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This paper presents a three-frame matching method for finding the correspondences of 
comer points. After a two-stage corner detector is applied to each frame to extract a set of 
corner points as the matching primitives, candidate transition paths, which are formed by 
three corner points among three consecutive corner sets, are found by utilizing the smooth- 
ness constraint of motion due to inertia. Initially, each transition path is assigned an initial 
probability of being correct transition based on the similarity of curvatures of the three 
corner points. These probabilities are iteratively modified by a relaxation process according 
to the consistency properties of both acceleration and velocity. After several iterations, the 
paths with sufficiently high probabilities are taken as the correct transition paths. A new 
segmentation process which integrates both velocity and contrast information is presented to 
extract regions of moving objects. Several experimental results show that the approach is very 
effective. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

Dynamic scene analysis is mainly concerned with the processing of time-ordered 
sequences of images for recovering motion parameters of the sensor and moving 
objects and determining object structures. The applications include traffic control, 
mobile robot navigation, computer animation, dynamic industry process monitor- 
ing, and so on. Several surveys can be found in [l-41. 

The correlation method [5-71 for template matching is one of the commonly 
adopted approaches in earlier researches. This approach cannot conquer the 
problem of geometrical distortions. Another approach that can, divides motion 
analysis into two phases: computation of optical flow and interpretation of this 
field [3]. The term optical flow represents the displacement vectors of image 
elements from one frame to the next; it can be computed by using either the 
gradient-based techniques [8] or the primitive-based methods [9, 101. This ap- 
proach generally includes a matching process for tracking feature primitives such 
as corner points from frame to frame in a sequence of images. It is the main theme 
of this paper. 

In primitive-based methods, many researchers adopt the relaxation technique to 
match corners extracted from two image frames [lo-121. These methods first 
estimate an initial probability of each possible matching pair. Then this probability 
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is updated iteratively based on some criteria, such as the consistency property used 
in [lo]. Other features, such as edges and segmented regions, are also used as 
matching primitives [7, 13-151. These methods have good results if the extraction 
of primitives is nearly perfect. 

For the interpretation of optical flow, the displacement field should be seg- 
mented into multiple partitions, which correspond to multiple moving objects in a 
scene. Potter [16] grouped points with the same velocity measures. Thompson [17] 
adopted a gradient-based method proposed by Fennema and Thompson [181 to 
estimate the velocity field. Then the velocity field are segmented based on the 
similarities of both brightness and motion. These methods are not satisfactory for 
complex motion with rotation and scaling. Adiv [19] used the Hough transforma- 
tion technique to segment the velocity field generated by several moving objects. It 
requires a great amount of computational cost. 

The methods mentioned above for finding the displacement field work with only 
two frames at a time. Consequently, they do not make good use of the time-flow 
information. In comparison, human beings use this information on their retina to 
detect motion and separate multiple moving objects. Experiments with human 
perception on dot patterns show that the perception of a rigid object motion is 
extremely noise sensitive when only two frames are presented [201. Human beings 
also have difficulty in decomposing objects with different motion parameters in 
only two scenes. 

Using three or more consecutive frames for motion analysis has been addressed 
by many researchers [21-261. Shariat and Price [22] showed that correspondences 
of three points in three frames or two points in four frames are sufficient to 
estimate the translation and rotation parameters. Jain and Sethi [231 showed that a 
trajectory interpolated by the curve-fitting techniques can result in a better 
resolution than the two-frame matching method does. A longer sequence of frames 
also makes better use of time-flow information for estimating the motion parame- 
ters. Jensen [24] proposed an approach for establishing correspondences in a 
binocular image sequence. He suggested the use of smoothness of velocity. Sethi 
and Jain [25] used the smoothness of motion due to inertia to solve the motion 
problem for arbitrary motion of several non-rigid objects in a scene. Yen and 
Huang [26] showed that if the correspondence of a single point is available over 
three frames, the rotation parameters can be determined. 

Although multiple-frame methods make use of the time-flow information effec- 
tively, they often need to analyze many frames for good results. For example, the 
matching methods in [23, 251 have good results only after analyzing a long 
sequence of about ten frames. These methods are not satisfactory for some 
real-time monitor systems. Therefore, we conjecture that a three-frame matching 
algorithm will make use of the time-flow information more effectively than do the 
two-frame methods. 

Segmentation is a process of partitioning an image into meaningful parts such 
that all points belonging to a part have some common properties and can be 
represented by a mathematical or logical predicate. Early systems [27] segmented 
images by utilizing only intensity values. Later, domain-dependent knowledge was 
used by Riseman and Arbib [281 in the design of a segmentation system. The 
results obtained by these systems were satisfactory for only a limited class of 
pictures. Since Braunstein [29] suggested that motion is a powerful cue for 
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segmentation, many researchers are concerned with the use of motion information 
for segmenting images [16-18, 30-321. 

We first extract three comer sets in three consecutive frames by a two-stage 
corner detector. This detector is described in detail in Section 2. Then, the 
three-frame matching method is presented. It utilizes the property of smoothness 
of motion to find all possible transition paths and adopts a relaxation process to 
determine the real matching paths, based on the consistency property due to 
spatial continuity. The details are illustrated in Section 3. After the transition 
paths are found, a region-merge method is proposed to extract regions of moving 
objects in each frame. This method utilizes both contrast and velocity information. 
The method is divided into two parts, object motion with and without scaling, and 
is depicted in Section 4. Several experimental results are given in Section 5. Some 
conclusions are presented in Section 6. 

2. TWO-STAGE CORNER DETECTION 

Detecting the position of a corner point accurately is an important process for 
dynamic scene analysis. Fang and Huang [33] proposed that the accuracy of the 
coordinates of the points has a big impact on the accuracy of motion parameters. 
They first located the edge positions with subpixel accuracy. Then, the corner 
positions are calculated by intersecting these edges. This method requires a great 
amount of computational cost and is not suitable for objects with curved surfaces. 

One commonly employed corner operator is presented by Moravec [34]. The 
operator selects image points with the highest variance in four directions as 
interest points. It would suffer from choosing some redundant points, such as edge 
points and noise. Furthermore, since it could not detect the real corner points 
precisely, it would decrease the accuracy of the smoothness measures in subse- 
quent analyses. Other corner detectors based on curvature and gradient changes 
can be found in [35, 361. Because the three-frame matching method uses both first 
and second derivatives, it is important to find all the corresponding points 
accurately. 

In this system, the Moravec interest operator is first adopted to select interest 
points because it is simple and powerful. Some corner points may be defeated by 
other non-corner points with higher variances. In order to avoid missing these 
corner points, the local maximum filter is chosen with a small 3 x 3 window. This 
would result in a great amount of redundant points. Also some interest points will 
locate on the neighborhood of the tip of a real corner point. We will cope with 
these problems below. 

By observations, we find that most corner points often locate on the boundary of 
two or more than two regions whose average intensity values have significant 
difference. The corner points are junctions of L-type, arrow-type, K-type, and so 
on [37]. In this paper, only corner points of the L-type are considered. Actually, 
the method presented here can be extended to other types of corner points. 

In the second stage, a clustering method is applied to classify the pixels within 
the window centered on the interest point. The corner point shown in Fig. 1 is 
located in the 9 X 9 window whose center is an interest point. The number within 
each cell denotes the intensity value of the image point. We find that the average 
intensity values of the two regions have significant difference. 
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FIG. 1. Window of 9 x 9 pixels centered on an interest point. 

Formally, let P = (pi(x, y), i = 1,2,. . . , N] be the set of interest points ex- 
tractedinthefirststage,andG,={p(x+k,y+1),k= -4 ,..., 4,1= -4 ,..., 4) 
designate the set of pixels in the window centered on the interest point pi(x, y) for 
a real corner point c. The 2-means clustering algorithm [38], adopted to classify 
the point set Gi into two clusters C, and C,, is described detailedly below. 

Initially the algorithm partitions arbitrarily Gi into two clusters and computes 
two average gray values llzi and m2. Then it selects a point p from Gi and assigns 
it to the cluster whose mean value is closer to the gray value of point p. The 
algorithm keeps updating the mean values and assigning corner points until a 
complete scan of Gi with no change of the mean values. In our implementation, 
one of the following two pairs of points, (p(x - 4, y - 4), p(x + 4, y + 4)) and 
{p(x - 4, y + 4), P(X + 4, y - 4)], which has greater difference of intensity values, 
is selected as the initial two clusters. For the example shown in Fig. 1, the latter is 
selected. After clustering, noise points may be detected because they are often 
isolated, whose surrounding points are assigned to a different cluster. 

After the pixels in the window centered on pi are clustered, the boundary 
passing through the corner point can be detected easily. We trace the boundary B, 
{bi, i = 1,. . . ) I}, and calculate the curvature of each boundary points by using the 
k-curvature algorithm [39]. The boundary point bj with the maximum curvature is 
taken as the real corner point, instead of the interest point pi. Because the 
curvature calculated by the k-curvature (k = 2) algorithm is noise sensitive and 
this measure affects later processing significantly, the curvature ci of the adjusted 
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corner point bj is defined to be the angle between the two vectors bibI and 6&, 
where b, and 6, denote the two end points of the boundary. 

In Fig. 1 the cell with two star symbols represents an interest point. The cells 
labeled with bj, j = 1,. . . , 13, represent the boundary points which pass through 
the real corner point. The point b, which has the maximum curvature, calculated 
by the 2-curvature method, is taken as the real corner point and is used to replace 
the interest point. The new curvature of point 6, is calculated by using the two 
vectors b761 and b7b,,; here, it is 90”. 

After adjusting the position of interest points, we remove redundant edge points 
and pseudocorner points. Here, the edge points are defined as the points with 
curvature greater than a threshold t, t = 170, and the pseudocorner points are 
caused by the shadow of objects or the highlight. They generally are located on the 
boundary between two regions whose intensity values are similar. 

3. THREE-FRAME MATCHING METHOD 

Matching two or more pictures of the same scene is a common problem in 
computer vision and image processing. This problem arises in connection with 
registering pictures obtained by different sensors or by the same sensor at different 
times. In this paper, corner points are used for matching the images taken at 
different times by a stationary camera. 

3.1. Smoothness Constraint and Candidate Transition Paths 

In general, the projection of a smooth 3D trajectory is a smooth 2D trajectory in 
both orthographic and perspective projections. If a dynamic scene is sampled at a 
rate fast enough to capture all significant events in the scene, the observed motion 
of all objects will be smooth. Two frames are not enough to apply the smoothness 
constraint of motion. In this paper we use three frames to compute the change of 
motion. 

According to the smoothness constraint, we select a candidate transition path in 
three frames which does not change abruptly. We determine whether a transition 
path satisfies the smoothness constraint by checking the changes of the velocity 
vectors. A displacement vector formed by corner points in the first two frames will 
be rejected if there is no supporting corner point in the third frame. From this 
property, we can remove many redundant transition paths which change abruptly 
in three consecutive frames. This would remove many wrong transition paths and 
thus reduce the computational cost. 

Formally, assume that the three sets of corner points of three consecutive frames 
are P,, P2, and P3. A transition path m(p,, p2, p3), where p1 E P,, p2 E P2, and 
p3 E P3, would be selected if the two displacement vectors p1p2 and pzp3 have 
similar directions and magnitudes. In detail, for any corner point p1 E P,, we find 
each possible matching point p2 E P2 which is located in a window centered on pI 
with radius R. Then for the matching pair p1 and pz, we use the displacement 
vector p1p2 to predict the position of a comer point q in frame 3. A point p3 E P3 
in the window centered on q with a small radius r (r I RI is searched. If it is 
found, the transition path m(p,, p2, p3) would be selected. Otherwise, the match- 
ing pair p, and pz will be rejected. Sometimes, these matching pairs which have 
no supporting point in frame 3 are due to noise and occlusion. 



THREE-FRAME CORNER MATCHING 215 

Then, these transition paths are tested whether they satisfy the smoothness 
constraint. We prefer the paths with small changes of direction and magnitude 
between the two displacement vectors p1p2 and p2p3. Here, the change of 
direction @ is defined as the angle between plpz and p2p3, and the change of - - 
magnitude 1I’ is defined as the relative difference of lengths between p1p2 and p2p3 
with respect to the length of plpz. The transition paths whose @ or q are greater 
than the predefined thresholds are rejected. 

3.2. Consistency Property and Relaxation Process 

The three-dimensional spatial continuity of object surfaces will constrain the 
two-dimensional spatial distribution of the displacement vectors of the feature 
points in the image plane. For the three-frame approach, we exploit the fact that 
the spatial continuity constrains the spatial distribution of acceleration vectors in 
the image plane; here, the acceleration vector is defined as the change of two 
displacement vectors in the three frames. 

Formally, the consistency property is defined as neighboring points in a moving 
object that have similar characteristic vectors of motion, such as velocity and 
acceleration. This property can be used to suppress false matches which have no 
supporting paths. The transition path which has more neighboring transition paths 
with similar motion vectors has higher consistency. The transition paths with 
sufficiently higher consistency measure as taken as the candidate transition paths 
and the paths with lower consistency measure are removed. Figure 2 demonstrates 
the consistency property. In this figure there are three points in three different 
frames. The transition path m(p,, ql, rl) has two supporting transition paths, 
m(p,, qz, r2) and m(p,, q3, r3), with similar velocities and accelerations, while the 
transition path m(p,, q2, rJ has no supporting transition path. Thus, the consis- 
tency measure of m(p,, ql, ri> should be higher than that of m(p,, q2, r3). Simi- 
larly, the transition path m(p,, q3, r3) has higher consistency measure than that of 
m(p,, q2, rl). 

After the candidate paths are selected, we should refine the transition paths by a 
relaxation process based on the consistency property. First, we estimate the 
probability that a candidate path is correct. Assume that each corner point ci in 

FIG. 2. The consistency property. 
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frame 1 is associated with a set Mi of candidate transition paths. The transition 
path mj in Mi contains the coordinates of three corresponding corner points 
CxjlY Yjl)? cxj2, Yj*), and (xj3, yj3). Let the probability pj(mj) denote the probability 
that the transition path mj is correct. And let pi(m,) mean the probability that 
there is no transition path passing through corner point ci. 

The initial probability py(mj) is defined to be the similarity of the curvatures of 
the three corner points in the transition path mj. This measure is selected because 
it is less sensitive to intensity changes. The similarity of intensity values is not 
taken into consideration because the illumination in three consecutive frames is 
not controllable and is easily affected by scale change and geometrical distortion. 
Lf2t vj,l, vj,2, and vj s denote the curvatures of the three corners in the transition 
path mj. The weight associated with the transition path mj of corner point ci is 
defined as 

wi(mj) = 1 - 
lvj,l - 'j,zl + Ivj,2 - vj,31 

2xd 1 

where d represents 

max(Ivj,l - 'j,21 + Ivj,2 - Vj,ll). 

i 

Assume that the larger the weight wi(l?yj) is, the higher the probability of mj is. 
If there is no transition path with a sufficiently high weight then there is probably 
no valid match. We denote this situation by creating a pseudopath m,. Formally, 
the initial probability pp(m,) is estimated as 

pF(m,) = 1 - max (Witmj>)7 
j=l,...,#(M,) 

where #(Mi) denotes the number of elements in Mj. 
Next, we estimate the conditional probability pi(mjli), given that ci is matched 

as follows: 

Wi(mj) 
Pi(mjli) = c 

Wi(mk) ' 
k=I,...,#WJ 

(3) 

Then the Buy&an rule is applied to obtain an initial estimate of the probability 
when ci is on the transition path mj rather than m,, 

P,O(mj) =Pi(mjli) X (1 -p:(q)). (4) 

These probabilities are modified iteratively by using the consistency property. 
After the probabilities converge, we can find the possible matches by selecting the 
transition paths with sufficiently high probabilities. In detail, a corner point ck is 
defined to be near c1 if 

max(lxkl - xI1 1, lykl - hl I) 5 R, (5) 

where R is a radius threshold. Let dk, = (xk2 - xki, y,, - y,,) and d,, = (xk3 - 
xk2, yk3 - y,,) denote two displacement vectors of the transition path mk, and dl, 
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and d,, denote that of m,. The directional and magnitude differences of velocities 
between mk and m,, denoted as p and 6, are defined as follows: 

p =-=(-s-‘( ,dk~~~~~ll,)y cos-‘( ,dk~2~~~j2,)) 

2 x Id,, - &,I 2 x Id,, - &,I 
ldkll + k&l ’ ldkZl + Id,,1 ’ 

(6) 

(7) 

We then consider the consistency property of acceleration. Because the change 
of velocities in three frames is usually rather small, the direction of acceleration is 
very sensitive and thus not taken into consideration. The magnitude of accelera- 
tions of the two transition paths mk and m,, designated as uk and al, respectively, 
are defined as 

ak = bk3 - 2 x xk2 + xkl, Yk3 - 2 x Y,, + Ykl) (8) 

a, = (x13 - 2 x x12 + x11, YI3 - 2 x Y,, + Yn). (9) 

The scalar difference of accelerations, Y, between two transition paths is 
accordingly defined as 

v=max(abs($ - $),ah(~ - $)). (10) 

If it is less than a given threshold, then the two transition paths satisfy the 
consistency property of acceleration. Note that we compute the ratio of the 
magnitude of acceleration to the magnitude of velocity. 

In addition to the consistency property, the collision problem between two 
transition paths also needs to be considered. If two transition paths mk and ml 
have more than one common corner point, a collision occurs. Two collision 
examples are shown in Figs. 3a and b. Because we assume that each corner point 
belongs to a transition path, a collision is often a hint that some ambiguous 
matches occur. Thus, if two nearby transition paths mk and m, collide, these paths 
would not be consistent pairs. In this situation, we set u(mk, m,) = 0. On the other 
hand, mk and m, form a consistent pair and are denoted as u(mk, m,) = 1. In this 
case we say that mk and m, support each other. 

The procedure to modify the initial probabilities by using the consistency 
property is formulated as follows. Let p$mj) denote the refined probability after 
the rth iteration. The new probability p,Y1(mj) should tend to be increased when 
some transition paths near corner point ci supporting mj are found. The degree 
which the transition path m, of cj reinforces pi(mk) should be related to the 
estimated likelihood that m, is correct. To compute the new probability pifl(mk) 
for all transition paths mk in Mi, we examine each node in the area surrounding 
ci, but not including ci. That is, 

dtrnk) = c c where k = 1,2 ,..., #(Mi). (11) 
cj near ci m, in Mj 

j#i u(m,,mk)= 1 



218 LEE AND DENG 

a 

FIG. 3. Path collision: (a) Case 1; (b) Case 2. 

This quantity is zero if and only if there is no corner point surrounding ci which 
has possible transition paths supporting mk. From Eq. (5) we know that the radius 
R determines the searching area. For an isolated corner point located in a large 
homogeneous region, any point in the window with radius R may not exist. A 
larger radius R would solve this problem but it would result in higher error rate. 
In this paper we change the window size to solve this problem. If an isolated point 
has no supporting corner point in the window with radius R, the radius of the 
searching window will be increased until several corners (say, five) are found. 

According to qi, the probabilities of transition paths in Mi are updated by the 
formula 

$“(mj) =p;(mj) X (A + B X &(mj)), j = 1,2,..., #wfi)T (12) 

and 

&+‘(+d = PT(+J, (13) 

where the parameters A and B designate the delay rate and convergence rate, 
respectively. They are dependent on each other. In our experiments, A is set to 0.3 
and B is set to 3. These two values are selected to reflect properly the effects of 
the pseudopath and supporting paths. 
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Finally, we normalize B’s to obtain new probabilities, 

mk in M, 

This procedure is repeated until the probabilities reach a steady state. Those 
corners in a transition path whose probability is greater than a threshold (about 
0.8) are considered to be matched. If there is a collision between two transition 
paths, the path with the lower probability will be removed. 

4. SEGMENTATION 

In this section, we propose a segmentation process which utilizes both motion 
and intensity information to extract multiple moving objects with translation, 
rotation, and scaling. The flow diagram is given in Fig. 4. First, each frame is 
segmented into small regions by using the split-and-merge method [35] based upon 
intensity information. Then the stationary regions which contain no matched 
corner points are removed. Second, we determine whether or not the motion has a 
scale change by searching a point called focus of expansion (FOE). If it is found, 
the displacement vectors would be processed based upon the feature of FOE. 
Otherwise, the motion displacement vectors would be processed by using the 
region-merge method. That is, these nearby corners of adjacent regions with 
similar displacement vectors are grouped together, and the regions of the same 
group are merged. The ungrouped points are removed. Finally, the regions of 
moving objects are labeled and extracted. 

4.1. Images Segmentation and Stationary Region Deletion 

If an image contains several moving objects with similar motion, only velocity 
information is not enough to extract these moving objects. The objects should be 
detected by using the contrast information. Therefore, we use the contrast infor- 
mation to roughly separate the regions of moving objects by the split-and-merge 
algorithm and then utilize the velocity information to refine the segmentation. 

Because the velocity information is too sparse, sometimes it is difficult to cover 
the regions of moving objects completely. Larger regions would be helpful to 
reduce the impact due to the sparse velocity information. Thus, a strict condition is 
given during the region-split stage and a loose condition is given during the 
region-merge stage. 

After segmenting each frame by using the split-and-merge method, we delete 
stationary regions. Assume that a given frame is partitioned into m regions. Let 
R = {ri, i = 1,2,. . . , n) denote the set of regions and P = {J+, 1,2,. . . , n) repre- 
sent the set of the matched corner points. Each pi contains a list of three 
coordinates of the corner points and two displacement vectors di, and di, of the 
transition path. 

It seems easy to delete a stationary region just by checking whether it contains a 
matched point. Sometimes it is unsatisfactory because some regions of moving 
objects contain no matched points. Also because these matched points are not 
error free, they would result in redundant regions. Furthermore, it is difficult to 
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Split-and-M&e method 

Region merging p point grouping 

FIG. 4. Flow diagram of the segmentation process. 

decide to which regions these matched points should be assigned because these 
points are located on the boundary between two or more regions. 

Often background regions have large areas and some matched points are located 
on the boundary between regions of background and moving objects. If a matched 
point is assigned to a background region, the region will be incorrectly considered 
as belonging to a moving object. To avoid such an error, we assign this matched 
point to the region with a smaller area. This rule may fail for textured background, 
which would be partitioned into several small regions. These points should be 
reassigned based on other criteria. Some regions of moving objects may still 
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contain no matched points. They are reserved by using the heuristic that most of 
their surrounding regions have matched points. 

4.2. Region-Merge 

When either an object or the sensor moves in the depth-direction (i.e., the 
z-axis), the object projections will have scale change. This would cause all displace- 
ment vectors flowing toward or away from a single point in the image plane, FOE. 
In Fig. 5 the displacement vectors on the moving square are flowing away from the 
point FOE. 

For the object extraction, the algorithm begins with the search of the FOES to 
determine whether a scale change occurs. If an FOE is found, we can use the FOE 
to group the matched points. The regions with the same group of points will be 
merged together. The process is repeated until no more points can be grouped and 
no more regions can be merged. 

Searching for the FOES, we first find all the intersection points of any two lines 
of the displacement vectors. Here, each line is found by minimizing the sum of 
square errors between the three corner points of a transition path and the fitted 
line segment. For any point p of the image plane, we count the number of 
intersection points. If we can find a high peak in the map of the intersection 
points, the peak is taken as an FOE. If an FOE is found, we say that there is a 
scale change. In order to detect the peak easily, we sharpen the peaks of the 
histogram by applying a local maximum filter. The number of intersection points in 
a given window is added to the point which is the local maximum and is set as zero. 

The region-merge procedure to extract the object regions with scale change is 
depicted formally as follows: Let A designate the region with an FOE. Let Li 
denote the approximation line of transition path mi associated with matched point 
ci. A region with no matched point is merged with any one of its surrounding 
regions. Assume that the matched point ci is located in region ri, point cj in 
region rj, and region ri is adjacent to region rj. If the intersection point of the two 
approximation lines Li and Lj, associated with ri and rj, respectively, are located 
in region A, then the two points are grouped and the two regions are merged 
together. We repeat this process for any pair of points in adjacent regions. When 

Pl 

K1 

P2 

P3 
FIG. 5. Matching results of three consecutive frames. The displacement vectors on the moving 

square are flowing away from the FOE. 
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FOE region A 

P2 

FIG. 6. Region-merge for the object motion with scaling. 

the process terminates, there are some matched points still are not grouped. They 
are either due to error matches or due to object motion without scaling. These 
ungrouped points will be processed later. 

We demonstrate the region-merge procedure by an example shown in Fig. 6. 
Here, region C contains three matched points pr, pz, and p3; region D contains 
two matched points p4 and pS. The intersection point of the two approximation 
lines Ll and L2 with respect to points p1 and p4 is located in region A, where 
the FOE is located. Thus, the two points are grouped together and two associated 
adjacent regions C and D are merged together. We repeat this process for any 
pair of points in regions C and D. The point p2 may be an error matched point. 

Assume that there is no pure rotation. For the object motion without scaling, the 
motion should be pure translation. A region-merge procedure which is directly 
based on the similarity of the velocity vectors can be used to group matched points. 
That is, the points of adjacent regions would be grouped together if they have 
similar velocity vectors and the corresponding adjacent regions would also be 
merged together. We repeat this region-merge procedure until no more points can 
be grouped and no more regions can be merged. 

4.3. Extracting Regions of Moving Objects 

Assume that there are N groups of matched points corresponding to N moving 
objects in the frame after region merging. Because the corner points are sparse, 
some regions of a moving object may contain no matched point. These regions 
should be assigned to some moving objects. We determine whether region rj which 
has no matched point belongs to group gj by checking if the centroid tj(X, y) of r, 
locates in the convex hull of group gj. If it does, region ri will be assigned to group 
g,. Otherwise, it will be removed. These removed regions are often the stationary 
background regions. 

In Fig. 7a, all black circles represent the matched points belonging to the same 
group g,, regions A and B are background regions, regions C and D are object 
regions, and region E is an object region but it has no matched point. The region 
E should be assigned to a moving object because its centroid locates in the convex 
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C I 
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P2 p4 P7 

.Ib 

cl 
FIG. 7. Extracting regions of moving objects: (a) object regions and matched points; (b) the convex 

~111; (c) final result. 
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FIG. 8. Results of corner detection after deleting edge points, shadow points, and noise: (a) ar 
the candidate comer points; Cc) the results after deleting the points with the curvatures greater 
150”; (d) the result after deleting the points whose differences are less than 21. 
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FIGURE 8-Continued 
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FIG. 9. Results of the three-frame matching method for the motion with scaling. Parameters: 
R = 20, p = 20, 6 = 0.2, and Y = 30; (a)-(d) iterations 0, 3, 6, and 12. 
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FIGURE 9-Continued 
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FIG. 10. Results of the three-frame matching method for the motion with translation and rotation 
Parameters: R = 20, p = 12, 6 = 0.18, and v = 32; (a)-(d) iterations 0, 3, 6, and 12. 
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TTT

I%. 11. Results of the segmentation for the motion with scaling: (a) the test images with detected 
comer Points; (b) the aPProximation lines; k> the histogram of the intersection points; (d) results after 
the split-and-merge method; k) the regions after deleting stationary regions; (f) the refined transition 
paths; (gl the final results. 
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FIGURE 11 -Continued 
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FIGURE 11 -Continued 

hull of the group g,. However, regions A and B should be removed because their 
centroids are not located in the convex hull of the group g,. Finally, regions C, D, 
and E, which are labeled the same, are merged together, as shown in Fig. 7c. 

5. EXPERIMENTAL RESULTS 

Our experimental results are intended to illustrate the three topics addressed in 
this paper. First, we demonstrate the ability of the two-stage corner detector. 
Figures 8a and b show the corner points extracted by the Moravec interest 
operator. These candidate points are marked with a small cross. Figure 8c shows 
the results after deleting the edge points with curvature greater than 150”. Figure 
8d shows the result after removing these redundant points in Fig. 8b. 

Second, we illustrate the results of the three-frame matching procedure by 
analyzing two scenes with two different motion types as follows. The first scene 
includes a toy car with a pure translation of the sensor in the z-direction. Figures 
9a-d show the results of the three-frame matching procedure after 0, 3, 6, and 12 
iterations, respectively. Each black line segment denotes a possible transition path. 
The parameters in (5), (61, (7), and (10) are given as follows: R = 20, p = 20, 
6 = 0.2, and Y = 30. They are dependent on the sampling rate and object motion 
speed. We select these values by experimenting on some image sequences. From 
Fig. 9d, we note that most transition paths are flowing towards the FOE. The 
transition paths which are not flowing towards the FOE are removed by checking 
its orientation. 

The second scene illustrates that two toy cars move from the right-hand side of 
image plane to the left-hand side and two cars remain stationary. The motion types 
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Ftc. 12. Results of the segmentation for multiple objects with translation and rotation: (a) results 
after the split-and-merge method; (b) the reserved regions after deleting stationary regions; Cc) the 
refined transition paths; (d) the final results. 
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FIGURE 12-Continued 
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in this scene include translation and rotation. Because we take these images in the 
top view, there is no scale change. Figures lOa-d show the results after 0,3,6, and 
12 iterations, respectively. The parameters are given as follows: R = 20, p = 12, 
6 = 0.18, and v = 32. There are two error transition paths on the upper left car 
which is stationary. These error paths can be removed by giving smaller parameters 
p and 6. But this will also remove some correct transition paths, which are often 
isolated points located in a large homogeneous region. 

Third, we show the performance of the proposed segmentation procedure 
applied to the matching results. The scaling case will be discussed first. The testing 
image with detected corner points is shown in Fig. lla. The approximation lines of 
the transition paths are presented in Fig. llb. The histogram of the intersection 
points is depicted in Fig. llc. The highest peak (116,128) of the histogram is found 
by using a local maximum filter with a 7 x 7 window. This peak would be taken as 
the FOE. Then we segment Fig. lla by using the split-and-merge method. The 
result is shown in Fig. lld. After we delete some regions which contain no 
transition paths, the surviving regions are shown in Fig. lle, where a white cross 
represents a matched point. After we group these transition paths, Fig. llf gives 
the refined transition paths following the grouping. The final result of the segmen- 
tation is shown in Fig. llg. 

Figures 12a-d show the results of another scene. In these figures we find two 
error transition paths on the upper left toy car. This would result in some 
redundant regions for segmentation, because the error matched points induce a 
larger convex hull than the original shape of the car. The refined transition paths 
are shown in Fig. 12c, and the redundant regions can be seen in Fig. 12d. 

6. SUMMARY 

Computation and interpretation of the optical flow field is an important task for 
dynamic scene analysis. The conventional approaches only used two frames to 
solve the problem. These two-frame methods usually under-utilize the time-flow 
information available to them. In this paper, we propose a three-frame matching 
method to compute the displacement field in three consecutive frames. We make 
better use of both velocity and contrast information to segment the displacement 
field. 

The two-stage corner detector selects some candidate corner points by using the 
Moravec interest operator in the first stage. In the second stage, the 2-means 
clustering algorithm is adopted to analyze the neighboring regions of an interest 
point and then determine the real comer point. The advantages of our method are 
that: (1) it can remove noise and shadow points, (2) it can tolerate the distortion 
due to different 3D motion, (3) it can calculate the curvatures of the comers 
accurately, and (4) it is more precise than the Moravec interest operator. 

The three-frame matching method utilizes the smoothness constraint of motion 
to find the candidate transition paths and delete some impossible transition paths. 
A relaxation labeling method based on the consistency property is used to 
determine the correct transitions. In general, the three-frame method has many 
advantages. First, it is satisfactory for different types of motion, including transla- 
tion, rotation, and scaling. Second, it is also not sensitive to noise and distortions 
due to 3D motion. Third, it is more effective than two-frame matching methods. 
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The success of the three-frame matching method comes from its ability to integrate 
effectively time-flow information and 3D spatial continuity constraints. 

The segmentation method integrates both velocity information and contrast 
information to partition the displacement field. Particularly, we utilize the charac- 
teristic of FOES to segment the displacement field generated by a scaling motion. 
Also under the assumption of smooth motion, we make use of the similarity of the 
velocity vectors to segment the displacement field generated by object motion with 
translation and rotation. Besides, our system can remove error displacement 
vectors after the displacement vectors are grouped. One of the disadvantages of 
our system is that the velocity information generated by the three-frame matching 
method is sparse. It would probably miss some regions of the moving objects. 
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