( 0 ) (3.21)

where Q is the quaternion matrix,and q is the orientation of the segment i. Then
we can integrate it on quaternion:

) 1 0
G+t = 5@5 ( it ) h+ ¢ (3.22)
t+h qu—i_h 3 23
T o

After this integration, we have the simulation result of hair strands.



CHAPTER 4

Hair Simulation

A whole hairstyle usually has tens of thousands of hair strands. We describe
here how we apply strand dynamics model to hair simulation, and implement
interaction between hair to hair and hair to other objects.

4.1 Hair Clustering

In order to simulate the motion of styled hair which have been designed, we
cluster modeled hair strands to find relations between guide hairs and hair strand
geometry.

We choose some guided strands from hair model first. Then we compute av-
erage distances F between a guide hair g and a strand geometry h as an error
function:

N
1
E(g,h) = N ZminDis(g,vi) 4.1)
i=1

where minDis is the minimal distance between g and v;. v; is the i-th vertex of
h, and n is the number of vertices of h. Then we use the K-means clustering algo-
rithm in textbook [13] to find the cluster of hair model. There are two guide hair
for each strand.

15
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4.2 Guide Hair Interpolation with GPU

We use the vertex shader to accelerate our hair interpolation. From the Section
4.1, we have got the relation of guide hair and hair geometry. In order to interpo-
late vertex between two guide hairs, we need the weights between guide hair for
each vertex of geometry. We compute the weight as:

foreachg

1 1
w(g,h):m > B 4.2)

where g is a guide hair, and A is a strand geometry.

After we compute weight of each vertex of hair geometry for corresponding
guide hair using Equation 4.2, we put them into texture coordinate of hair ge-
ometry. We also put the corresponding guide hair index into texture coordinate.
The above tasks are completed in off-line. At each render step in runtime, we put
the vertex data of guide hair which we simulated in strand simulation part into
texture’s rgb channel. Then we interpolate vertex between multiple guide hair in
vertex shader, using the method in the GPU Gems for skinning.

4.3 Collision Detection and Response

We use the interaction method proposed by Choe [14] to handle collision de-
tection and collision response, which handles collision detection and response
with two cylinders. Their method uses the outer cylinder to handle damping ef-
fects between hair cluster and use the inner cylinder to avoid deep intersection
between hair cluster. Different from their method, we use the 1D Swept Sphere
Volume(SSV) as our bounding volume instead of cylinder for the concern of per-
formance. We use a user-define inner SSV radius and a outer SSV radius from
hair cluster. The collision detection algorithm for SSV is described in the text-
book by Ericson[15].

The damping force and resist force are describes in Equation 4.3 and 4.4.

Fi(bs, bj) = K * Pipper * ||(r(b;) — r(bj))” (4.3)
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where Fj is the resist force to push two clusters away, b is the bounding volume,
K is the spring parameter, the P, is the penetration depth of inner SSV, which
is generated from collision detection, and the rest is the force direction. r is the
position of SSV.

Fviscous(bi7 b]) =—-Dx Pouter * (r(bz) - T(b])) (44)

where F;scous 18 the viscous force, D is the damping parameter of hair interaction,
the P, 1s the penetration depth of outer SSV, and the rest is the relative velocity
to b;. 7(b;) is the velocity of SSV.



CHAPTER S

Experiment and Result

We compute the stiffness torque from Young’s Modulus by using the method
proposed by Spillmann[12]. The detail of Young’s Modulus and stiffness torque
is described in the appendix.

5.1 Single Strand Test

5.1.1 Statics Test

In order to check the accuracy of statics, we applied gravity to strands and
record its final shape. The static result is compared with CORDE, which is shown
as Fig 5.1. We set parameters of strand property as:

Radius 5 mm
Density 1300 kg/m? p

The result shows that the statics is almost the same with the CORDE. The
force transport we use results a little force lost. The deform becomes smaller with
more segments. But from the result, we know the lost of force is very small.

18
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(a) CORDE (b) Our method with 10 segs

[ OpenGL - Engine Test

(c) Our method with 50 segs (d) Our method with 100 segs

Figure 5.1: Statics Test: Young’s modulus is set as 10MPa, and shear modulus
is SMPa. The error of our force transport may increase as the segment numbers
increases.

5.1.2 Dynamics Test

Here we verify our dynamics model by releasing strand from a force, which is
compared with CORDE. The result is shown in Fig 5.2. The CORDE result is col-
ored by green, and our method is blue. There is a big difference between CORDE
and our method. Remember our assumption in Section 3.4.1 that the deform of
shape without a force will be absorbed fast in high stiffness object, which is one
of properties of high stiffness object. As our assumption, we have the result of
dynamics which looks like a high stiffness object. The curly strand dynamics is
also shown in Fig 5.3
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5.1.3 Curliness and Twist Test

In order to make sure our model has the advantage of the Cosserat Model that
can deal with curliness. We use 50 segments to simulate a 1m strand. The Young’s
and shear modulus are 200KPa. The result is shown as Fig 5.4. The average FPS
of simulation is 47.6.

Also we do a twist experiment with many strands. We control 16 strands with
constrained tip to make them entwined. The average FPS is 20. 5.1.3

M OpenGL - Engine Test

(a)

Figure 5.4: The Curliness Phenomena by twist: After we applied a twist torque to
the whole strand and self-collision, we have a phenomena that the strand entwined.
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o

(d)

Figure 5.5: The strands entwined by rotating constrained point.

5.1.4 Performance

Our test environment is Intel Core Duo 2 6700 + GeForce 8800
The computing time of simulation and self-collision, and the stability test com-
pared to CORDE are shown below. The stretching Young’s Modulus in CORDE
is set to 1MPa. We test the stability by applying gravity and release.
The stability of our method is better than CORDE. This is because we remove
the stretching DOF and approximate of the Special Cosserat Theory. Removing
the stretching DOF make it more stable when segment number increases and our
assumption removes a local deformation by force which may make it unstable.
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Computational time in one step

Segment # Simulation Time(ms) CORDE Simulation Time Self-Collision Time(ms)

50 0.051 0.058 0.235
100 0.087 0.108 0.270
200 0.170 0.22 0.472
500 0.443 0.548 2.049

The stability of single strand with length Sm
Segment # Young’s Modulus (MPa) Max Time Step(ms) CORDE Max Time Step

50 1 7.0 3.1
50 10 24 1.6
50 100 0.7 0.5
100 100 0.3 0.2
200 100 0.15 0.1

5.2 Hair Simulation

5.2.1 Result

We use our strand model to simulate some animation of hair. Since there are
not many self contact in hair simulation, we turn off the self-collision to get better
performance. The Young’s Modulus of the material parameters are set to 1MPa.
The hair under wind is as Fig 5.6. The wind is modeled as a constant wind multi-
plied by a sin function. The wind force is set to 10~ *kg.
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(©)

Figure 5.6: Under Wind: hair deformed by a constant wind force.

The dynamics results from head shaking and moving are as Fig 5.7 and Fig
5.8. The head dynamics is modeled by rigid body dynamics.
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(b)

(d)

Figure 5.7: Simulated Hair Motion with Head Shaking: We simulate the head as
a rotating rigid body. Then we get a dynamics of head shaking.
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(b)

(d)

(e) ()

Figure 5.8: Hair Moving: (a)(b)(c) the result that head moves vertically.
(d)(e)(f)the result that head moves horizontally.
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The difference motion of different Young’s Modulus is shown as Fig 5.9. We
can see the stiff hair style has less deformation when head moves.

(a) (b)

Figure 5.9: The difference between different stiffness in moving: (a) stiff (b) soft

The difference resulted by D in hair interaction is presented in Fig 5.10.

o

(@) (b)

Figure 5.10: The difference of hair after head shaking between different interac-
tion parameter (a)with D = 2 x 107° (b) with D = 2 x 1075, Other interaction
parameters are set to X = 2 x 1075, P;,,..,, = 3mm. The result with high viscous
force is more cluttered.
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5.2.2 Performance

We does above demo with simulating 100 guide hair of about 1000 segments.
The time step of simulation and collision detection is 3ms. The average simula-
tion time is 0.64ms, the average rendering time is 1.4ms, and the average collision
detection and response time is 2.3ms. The average FPS is 23.2
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Figure 5.2: Dynamics Result: Our method is blue. The CORDE is green. We
can observe our result of dynamics is more stiff. This is because we assume the
rest segments will move together in the simplification of Special Cosserat Theory.
There is a big difference, but it is still acceptable in the hair simulation.
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(©

Figure 5.3: Curly Strand Dynamics

(d)



CHAPTER 6

Conclusion

We have proposed a dynamic model for simulating high stiffness model more
efficiently. Our method is faster, more stable than traditional method, and also can
model the curliness phenomena of strand. With our proposed method, we make
the simulation of hair with full interaction able to be performed in real time. But
there are still some problems needed to be solved.

Limitation

Our method is based on a shape analysis. It means the shape of simulated
strand is needed to be continuous in time and space. It needs enough stiffness to
keep strand continuous. In the case which we consider about, the shape is con-
strained strongly. But in low stiffness case, the shape may be very discontinuous
in time. In this case, it will result some obvious artifacts in dynamics.

Future Work

We can observe from the statics experiment that the force transport method
has still some force lost in each integration. As the segment number increases,
the error increases. Besides, from the performance result, we can observe that the
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computational time for handling interaction is still the bottleneck in hair simula-
tion. We would like to solve the hair interaction problem in the future.



CHAPTER 7

Appendix

Centrifugal Force
Before searching axial force, we consider the internal force generate by angu-

lar speed from Equation 3.7. We need to add it into the external force to compute
w. If we multiply a mass on Equation 3.7’s both side, we get:

I
F:mass-h:mass-/(wxdg—{—wx (wx d3))ds
0

where w X (w X d3) is the centripetal force. What we want to find is the relation
between force and angular acceleration, so we move it to the left side:

l !
F —mass - / w X (w X d3)ds = mass - / (W x d3)ds (7.1)
0 0

The left side is total force.

Stiffness

The potential energy of quaternion proposed by the CORDE:
1

l; .
Vi = §Kkk(Bk(Qj + qjy1) - f(%‘ﬂ — q;) — Ur)? (7.2)
J
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where

w2 2

r
Khn=Kyp=EFE— K33=G—
11 22 g e 5

where E is the Young’s Modulus for bending stiffness, and G is the Shear Modulus
for torsional stiffness.
We can do symbolic differentiation to get the force 7, on the quaternion:

L0
Tq = Z—Vk
k=1 dq;
where
) l; ) 1 2
— Vie2Ki— | Bula:+ aii) =11 —a:)— 10
aquk 5 kzkaqj( k(¢ + ¢j+1) K (¢j+1 — q)) Uk)
B, 0 i .
= [; Ky (—k— (Qj + Qj+1) (Qj+1 y - Qj)> 1 (Bk (Qj # C]j+1) T (qu - qj’) - Uk)
lj 8(]j lj

B 1 .
= l; K- (l—k ((gj+1 — g5) — (g; + Qj+1))> : (Bk (g; +gj+1) - T (gj+1 —qj) — Uk)
J
By, .
=Rk | 7~ (3205) Jo| Brlay +a5e1) - 7 (451 — ) =
J ]

By,

= —2liKkkTQj | <Bk (g5 + gj+1) -

J

| =

e, uk)

But the mass to quaternion is a dense matrix,which is hard to inverse. We use [16]
method to transform a quaternion force to a torque.

1
( i ) = iQTTq (7.3)

o~

J

T

where 7 is the stiffness torque.
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