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Abstract This paper discusses the relation among four problems: graph testing,
DNA complex screening, superimposed codes and secure key distribution. We prove
a surprising equivalence relation among these four problems, and use this equivalence
to improve current results on graph testing. In the rest of this paper, we give a lower
bound for the minimum number of tests on DNA complex screening model.
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1 Introduction

In the combinatorial group testing problem (see Balding et al. 1996; Du and Hwang
2000; Kautz and Singleton 1964 for a survey), we consider a set N of n items consist-
ing of at most d defective items and the other good items. The problem is to identify
all defective items with a small number of group tests. A group test can be applied to
an arbitrary subset S ⊆ N with two possible outcomes; a negative outcome implies
all items in S are good, while a positive outcome implies otherwise, i.e., there exists
at least one defective item in S, not knowing which or how many.

The first and second author would like to dedicate this paper to professor Frank K. Hwang on the
occasion of his 65th birthday.

This research is partially supported by Republic of China, National Science Council grant NSC
92-2115-M-009-014.

H.B. Chen (�) · F.K. Hwang
Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan
e-mail: andan.am92g@nctu.edu.tw

F.K. Hwang
e-mail: fhwang@math.nctu.edu.tw

D.Z. Du
Department of Computer Science, University of Texas at Dallas, Richardson, TX 75082, USA



122 J Comb Optim (2007) 14: 121–129

The group testing problem has been extended to graph testing (see Chapter 10
of Du and Hwang 2000 for references) where a hypergraph H(V,E) is given. The
problem is to identify a hidden subgraph D with a small number of graph tests.
A graph test can be applied to an arbitrary subset S ⊆ V with two possible out-
comes; a negative outcome implies that all edges in the subgraph HS induced by
S are not in D, while a positive outcome implies otherwise, i.e., HS contains at
least one edge in D, not knowing which or how many. We could have different
graph testing problems according as prior knowledge of D; the usual assumption
is D has at most d edges, but it can also be D is a matching (Alon et al. 2004;
Beigel et al. 2001) or a Hamiltonian circuit (Grebinski and Kucherov 1998). The
group testing problem is a special case of the graph testing problem where H is a
1-graph, i.e., each edge is a vertex.

In the DNA complex model (Macula et al. 1999, 2004; Macula and Popyack 2004;
Torney 1999), we have a set N of n molecules and an unknown family D = {Di} of
subsets of N where each such subset is a cause of a certain disease. The problem is to
identify D through a few experiments. An experiment can be applied to an arbitrary
subset S ⊆ N with two possible outcomes; a negative outcome implies S does not
contain any Di ∈ D, and a positive outcome implies otherwise. A set of molecules
which is a candidate of a member of D is called a complex.

It is easy to see the connection between the complex model and the graph testing
model. A molecule is a vertex, a complex is an edge, D is the edge-set in the hidden
subgraph, and an experiment is a graph test.

Establishing such a connection leads to two consequences. The obvious one is
all results on graph testing are now available to solve the complex model problem.
The less obvious one is a change of emphasis in graph-testing research due to the
influence of the complex model application. An experiment in the complex model
can be time-consuming. Hence it is much preferable to have a nonadaptive algorithm
where all subsets for testing are specified at once (and hence can be tested at once
theoretically), or at least by a k-round algorithm for some small k. The literature on
nonadaptive or k-round algorithm is starting to flourish (Alon et al. 2004; Grebinski
and Kucherov, 1998, 2000; Gao et al. 2005; Li et al. 2007).

In the secure key distribution problem (see Mitchell and Piper 1988; Stinson et
al. 2000 for a large body of literature), n persons want to communicate securely in
groups of r persons. Of course, if each member of an r-group owns a key (for coding
and decoding messages) which no nonmember can have, then the communication
will certainly be secure. However, too many keys (to be exact,

(
n
r

)
) are required.

Therefore, the security requirement is relaxed to, given a group of r members and a
group of d nonmembers, there exists a key owned by each of the r-group and none
of the d-group.

D’yachkov et al. (2002) proposed the binary superimposed (d, r)-code which sat-
isfies the property that for any d + r codewords C1,C2, . . . ,Cd+r , there exists an
alphabet which is in every code C1,C2, . . . ,Cr , but none of Cr+1,Cr+2, . . . ,Cd+r .
This code was further studied in (Stinson and Wei 2004; Stinson et al. 2000;
Engel 1996; Kim and Lebedev 2004), sometimes under the name of cover-free fami-
lies.

By treating each key as an alphabet, and the set of keys owned by a person as a
codeword, a secure key distribution design is a binary superimposed (d, r)-code.
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However, the connection between this pair of problems and the first pair of prob-
lems is not obvious. In fact, even for an inter-pair problem, where the connection
is easy, the literature on the two problems are mostly independent. In this paper we
prove a surprising equivalence relation between the two pairs of problems under cer-
tain conditions. We use this equivalence to improve existing results on the complex
model (hence on graph testing).

2 The equivalence and its consequences

We adopt the notation of the graph-testing model. A nonadaptive graph testing al-
gorithm can be represented by the incidence matrix M between vertices and tests,
i.e., rows are label by tests, columns by vertices, and cell (i, j) has a 1-entry if and
only if vertex j is in test i. We view a column as the set of row indices where the
column has 1-entries. Then we can talk about union and intersection of columns. For
a set S ⊆ V , let

⋃
S and

⋂
S denote the union and intersection of all columns in S.

Suppose D is the set of hidden edges. Then the outcome set (the indices of rows of
positive outcome) is simply

⋃
ei∈D(

⋂
ei). A hypergraph is said to be a rank-r graph

if each edge contains at most r vertices. And a hypergraph is an r-graph if each edge
contains exactly r vertices.

Suppose H is an r-graph and our only knowledge of D is |D| ≤ d . We define
some properties of M relating to its ability to solve this graph testing problem:
(d, r)H -separable. For any two distinct d-sets D, D′ of edges,

⋃

ei∈D

(⋂
ei

)
�=

⋃

ei∈D′

(⋂
ei

)
. (1)

(d̄, r)H -separable. For any two distinct sets D, D′ of edges with |D|, |D′| ≤ d ,

⋃

ei∈D

(⋂
ei

)
�=

⋃

ei∈D′

(⋂
ei

)
. (2)

(d, r)H -disjunct. For any d + 1 edges e0, e1, . . . , ed ,

⋂
e0 �⊆

d⋃

i=1

(⋂
ei

)
. (3)

Clearly, a (d, r)H -separable matrix identifies D if |D| = d is known. A (d̄, r)H -
separable matrix and a (d, r)H -disjunct matrix identify D if |D| ≤ d is known, while
the latter has an easy decoding since every edge not in D appears in a test not covering
any hidden edge, thus the outcome is negative and the edge is identified. Note that
when all edges not in D are so identified, the remaining edges are the hidden edges.
Thus, (d, r)H -disjunct implies (d̄, r)H -separable implies (d, r)H -separable.

Similarly we can define (d, r̄)H -separable, (d̄, r̄)H -separable and (d, r̄)H -
disjunct matrix when H is a rank-r graph. When H is the complete r-graph or
rank-r graph, then the subscript H will be change to K . In the d̄-separable case, we
assume that no two positive edges e and e′ satisfy e belonging to e′ for otherwise we
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cannot tell whether only e or both are in D. In the d-disjunct case, we assume that no
two edges e and e′ satisfy e belonging to e′ for otherwise there does not exist a row
covering e′ but not e.

On the other hand, the incidence matrix of a binary superimposed (d, r)-code has
the property which we denote by (d, r∩)-disjunct. Namely, for any d + r columns
C1,C2, . . . ,Cd+r ,

r⋂

i=1

Ci �⊆
d+r⋃

i=r+1

Ci. (4)

Note that condition (4) looks different from any of (1), (2), (3). The only result in
the literature making a connection between the two types of results is the following
(given in D’yachkov et al. 2002):

Lemma 2.1 (d, r∩)-disjunct ⇒ (d̄, r̄)K -separable ⇒ (d − 1, r∩)-disjunct and
(d, (r − 1)∩)-disjunct.

We will give a proof of the first implication since we believe that the original proof
has a slip.

Suppose M is not (d̄, r̄)K -separable, i.e., there exist two sets D and D′ with |D| ≤
d and |D′| ≤ d such that

⋃
ei∈D(

⋂
ei) = ⋃

ei∈D′(
⋂

ei). By our assumption, neither
D nor D′ contains two edges one containing the other. Thus there must exist an edge
e in D ∪ D′ such that e does not contain any edge from the other set for otherwise
we would have e′′ ⊆ e′ ⊆ e where e and e′′ are in the same set. Without loss of
generality, assume e ∈ D. Since e �⊇ ei for every ei ∈ D′, we can choose Ci ∈ ei \ e.
Define S = {Ci : 1 ≤ i ≤ |D′|}. Then S is a set of at most d columns disjoint from e.

Suppose to the contrary that M is (d, r∩)-disjunct. Then there exists a row with
1-entries in every column of e and 0-entries in every column in S. Thus this row
covers e but none of ei ∈ D′. Hence at this row

⋃

ei∈D

(⋂
ei

)
= 1 �=

⋃

ei∈D′

(⋂
ei

)
= 0,

a contradiction to our previous assumption.
The slip was made by choosing e ∈ D ∪ D′ which is not contained in any edge of

the other set. Then ei \ e can be empty and Ci cannot be chosen.
We now prove the crucial relation between the two types of results.

Theorem 2.2 (d, r∩)-disjunct ⇔ (d, r)K -disjunct.

Proof Suppose M is not (d, r∩)-disjunct. Then there exist d +r columns C1,C2, . . . ,

Cd+r such that

r⋂

i=1

Ci ⊆
d+r⋃

i=r+1

Ci.
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Let e0 = {C1,C2, . . . ,Cr} and ei = {C2,C3, . . . ,Cr ,Cr+i},1 ≤ i ≤ d . Then

⋃
e0 =

⋃
{C2,C3, . . . ,Cr} ∪ C1 ⊆

⋃
{C2,C3, . . . ,Cr} ∪

(
d+r⋃

i=r+1

Ci

)

=
d⋃

i=1

(∪ei).

Hence M is not (d, r)K -disjunct.
Conversely, suppose M is (d, r∩)-disjunct. Let e, e1, · · · , ed denote d +1 arbitrary

edges where no ei , 1 ≤ i ≤ d , is contained in e. Set Cr+i ∈ ei \ e,1 ≤ i ≤ d , where
ei ∈ D. Then M contains a row which covers e, but intersects none of Cr+i ,1 ≤
i ≤ d , i.e., covers none of ei ∈ D. Hence M is (d, r)K -disjunct. �

We apply Theorem 2.2 to improve various results in the graph testing model.
Let H = (V ,E) be a rank-r graph. Gao et al. (2005) gave a construction of the

(d, r)H -disjunct matrices by first constructing a q-ary matrix Q and then converting
it to a binary matrix M . Let fj (e) denote the set of q-ary entries in row j collected
from the columns associated with the edge e ∈ E. Then Q has the property that for
any d + 1 edges e0, e1, . . . , ed , there exists a row j in which none of the fj (ei),1 ≤
i ≤ d , is contained in fj (e0). For row j in Q, let cj = |{fj (e) : e ∈ E}|. Then cj ≤
min{|E|,�r

i=1

(
q
i

)}. Their conversion is to replace row j in Q by cj rows, and each
of which labeled by the set {(j, f )} where f is a distinct element in the set {fj (e) :
e ∈ E}. For row {(j, f )} in the converted matrix M , every column in e with fj (e) =
f ( there can be more than one such edge e) has a 1-entry and all other columns
have a 0-entry. They proved that such a matrix M converted from a q-ary matrix Q

is (d, r)H -disjunct. They also gave a construction of Q = [qij ] with drm + 1 rows
and qm+1 columns each representing a degree-m polynomial pv(x) in GF(q), where
v ∈ V and q is a prime power ≥ drm + 1, and the value in the cell qij is defined by
pj (i). Assuming |E| ≥ �r

i=1

(
q
i

)
, the number of tests in the converted matrix M is

drm+1∑

j=1

cj ≤ (drm + 1)

r∑

i=1

(
q

i

)
≤ (drm + 1)

(
q + r − 1

r

)
.

We now propose a better conversion. Let c′
x = |{pv(x) : v ∈ V }| for each row x in Q,

then c′
x ≤ q . For row x in Q, our conversion is to replace each element in the set

{pv(x) : v ∈ V } by a distinct column of a t ′ × c′
x (d, r∩)-disjunct matrix. Suppose x

is the row in which none of the fx(ei) is contained in fx(e0). Let Ci ∈ ei \ e0 such
that fx(Ci) �∈ fx(e0) for 1 ≤ i ≤ d . Then after the conversion there exists at least a
row xj in M , converted from the row x in Q, in which the columns in e0 all have
1-entries while Ci all have 0-entries, 1 ≤ i ≤ d . Hence

⋂
e0 �⊆ ⋃d

i=1(
⋂

ei). Since
the choice of e1, e2, . . . , ed is arbitrary, the converted matrix M is (d, r)H -disjunct.

Let t (d, r, n)H denote the minimum number of rows required for a (d, r)H -
disjunct matrix with n columns. Similarly, we define t (d, r∩, n). Existing results on
t (d, r∩, q) (see Stinson et al. 2000 for example) show that it is less than

(
q+r−1

r

)
in

general or at least asymptotically. Thus, we have

Theorem 2.3 t (d, r, qm+1)H ≤ (drm + 1)t (d, r∩, q).



126 J Comb Optim (2007) 14: 121–129

When H is the complete r-graph, M is (d, r)K -disjunct. By Theorem 2.2, M is
also (d, r∩)-disjunct. Then we have

Corollary 2.4 t (d, r∩, qm+1) ≤ (drm + 1)t (d, r∩, q).

Corollary 2.4 is the same result as given by D’yachkov et al. (2002) on the con-
struction of (d, r∩)-disjunct matrices using the MDS-code. The incidence matrix of
the MDS-code with parameters (q, k, t) is a q-ary matrix of size t ×qk and the Ham-
ming distance of any pair of columns is d = t − k + 1. Lemma 2.5 arises from the
definition of the MDS-code.

Lemma 2.5 (Sagalovich 1994) If qk ≥ d + r and n ≥ dr(k − 1) + 1, then any
MDS-code with parameters (q, k, t) has the property that for any d + r columns
C1,C2, . . . ,Cd+r , there exists a row where the set of entries over C1,C2, . . . ,Cr and
the set of entries over Cr+1, . . . ,Cd+r are disjoint.

D’yachkov, Vilenkin, Macula and Torney used the Reed-Solomon q-ary code,
which is also an MDS-code, to get a (drm + 1) × qm+1 q-ary matrix with the prop-
erty that described in Lemma 2.5. Then they also use a t ′ × q (d, r∩)-disjunct matrix
to transform the q-ary matrix to binary one. The requirement of this q-ary matrix is
seemingly different from that given by Du et al., though the latter also corresponds to
an MDS-code. We now prove that the requirements of the two of q-ary matrices are
equivalent along the line of Theorem 2.2.

Let e0, e1, . . . , ed be any d + 1 complexes. Set {C1,C2, . . . ,Cr} = e0 and Cr+i ∈
ei \ e0, 1 ≤ i ≤ d . If the Reed-Solomon q-ary code property holds, i.e., there exists
a row x such that the set of entries over C1,C2, . . . ,Cr and the set of entries over
Cr+1, . . . ,Cd+r are disjoint, then in the row x none of fx(ei) is contained in fx(e0),
1 ≤ i ≤ d .

Conversely, let C1,C2, . . . ,Cd+r be any d + r columns. Set e0 = {C1,C2, . . . ,Cr}
and ei = {C2, . . . ,Cr ,Cr+i}, 1 ≤ i ≤ d . If there exists a row x in which none of
fx(ei) is contained in fx(e0), then in the row x the set of entries over C1,C2, . . . ,Cr

and the set of entries over Cr+1, . . . ,Cd+r are disjoint.
Li et al. (2007) gave a construction of (d,2)H -disjunct matrix where H = Kn,n is

the complete bipartite graph with n vertices in each part. Their construction is similar
to the one given in (Gao et al. 2005).

By using a (d,2∩)-disjunct matrix for conversion, we obtain an alternative result.

Theorem 2.6 t (d,2,2n)Kn,n ≤ (2dm+1)t (d,2∩, q), where q is a prime power with
qm+1 ≥ 2n.

3 An extension to error-tolerant version

Stinson and Wei (2004) first gave an error-tolerant version of the (d, r∩)-disjunct ma-
trix. A matrix is called (d, r∩; z)-disjunct if for any d + r columns C1,C2, . . . ,Cd+r ,

∣∣∣
∣∣

r⋂

i=1

Ci

∖ d+r⋃

i=r+1

Ci

∣∣∣
∣∣
≥ z,
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i.e., there exist at least z rows in which each of the r designated columns has a 1-entry
and each of the other d columns has a 0-entry. For a (d, r∩; z)-disjunct matrix, if the
number of error-tests is less than 
 z−1

2 �, then we can decode the up-to-d positive
complexes. It is because that each negative complex appears in at least z − 
 z−1

2 � =
� z−1

2 �+1 negative pool while each positive complex in at most 
 z−1
2 � negative pools

(due to errors). Therefore we can separate the negative complexes from the positive
ones.

In general, it is not easy to construct a matrix with error-tolerance. A trivial, but
not efficient, construction to obtain error-tolerance is by taking copies of each row of
the original matrix. In the section we will extend the substitution-type construction
introduced in Section 2 to the error-tolerant version. Let Qz be constructed similar
to Q except there are drm + z rows for z ≥ 1. Surprisingly, by replacing Q by Qz

and (d, r∩)-disjunct matrix by (d, r∩; z′)-disjunct matrix in the substitution-type con-
struction, we obtain a (d, r∩; zz′)-disjunct matrix which can correct up to 
 (zz′−1)

2 �
errors.

Lemma 3.1 For any d + 1 edges e0, e1, . . . , ed , there exists a set R of at least z rows
in Qz such that for each j ∈ R none of fj (ei) is contained in fj (e0), where 1 ≤ i ≤ d .

Proof By construction of Qz, each column is represented by a degree-m polynomial
in GF(q), and all of which are distinct. Hence any two columns have common entries
in at most m rows.

Suppose to the contrary that there exist at most z−1 rows satisfying the condition.
Then by the pigeonhole principal there exists an edge ex ∈ {e1, e2, . . . , ed} such that
there exists a set N of at least rm+1 rows satisfying fj (ex) ⊆ fj (e0) for each j ∈ N .
Use the pigeonhole principal again, there exist two columns, one in ex and the other
in e0 \ ex , with common entries in at least m + 1 rows, a contradiction. �

By applying the substitution-type construction to Qz, we obtain

Theorem 3.2 By replacing each q-ary symbol in Qz by a distinct column of a t ′ × q

(d, r∩; z′)-disjunct matrix, we obtain a (drm + z)t ′ × qm+1 (d, r∩; zz′)-disjunct ma-
trix M .

Proof It suffices to prove that M is (d, r∩; zz′)-disjunct. Take a pair of disjoint d-set
and r-set of columns, we want to show that there exist zz′ rows with 1-entries in the
designated r columns and 0-entries in the designated d columns.

After transformation, each row satisfying above condition can generate z′ rows
each of which has a 1-entry in the designated r columns and a 0-entry in the desig-
nated d columns. By Lemma 3.1, there exist z rows whose entries in the d columns
are all different from the entries in the r columns. Hence there exist zz′ rows with a
1-entry in each of the r columns and a 0-entry in each of the d columns. �

4 A lower bound of t∗(d, r∩,n) for small n with a constraint

A complex X is called an isolated complex if there exists a row covering only
X. As it is not an efficient test, it is customary to assume that there are no iso-
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lated complexes in a (d, r∩)-disjunct matrix, i.e., each row has strictly more than
r 1’s.

Let M be a (d, r∩)-disjunct matrix and let M ′ be obtained from M by interchang-
ing all the 1’s and 0’s. D’yachkov et al. (2002) proved that M ′ is (r, d∩)-disjunct.
In other words, if M is an optimal (d, r∩)-disjunct matrix, then M ′ is an optimal
(r, d∩)-disjunct matrix. Hence we strengthen the assumption of no isolated complex
to that each row has strictly more than r 1’s and d 0’s in a (d, r∩)-disjunct matrix.
This assumption is made throughout the rest of the paper.

Let t∗(d, r∩, n) be the minimum number of rows over all (d, r∩)-disjunct matrices
of n columns. We define a secondary parameter wk , the minimum cardinality of ∩X

over all k-sets X, and use a lower bound of it to bound t∗(d, r∩, n).

Theorem 4.1 For a (d, r∩)-disjunct matrix with no isolated complexes, we have wi −
wi+1 ≥ d for i = 1,2, . . . , r .

Proof Let M be a (d, r∩)-disjunct matrix. Given k ≤ r , let C = {C1,C2, . . . ,Ck} be
a set of k columns in M such that |⋂k

i=1Ci | = wk . Define C′ = C0 ∪ C. Suppose
|⋂k

i=0Ci | = w.
Since k ≤ r , we can choose a set S consisting of any other r − k columns. Let

S1 = S ∪ C and S2 = S ∪ C′ \ C1. Then |S1| = |S2| = r . Hence S1 and S2 are distinct
complexes in M . Since

⋂
C′ ⊆ ⋂

C, whatever in
⋂

C′ but not in
⋂

(S ∪ C′) is also
not in

⋂
(S ∪ C). So |⋂S1 \ ⋂

S2| ≤ |⋂S1 \ ⋂
(S ∪ C′)| = wk − w ≤ wk − wk+1.

If wk − w ≤ d − 1, then there exist d − 1 other complexes X1,X2, . . . ,Xd−1( since
M has no isolated complexes) such that

⋂
S1 ⊆ ⋃d−1

i=1 (
⋂

Xi)∪ (
⋂

S2), violating the
(d, r∩)-disjunct property. �

Corollary 4.2 For a (d, r∩)-disjunct matrix with no isolated complexes, we have
wi ≥ d(r − i + 1) + 1 for i = 1,2, . . . , r .

Proof By Theorem 4.1, wi − wr = (wi − wi+1) + (wi+1 − wi+2) + · · · + (wr−1 −
wr) ≥ d(r − i), for i ≤ r . Since each complex is not an isolated complex, wr ≥ d +1.
Thus, wi ≥ d(r − i + 1) + 1. �

Note that w1 is the minimum weight over all columns.

Corollary 4.3 A (d, r∩)-disjunct matrix with no isolated complexes has column
weight at least dr + 1.

Without loss of generality, assume d ≥ r .

Theorem 4.4 t∗(d, r∩, n) ≥ r
2 (d + r − 1)(d − r + 2) + r

6 (r − 1)(4r − 5) + d + r .

Proof To prove the theorem, we delete one column and all the intersecting rows
from M step by step. Let M be an optimal (d, r∩)-disjunct matrix and let M1 be
obtained from M by deleting a column and all the intersecting rows. Then a re-
sult proved by Stinson et al. (2000) implies that M1 is a (d − 1, r∩)-disjunct ma-
trix.
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Continue this process till a (r −1, r∩)-disjunct matrix is obtained. To have a better
bound, we transform the current matrix to a (r, (r − 1)∩)-disjunct matrix by inter-
changing all the 1’s and 0’s in the former one, and then keep going this process till a
(1,1∩)-disjunct matrix is obtained. By Corollary 4.3 we can count easily the number
of rows deleted from M . And then we get a lower bound of t∗(d, r∩, n), that is,

(dr + 1) + ((d − 1)r + 1) + · · · + ((r − 1)r + 1) + ((r − 1)2 + 1)

+ ((r − 2)(r − 1) + 1) + · · · + (12 + 1)

= r

2
(d + r − 1)(d − r + 2) + r

6
(r − 1)(4r − 5) + d + r. �

Theorem 4.4 gives a lower bound with parameters d and r . For r = 1, this bound
is reduced to the famous Bassalygo

(
d+2

2

)
bound (see Du and Hwang 2000 for refer-

ence).
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