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Abstract: A design technique for a single-input/ 
single-output system with nonminimum-phase 
plant and large parameter variations is developed. 
The uncertain part is transformed into a dis- 
turbance form and the problem becomes one of 
attenuating the external disturbance. This method 
gives a much simpler design procedure. 

1 Introduction 

Consider a single-input/single-output (SISO) linear time- 
invariant nonminimum-phase plant. The parameters of 
the plant are not known precisely; they belong to a set 8. 
The control problem is to design a feedback system such 
that the closed-loop response is within the prescribed 
bounds. A structure with two degrees of freedom is used 
(Fig. 1). F and G are to be determined to guarantee that 

R71.-1_:-1-c 
Fig. 1 

the system satisfies the specification. Such quantitative 
design problems have been presented in [14]. These 
studies manipulated a plant template (a set of complex 
numbers due to plant parameter variation for each 
s = jo) on a Nichols chart to find the loop transmission 
bounds [ 5 ,  61; the loop transmission functions result. 
This method is useful for solving an uncertain plant with 
large parameter variations, but the template manipula- 
tion process is somewhat tedious even for a control 
engineer with quantitative feedback theory (QFT) [7] 
design experience. However, there are now commercially 
available CAD packages for SISO design. East [8] has 
proposed a CAD method to fit an optimum loop trans- 
mission for minimum-phase plant, but the fitting work 
can be time-consuming. 

This paper presents an equivalent disturbance attenu- 
ation method for solving a SISO quantitative design with 

Canonical structure: D IS the external disturbance 
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nonminimum-phase plant without the need for plant 
template manipulations. We transform the plant uncer- 
tainty problem to a disturbance attenuation one, and use 
an algebraic equation to calculate the values of the 
bounds. Then the bounds can easily be found on an 
inverse Nichols chart, and the results are almost the 
same. 

2 Nonminimum-phase systems with plant 

In Fig. 1 the overall transfer function is 

uncertainties 

GP 
T(s) = F - 

1 + G P  

We note that the zeros of the plant are also the zeros of 
T(s). Hence a nonminimum phase of P(s) will cause a 
nonminimum phase of T(s), explicitly. 

Note that we consider the case of strictly right- 
halfplane (RHP) zeros only, and exclude the case which 
may vary between the left and right halfplanes. If the 
transfer function of P(s) has one or more zeros in the 
right halfplane, then explicitly 

P(s) = N( -s)Pl(s) (2) 
where N( -s) = ni (1 ~ tis) and Pl(s) is the minimum 
phase part. The -s is used to emphasise the non- 
minimum character. Let No(-s) be the nominal value of 
N( - s). Then we have 

(3) 
where P,,(s) is the nominal representation of Pl(s), L,,(s) 
is the nominal transmission function with minimum 
phase and LnO(s) is the nominal transmission function 
with nonminimum phase, when the parameters have their 
nominal values. P'(s) is the only uncertain part of L(s), 
and is unity at the nominal values of the plant param- 
eters. From eqn. 3 we note that the boundary on the loop 
transmission function of L,,(s) and L,,(s) is 

L,o(s) = A i  '(S)L,n(s) (4) 
In eqn. 3, P ( s )  is the only uncertain part of L. From eqn. 
1, owing to uncertainty, we note that 
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with 

A I IdB = A I p IdB (6)  
As the plant parameters range over their regions of 
uncertainty, A I Qjw) I d s  = A I P'(jw) I d B  occupies a known 
region in the complex plane at each specified w. This has 
been called the 'template' at w. References 1 and 2 use 
these templates to manipulate on the Nichols chart and, 
according to eqn. 6, to find the acceptable boundary of 
L,, . This template manipulation technique, which is 
widely used in various QFT papers, is practical but 
tedious. In this paper it is shown that the boundaries of 
the nominal loop transmission function can be chosen 
directly from a set of existing curves. 

due to uncertainty. The point is to find the bounds of a 
nominal loop transmission Lo at each frequency w. By 
eqn. 13, Lo(s) should be designed to satisfy 

in order to attenuate the disturbance from De. 
If Q = l/Lo, then eqn. 14 becomes 

On the Nichols chart, suppose Q is an open-loop transfer 
function and Q/(l + Q) is the closed-loop transfer func- 
tion. Then the rectangular grid represents I Q I d B ,  L Q, 
and the curve represents I Q/(l + Q)ldB, L(Q/(l + Q)). 
Because I Lo I d B  = - 1  Q J d B ,  L Lo = - L Q. So, if we 
reverse the Nichols chart with the 0 dB line and rotate 
180" about the - 180" line, then the rectangular grid and 
the curve represent the magnitude and phase of Lo and 
Q/(l + Q), respectively. In the EDA design, we will use 
this relation to find the boundaries of the nominal loop 
transmission function. 

3 Equivalent disturbance attenuation method 

3.1 Design equation derivation 
From Fig. 1, Po and P are the nominal and perturbed 
plant transfer functions, respectively. Lo = GPO is the 
nominal loop transmission function. To and T are the 
nominal and perturbed system functions, respectively. We 
have 

C G P  T P - = F -  
R 1 + G P  

3.2 Bounds on L,, in Nichols chart 
By eqn. 15 the bounds of L,, can be calculated; for 
example, in Table 2 if o = 2 then Q/(l + Q) < -0.2539. 
We can easily find the bound B"(2) as shown in Fig. 3. 

(7a) 

(7b) 
GPO 

Po/P + G P O  
= F  

30 ~ 

20 - 
(Po/P + L0)T = FLo 

( 1  + Lo)T = F L ,  + PUT 

(8) 

(9) 

Defining P ,  = 1 - Po/P,  it follows that 

By using 

w:o 1 

w = 0 5  101 

To = FLo/(l + Lo) 

then 

(1 + LoXT - To) = PUT 

Let AT 6 T - To. Then 

m 
D 

a. n 

< 0- 
z 
c 
m 

-10- 

- 2 0 -  

AT = P,T/(l + Lo) (12) 
Eqn. 12 is implemented in Fig. 2. The plant Po has fixed 
value and the plant uncertainty becomes an equivalent 

De 

- 2 2 0 "  -180' -140O -100' -60" -20" 
phase, degrees 

Fig. 3 Bounds and practical shaping of loop transmissionJunction Fig. 2 Disturbance attenuation only, D, 4 P U T  = (1 - P, /P)T ,  
A T  b To - T ;  both are treated as equivalent signals 

We note that in the low- and intermediate-frequency disturbance De = PUT.  The P is implicitly in the equiva- ranges the sensitivity s; is smaller than one, The magni- 
lent disturbance P u T ;  hence this is termed the tudes of the boundaries are single-valued functions of 

phase on the Nichols chart, and extend from 0" to 
-360". They encircle the point 0 dB and - 180". 

equivalent disturbance attenuation (EDA) method. 
From eqn. 12, define T,, = A T / T .  Then we have 

1 For the high-frequency range 1 P ,  I d B  mllI degenerates 
into I ( k  - k0)/k l d B  ~ ( I x  for any rational function P(S)  = 
k n (S + z i ) / n  (s + p j ) .  The acceptable normalised 
system bound I T, I d B  is larger than I P ,  I d R  ~ y x .  Hence, the 
bound value of Q/(l + Q) is positive. This means that the 
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= I IdB - I p u  IdB (13) 

Note that I T,, I d B  is the acceptable system normalised tol- 
erance (specification) and 1 P ,  JdB is the variation range 
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boundaries become an oval curve on the Nichols chart 
and shrink as the frequency increases. 

3.3 Universal high-frequency bounds 
In the high-frequency range, the constrained form eqn. 15 
becomes less important. Therefore, we use the universal 
high-frequency bound (B,) as proposed by Horowitz and 
Sidi [2]. 

At high frequency the plant P(s) degenerates into ksc' 
where e is the excess of poles of P over zeros of P. The 
plant variation approaches a vertical line of length 
A I P(jo) I d s  = I k,Jk, I d e .  For the example in Section 5 
the length IS 3.52 dB. 

In the relatively high-frequency range I SI 9 1 is toler- 
able, as far as its effects on I T(jo)l are concerned, 
because the prefilter F in Fig. 1 attenuates the resulting 
high peak in I L/(1 + L ) ( .  However, the disturbance 
response in Fig. 1, C/D = 1/(1 + L) = S,  is then also very 
large, which is generally not tolerable because there is no 
equivalent filter available. Although the parameter igno- 
rance problem is assumed to dominate in this paper, it is 
necessary to consider the disturbance response at least 
to the extent of adding the constraint I & I  = I CID I = I 1/ 
(1 + L)I < y for all o. In the example of Section 5, 
y < 6 dB; therefore the universal high-frequency bound 
B, is as shown in Fig. 3. 

3.4 Nonminimum-phase conditions 
For nonminimum-phase conditions, the corresponding 
boundary of L,,(jo) is easily derived by eqn. 4. For 
example, if as in Section 5 o = 2, then L,,(j2) = 
Ai1(j2)LnO(j2). There is a similar boundary at each o; 
the shift in angle is due to A;'(jo), which is small in the 
low-frequency range and tends to 180" as o becomes 
large. The resulting boundaries for the example are 
shown in Fig. 3. 

4 Design procedures 

This section presents the design procedures of the 
nonminimum-phase (or transportation lag) system using 
the method given in Section 3. 

(a) Choose the nominal To, PI, and N o .  To is selected 
as the mean I To I = (B,  + B,)/2, where B, and B, are the 
upper and lower permitted bounds, respectively. PI, is 
selected at the midpoint of the given uncertainty. N o  is 
selected as the maximum lag. 

(b) Find the bounds B(o)  of L,,, then the bounds of 
L,, . By eqn. 11, I TI,, = (B,  - BJ2. Also P ,  = 1 
- l/J"(s), where F(s) is given by eqn. 3. Then we can 

easily find the L,, bounds on the inverse Nichols chart. 
The L,, bounds can be found by eqn. 4. 

( e )  Shape the nominal loop transmission function L,, 
and derive both the compensator G(s) and the prefilter 
F(s). The loop shaping is achieved by selecting a rational 
transfer function with magnitude at or above the bounds 
found in step (b) at each specified frequency. One could 
use a high-order rational function to achieve an optimum 
loop shaping as proposed in [SI. The prefilter design is to 
make the I T,(jo) I = I L,,(jo)/(l + L,,(jw) I as close as 
possible to the 1 T,(jo) 1 selected in step (a) 

(d) Modify L,,(s) and F(s) if necessary. 

-40 -  

5 Numerical example 

For the sake of easier comparison of the EDA method 
with the original method, this example is taken from 
[l, 23. The plant transfer function is 

81 ? 
\, 
\, 

k(l - ds) 
P(s) = ~ 

$1 + bs) 
with k E [l, 31, b E C0.3, 11, d E c0.05, 0.11. The step time 
response specifications and the equivalent frequency 
response bounds are shown in Figs. 6 and 4. The con- 
straint for the disturbance response is y < 6 dB. 

The nominal values are chosen as P , ,  = 2/(s(l + 
0.65s)), do = 0.1, N,(s) = 1 + 0.1s and 

k(l  + 0.65~X1 - ds) 
2(1 - O.lsX1 + bs) 

P ( s )  = 

According to Section 4 step (b) and the acceptable toler- 
ance in Fig. 4, we have I T. Id, at each given w as shown in 
Table 1. By eqn. 15, we have the bound value for the 
given frequency as shown in Table 2. Then the L,, 
bounds can be easily found as in Fig. 3 (dashed line). By 
Section 3.2, the L,, bounds are also shown in Fig. 3 
(solid line). Then the nominal loop transmission function 
and the compensators are as follows: 

1.4 1 + 0.56s 40' 
s 1 + 0.4s s2 + 40s + 40' 

L,,(s) = - - 

1120(1 + 0.65sX1 + 0.56s) 
(1 + O.ls)(l + 0.4s)(sz + 40s + 1600) 

7.2(s2 + 3.8s + 6.25) 
(1 + 0.67sXs + 1.8Xs2 + 6s + 25) 

G(s) = 

F(s) = 

Fig. 4 Achieued I To(jo) I 

Table 2: Bounds value calculation 

I 'vldB - IPrldB me.= 1 + L O )  Id8 

0.4 0.5 - 0.8773 = -0.3733 
1 1.75-3.1466= -1.3966 
2 5.0 - 5.2539 = -0.2539 
3 7.75 - 6.2078 = 1.51 72 
5 1 1  - 7.3206 = 3.6794 
8 15 - 8.6521 = 6.3479 
10 20.25 - 9.4202 = 10.8298 

Table 1 : Normalised system tolerance 

w 0.4 1 2 3 5 8 10 

B" 0.25 0.5 1.0 0.95 0 -3.5 -6.5 
B, -0.75 -3 -9.0 -14.5 -22 -33.5 -47 
I T , ~ ~ , = ( B , - B , ) / Z  0.5 1.75 5.0 7.725 1 1  15 20.25 
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Simulations for the different plant cases of Table 3 are 
shown in Figs. 5 and 6 .  

Table 3: Different plant cases 

Case k d b 

1 1.0 0.1 1.0 
2 1.0 0.1 0.3 
3 3.0 0.1 1.0 
4 3.0 0.1 0.3 
5 1.0 0.05 1.0 
6 1.0 0.05 0.3 
7 3.0 0.05 1.0 
8 3.0 0.05 0.3 
9 2.0 0.1 0.65 

7 7  

Fig. 5 Achieved I T(jw) lfnr diferent plant cases 

I 5l 

-0 5 ;  
1 2 3 I, 

1 . 5  

Fig. 6 

6 Conclusion 

This paper shows how the equivalent disturbance attenu- 
ation method is used to design a nonminimum-phase 
(or transportation lag) system. Theoretically, any 
nonminimum-phase system can be designed as well as the 
minimum-phase system. However, since the frequency 
domain is used throughout the design procedure, if the 
phase lag caused by the right-halfplane zero is too large, 
it is possible in practice that no solution exists for a 
nonminimum-phase problem. Some criteria for deter- 
mining whether there may be no solution to the 
nonminimum-phase problem have been presented in [2, 
3, lo]. 

The equivalent disturbance attenuation method is suc- 
cessfully applied to the nonminimum-phase plant with 
large parameter variations. From the numerical example, 
the design procedure is shown to be straightforward, 
especially in finding the bounds on Lo. It is interesting to 
compare the results of the EDA method and the template 
manipulation method. Fig. 7 shows compensators G(s) 

S tep  response for differenr plant cases 

obtained from Section 4 (solid line) and by Horowitz and 
Sidi (dashed line) [l, 21. Theoretically, the EDA method 
from eqn. 15 should be more conservative than the tem- 
plate manipulation method. However, Fig. 7 shows the 

-401 
10-1 100 10‘ 102 103 

W 

Fig. 7 
~ designed by EDA method 

designed in [ I .  21 

Frequency response of compensatoi 

~~~~ 

opposite. This is due not to the superiority of the EDA 
method but to the accuracy of the loop shaping. This 
interesting result also shows that the criteria of the two 
methods are similar, and that the EDA method is more 
convenient for the designer. Although the EDA approach 
will sometimes result in a conservative design, this dis- 
advantage can be overcome by choosing an optimum 
nominal plant P ,  and the method proposed in [SI. This 
is an interesting and challenging subject, and further 
research is now under way. 
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