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An Adaptive Neural Fuzzy Filter and Its Applications

Chin-Teng Lin,Member, IEEE and Chia-Feng Juang

Abstract—A new kind of nonlinear adaptive filter, the adap-
tive neural fuzzy filter (ANFF), based upon a neural network’s
learning ability and fuzzy if-then rule structure, is proposed in
this paper. The ANFF is inherently a feedforward multilayered
connectionist network which can learn by itself according to
numerical training data or expert knowledge represented by
fuzzy if-then rules. The adaptation here includes the construction
of fuzzy if-then rules (structure learning), and the tuning of the
free parameters of membership functions (parameter learning).
In the structure learning phase, fuzzy rules are found based
on the matching of input—output clusters. In the parameter
learning phase, a backpropagation-like adaptation algorithm is
developed to minimize the output error. There are no hidden
nodes (i.e., no membership functions and fuzzy rules) initially,
and both the structure learning and parameter learning are
performed concurrently as the adaptation proceeds. However,
if some linguistic information about the design of the filter is
available, such knowledge can be put into the ANFF to form
an initial structure with hidden nodes. Two major advantages
of the ANFF can thus be seen: 1)a priori knowledge can be
incorporated into the ANFF which makes the fusion of numerical
data and linguistic information in the filter possible; and 2)
no predetermination, like the number of hidden nodes, must
be given, since the ANFF can find its optimal structure and
parameters automatically. Moreover, in contrast to traditional
fuzzy systems where the input-output spaces are partitioned as
grid type causing the combinatorial growing of fuzzy rules as the
input—output dimensions increase, irregular partitions are done in
the ANFF according to the distribution of training data so fewer
fuzzy rules will be generated. To demonstrate the performance of
the ANFF, two applications, the nonlinear channel equalization
and the adaptive noise cancellation, are simulated. Efficiency and
advantages of the ANFF are verified by these simulations and
comparisons.

I. INTRODUCTION

A

nected through the weights. When looking into the struc-
ture and learning of neural networks, many common points
to the methods used in adaptive signal processing can be
found. For example, both of them have the adaptive lin-
ear combiner (ALC) properties in common [10]. Also, the
backpropagation algorithm used to train the neural-network
is in fact a generalized Widrow's least mean square (LMS)
algorithm and can be contrasted to the LMS algorithm usually
used in adaptive filtering. Characterized with these common
points and the powerful learning and generalization ability,
the neural network is now becoming an attractive candidate
in adaptive signal processing. A problem encountered in
the design of neural filters is that the internal layers of
neural networks are always opaque to the user, so it is not
easy to determine the structure and size of a network. To
encode the input—output relationship into the neural network,
repeated learning cycles must be performed and will take a
lot of learning time. In a nonstationary environment, to adapt
themselves to the statistical changes in the environment, the
neural filters’ adaptation will drag the weights away from
their estimates of the previous environment, and knowledge
forgetting then happens. The inconvenience of incorporating
linguistic information expressed as fuzzy if-then rules in
the design of neural filters is yet another shortcoming. To
overcome the shortcomings encountered in neural filters, while
still keeping their advantages, an adaptive neural fuzzy filter
(ANFF) is developed in this paper.

The practical application of expert knowledge to solve
real-world problems has received increasing attention. When

we are constructing information processing systems, like the

filters, the available information usually comes in two forms:

DAPTIVE filtering has achieved widespread applicationg,merical and linguistic. Most often, when we are designing
and success in many areas such as control, image Pffers, we use these two forms of information separately.

cessing, and communications [1]. Among the various adaptiyigs yse the linguistic information for the choice of the most

filters, the adaptive linear filter is the most widely used ong,itaple kind of filter in application or the order of filters,

mainly due to its low hardware implementation cost and itg. [26], while for the training of the filter we use numerical
properties, like the convergence, global minimum, misadjusfizormation only. The design of neural filters is such an
ment error and training algorithms, and can be easily analy

and derived. The adaptive linear filtering has achieved a Iarlqgisy inputs are mapped onto clean outputs. Very often, the

5\§F1ilable linguistic information is about this input—output
relationship and is usually expressed as fuzzy if-then rules.
Bor example, if we know that the high amplitude vicinity of

Neural networks are composed of a large number of high [be noisy input should be mapped by the filter onto the low

. X : plitude vicinity of the output, we express it as “if input is
interconnected processing elements (nodes) which are cpn; . ; X i
igh then output is low.” For this reason, a good filter should
Manuscript received November 9, 1995; revised June 14, 1996. be able to learn from such kind of information.
'The au_thors are Wl'th the Department of Co'ntrol Engineering, Na— The ANFF is a feedforward muItiIayer network that inte-
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ctlin@fnn.cn.nctu.edu.tw). grates the basic elements and functions of a traditional fuzzy
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where nonlinear phenomenon appear, the performance
linear filters have been poor [2]-[5], and the development
nonlinear filters is thus necessary.
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structure, the input and output nodes represent the corrupted YY
signal process and desired signal process, respectively, and, .. 0
in the hidden layers, there are nodes function as member- Bs :
ship functions (activation functions) and fuzzy logic rules

X . B, 2 5 8
(connection types). An important feature of the proposed
adaptive filter is that it can dynamically partition the input B, 1 b4 7
space and output space using irregular fuzzy hyperboxes . L

according to training pattern distribution [26]. This irregular
space-partitioning method is more flexible and can avoid
combinatorial growth of partitioned grids in [26]. Fig. 1(a) and
(b) show the grid-type partitions and the proposed partitioning
method in the ANFF. The problem of space partitioning ,

=
z
z
-

from numerical training data is basically a clustering problem.

The proposed ANFF applies the Fuzzy Adaptive Resonance

Theory (Fuzzy ART) proposed by Carpentdral. [30], [31]

to do fuzzy clustering in the input—output spaces and find

proper fuzzy logic rules dynamically by associating input

clusters with output clusters. For the adaptation of membership l
functions in the ANFF, the backpropagation algorithm is used (b)

to find the optimal parameters under the mean square efgf 1. (a) Grid-type fuzzy partitioning and (b) flexible hyperbox fuzzy
(MSE) criterion. Hence, in the ANFF, the Fuzzy ART ispartitioning.

used for structure learning and the backpropagation algorithm

for parameter learning. The ANFF can thus on-line partitiofdvance or only for a special kind of noise. In real situations,
the input-output spaces, tune membership functions, and fth@ input data are usually nonstationary, and even for the
proper fuzzy logic rules dynamically on the fly. Users neestationary case, their statistics may not be available. Under
not give the initial fuzzy partitions, membership functions, ohese circumstances, the above filters perform poorly. More-
fuzzy logic rules except for the case that expert knowledgedser, as the order of the filter increases, greater complexity
available and is used as the initial fuzzy rules. Hence, there @fegesign occurs. Because of the two main drawbacks which

no hidden nodes in the beginning of learning; they are creatggpeared in the direct design approach, adaptive design method
and begin to grow as the training signal arrives. Since th nonlinear filters is required.

structure of the ANFF is constructed from fuzzy if-then rules, Most of the proposed adaptive nonlinear filters are the

once the input-output relationship is constructed, it will ngidaptation versions of existing nonlinear filters. A major class
be destroyed and, thus, no knowledge forgetting may happgnthe adaptive stack filter [8] which provides an adaptive
As the statistics of the environment change, the ANFF c@gsign method to existing generalized stack filters defined
automatically add new nodes to cope with the change apflsed upon threshold decomposition and Boolean operators,
thus their estimates of the previous environment are still kefke the rank-order filters, morphological filters, stack filters
These properties make the ANFF more suitable for on-lighd median filters, etc. [9]. The adaptive stack filter can
operation than the neural-network-type filters. solve both the problems of lacking statistics knowledge and

This paper is organized as follows. Section Il discuss@ge computation complexity in direct design; however, it is
previous work about other adaptive filters, neural networksgnstrained to be applied to the situations when the threshold
fuzzy systems, and neural fuzzy networks. Section lll dgsvels are small. Another example is the adaptive \olterra
scribes the basic structure and functions of the ANFF. Thiger [7]. \olterra filters are linear combinations of order
on-line structure/parameter learning algorithm of the ANFtochastics and adaptive Volterra filters enable them to tune the
which combines fuzzy ART and backpropagation learningbmbination coefficients adaptively when the signal or noise
algorithm under the MSE criterion is presented in Section I\étatistics change. Since adaptive Volterra filters are inherently
In Section V, the ANFF is applied to the nonlinear channelolterra filters, they are also constrained to be applied to
equalization problem and adaptive noise cancellation problefRe class of nonlinear systems that can be represented by
Finally, conclusions are summarized in the last section.  the \olterra series expansion. Basically, the structures of
the above adaptive nonlinear filters are the same as those
existing nonadaptive filters, and many assumptions are made
in the derivation of these filters, which makes the suitability

Over the past two decades, many kinds of nonlinear filteo$ their application limited. Since the performance of such
designed using a nonadaptive approach have been propdsad of adaptive nonlinear filters is application oriented, it is
[6]. These include the class of filters based upon order statistéifficult to say which one is dominantly better than others.
(e.g., L-filters, median filters, and-trimmed mean filters), The development of new adaptive nonlinear filters that can
and the polynominal filters which are based on the Volterkze applied under arbitrary situations is thus necessary. The
series and Wiener series, etc. These filters perform well onlpiversal approximation ability of neural and fuzzy networks
when the statistics of signal and noise processes are knowmmakes them suitable for this requirement.

Il. PREVIOUS WORK
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Many kinds of nonlinear filters designed using neural net- = eeoooaaoo-o a
works have been proposed. One of them is the neural filter,,
whose learning algorithm is shown to be more efficient tharr—] Fueifier
Lin's adaptive stack filtering algorithm [16]. This class of
neural filters is based on the threshold decomposition and
neural networks, and are divided into hard neural filters
(whose activation functions are unit steps) and soft neural
filters (whose activation functions are sigmoid functions).
Another kind of neural filter is the recursive filter obtained
by training a recurrent multilayer perception (RMLP) [17].
Other applications of neural networks in the adaptive filtering | r
include nonlinear channel equalizers [13], [15] and the noisy m’)‘ 1 Adapting
speech recognition [5], [11], [12] where neural networks are Yl e |
used to map the noisy input features into clean output features ()
for recognition. Common disadvantages of these neural filtq_fis 2. Functional diaaram of a fuzzv svstem
are discussed in Section I. 9= 9 Y Sysiem:

A fuzzy system is composed of a bunch of fuzzy if-then
rules. Conventionally, the selection of fuzzy if-then rules ofteffaquirement. As to the least-mean-squares (LMS)-type fuzzy
relies on a substantial amount of heuristic observation g§aptive filters in [26], the number of fuzzy rules should be
express proper strategy’s knowledge. Obviously, it is diﬁicuﬁec'd?d in advance and are initially assigned arbitrarily. In
for human experts to examine all the input-output data frofg@l Situations, the proper number of fuzzy rules are not easy
a complex system to find the suitable number of rules withi? decide and arbitrary assignment of the initial rules will
the fuzzy systems. For this reason, a fuzzy system with neurgptrain the Iear.nmg speed. As shown in the following sec.tlons,
network’s learning ability is required. these shortcomings are solved by the proposed ANFF, with the

To enable a neural network to learn from numerical dafyiginal advantages of traditional adaptive fuzzy systems kept.
as well as expert knowledge expressed as fuzzy if-then rules,
several approaches have been proposed [18]-[25]. The neural lll. THE STRUCTURE OF ANFF

fuzzy network [21]-[24], which is inherently a fuzzy logic ~ The universal approximation ability of some fuzzy systems
system embedded with neural network’s learning ability, isas been proven [27], [28]. Theoretically, any kind of filters,
one of them. Generally, two phases of learning, structuli@ear or nonlinear, can be approximated with these fuzzy
and parameter, are performed sequentially to construct newdtems. The structure and basic components of a conventional
fuzzy networks. First, the structure learning is employefdizzy system will be briefly introduced (for more details,
to construct the rules, and then the parameter learningpigase refer to [37] and [38]), and then the structure of the
performed to tune the free parameters of each rule. THS&IFF is proposed.
sequential learning scheme makes these networks suitable only
for off-line operation, not for on-line operation. Another typen, Basic Structure of a Fuzzy System
of network is the fuzzy neural network proposed in [25]. This _. . .

A . Fig. 2 shows the basic structure of a conventional fuzzy
network is inherently a neural network being able to learn . . :

. . . system with a learning/adapting component. Before proceed-

from fuzzy input—output pairs. To encode a fuzzy if-then rule ! : .
. ST . .|Hg, we must define some important termsfukzy sett” in
into the neural network, repeated training is required, whic

L . . ' universe of discours¥ is characterized by a membershi
is time consuming and the learned fuzzy if-then reIauonshaE & y P

Inference Tu(Y) Y
Defuzzifier adatind od

u(X})

Engine

Fuzzy rule
Base

| WA —

. : Hinction pr: U — [0,1]. Thus, a fuzzy sef” in U may be
may be destroyed for on-line learning. The other type g presented as a set of ordered pairs. Each pair consists of

. O T
neural network is the expert network [18]—-[20] that combine generic element, and its grade of membership function
(u), that is, F = {(u,up(w))ju € U}. u is called a

neural network with symbolic method. The shortcoming of this
method is that to encode an expert knowledge into the netwog port valueif px(u)>0. If U is a continuous universe
I is normal and convex (i.emax,cy pr(u) = 1

the number of nodes required is large, and the input—out%tﬁz
and pp(Aug + (1 — MNuz) > min(pp(uy), pr(uz)), v, uz €

relation expressed is crisp and not fuzzy.
The application of an adaptive fuzzy network as a filt ,A € [0,1]), thenF is afuzzy numberA linguistic variable
in a universe of discours¥ is characterized by

can be found in [26]. Even though this filter can make use
of both linguistic and numerical information in their natural

form, some drawbacks of this structure can still be seen. For T(z) ={T T2, ..., T*}
their recursive-least-squares (RLS)-type fuzzy adaptive filtegng
the input spaces are partitioned in the grid type as shown in M(z) = (MY, M2, ... MK}

Fig. 1(a). The RLS-type fuzzy adaptive filters do have high

convergent speed, but input spaces partitioned as this type hatere T'(x) is the term setof z, that is, the set of names

a serious problem: the number of fuzzy subspaces increasédinguistic values ofz with each valuel? being a fuzzy
exponentially as the dimension of input spaces increasasmber with membership functiol? defined on/. SoM (z)

and will cause a high computation load and high memoig a semantic rule for associating with each value its meaning.
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For example, ifx indicates speed, thefi(x) may be{slow, Rules R1 and R2 lead to the corresponding decision with
medium, fast. Following the above definition, the input vectothe membership functiome;(w),i = 1,2, which is defined as

X which includes the input state linguistic variabless, . ‘

and the output state vectdf which includes the output state My(w) = a; N My(w) 4)

linguistic variablesy;’s in Fig. 2 can be defined as . . )
g ¥ g wherew is the variable that represents the membership func-

X ={(z;, U, {TL T2, TF}, tion support values. Combining these decisions, we obtain the
(M2 M2 oo MF D)t n) ) output decision
1 2 Ly
My, My My Pl m} @ where v is the fuzzy ORoperation. The most commonly used

The fuzzifier in Fig. 2 is a mapping from an observed inp ftiz2y OR operations are union and bounded sum [37], [38].
space to fuzzy sets in certain input universe of discourse. SdVotice that the last result is a membership function curve.
a specific valuer;(¢) at timet is mapped to the fuzzy sét. Before sending out the signal to the plant, we must defuzzify

with degreeM?! (z;(¢)) and to the fuzzy sel2 with degree it to get a crisp decision, which is what defuzzifier block in
M2 (2;(t)) and Si) on. o Fig. 2 does. Among commonly used defuzzification strategies,

The fuzzy rule base in Fig. 2 contains a set of fuzzy Iogﬁ?e center of areamethod yields a superior result [37], [38].

rules R. For a multi-input and multi-output (MIMO) system,l‘?t. w; be the support value at which the membership function,

we have M;(w), reaches the maximum valudl; (w)|.=., Then the
defuzzification output is
R = {Ryuvo, Biinvios -+ - Biinvio .
MIM.O MI]\.IO MIMO Z Mﬁ (wj)wj
where the:th fuzzy logic rule is Y= j (©)
Riumno: IF(z1 is T, and- --andz, is 7. Z My (w;)
J

THEN(y, is T, and. --andy, is T, ).
: The preceding describes the standard function operations in
The preconditions of ;o form a fuzzy setl;;, x---x1:, a conventional fuzzy system, although there are some alter-
and the consequent @t is the union ofq independent natives for fuzzy OR, fuzzy AND, and reasoning operations
outputs. So the rule can be represented by a fuzzy implicatigy), [38].
Enabling a fuzzy system to learn is an important issue. The
learning/adapting block in Fig. 2 represents this function. This

Since the outputs of MIMO rule are independent, the gene@japts the fuzzifier and the defuzzifier to find the proper shapes
rule structure of MIMO fuzzy system can be represented 88d membership function overlaps by learning the desired
a collection of multi-input and single-output (MISO) fuzzyoutputs. Traditionally, the structure or the number of rules in

T, as the single consequent of thth subrule. In this includes only the parameters of the membership functions.

subsection, for clarity, we will consider MISO system in thd e aim of this paper is to present an adaptive filter that
following analysis. A sample rule is can adapt itself to match the input—output pairs and construct

fuzzy rules automatically. In the next subsection, the adaptive
neural fuzzy filter (ANFF), a feedforward connectionist model,

is proposed. This neural-network-based architecture eliminates
the structure predescription process and distributively stores

The inference engine in Fig. 2 matches the rule precoﬂz—apping knowledge in the connection types and link weights.

tions in the fuzzy rule base with the input state linguistic ter ore importantly, the connectionist architecture is a natural

and performs implication. For example, if there are two rulesstrUCture for performing neural learning [26].

Mo (Loy X o X To,) = (Tyy + -+ Ty,)

IF the speed is TOO SLOW and the acceleration
is DECREASING,
THEN INCREASE POWER STRONGLY.

R1: IF zyis T, andx, is T,,, THEN yis T, B. Adaptive Neural Fuzzy Filters
R2: IF 2y isT7 andzyis T2, THEN y is Tj In this section, we will describe the structure and func-

tions of the proposed ANFF, a connectionist type of filter
constructed from a set of fuzzy if-then rules. The ANFF
(see Fig. 3) has five layers with node and link numbering
ap =M (x1) A M (o) (3) defined by the brackets on the left-hand side of the figure.
Layer-1 nodes are input nodemdut linguistic nodek rep-
where ‘A" is the fuzzy ANDoperation. The most commonlyresenting input linguistic variables. Layer-5 nodes are output
used fuzzy AND operations are intersection and algebraiodes @utput linguistic nodésrepresenting output linguistic
product [37], [38]. variables. Layer-2 and layer-4 nodes s#em nodeghat act as

then the firing strengths of rules R1 and R2 are defined;as
and «-, respectively. Herey; is defined as
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Layer§

(Output linguistic nodes)

(OREORSY

Down-up# | Up-down -
transmission| [transmission
mode mode

Layer 4
(Output term nodes)

Layer 3

(Rule nodes)

Layer 2

(Input term nodes)

@ @

| ) O

7 @
G vy3) “2(.1)-"2(.3))

Layer 1

(Input linguistic nodes)

b

Fig. 3. Structure of the proposed ANFF.

membership functions representing the terms of the respective will later indicate the signal propagation, layer-by-layer,
input and output linguistic variables. Each layer-3 node isaccording to the arrow direction.

rule node representing one fuzzy logic rule. Thus, together allThe ANFF uses the technique odbmplement codinfrom

the layer-3 nodes form a fuzzy rule base. Links between laydrdzzy ART [30] to normalize the input-output training vectors.
3 and 4 function as aonnectionist inference engineayer-3 Complement coding is a normalization process that rescales
links define the preconditions of the rule nodes, and layer® 7-dimensional vector ifk"™, z = (zy,z3,- -+, zy), t0 its
links define the consequents of the rule nodes. Therefore, e3erdimensional complement coding form f, 1]*", 4/, such

rule node has at most one link to some term node of a IinguisE

node, and may have no such links. This is true both for '
precondition links (links in layer 3) and consequent links (links

in layer 4). The links in layers 2 and 5 are fully connected
between linguistic nodes and their corresponding term nodegere (Z1,T2,++,Zn) = T = z/||z|| and Z§ is the com-
The arrows indicate the normal signal flow directions when thgement of zy, i.e.,, z{ = 1 — ;. As mentioned in [30],
network is in operation (after it has been built and trainedyomplement coding helps avoid the problem of category

(= =€ = =C - =c
:($17$17$27$27"'7$n7$n)

(flv]—_5175271_527"'757171_fn) (7)
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proliferation when using fuzzy ART for fuzzy clustering.
It also preserves training vector amplitude information. In
applying the complement coding technique to the ANFF, all %[
training vectors (either input state vectors or desired outputo.s}
vectors) are transformed to their complement coded forms in
the preprocessing process, and the transformed vectors are tlgé’r? ’
used for training. S0.6f
A typical network consists of nodes with some finite numbeg0 |
of fan-in connections from other nodes represented by weight
values, and fan-out connections to other nodes. Associat§®.4r
with the fan-in of a node is an integration functignwhich
combines information, activation, or evidence from other

nodes, and provides the net input, i.e., 0.2r 7
net'inPUt: f(zgk)v Zék)v Ty Z]()k); wgk)v wgk)v ) w]()k)) o1r ]
(8) O0 0.6 0.8 1

Uj x1 Vij

Wherezi(’“) is theith input to a node in layek, and w§k> is
the weight of the associated link. The superscript in the above @
equation indicates the layer number. This notation will be also
used in the following equations. Each node also outputs an
activation value as a function of its net-input

output= a(f) 9)

where a(-) denotes the activation function. We will next o s
describe the functions of the nodes in each of the five layergwership value -
of the ANFF. Assume that the dimension of the input space 0.
is n, and that of the output space sis.

Layer 1: Each node in this layer is called an input linguistic
node and corresponds to one input linguistic variable. Layer-
1 nodes just transmit input signals to the next layer directly.
That is,

f@ %) = (7,7) = (@, 1-%) and a(f)=f. (10) ©

Fig. 4. (a) One-dimensional and (b) two-dimensional trapezoidal member-

From the above equation, the link weight in Iayer(dzgl)) ship function.
is unity. Notice that due to the complement coding process,

E)cr each input node, there are two output values; and | 0ans a more crisp fuzzy set, and a smallemakes the

Ti =1-m. fuzzy set less crisp. A set af input term nodes (one for each

Layer 2: Nodes in this layer are called input term nOdeﬁ1§ut linguistic node) is connected to a rule node in layer 3

and each repre_sents a term of an inp'ut Iingu.istic variable, Ptere its outputs are combined. This definesiadimensional
acts as a one-dlmen5|qnal mer_nbershlp_ function. The fOIIOV\"'Prgembership function in the input space, with each dimension
trapezoidal membership function [39] is used specified by one input term node in the set. Hence, each input
f(zz(?)) == [1- g(zi(?) _ Ui(?)a’Y) _ g(ugg) _ Zi(g)’,y)] Imgwsﬁc node h.as' the same number of term nodes. That is,
! n I I I J each input linguistic variable has the same number of terms
in the ANFF. This is also true for output linguistic nodes.
alfy=f (11) A layer-2 link connects an input linguistic node to one of

2) 2) _ ., its term nodes. There are two weights on each layer-2 link.
wherew,;” andv;;” are, respectively, the left-flat and rightye genote the two weights on the link from input node

flat points of the trap'ezgidal mempe.rShip function.of Sitie (corresponding to the input linguistic variable) to its jth
input term node of theth input linguistic node [see Fig. 4(a)];terrn node as? and v (see Fig. 3). These two weights
(] (] b b

zi(]?) is the input to thejth input term node from théh input _ i . i )
linguistic node (i.e ,7(2) _ 7,); and define the membership function in (11). The two Welgh\g,
T v and vg), correspond, respectively, to the two inputs,and

and

Lo it sy>1 z¢ from the input linguistic nodd. More precisely,z; and
g(s,v) =957, FO0<sy<1 (12) z¢, the two inputs to the input term nodg will be used
0, if sy<O. during the fuzzy-ART clustering process in ANFF’s structure-

The parametey is the sensitivity parameter that regulates thiearning step to decideg) and vg), respectively. In ANFF's
fuzziness of the trapezoidal membership function. A layge parameter-learning step and normal operating, anlis used
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2

in the forward reasoning process [i.ei(j) =m; in (11)]. We hyperboxes (and thus the associated hyperbox membership

detail the ANFF learning scheme in Section IV. functions) in the output space. More clearly, the weight
Layer 3: Nodes in this layer are called rule nodes and easkctor, [(ugj), v:(fj’ )RR (ugj), vi(;)), e (U%v vf,f})], defines

represents one fuzzy logic rule. Each layer-3 noderhamput a hyperbox in the output space.

term nodes fed into it, one for each input linguistic node. Layer 5: Each node in this layer is called a output linguistic
Hence, there are as many rule nodes in the ANFF as there mpele and corresponds to one output linguistic variable. There
term nodes of an input linguistic node (i.e., the number of rulese two kinds of nodes in layer 5. The first kind of node
equals the number of terms of an input linguistic variableperforms up-down transmission for training data (desired
Notice that each input linguistic variable has the same numbmitputs) to feed into the network, acting exactly like the input
of terms in the ANFF as mentioned in the above. The linkihguistic nodes. For this kind of node, we have

in layer 3 are used to perform precondition matching of fuzzy

logic rules. Hence the rule nodes perform the operation f@,wi) =W ¥i) = Wi, 1-5;) and a(f)=f (15)
(3) n 3) wherey; is theith element of the normalized desired output
fz7) = Z Z and a(f)=f (13)  vector. Notice that complement coding is also performed on
=1 the desired output vectors. Thus, as mentioned above, there

where 2 is the ith input to a node in layer 3 and thedre two weights on each of the up-down transmission links in
summation is over the inputs of this node. The link weighgYer S (the“z(;) andv{;’ shown in Fig. 3). The weights define
in layer 3(w(3)) is then unity. The summation in the abovéjyperboxes and the associated hyperbox membership functions

equation is equivalent to defining a multidimensionak ( in the output space. The second kind of node performs down-

dimensional) membership function, which is the summatiolﬁ) transmission for decision signal output. These nodes and
of the trapezoid functions in (11) ovei This forms a the layer-5 down-up transmission links attached to them act as

multidimensional trapezoidal membership function called tife defuzzifier. 'f“z(j) andvg;’) are the corners of the hyperbox

hyperbox membership functidd9], since it is defined on a of the jth_term of _theith output Iinguisti(_: variabley;, then
hyperbox in the input space. The corners of the hyperbd}€ following functions can _be used to simulate trenter of
are decided by the layer-2 weights{; and v}, for all €@ defuzzification method:

3 i 2) (2 ; 5 5) (5 5) (5
i's. More clearly, the mt_erva[u_gj),vgj)] defines the edge of f(z](. )y = Z wij)zj(. ) — Z mgj)zj(. ) and
the hyperbox in theth dimension. Hence, the weight vector J J

[(uﬁ), vﬁ)), R (ug), vg)), e (UELQJ'), vffj))], defines a hyper- _f 16
box in the input space. An illustration of a two-dimensional af) = Z L) (16)
hyperbox membership function is shown in Fig. 4(b). The rule ; K

nodes output are connected to setspofoutput term nodes

in layer 4, one for each output linguistic variable. This S%herez](s) is the input to theith output linguistic node from
of output term nodes defines an-dimensional trapezoidal . _ . (B) _ ;3 (5)

(hyperbox) membership function in the output space th'ti jth term node, andn;; = (u;; + v;j7)/2 denotes the

ifies th t of the rul de. Diff trul nter value of the output membership function of tiie
spectiies the consequent of the rule node. DITerent rule N0, ot 1he;th output linguistic variable. The center of a fuzzy
may be connected to the same output hyperbox (i.e., they

e mr%}éion is defined as the point with the smallest absolute value
have the same consequent) as shown in Fig. 3.

: . among all the other points in the region at which the value
Layer 4: The nodes in this layer are called output ter g P 9

"8f membership function is equal to one. Here the weight
nodes; each has two operating modéswn-uptransmission ~ (s) P . q- o . .g '
on a down-up transmission link in layer 5 is defined

and up-downtransmission (see Fig. 3). In down-up transmis s ’(5) ) ) ) ) )

sion mode, the links in layer 4 perform the fuzzy OR operatid® wi;” = mq; = (u;;” + v;;”)/2, wherew;;:” and v;;” are

on fired (activated) rule nodes that have the same conseqd_@ﬁ‘lt weiggts on the corresponding up-down transmission link
in layer 5.

FAY) = max(z2(Y 25V, .- 29) and a(f) =/ (14)  The fuzzy reasoning process in the ANFF is illustrated

in Fig. 5(a), which shows a graphic interpretation of the

where =¥ is the ith input to a node in layer 4 ang is center of area defuzzification method. Fig. 5(b) shows the

the number of inputs to this node from the rule nodes igorresponding structure of the ANFF. Here, we consider a

layer 3. Hence the link weight i$u§4) = 1. In up-down two-input and two-output case. As shown in the figure, three

transmission mode, the nodes in this layer and the up-dowyperboxes (IH1, IH2, and IH3) are formed in the input

transmission links in layer 5 function exactly the same apace and two hyperboxes (OH1, OH2) are formed in the

those in layer 2: each layer-4 node represents a term qftput space. These hyperboxes are defined by the weights

an output linguistic variable and acts as a one-dimension@y,vij,u;j, andv;;. The three fuzzy rules indicated in the

membership function. A set ofn output term nodes, onefigure are “IFz is IH1 THEN y is OH1 (rule 1),” “IF z is IH2

for each output linguistic node, defines am-dimensional THEN y is OH1 (rule 2),” and “IFz is IH3 THEN y is OH2

hyperbox (membership function) in the output space, and therele 3),” wherezx = (x1,22) andy = (y1,y2). If an input

are also two Weight&,bg;?) and vfj) on each of the up-down pattern is located inside a hyperbox, the membership value

transmission links in layer 5 (see Fig. 3). The weights defing equal to one [see (12)]. In this figure, according to (14),
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Fig. 5. (a) The fuzzy reasoning process in the ANFF model. (b) T
corresponding ANFF structure of (a).

exist when learning begins. They are created dynamically as
on-line teaching signals are received and learning proceeds.
But for the cases where some expert knowledges, which are
expressed as fuzzy if-then rules, are known in advance, these
rules can be presented as initial rules in the ANFF. As training
proceeds, if the expert knowledge is not able to handle the
desired mapping, new input and output term nodes and rule
nodes are added during the learning process. This enables the
combination of expert knowledge and numerical training data
into a filter, a major advantage of the ANFF.

IV. LEARNING ALGORITHM FOR THE ANFF

In this section, we develop an on-line learning algorithm
to find the optimal fuzzy filter under the MSE criterion. The
learning algorithm combines structure learning and parameter
learning to determine the proper corners of the hyperbgxy
andw;;’s) for each term node in layers 2 and 4. It also learns
fuzzy logic rules and link connection types in layers 3 and 4,
that is, the precondition and consequent links of the rule nodes.

A. Problem Formulation

The problem of the design or adaptation of an optimal
fuzzy filter can be phrased as follows. Given a process )
specified in a finite interval lengthn; <m <mo, we are to
design a nonlinear filter in such a way that the estimated value,
3(k), based uporx(m) is as close as possible to the desired
processs(k). Written in mathematical form, we have

8(k) = F(x(m)) (17)

wherek is in the interval[my, m2], and £'(-) represents the
function of the desired nonlinear filter. The processn)
is usually a nonlinear version of(k) corrupted with noise
n(m). The objective is to find the optimal filtef'(-), so as
to minimize the MSE

E[(s(k) = 5(k))*] = E[(s(k) = F(z(m)))’]. ~ (18)

Two steps, the structure learning step and the parameter
learning step as shown in Fig. 6, are used concurrently to
achieve this goal, and are introduced in the following two
subsections.

B. The Structure-Learning Step

The structure-learning task can be stated as following. Given
input training data at time:, z;(k),i = 1,---,n and desired

rl’i?'utput values(k), find proper fuzzy partitions, membership

functions, and fuzzy logic rules. At this step, the network
works in a two-sided manner, that is, the nodes and links

#1 is obtained by performing fuzzy OR (maximum) operatioin layer 4 are in the up-down transmission mode so training
on the inferred results of rules 1 and 2, which have the sanmgut and output data are fed in the ANFF from both sides.

consequent, OH1. Also according to (14}, is directly the

The structure-learning step consists of three learning pro-

inferred result of rule 3z; and z, are then defuzzified to get cesses: input fuzzy clustering process, output fuzzy clustering

the final output according to (16).

process, and mapping process. The first two processes are

Note that with the proposed learning algorithms developgerformed simultaneously on both sides of the network, and
in Section IV, no input—output term nodes and no rule nodgee described below.
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" 4. The choice function value indicates the similarity between
the input vectoer’ and the complement weight vectar;. We
then need to find the complement weight vector closest to
This is equivalent to finding a hyperbox (category) tlat
) could belong to. The chosen category is indexed/byhere

, |~——-—n (noise)
channel function
Ty=max{T;: j=1,---,N} (20)

Resonanceccurs when the match value of the chosen cate-
gory meets the vigilance criterion

Structure Leaming

Input Space Output Space /
Partition Process Panigon PI:Zcess W ) (22)
Layer | Layer5 where p € [0,1] is a vigilance parameter. If the vigilance
Vigilance @ Vigilance criterion is not met, we sagismatch resesccurs. In this case,
test test the choice function valué’; is set to zero for the duration of
Layer 2 the input presentation to prevent persistent selection of the
same category during search (we call this action “disabling
Match \_—‘ l J"). A new index J is then chosen using (20). The search
tracking process continues until the chosématisfies (21). This search
Process 1 Mapping Process process is indicated by the feedback arrow marked with
MLayer 3) i‘V|g|Iance test” in Fig. 6. If no su_ch] is found, then a new
input hyperbox is created by adding a setwofiew input term

nodes, one for each input linguistic variable, and setting up
links between the newly added input term nodes and the input
linguistic nodes. The complement weight vectors on these new
\ layer-2 links are simply given as the current input vecigr,
These newly added input term nodes and links define a new
hyperbox, and thus a new category, in the input space. We
denote this newly added hyperbox s

2) Output Fuzzy Clustering Proces3he output fuzzy
clustering process is exactly the same as the input fuzzy
clustering process except that it is performed between layers 4
and 5 which are working in the up-down transmission mode.
Fig. 6. Flowchart of the learning algorithm for the ANFF. Of course, the training pattern used now is the desired output
vector after complement coding, = (5,5°) = (5,1 - 3).
We denote the chosen or newly added output hyperbok by

1) Input Fuzzy Clustering Proces3Ve use the fuzzy ART This h box is defined by th | ¢ iaht ¢
fast learning algorithm [30], [31] to find the input membershiﬂ] 'lzye);pgf ox 1S defined by the complement weight vector

function parametersggf) andvg). This is equivalent to finding 3 3 3 ) ) )
proper input space’s fuzzy clustering or, more precisely, tox = [(u§;>,1—v§j>),---,(u§;>,1—v§;>),---,(uﬁ,j}, 1—vf§3)].
forming proper fuzzy hyperboxes in the input space. Compare .
with other fuzzy clustering techniques, the major advantagei%?Tur;ehabZ\rlsg)\:V?nguezng dcgﬁtzgggap{;%%i?neiStm:tuﬁe aerctt];(sen
this one is on the ability of on-line generation of a new clustéPyt yp . utput nyp

. |nd]¢exed ask, where the input hyperbo¥ is defined by
when necessary. Hence, no preassignment of the number o

: . o . and the output hyperboX by wy. If the chosen input
rules is required. Initially, for each complement coded mp“t” . :
vector &’ [see (7)], the values of choice functior;, are ll"1yperboxJ is not newly added, then there is a rule node,

computed by that corresponds to it. If the input hyperbgxs a newly added
one, then a new rule node (indexed.gsin layer 3 is added,

and connected to the input term nodes that constitute it.
3) Mapping Process:After the two hyperboxes in the input

where “A” is the minimum operator performed for the pairwisér’Ind output spaces are chosen in the input and output fuzzy

elements of two vectorsy > 0 is a constantiV is the current clustering processes, the next step is to perform the mapping

number of rule nodes, and, is thecomplement weight vector process which decides the connections between layer-3 and
which is defined by T layer-4 nodes. This is equivalent to deciding the consequents

of fuzzy logic rules. This mapping process is described by

Parameter Leamning

—+— (Hyperbox Tuning)

C

(k)

' A wy .
T("l"/) = | : J= 1727 o '7N (19)
’ a + |w]

w; = [(uﬁ),l—vg)),---,(ug),l—vg)),---,(ug, 1_1,7(12]))]_ the following algorithm, wherein connecting rule nodeto
output hyperboxX we means connecting the rule nodeto
Notice that [(u{?,v?), -, (ui?, o), -, (ul),vi?)] is the output term nodes that constitutes the hyperfioin the

the weight vector of layer-2 links associated with rule nodeutput space.
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Step 1: IF rule nodeJ is a newly added node learning clusters, until at O, all training data are assigned to a

THEN connect rule nodg to output hyperboxs. single cluster in the input (output) space.

Step 2: ELSE IF rule nodeJ is not connected to output Clearly, a constantly high or low value will result in
hyperbox K originally formation of excessively high numbers of clusters on the one

THEN disable J and perform Input Fuzzy Clusteringhand, or very low output accuracy (and thus, low network
Process to find the next qualified [i.e., the next rule node representation power) on the other hand. For these reasons, we

that satisfies (20) and (21)]. chose an adaptive vigilance strategy in which phgarameter
Go to Step 1. is initially set high to allow fast ANFF structure growth, and
Step 3: ELSE no structure change is necessary. then monotonically decreased to slow cluster formation and

In the mapping process, hyperboxésand K are resized stabilize learning. Empirical studies have shown this approach
according to thdast learning rule[30] by updating weights, to be efficient and stable in the learning speeds and numbers
wy; andwy, as of clusters it produces.

w(new) — 4 A wSOId)

G (new) — ¢ A wggld)'

’ K

(22) C. The Parameter-Learning Step

Note that once the consequent of a rule node has beemfter the network structure has been adjusted according to
decided in the mapping process, it will not be changafle current training pattern in the structure-learning step, it is
thereafter. To show how the structure learning of the ANHhen necessary to fine tune the network parameters using the
works, a simple example is given below. same training pattern. This fine tuning process is necessary

4) Simple ExampleFig. 5(b) shows the structure of antg assure the desired output accuracy of a network. Using the
ANFF, which is being constructed during the learning procesgrminology of fuzzy logic: once our adaptive neural fuzzy
Learning is performed continuously for succeeding incomingter has found its fuzzy logic rules, its membership functions
training data. Fig. 5(a) shows the generated two-dimensiopglist be tuned to make its output meet the desired output
hyperboxes in the input-output spaces, and the projeciggl ciosely as possible. Notice that the following parameter
membership functions for each variable. Fig. 5(b) shows th@arning is performed on the whole network after the structure
corresponding structure of the ANFF. For a given trainingarning step, no matter whether the nodes (links) are newly
datum, the input fuzzy clustering process and the output fuzgided or are existent originally. The parameter-learning task
clustering process find or form proper clusters (hyperboxesin be stated as: Given the training input daték),i =
in the input and output spaces, respectively. Assume that the.. , the desired output value(k), and the network
input and output hyperbox pair found (or formed) & K).  structure (specified by input and output hyperboxes and fuzzy
The mapping process then tries to relate these two hyperboxgsic rules), we need to adjust the network parameters to make
by setting up links between them. This is equivalent to findinge network output match the desired output values as closely
a fuzzy logic rule that defines the association between gg possible. Thus, the network works in a feedforward manner;
input hyperbox and an output hyperbox. The following casggat is, the nodes and links in layer 4 are in the down-up
may happen during the mapping process. Case 1: If the inpignsmission mode. Basically, the backpropagation algorithm
hyperbox./ and output hyperboX as well as their associationjs ysed to find node output errors, which are then analyzed to
(J, K) exist already [e.g(J, K) = (IH1, OH1), (IH2, OH1), guide parameter adjustment.
or (IH3, OH2) in Fig. 5(a)], then only Step 3 in the mapping As mentioned above, the goal of training the ANFF is to
process is satisfied and thus no structural change is necessaiMimize the error function [see (18)]

Case 2: If input hyperbo¥ is newly formed (i.e../ = IH4), L 2
and thus not connected to any output hyperbox, then Step E = 5(s(k) — 5(k)) (23)

1 in the mapping process is satisfied and input hyperBoxXyhere (k) is the desired signal, and(k) is the filtered
will be connected to output hyperbaX directly, whereK  gjgnal. Based upon this MSE criterion and in analogy to

could be OH1, OH2, or a newly formed hyperbox, OH3. Casfe packpropagation algorithm, we can derive the following
3: If input hyperbox.J is associated with an output hyperbmbeneral parameter-learning rule:

different from originally (i.e., assuméJ, K) = (IH2, OH2),
but the original mapping is (IH2, OH1)), then Step 2 in the wk + 1) =w(k) + Aw(k) = w(k) +77<_8_E> (24)
mapping process is satisfied and a new input hyperbox close ow

to J will be found or formed by performing the input fuzzy _O0E _ OF df _ OF da Of (25)
clustering process again. This search, called “match tracking” Ow af ow da Of Ow

(see Fig. 6), continues until an input hyperbd, that can be

) X : wherew is the adjustable parameter in the filter (i.e;; or
associated with output hyperbdx is found [e.g.,(J',K) =

v;;). To show the parameter-learning rules, we derive the rules

(H3, OH2,)]' ) . layer-by-layer using the hyperbox membership functions with
The vigilance parameterp, is an important SWUCtUre- comergy, 's andv;,’s as the adjustable parameters for these

learning parameter that determines learning cluster dens{ymntations. In the following derivation, we consider only

High (approaching 1p values tend to produce increasingly,ne oytput linguistic variable for notational clarity. Hence, the

finer learning clusters, until at 1, each training datum 'e?djustable parameters in layer 5 are denotedc@/ +% and
P ) J )

assigned to its own cluster in the input (output) space. Low ;) 5) ) )
(approaching O values tend to produce increasingly coarséf; = (u; +v;")/2, for the jth term node.
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Layer 5: Using (16), (24), and (25), the updating rule for Layer 3: As in layer 4, only the error signals need to be

the corners of the hyperbox membership functﬂé?’? is computed in this layer. According to (14), this error signal
can be derived by
9E  OE 9a® 27 OF 9E 9a® o™
= T = (s(k) = §(k) ———. (26 3 _ _ __ a” of
o 9a) 9,7 (F) = &(k)) 25 A (26) 6 5a® ~ " 0d® 9f@ 5a® (35)
. where
And the corner parameter is updated by
OF _ s (36)
(%) (%) P alt) —
o (k4 1) = o (k) + n(s(k) - (k) —Z—7. D) 9a
2 Z %5 8f<4) =1 (37)
€Y
Similarly, using (16), (24), and (25), the updating rule for the af® _ af® _ % (38)
other corner parameterjO is 9a®) 8254) Zmax
) (5) wherez,, = max(inputs of output terms nodg. The term,
oE _ OE da - _ _ 3 % 2 2(4)/zmax, normalizes the error to be propagated for fired rules
5 SEPNE s(k) — 8(k)) 5. (28) A
8u§f’) 9al®) 8u§f’) 2 Z z]@ with the same consequent. Hence the error signal is
4
And this corner parameter is updated by 553) — 554) i (39)
Zmax
(5) . .
5 5 . Z If there are multiple outputs, then the error signal becomes
WP (k1) = u () +n(s(k) - 5(k) — 255 (29) pie outp g
2 7 ey
6(3) — “k 5(4)
! Zmax t—1 k

Notice that since the update values téf’) and u]@ are the k

same, the constraimﬁs) > %) associated with the trapezoidaIWhere the summation is performed over the consequents of a

J : ; ; ;
membership function in the output space is preserved affsf€ node; that is, the error of a rule node is the summation
of the errors of its consequents.

tuning. ; .
The error propagated to the preceding layer is (QISayer 2: Using (11), (24), and (25), the updating rule of

v;;’ s derived as in
6@ = — 9L _ sy — s 30 3) §a2
== 5m = 5k) = 5(k). (30) _0E __ QE 3d® 9a (40)
9u?  9a® a5,
Layer 4: There is no parameter to be adjusted in this * I
layer. Only the error signa(l6§4)) needs to be computed andwhere
propagated. According to (16), the error sigﬁﬁl) is derived 8a® 41
by dal2) (41)
5 aa@) 1 if < (7. — (2) <
s - _9F _ OF 0ut? (31) oY "0s (.xz v v sl (42)
i 9a® 9a® 9a® dv;; 0, otherwise.
where So the updating rule ofzi(f) is
OF 5 9al?
pam =07 (32) U +1) = v +n8 . (43)
4 4 4 4 Ui,'
9a® m§°> Z z§°> - Z m§°>z§°> J
Ja@® — (5)\2 ) (33) Similarly, using (11), (24), and (25), the updating rulaéf)
(Z < ) is derived as
3 2
Hence, the error signal is OF OE 9% 9a? (44)

. . oo - aug;z) T T 9a® 94 aug;z)
0 _ 56 me Y A =) m (34) Where

6 ( ('))2 .
>z da®
In the multi-output case, the computations in layers 5 and 4 9a Y o< (@ sy <
are exactly the same as the above and proceed independently e { n’ it 0= (u“ zi)y <1 (46)
for each output linguistic variable. Iy 0, otherwise.
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Hence, the updating rule af;; becomes ek)
@)
2 e (3) Ja
U’z] (k + 1) - U’z] (k) + 61 ou (2) (47) s(k) channel B

U

()

Notice that after tuning, the constrainf; > u3; associated x(k-1) x(k-n+1)
with the trapezoidal membership function in the input space
is kept by settingug)(k +1) = vi(f)(k + 1), if the violation equalizer
condition ug)(k +1)> vg)(k + 1) is encountered. i

V. APPLICATIONS AND SIMULATIONS 3 (k- d)
A. Application to Nonlinear Channel Equalization @)

The proposed ANFF is used as a nonlinear channel equalizer e(k)

in this application. In [26], the first use of fuzzy filter to /
equalize nonlinear channels is proposed. Nonlinear channe(\ (01 x@0) 3k~ d)
equalization is a technique used to combat some imperfect channel ANFF E}—*
phenomenon (mainly refers to intersymbol interference in B
the presence of noise) in high-speed data transmission over L__L_()
channels, like the high-speed modems [1]. The structure of Delay +
the system is shown in Fig. 7. The transmitted input signal, — sk-d)
s(k), is a sequence of statistically independent random binary <
symbols which takes values of 1 erl with equal probability. )

The signal is sent through the channel. In real communications, ) . )

. . Fig. 7. (a) Schematic of a data transmission system. (b) ANFF as an adaptive
the channel (like the telephone channel and radio channell,iSizer.
in fact dispersive and the dispersion will cause interference

between successive samples (intersymbol interference) which T T

greatly complicates reliable transmission and receptiof(A} 2 . . )
denotes the output of the channel, then the channel function
can be described as -~ St
1 0 + —
B(k) = f(s(k),s(k = 1), s(k=m)).  (48) E S

In general, f is a nonlinear function of the past transmitted
signals, and the channels change slowly but significantly over 2 . .
time, so a nonlinear channel equalizer with adaptation ability o 0 f 5

IH

is needed. At the receiving end, the observed sig(&) is the
channel output:(k) corrupted by additive noise(k), that is x(k)
a:(k) _ A(k) + c(k) (49) Fig. 8. Channel output points and optimal decision region in Example 1.

The task of the equalizer is to reconstruct the transmitté$ Shown in [15], the optimal equalizéfi,p,:, which achieves
signal, s(k — d) from the observed information sequencéhe minimum bit error rate for a given orderand lagd is
x(k),z(k—=1),---,2(k—n+1) (whered andn denote the lag 1, if hop(x(k))

and order, respectively) such that greater speed and reality can = sgr{pl( (k) — p—1(z(k))]

be achieved. Following the functions defined in [13], [15], the Sk —d) = (54)

geometric formulation of the equalizers can be described as -1, fif hopt( (k)
follows. In mathematical form, the function of the equalizer is = sgr{pl(:c( )) —p—1(x(k))]
$(k—d)=h(zk),z(k=1), -, z(k—=n+1)),
where h: ®" — {—1,1}. (50) wherep; (x) al’ldp_l(:c) denote the conditional density func-

tions of observing outputc given & € B, 4(1) and & €
Let the possible channel noise-free output vectors P, 4(—1), respectively. The optimal decision boundary is thus

#(k) = [8(k), (k= 1), 2(k —n+ D7 (51) the set of points that satisfy

that are produced by sequences of channel inputs containing hopi(#(k)) =0, with (k) € R, (55)
s(k—d) =1 ands(k—d) = —1, be denoted by the s@, 4(1) For the case that the noigék) is Gaussian distributed with
and P, 4(—1), respectively, i.e., zero mean and covariance matrix

Poa(1) = {&(k) € R"|s(k — d) = 1} (52)  Q=E[(e(k), - elk—n+1)elk), - ek —n+1)7]
Poa(=1) ={&(k) € ®"|s(k —d) = —1}.  (53) (56)
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Fig. 9. (a) Decision region of the ANFF in Example 1 when the adaptation is stoppkd=atl7, where five rules are generated. (b) The generated
hyperboxes and the training data (denoted as):
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Fig. 10. (a) Decision region of the ANFF in Example 1 when the adaptation is stopped=at0, where nine rules are generated. (b) The generated
hyperboxes and the training data (denoted as):

the optimal equalizerfiop, is We now use the ANFF as an equalizer to solve the above
problem. For training the ANFF, all input—output data should
1 o T 1 . be normalized to be between 0 and 1. For the output, the two
s ; " P {_5(:”(]{) — &) QT =) _$+)} desired values, 1 and1, are normalized as 0.75 and 0.25,
el g

respectively. Of course, other normalized values are allowed
1 T 1 . if they are within O and 1. Since the desired output value is
- . e {_5 (@(k) —2-)" Q™ (a(k) — x—)} " either 0.75 or 0.25, one output node with two clusters centering
at 0.75 and 0.25 is used. Since only two clusters are generated
G7)  atthe output node, we can simply set the output vigilange
To demonstrate the performance of the ANFF's used gs 1. The decided threshold at the output is set as 0.5 so that
equalizers, different situations are illustrated in the followin{p" the output whose value is larger than 0.5, the transmitted
examples. signal is classified as 1, otherwise it is classified—ds The
Example 1: Suppose the nonlinear channel function is  input vigilancep;, is set as 0.87 initially and is kept decreasing
as training proceeds. The sensitivity parameteand learning
(k) = 6(k) — 0.96°(k) (58) constant,n, are chosen as = 4 andn = 0.001. There are
wherea(k) = s(k) +0.5s(k — 1), and the noise(k) is white no rules initiall_y and_they are generate_d_during the _training
Gaussian distributed witae? = E[e%(k)] = 0.2. Then the process. The simulation results (the decision boundaries) after

E_epr, (1)

covariance matrix) used in (56) is the on-line training stopped &t = 17 andk = 50 are shown
in Fig. 9 and Fig. 10 with the generated rule humbers being 5
0= {0(-)2 002} and 9, respectively, wheredenotes the number of time steps

(sampling points). In Figs. 9(b) and 10(b), the training data,
If n = 2 andd = 1, then by (54) the optimal boundary can béiepoted as-,” and their corresponding generated hyperboxes
derived and is shown in Fig. 8. In Fig. 8, the shaded region\lich denote the number of rules are shown. _
the region where the transmitted signal is classified as 1. AlsoTo explain the meaning of the above results, let us consider
shown in the figure are the symbols’“and “+” which denote Fig. 9(b). In Fig. 9(b), five hyperboxes (or rules) marked as

the elements of the sets & ((1) and P> o(—1), respectively. Hi, Hs, Hs, Hy, H; are shown. The five fuzzy rules that the
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Fig. 11. Comparison of bit-error-rate curves for the optimal equalizer and the ANFF trained witi7 andk = 50 in Example 1.

hyperboxes stand for are T

Rule 1: IFx is Hy, THEN y is O )
Rule 2: IFx is Hy, THEN y is O
Rule 3: IFx is Hz, THEN y is O,
Rule 4: IFz is Hy, THEN y is Oz
Rule 5: IFx is H;, THEN y is Os

T4t
T

x(k-1)
=

wherez = (x(k),z(k — 1))¥, and O; and O, are the two . .
output clusters meaning the decided result being 1—a¢ -2 0 2
respectively. The function of these rules is in fact to classify x(k)

whether the received samples contains -ar From this point
of view, the equalizer can be viewed as a classifier, and t
problem can be considered as a classification problem [36].

In this perspective, the ANFF uses ART to do clustering ihigh SNR in Fig. 11 is in fact caused by a small difference in
the input space and then maps the clusters to category “1”tbe numbers of misclassified bits. Better performance can be
“—1,” a technique similar to fuzzy ARTMAP [31]. In contrastachieved if more sampling pointg) are used for training.

to fuzzy ARTMAP, where a cluster is merely a rectangle, a Example 2: The convergence of the ANFF to the optimal
cluster in the ANFF is in fact a multidimensional membershipqualizer will be verified for a more complex case in this
function with membership value decaying outside the hypetxample. First, consider the same channel function as that in
boxes as shown in Fig. 4(b). The degree (or membershipEsample 1, except that = 0 is used. The optimal decision
sample point belongs to each cluster is calculated and thésgindary is shown in Fig. 12. From Fig. 12, we see that the
degrees are then integrated via the defuzzification processi&gision boundary is highly nonlinear and the linear equalizer
produce a final classification result. Moreover, the hyperboxesll not be able to handle it. By choosing input vigilance
(clusters) are tuned optimally in the ANFF as mentioned im, = 0.92 and doing the same training job as in Example 1,
Section IV-C. we trained the ANFF and stopped the trainingtat 20, 50,

The results in Figs. 9 and 10 show that as training proceedsd 130, respectively. The corresponding decision boundaries
the decision boundary has the tendency of converging to thed generated hyperboxes are shown in Figs. 13-15 with
optimal one. To see the actual bit-error-rate, a realization @énerated rule numbers being 10, 17, and 24, respectively. It
10° points of the sequencegk) and e(k) are used to test should be noted that at the beginning of training, the hyperbox
the bit-error-rate of the equalizers. We stopped the training mfay be only a single point and is not clear in these figures.
the ANFF atk = 17 and 50. From Fig. 11, we can see thafhe tendency of converging to the optimal equalizer is verified
the curve of the bit-error-rate caused by the trained ANFF iatFigs. 13-15. Also from Figs. 13-15, we find that the ANFF
k = 50 is very close to the optimal one. At higher signaltakes onlyk = 130 for the vicinity of the sets/ ;(1) and
to-noise ratio (SNR), these two curves show a little mork; ;(—1), to be properly decided. The bit-error-rate curves of
deviation. To explain this phenomenon, we take the case witite ANFF trained fork = 50 and £k = 130 are shown in
SNR = 18 for example. At SNR= 18, the number of Fig. 17.
misclassified bits for the optimal filter are 2, while that for the For comparison, the LMS-type adaptive fuzzy filter [26]
ANFF trained afterk = 50 are 14, for a total of 10testing with 24 randomly chosen rules is used. By using the same
bits. Hence the deviation of the two bit-error-rate curves &iining data and aftek = 500 time steps of training, the

Eig. 12. Channel output points and optimal decision region in Example 2.
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Fig. 13. (a) Decision region of the ANFF in Example 2 when the adaptation is stopped &0, where 10 rules are generated. (b) The generated hyperboxes.
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(a) Decision region of the ANFF in Example 2 when the adaptation is stopped &0, where 17 rules are generated. (b) The generated hyperboxes
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Fig. 15. (a) Decision region of the ANFF in Example 2 when the adaptation is stopped 480, where 24 rules are generated. (b) The generated hyperboxes
T decision boundary and the bit-error-rate curve are shown in
2 . 7 Fig. 16 and 17, respectively. Since the initial rules of this type
# EE of filter are randomly assigned, the training results may be
= H P, EER different for different initial conditions. The result shown here
33 0 2. 1 is a better one of them. More training data (larger time skgps
- : are required for the LMS-type adaptive fuzzy filter to achieve
. " the same performance of the ANFF, which required only 130
2 S8 o ] training time steps. This is due to the fact that the generation
-2 0 2 of fuzzy rules in the ANFF is based on the distribution of
x(k) input data rather than on arbitrary assignment. The actual
Fig. 16.

Decisi . . , . computation time of the ANFF trained for 130 time steps is
ecision region of the LMS-type adaptive fuzzy filter with 24 rules . - . !
in Example 2 when the adaptation is stopped:at 500. .33 s, while for the LMS-type adaptive fuzzy filter trained
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Fig. 17. Comparison of bit-error-rate curves for the ANFF trained with 50 andk = 130, where no linguistic information is incorporated, the LMS-type
adaptive fuzzy filter trained witlk: = 500, and the ANFF trained witlk = 20, where 10 initial fuzzy rules are incorporated.

for 500 time steps, the total computation time is 5.04 s. In In constructing the ANFF, the assignment of fuzzy rules
average, for one step of training, the computation time of tli® merely to draw the input and output hyperboxes in the
LMS-type adaptive filter is three times of that of the ANFFinput and output spaces according to the preconditions and
Moreover, for on-line training with a constant sampling rateonsequents of the given fuzzy rules, and then connect the
if the computation time of one step of training is less thaimput—output hyperboxes according to the given if-then rela-
the sampling time, then a less number of time stepseans tionship. For the uncertain regions no assignment is required,
a shorter training time is required, that is, a fast learning Bgcause as numerical training proceeds new rules will be
achieved. The time steps required for the training of the ANFFenerated if necessary. Thus, unlike the scheme used in [26],
is comparable with that of the RLS-type adaptive fuzzy filtef§e initial number of assigned rules is not required to be equal
in [26]; however, the RLS-type filter needs 81 fuzzy rules tt the final total number of rules used in the filter, so more
achieve the same performance of the ANFF, that uses only ffexibility is allowed in our ANFF. The assigned hyperboxes
fuzzy rules in the example. are shown in Fig. 18(a). Since the regions are very rough,
Example 3: As mentioned earlier, the ANFF can combindhe mean values (center points) are assigned as 0.4-ardl

the training of numerical data and linguistic fuzzy if-therOr category 1 and-1, respectively, to reflect the confidence.
rules together. In Examples 1 and 2, we have demonstrad¥ifhout numerical training data, the decision boundary de-
the training of the ANFF by numerical data. In this exampl&ided by the given 10 fuzzy rules are shown in Fig. 18(b).
we will show the case that some expert knowledge is kno/om Fig. 18(b), we see that the decision boundary is correct
in advance and we can incorporate such knowledge into 6 the rightmost or the leftmost parts, but not good for the
ANFF as is done in [26], where the combination of numericApiddle part. This result rgﬂects that _the expert knowledge is
data and linguistic fuzzy if-then rules was first proposed f¢Pugh and can only provide partial information. To achieve
equalizer. Looking at the results in Examples 1 and 2, \JRore precise decision, tral_nl_ng via num_enc_al data is still nec-
find that the function of the equalizer is in fact to find th&SSary- Using the same training data as in Fig. 13, and stopping
regions in the input space that are corresponding to the inpl @ining ak = 20, the decision region of the trained ANFF

sequences containing 1 erl. If in some specific situations, Is shown in Fig. 19. The result shows that only 20 time steps

there are experts who know roughly the decision boundary a% = 20) are required to properly cIassify the vicinities of
(1) and P, o(—1), and the bit-error-rate curve

can assign degrees to some input regions to reflect their be E:Ef sets,RZo : . .
g g P g |}s shown in Fig. 17. The improvement of learning speed by

that the regions should belong to the “1” o+1" category, . i ot les i ifiad f h
then we can incorporate such knowledge into the ANFF fgeorporating expert fuzzy rules 1s verified from these curves.

improve its learning speed. Consider, for example, the case in o ] ] )

Fig. 12. If there are experts who are familiar with this casg- ApPplication to Adaptive Noise Cancellation

and can draw fuzzy regions, we can then assign fuzzy rulesThe ANFF is applied for adaptive noise cancellation in this
to these fuzzy regions. subsection [32]. Adaptive noise cancellation is concerned with
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Fig. 18. (a) The assigned hyperboxes and their degree of confidence in Example 3. (b) The decision region generated by the rules from expert knowledge.
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Fig. 19. Decision region of the ANFF in Example 3 with 10 initial fuzzy
rules when the adaptation is stoppedkat 20.

By squaring and taking expectation of both sides, we can

obtain
the enhancement of noise corrupted signals and is based upon
the availability of a primary input source and an auxiliary E[2(k)] = E[s*(E)] + E[(no(k) — y(k))}].  (61)

(reference) input source located at the noise field which L L 5 .
contains no or little signal as shown in Fig. 20. In Fig. 2d2Ur objective is to minimize&[(no(k) — y(k))*]. Observing
the primary input source contains the desired signathich (’61)2, we can see that this objective is equivalent to minimizing
is corrupted by noisexy generated from the noise sourge Ele*(k)], and when

The received signal is thus E[(no(k) — y(k))?] = E[(no(k) — F(ny(k))?]

. approaches zero, the remaining efre@t) is in fact the desired
z(k) = s(k) + no(k). (59) signals(k), whereF () represents the function of the nonlinear
adaptive filter.
The secondary or auxiliary (reference) input source receivesTraditionally, the design of the adaptive filters for the
the noisen;, which is correlated with the corrupting noiseaforementioned noise cancelling problem is based upon a
ng. The principle of the adaptive noise cancellation techniquéigear filter adapted by the LMS or RLS algorithm. In real
is to adaptively process (by adjusting the filter's weights) thgtuations, the environment betweenand ng or n and n;
reference noise, to generate a replica af, and then subtract is so complex that, or n; is in fact a nonlinear function
the replica ofn, from the primary inputz to recover the of n [33]-[35]. Higher performance of noise cancellation by
desired signals. We denote the replica ofy, i.e., the adaptive using a nonlinear filter can thus be expected. To verify this
filter output, as procesg To show how the system works, weand show the advantage of using the ANFF for adaptive noise
will follow what is derived in [32]. In [32], the assumptionscancellation, the following examples are given.
that s,n9, andn; are stationary zero-mean processess Example 4: Consider the case where the primary input
uncorrelated withng andnq, andno andn; are correlated, sources(k) = sin(0.06k) cos(0.01k) as shown in Fig. 21(a),
are made. Also, the reference input source is situated in sugid the noise is generated by a white neiséssume that the
a position that it detects only the noise not the signadflere, relation between the noise sourgeand the corrupting noise
another constraint that procegds uncorrelated with processn, is a nonlinear function as
s is added due to the use of nonlinear adaptive filters. From 3
Fig. 20, we have no(k) = 0.6(n(k)) (62)

and the reference input is placed just in front of the noise
e(k) = s(k) +no(k) — y(k). (60) source so that we have (k) = n(k). The performance of the
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Fig. 22. (a) The recovered signal using the linear filter with order O during the first epoch of training. (b) The recovered signal using the linear filter

with order 0 after convergence

linear filter with transfer function

(see Example 4).

wheren is the order of the filter, is investigated first. Linear
filters with order O, 1, and 2 are tested by setting all initial
weights h; equal to 0.1. By using the LMS algorithm with
learning constanty = 0.005, we find that for order one and

(63)
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Fig. 23. (a) The recovered signal using the ANFF without linguistic information during the first epoch of training. (b) The recovered signal usitkg-the A
without linguistic information after convergence, where seven rules are generated (see Example 4).

amplitude
T

20 T . T . : .
R ]
185 0 ]
C a:linear filter (order:0)
16F b:linear filter (order:1) 4
c:linear filter (order:2)
14t d:ANFF without linguistic information |
¢:ANFF with linguistic information
= 12+
g
o 10+
b3 8 b
6 L
4+ . -
2 ¢ l T - a -
0 1 1 l‘ 1 1 L
0 5 10 15 20 25 30

time step ( x 60)

Fig. 24. Comparison of square error between the recovered signal and original signal for different orders of linear filters (a), (b), and (c), AMFF with
linguistic information (d), and ANFF with three initial fuzzy rules (e) for the channel function in (63), with each plotted error value being the sum of
errors over 60 adjacent time steps from the start of adaptation (see Example 4).

two, the weightsh;, ho all decay to zero, and the weightafter convergence by using the linear filter with order zero are
ho converges to around 0.8 for all the three linear filtershown in Fig. 22(a) and (b), respectively. The results indicate
This shows that a linear filter with order zero is enoughhat the performance of the linear filters is poor, and the
The recovered signals during the first epoch of training amfévelopment of nonlinear filters is thus necessary.
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Fig. 25. lllustrations of Example 5. (a) Noise corrupted speech signal. (b) Recovered speech signal using the ANFF. (c) Recovered speech signal
using linear filter.

We next apply the ANFF to this example. Before applyingarameters ag = 0.01,v = 4. A total of 1200 training
the ANFF for the adaptive noise cancellation, one thingata are used. The recovered signals during the first epoch
should be noted. As stated in Section Ill, the input anof training and after 100 epochs of training are shown in
output of the ANFF should be normalized to be between Flg. 23(a) and (b), respectively. After 100 epochs of training,
and 1. This normalization will violate the assumption thaeven fuzzy rules are generated in the ANFF. From Fig. 23,
processess, ng, andn; should be of zero mean, and thusve find that during the first epoch of training the initial error
the derivations of the above equations will not be valithe recovered signal) is not so large as the one obtained from
anymore. To keep the assumption true, we will perform tHmear filter. This phenomenon is due to the fact that in the
normalization only in the input—output space partition processarly stage of the ANFF training, structure learning has learned
When the partition process is finished, we then denormalize tte matching of input—output clusters quite well, so the error
corners of the hyperboxes as well as the input—output trainirggsmall. Once the structure or rule base is constructed, fine
data. Thus, in the training process, the zero-mean assumptiaming is performed continuously to minimize the error of the
holds. ANFF. As compared to the performance of the linear filters,

The adaptation of the ANFF is performed after choosintpe recovered signal through the use of the trained ANFF is
the initial vigilances asy, = 0.4, powt = 0.7, and learning much closer to the original signal.
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Fig. 26. Power spectrum of the noisy speech signal and recovered speech signal using linear filter and ANFF.

To make the performance comparison more precise, weExample 5:In previous examples, the signal used is a
calculate the square error between the recovered signal aimisoidal signal. In real applications, the signal is usually
the original signal for various filters. Fig. 24 shows the errarery complex such as a human’s speech signal. To demonstrate
curves for three different orders of linear filters [curves (a), (blhe performance of the ANFF in a real-world case, consider
and (c)], and for the ANFF trained in the above—the ANFEhe channel function used in (62) with the signalbeing
without initial fuzzy rules [curve (d)]. In the figure, the error isa voice utterance “e” sampled at 10 kHz and is corrupted
calculated from the start of adaptation, and each plotted erwith white noise. The measured signal+ ng, is shown
value is the sum of square errors over 60 adjacent time steijpsFig. 25(a), where SNR= —1.1 dB. After five epochs of
Also shown in the figure is the error curve for the ANFF withiraining, the recovered signad, by using the ANFF (where
initial fuzzy rules, which will be explained in the following. eight rules are generated) is shown in Fig. 25(b). Of course,
The error curves showed in Fig. 24 indicate that the error afbetter result can be achieved if more epochs of training are
the ANFF is much smaller than that of the linear filters.  performed. Fig. 25(c) shows the recovered signal by using the

Observing the above results, we see that the adaptationlinéar filter trained until convergence. The aim of the adaptive
the filter is in fact to find a nonlinear function betweeg filtering can be regarded as to minimize the power spectrum
and n;. If we know the characteristics of the channels, wef the measured signal. The output power spectrums of the
can design the filter directly. However, in real situations, theorrupted and recovered signals using the ANFF and linear
precise channel function is unknown and will change witfilter is shown in Fig. 26. Since the corrupting noise is white,
time, so the direct design approach is nearly infeasible. Eveninimization over almost all frequency range is seen. From
though, if we know approximately the characteristic of ththe comparison of power spectrums, high performance and
channel function, we can add tlepriori fuzzy knowledge to learning speed are indeed achieved by using the ANFF.
the ANFF to improve its learning speed. Consider the noise
cancellation problem in this example again [see (62)]. If we
know roughly that the corrupting noise, is proportional to VI

the reference measured noisg (Under some situations, this . . .
is a reasonable relationship, since if the amplitude of the nois¢\N ANFF is developed in this paper. The ANFF can be

sourcey, is large, the measured noises andn, are usually trained by numerical data and linguistic information expressed
both Ia'rée. on the contrary, if the amplitude of the noisdY fuzzy if-then rules. This feature makes the incorporation of
source, is small, the measured noiseg andn, are usually & priori knowledge into the design of filters possible. Another

both small.) We can then add the following fuzzy rules in th&€Y feature of the ANFF is that, without any given initial

. CONCLUSION

ANFE structure, the ANFF can construct itself automatically from nu-
merical training data. Especially, the irregular-type partitioning

IF n, is High, THEN 1, is High, on the input'—o.utpu't space can avqid the cpmbinatoriallgroyving
IF n, is Middle, THEN 7, is Middle, problem existing in the conventional grld-type_ part|t_|0n|ng

IF n, is Low, THEN g is Low. approach of fuzzy systems. Good performance is achieved by

applying the ANFF to the nonlinear channel equalization and
adaptive noise cancellation problems. More applications, like

In the normalized domain, the two corners of the trapghe noisy speech recognition and noisy image filtering, will
zoidal membership functions corresponding to the fuzzy termgs investigated.

“High,” “Middle,” and “Low” are (0.05, 0.3), (0.35, 0.65), and
(0.6, 0.9), respectively. These three fuzzy rules are constructed
in the ANFF initially. Then, after doing the same training job
as in the above, the error curve is shown in Fig. 24 [curver] B. Widrow and S. D. Stearng\daptive Signal Processing Englewood
(e)], where a total of six rules are generated. Fig. 24 shows_ Cliffs, NJ: Prentice-Hall, 1985. o - .
hat higher | . di hi chibriori k led [2] S. Benedetto and E. Biglieri, “Nonlinear equalization of digital satellite
't a_-t Igher earr_nng speed is achievedaifriori knowledge channels,” presented at tt&¢h AIAA Conf. Comm. Satellite Syshan

is incorporated into the ANFF. Diego, CA, Mar. 1982.
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