SR P B ML e

Linear XML Signature Verification Scheme Based on Finite Automata

SRR EC) o

R T o

(IEIE I P e

SR P B S XML E § R g

Linear XML Signature Verification Scheme Based on Finite Automata

T 2 FEF Student * Chien-Hsien Lee
hERERHET B Advisor * Shiuh-Pyng Shieh
¥xze #4 Yi-Shiung Yeh

=
A Thesis

Submitted-to Collegerof Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master of Science
in
Computer Science

July 2008

Hsinchu, Taiwan, Republic of China

PER R4 L g

R ORGP it S XML § F s i

Friiiey To P ST
e

SERERY

THMER TR AL

%

XML % % =03 & ¥33F &> Canonical XML, Camonical XML €_W3C #_& i %1 XML
v etk gt R 4L L Canonicalization (Cl4n), *% ™ Cl4n ﬁﬂ?‘rﬁ%’a‘_&iﬁié < g
#2 XML & F o, Ay KB - B ks i< Cldn s fe i, 87 XML & 2R
e AR B G LR P B 5 A A R - B XML & 2R S 2k op
RBol, e R oEDEARY FH- BF "L %ﬁf‘uﬁ‘é LA PR R SRR
Canonical XML, ## 7 3% M1 i8> 27 M & XML & F5%#EMF 40 1 XML e se R "% 3
0(n), #* = i# PFE § streaming chgrid, 7 4 b5 Mzefa it * 2 KL FH ¥R,

WERF I VgE R TR S MTIRE KEE 4 hkE

—

o

Linear XML Signature Verification Scheme Based on

Finite Automata

Student: Chien-Hsien Lee Advisor : DR.Shiuh-Pyng Shieh

DR. Yi-Shiung Yeh

Degree Program of Computer Science
National Chiao Tung University

Abstract

XML Signature main bottleneck is Canonical XML. Canonical XML is a formalization
method for XML document defined in W3C Canonical XML [9]. This formalize process
called Canonicalization (C14n).” Reducing the complexity of Cl4n can also significantly
improve the performance of XML Signature. This résearch provides a transformation model
to reduce the complexity of Cl4n. In the processing of C14n, the results of node operations
are converted to non-recursive binary sequence by the transformation model based on Finite
Automata. For signature verification, the binary sequence can be restored into Canonical
XML by Finite Automata in linear time. The proposed scheme can reduce the complexity of
Canonical XML to O(n) and streaming characteristics. The characteristics of streaming can
also substantially reduce memory usage and improve computing speed. This scheme is
suitable for applications such as firewall or mobile devices with limited -resource or low

computing capability.

II

Ehatpr

=4 f
s P
TR S AR EHA A i ERRE R 2 YT X,
EHERZEXFR TN ORI NFEAINEN T L 2 o, Faogre 220078 70 gy,
WOE AR iR R R AT] BRI A BT K et 4]
SR M R A Y R A RE Y chdg A5
EHEHRE ARG AR R EAFTELL, HAES
HHnE

2 B (T

, 0

B

HE

Jm}

A2 2 A A1 T2 BEFRS T Tt gt@w\ ;A
x5

Eﬂ) H =K _Q }fg‘\:‘g‘éﬂ'
AT ST
R iE A anr 2 | oo B OB R Fred o IR 2 150t 2 L SR R

&,

BEEEFETI R
2~} RV P E
¥, AR SRR

Rt AR BIES F L
3 =]
AN
PALETE

(23

-

' g X
2 B,
o i engTes 2 M A L F2 8
b A AT i Sk A, B
Fhadfaatar 24 0, e kel Pies 38 Vs, &
ST R iR R T ORAE R o (SRR P
1AL - REDPE 2 Fhhr g o

T dp HE A R

I

Table of Contents

1. INErOAUCTION ccoueiieeiiniiiiicniisnecsnecstecsaniseessseessssssessssnsssessssssssnssssesssasssssssssssssesssassssssssases 1
2i OV VICW.ueiiiuerersunressnnecsssnecssssecssssesssssesssssesssssesssssesssssssssssssssssssssssssssssesssssssssssssssssssssssssssase 3
2.1. XML-Signature SYNEAXccooviiiiiiiiiiiiiieriie ettt saee e 3
2.2, Canonical XIMIL ..o 7
2.3. XPath transformationc.ccooiiiiiiiiiiiii e 8
24. XML Signature Processingccoocvviririiiiiieiiiieeeeiiieee e eeveeeesneee s 9
3. Related WorkK ... iiieiieiiniitiininnninninneinsiisnisnissnsisseesssssssessssssssessssssssssssassssesssasss 10
3.1. Efficient Implementation of XML Security for Mobile Devices................. 10
3.2. A Streaming Validation Model for SOAP Digital Signature...................... 10
4. Proposed SChEmeueeeeeiiidsnieineensnenseeciustoneessenssnesssesssnsssansssassssssssssssssssssssssassssessassss 12
4.1. Methodology Analysiscoli i i 12
4.2. Conversion of Structure and Content in Canonical Processing................. 14
4.3. Constructing Finite’Automata of Canonical XML.........................cocce 18
4.4. Output Function for Generate Canonical Form..........................c.ccoooe. 32
4.5. Example for CFA ...t 33
4.6. Support for XPath Transformationcccccoooviiiiiinniiinee e, 35
4.7. Complexity Analysis for CFAcociiiiii e 36
5. Performance ANALYSISccoceeeiveicinnnissnncssnncssnecsssnncsssnecssssesssssessssesssssessssesssssesssssssssses 38
(T ©71) 1 T 11 1) T17) | OO 42
Appendix I The Algorithm of C14n Conversion.........ceeeneecseenseesssecsnnsnenans 43
Appendix 1T The Sample of XML Document For Performance Testing......... 46
REFEIEIICES couureriinriiiiniiisnniiiinniininticissniesssticsssnecssssisssssssssssesssssesssssesssssssssssessssssssssasssssssssssssssns 48

v

List of Figures

Figure 2-1 Example of XPath transformation 8
Figure 2-2 XML Signature Process floW........eieineinninnennsensennsnensennsnensnesssesssssssesssscssaes 9
Figure 4-1 Canonical XML CONVerSiON.......cceiiiinsecsseecsnenssensssecssscsssessssecssessssssssassssessssses 13
Figure 4-2 DOM tree traverSiNnG.... . eeeeeecsseesseesssesssessssesssnssssesssnssssssssssssssssssssssssssssssassssassss 15
Figure 4-3 Definition of CFA 19
Figure 4-4 Diagram of CFA 31
Figure 4-5 Example of CFAiiniiiiiinintiinninnecnninnneinsicseessesssssssessssssesssssssssess 33
Figure 5-1(a) Comparison without XPath transformation.............cueevveeeversceenseecsnecsaenne 41
Figure 5-1(b) Comparison with XPath transformationcoeecvenvercseisseecseccseecnnnns 41

List of Tables

Table 4-1 Transition Table of CFA
Table 5-1 testing environment

Table 5-2 results of performance testing

VI

1. Introduction

XML (Extensible Markup Language) [10] is a structure text standard derived from SGML
[19]. It realized the platform independence for the digital information exchange for Web or
everywhere. The e-commerce technologies such as Web Services [20] or ebXML [18] are all
developed based on XML. In order to preserve the characteristics of xml, the W3C define the
XML Signature [8] standard to guarantee that data integrity and non-repudiation for XML
message exchange. The difference with XML Signature [8] and traditional Digital Signature [14]
is that XML Signature is protecting application content, not binary Data. The traditional digital
signature [14] if there is one bit different will have completely different results; XML Signature [§]
is not the case. For example, the serialization result of one XML document may have two or more
encoding, but they are equivalent. Because XML Parser convert the XML to Objects[11], the
content encoding of each node- is. Unicode(UTF-16)[13].The other characteristics such as
comment processing, character escape,iexternal resouree , reference resolve, attribute sorting[9]

and so on are all increasing the complexity. of XML Signature implementation.

In addition, XML Signature supports partial Sign Based on XPath [12] technology. The
XPath can address the node in the DOM tree to determinate that which one must be added in
signature computing. In Multi-Hop [18] transmission process, this technology supports

Multi-Sign but does not affect the previous Signature.

Canonical XML (C14n) [9] is the core technology for XML Signature. C14n is designed to
formalize XML document. Because the processing of XML is application-oriented, therefore
application concern is the contents of the documents rather than presentation view. C14n ensure
that the document is logically equivalent and not physically.C14n is a special-purpose compiler,

but it generates formalize octet stream (UTF-8 encoding) [9] [15] instead of executable program.

C14n computing includes many complex processing such as attribute and namespace sorting, etc.
The lower bound of complexity for sorting is nlogn[2], so total cost for all elements in document
is about O(n(D+mlogm)) (D is the depth of node, m is the number of attribute or namespace[7]) .
Other operations of Canonical XML such as XPath transformation [8] [12] all its complexity is
about O(n?) or more complex. Therefore, the lower bound of XML Signature Complexity can be
defined in O(n?). Thus, the performance of XML Signature main bottleneck can be defined in
C14n. Reducing the complexity of C14n can also significantly improve the performance of XML
Signature.

Recently, the performance research for XML Signature still depends on XML Parsing Model
[11] [17] and XML Signature Syntax Processing [8] improvements. Thus, they cannot reduce the
complexity anymore.

However, the Cl14n effort for Sign Processing is.not avoided, because these operations such
as parsing [11] [17], searching and sorting operations [9] cannot be eliminate. Since these efforts
are unavoidable, why do not use theseoperations potential to improve the performance of
verification. Therefore, the objective «ofthis research is to reduce the complexity of Cl4n for
XML Signature verification.

The rest of the paper is organized as follows. Section 2 describes the concept of XML
Signature. The related work and limitation are introduced in Section 3. Section 4 describes the
detail of proposed scheme, and the analysis of performance is given in Section 5. The conclusion

is in Section 6.

2. Overview

XML Signature is a digital signature scheme designed for XML document signing. It
depends on Document Object Model (DOM) for preserve XML document feature. DOM is a
platform and language independent interface. XML Document can be converting to a DOM tree
by XML parser. It allow program or script to access and update the content > structure and style
dynamically by tree operation. Canonical XML is the core technology for XML Signature. It is a
formalize method for XML by traversing DOM tree. In addition, XML Signature is also
supporting partial sign by XPath transformation. It provides more flexibility to process XML
document after document sign.

In this chapter, we will explain the concept of XML Signature. Section 2.1 introduces the
syntax of XML Signature. The purpose of Canonical XML (C14n) and XPath transformation are
illustrated in Section 2.2 and Section 2.3. Section 2:4 will describe the detail of XML Signature

Processing.

2.1. XML-Signature Syntax

XML Signature format is also a XML document after signing. In this section, we will

introduce the syntax and its element. The XML Signature syntax is showed as follows.

<Signature ID?7>
<SignedInfo>
<CanonicalizationMethod/>
<SignatureMethod/>
(<Reference URI? >
(<Transforms>)?
<DigestMethod>
<DigestValue>
</Reference>)+
</SignedInfo>

<Signature Value>

(<KeyInfo>)?
(<Object ID?>)*

</Signature>

The document root is Signature element. It contains SignedInfo, SignatureValue,Keylnfo

and Object four elements. These elements will be explained in the following.

B Signature :
Signature element is the document root of XML Signature. It contains an attribute of id

to identifier the Signature block. The example is showed as follows.

<ds:Signature 1d=""S1G20061208100303765"
xmlIns:ds=""http://www.w3.0rg/2000/09/xmldsig#" >

B SignedInfo :
SignedInfo is the block' to be. signed for XML Signature. It contains
CanonicalizationMethod, SignatureMethod and Reference 3 element. These elements
will be explained respectivelyin the following.
e CanonicalizationMethod :
This element presents the algorithm of Canonicalization (Cl4n). Cl4n is the
formalization method for XML. We will illustrate Cl4n in Section 2.2. The

example is showed as follows.

<ds:CanonicalizationMethod
Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"></ds:Ca

nonicalizationMethod>

e SignatureMethod :
This element presents the algorithm of Digital Signature. The example is showed

as follows.

<ds:SignatureMethod
Algorithm=""http://www.w3.0rg/2000/09/xmldsig#rsa-shal''></ds:SignatureM
ethod>

Reference :

This element contains the content reference for document sign. The content
reference can be contained in the same XML document or exist in external
resource everywhere. It has the URI attribute to identifier the location of content.
It also contains Transforms, DigestMethod and DigestValue 3 elements. We will

explain these elements in the following.

Transforms :

This element is optional. It contains one or more Transform element. The
Transform element presents the algorithm for content transformation. The
transform algorithm convert the content of reference by URI attribute to another

format. Such as C14n algorithmite'convert a XML document to its canonical form.

DigestMethod :
It present the digest algorithm for'calculate the reference content digest value after

transformation.

DigestValue :
It presents the digest value for reference content after transformation.

The example of Reference is showed as follows.

<ds:Reference URI="#xxx">

<ds:Transforms>

<ds:Transform
Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"></ds: Transform>

</ds:Transforms>

<ds:DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"></ds:DigestMethod>

<ds:DigestValue>w+EVhhaShlexMBOP7acWmdjnulw=</ds:DigestValue>

</ds:Reference>

B SignatureValue :
This element presents the signature value for XML Signature process. The source for
sign is the SignedInfo block. The flow has two-step. First, Canonical the SignedInfo
block to get an octet stream. Second, calculate the Signature for the octet stream by

signature algorithm and key. The example is showed as follows.

<ds:SignatureValue>Okt8tnVmSHFoHOWvKiehm2eEZ0+rmFM2RsIVXOhPewvSsVus52/XeObN
S+YRoSo0a5b6hiOpDovGgzwUFI8vU1K+2l1lleaale+XeAcqolsZGWQY 15dcKCXH/EmvPk4mtpS/e
JOKQ93JHMOyM 1RBvIuX03IWmO6HohRjQa8DFOw 1k=</ds:SignatureValue>

B Keylnfo :
This element is optional. It*presentSrthe sign key information and certificate for

document sign. The example is showed as, follows.

<ds:KeyInfo>
<KeyValue>
<RSAKeyValue>
<Modulus>qXckWQK{ZVBSeUxxGWpeMj/3ROF0atVIQIRKnKmz+GcbNx99zyMJUeY cs
y11TQbpagBVil0Qw/nalEHnV6TThY+lyZOXzUSID3YdOGNBWqvK40fdm8V511GoKVaR
Zze4iS6EdkAYKtVRQD/KTdESn8MeLPmJarl1Xqs2RbbSGX0=</Modulus>
<Exponent>AQAB</Exponent>
</RSAKeyValue>
</KeyValue>
<ds:X509Data>
<ds:X5091IssuerSerial>
<ds:X509IssuerName>CN=Hello Test XML CA, OU=Evaluation Only,
O=HELLO-CA.COM Inc., C=TW</ds:X509IssuerName>
<ds:X509SerialNumber>1163646748</ds:X509SerialNumber>
</ds:X509IssuerSerial>
<ds:X509SubjectName>CN=12345678-01-001, OU=TST, OU=12345678-RA-001,
OU=Hello Test XML CA, O=Finance, C=TW</ds:X509SubjectName>
<ds:X509Certificate>MIIE[jCCA4ugAw........... BupPdB</ds:X509Certificate>
</ds:X509Data>
</ds:KeyInfo>

B Object :

This element is optional. It contains the extra information or a XML document for

XML Signature. The example is showed as follows.

<dsig:Object Id="Res0" xmlns="" xmlns:dsig="http://www.w3.0rg/2000/09/xmldsig#"><ele1>
<ele2 id="xxx">xxx</ele2>

</elel></dsig:Object>

2.2. Canonical XML

XML Canonicalization (C14N) is a formalization process for XML document. It defines a
set of rules to convert each Node in the XML DOM tree to canonical form. Because XML
document comparison is based on the principle of logically equivalent, the document must be
formalized before comparison. In this section, we will describe the outline of C14n.

The rules of Cl4n contain the_operations:of syntax and structure. The rules of syntax
formalize define the lexical formatting for content display with each node. The rules of structure
formalize define the serialize order for node traversing. The node types for syntax formalize
contain Document Root, Element, Attribute Node, Text Node, Processing Instruction (PI) Node
and Comment Node. For example, the text node value, except all ampersands are replaced by
& all open angle brackets (<) are replaced by <, all closing angle brackets (>) are replaced
by >, and all #xD characters are replaced by . The rules of structure formalize include
the traversing order, namespace inheritance and attribute sorting. The document order is defined
by the location of node and its relationship. The node traversing is following this order. In
addition, the lexicographic order defines that which namespace or attribute is greater another by
lexical. For example, the attribute “it” is greater “id”, because the first character code is equal, but
the second character code “t” is greater “d”. Therefore, the attributes in element will be sorted by
lexicographic order. Otherwise, the qualifier name (QName) for attribute is combining its local
name and namespace prefix name. Thus, we must resolve the namespace value for prefix before

sorting. The example of Canonical XML is showed as follows. The empty element ele2 converts

to start tag and end tag of ele2. The attributes it and id of ele3 are sorted by lexicographic order

(ascending). The decimal code “13” in text node converts to hex code “D”.

Original form Canonical form
<elel> <elel>

<ele2/> <ele2></ele2>

<ele3 it=" "aaa" id='bbb™> a  b </ele3> = <ele3 id="bbb" it="aaa"> a  b </ele3>
<felel> <felel>

2.3. XPath transformation

XPath is a language for addressing parts of XML document. XPath filtering is a process to
transform a XML node set to anthers with XPath expression. The XPath expression is a predicate
for node testing. If the node has satisfied:the predicate, will be added to result set. Finally, we can
get a node set for XPath transformation. The XPath. transformation is very complex operation. Its

complexity is O(n®) or more complex(exponentiation).

Figure 2-1 Example of XPath transformation

<aaa xmlns="http://www.hello.com"/>
<bbb attr]="xxx">
<cce >
<ddd/>
</cce>
</bbb><eee/>
</aaa>

XPath expression

(/7. | /7/7@* | //namespace::*)[[self::bbb| or[parent::ccd]

g

<bbb xmlns=" hitp://www.hello.com/"|attr1="xxx"><ddd></ddd></bbb>

default namespace
inheritance

The example of XPath transformation is presented in Figure 2-1. The xml document is
converted into a document tree of nodes. We test each node in document tree to determine which
one satisfy the XPath predicate. The XPath expression is meaning that select all nodes which itself
is “bbb” or its parent is “ccc”. We can find that node “bbb” and node “ddd” is satisfying the
predicate. However, the node “bbb” also inherited the default namespace from node “aaa”.
Because the result of XPath transformation is just a subset of original document, the definition of
default namespace will be missing. To inherit the default namespace of ancestor node will fix this

problem.

2.4. XML Signature Processing

XML Signature has three computing process in its processing flow. First, the digest value in
the reference element must be calculated. Secondly; the SignedInfo block must be formalize by
canonical algorithm. Finally, we calculate the signature value for the canonical form of
SignedInfo. Figure 2-2 presents the proeessing flow of XML Signature calculation. The first step
is generating the template document.of XML Signature. Next, we can execute the computing
processes in previous illustrate and filled the empty value in this template. Finally, the XML
Signature can be output by serialize the Signature document. The process of verification is similar
to signing. First, verify the digital signature for SignedInfo. Secondly, verify the digest value for

each reference element.

Transform

Generate and Canonical
» XML Signature . -
Canonical SignedInfo
Source Template

Source Document

Document

Serialize Calculate
XML Signature Signature Value

XML
Signature

Figure 2-2 XML Signature Process flow

3. Related Work

Efficient Implementation of XML Security for Mobile Devices [4] and A Streaming
Validation Model for SOAP Digital Signature [1] are two researches to improve the performance
of XML Signature. These two scheme are focused on XML Parsing Model [11] [17] and XML
Signature Processing flow improvements. The scheme analysis and limitation will be illustrated in

the following.

3.1. Efficient Implementation of XML Security for Mobile Devices

Efficient Implementation of XML Security for Mobile Devices [4] implements XAS API to
process XML Signature all operations in memory. This scheme improves processing flow to avoid
duplicate node traversing. First, it ,generates XML Signature template in memory. Secondly,
calculates the digest value for.each reference node: Finally, calculate the signature with
“Signedinfo” node. The actor emphasized _that this -processing flow is streaming, but the
performance cannot get significantly ‘improvement. This skill is commonly used in XML
Signature Syntax Processing since the specification was released in 2001, but it still depends on
the original methods of Canonical XML and XML Syntax Processing. With process flow
improvement, the key point to improve performance is reducing the number of DOM [11] tree
traverse in C14n. In 2002, we have a study to complete all operations in C14n such as namespace
Inheritance and attribute sorting in one pass, and then get substantial performance improvement.
Now the apache XML Security Project [21] also uses this skill. However, this is the limit of the

original method for C14n; the low bound of its complexity still exists.

3.2. A Streaming Validation Model for SOAP Digital Signature

A Streaming Validation Model for SOAP Digital Signature [1] implements a SAX-Like [17]
XML parser to eliminate the effort of DOM Tree construction. The scheme is a streaming parsing

10

model to optimize parser. Therefore, it can reduce the time of traversing XML. However, this
paper eliminates some Cl4n feature such as XPath transformation [8] [12] support etc., these
feature can only support in DOM Parser. SAX can only traverse forward, it cannot search node in
XML. Only DOM model supports node search with ancestor/descendent or sibling nodes. Some
operations such as PI/Comment [10] locate or namespace [7] inheritance and attribute sorting [9]
become difficult or impossible. Therefore, the actor was limiting this paper to deal with general

cases. The complexity of C14n still has not reduced.

Since the limit of C14n processing always exists, the only way to defeat the low bound of

complexity in C14n is abandoning the original C14n methodology. The proposed scheme is a new

methodology to defeat this limit.

11

4. Proposed Scheme

Finite Automata is commonly using to process lexical or syntax [6]. We design a scheme
based on finite automata to convert the Canonical XML into a sequence of structure and content.
By this scheme, we can reduce the complexity to linear. In this chapter, the organization is
described as follows. We begin with a methodology analysis in Section 4.1. Section 4.2 introduces
the conversion of Canonical XML. Section 4.3 describes the definition of finite automata to
accept the language defined in Section 4.2. Section 4.4 defines the output function call defined in
finite automata for proposed scheme. Section 4.5 provides an example for implementation. XPath
transformation supporting will be illustrated in Section 4.6. Finally, the complexity analysis will

be discussed in Section 4.7.

4.1. Methodology Analysis

To reduce the complexity of-C14n must.to find the key point of bottleneck in C14n. In the
computation model of Cl4n, it contains-parsing; document tree traversing and node operations
three main process. We will analysis the issue of each process and its solution in the following.
Parsing: XML is a text document. XML Parser parsing the XML document to build an object
tree. The tree is named DOM. Each node in the DOM tree has its type and value. DOM tree
presents the relationship of node in the document structure. The tasks of parser contain syntax
validation, node generation and tree building. To eliminate the parsing process is to preserve the
structure of object node and its relationship in the DOM tree.

Document Tree traversing: Cl4n is a process of DOM tree traverse. The operations of C14n
apply to each node to generate its canonical form. The DOM Tree is a recursive structure. To
traverse DOM tree must have stack to record the parent node of current node. The amount of
memory need is also huge. To preserve the relationship of node without stack is impossible for
original model. The Finite Automata is seems a good model to satisfy theses requires. It can store

12

the relationship of node by state and execute in the environment with limited-resource.

Node operation: Cl14n defines some complex operations for each node type. These operations
formalize each node to generate its canonical form. To avoid these operations is to preserve the
canonical form of node after formalize.

By previous analysis, we can begin to construction an efficient model for C14n based on
Finite Automata. First, we convert canonical XML into a new language in canonicalization
process. In Figure 4-1, each XML node is converted into a new form with structure and content.
In the end of process, we can get two sequences structure identifier and vocabulary. Structure
identifier defines the structure of each part in node. Vocabulary defines the canonical form of

variable value in node. These two sequences form a new language L(CFA).

Canonicalization

Process

ﬁ Structure
Identifier
g %\ O/ XML
Nod
é \ o % Vocabulary
o

One or more

Structure id sequence: (A1,A2,....... An-1,An)
) L(CFA)

Vocabulary sequence: (V1,V2,......... Vn-1,Vn)

Figure 4-1 Canonical XML Conversion

Secondly, we need a machine to accept the new language L(CFA). CFA is the finite state
transducer that accepts the language L(CFA) and generates Canonical XML.

L(CFA)——> cpp [——>Cl4n(XML)

In Section 4.2, we will describe the algorithm of language conversion and define the

structure identifier and its vocabulary for each node type. The finite state transducer CFA will be

13

constructing in Section 4.3.

4.2. Conversion of Structure and Content in Canonical Processing

We want to convert canonical form of each node to its structure and content in the
processing of Canonical XML. Canonical XML is a process of XML traversing; it is a recursive
process flow. The process is similar to the operation of DFS (Depth First Search) [2], so it needs
stack to record ancestor node. Our model depends on Finite Automata and streaming processing
model, so we cannot store previous state. If we want to generate a non-recursive sequence after
transformation, we must decomposition of one node to a number of structures. We will explain

the transformation rule for different types of nodes in the following .

The engine of Canonical XML processing each node in DOM tree traversing. The processing
flow of this traversing is showed: as Figure 4-2..Fach node is processing in document order
defined in XPath. The document order define that the-order of each node occurs in the XML
representation after expansion. The traverse order is.marked in each age of document tree.

For proposed scheme, the tree structure must to convert into a linear sequence. To reach this
purpose can be regenerated the structure of nodes in the tree. Some nodes such as Document or
Element in Figure 4-2 have descendents. The process of these nodes is traversing as deep as
possible along the tree path. For go back to ancestor, the traversing need stack to record the path.
To convert this recursive structure to a linear sequence is just to preserve the relationship of
adjacent nodes. In addition, the Attribute node is contained in Element node. To convert the
Element node to a simple structure must to extract Attribute from Element. For node converting,

the set of node type is defined in the following.

{Document, Element, Attribute, Processing Instruction, CDATA Section, Text, Comment}

14

Element
With
its Attributes

Processing
Instruction

Element
With
its Attributes

Processing
Instruction

Element
With
its Attributes

Element
With
its Attributes

Processing
Instruction

CData Section

Figure 4-2 DOM tree traversing

Then, we define the transformation rule of each node type. The rules include how to convert
node to structure identifier and its content. Because each node has fixed symbols and variable
contents, therefore the meaningful content of each structure is just the variable content. The
variable content of node is named vocabulary. For this transformation, we can convert Canonical
XML into two sequences of structure identifier and its vocabulary.

In following, the transformation rule will be explained for all node type. In addition, its
structure identifier and vocabulary will be defined.

15

Document: The processing of document fragment and document is the same, so there is no
separate definition for document fragment. Document node is the root of the tree, the others types
of node are all in its context. Document node is converted into two structures with start document

and end document. The syntax of Element node is defined as follows.

<Document> =2 DS <Context> DE
<Context>={Element, Attribute, PI, CDATA Section, Text, Comment}

The identifier of document start is defined as DS. The identifier of document end is defined

as DE. Both two structures do not contain any vocabulary.

Element: The element node consists of Stag and Etag in it syntax. The Stag consists of start tag,

attributes and end tag. The syntax of Element node is defined as follows.

element = STag content ETag
STag = '<" Name (S Attribute)*:S?2 ">'-=> '<'Name >STB and >'->STE
ETag = '</' Name S?'>' => ETag 2 ET

STag is converted into two structures with beginning and ending of start tag. The identifier
of the start tag beginning is defined as STB, and the identifier of the start tag ending is defined as
STE. Then, Etag is converted into one structure. The identifier of Etag is defined as ET. The
vocabulary of the structures of STB and ET is the element name. The structure of STE is no

vocabulary, it just identify the ending of start tag.

Attribute: The attribute node is composed of name and value. The syntax of Attribute node is

defined as follows.

Attribute = Name Eq AttValue => Name 2> ATTRN and AttValue>ATTRV

Attribute node is converted into two structures with attribute name and attribute value. The
identifier of attribute name is defined as ATTRN and the identifier of attribute value is defined

16

ATTRYV. Therefore, the vocabulary of ATTRN is attribute name, and the vocabulary of ATTRV

is the canonical form of attribute value.

Processing Instruction (PI): PI is a simple and independent structure. The syntax of PI node is

defined as follows.

PI = '<?" PITarget (S (Char* - (Char* '?>' Char*)))? '?>'
PITarget = Name - ((X'|'X") (M' |'m") (‘L' | '1")
=>PI - PIC| PIB| PIA

PI is converted into to one structure by its location in document. The location of PI
determines its structure identifier. It has tree different structure for its location. The structure
identifier of PI node appears before the root element is defined as PIB. The structure identifier of
PI node appears in the context of root element is defined as PIC. The structure identifier of PI
node appears after the root element is defined as.PIA. The vocabulary of PI is the canonical form

of its target with data.

CDATA Section: It is a simple and independent structure. The syntax of CDATA Section node is

defined as follows.

CDSect = CDStart CData CDEnd
CDStart = '<I[CDATA['

CData = (Char* - (Char* ']]>' Char*))
CDEnd = >

=>CDSect = CDS

The CDSec consists of three parts CDStart, CData and CDEnd. CDATA Section is
converted into one structure. The identifier of CDATA Section is defined as CDS. The vocabulary

of this structure 1s the canonical form of its CData value.

17

Text: Text is only a sequence of characters. The syntax of Text node is defined as follows.

CharData = [M<&]* - (["<&]* "] ["<&]*)
Text 2 TN

Therefore, it converts to one structure. The identifier of Text node is defined as TN. The

vocabulary of this state is the canonical form of CharData.

Comment: Comment is a simple and independent structure. The syntax of Comment Section

node is defined as follows.

Comment = v<!__| ((Char _ v_l) | (l_v (Char _ v_v)))* st
Comment > CNC | CNB | CNA

Comment is converted into ong sstructure’ by its location in document. The location of
Comment also determines its structure. It has|tree different structure for its location. The structure
identifier of Comment node appears before the root element is defined as CNB. The structure
identifier of Comment node appeats.in the context-of root element is defined as CNC. The
structure identifier of Comment node appears after the root element is defined as CNA. The
vocabulary of this tree state is the canonical form of Comment’s data.

Now, we can add these transformation rules into the C14n process to convert Canonical
XML into a new language CFA. The algorithm is described in Appendix I.

By this transformation, the each node in Canonical XML is converting to two sequences of
structure identifier and its vocabulary. It is forming a new language. In next section, we will

construct a Finite Automata to accept this language and generate Canonical XML for our purpose.

4.3. Constructing Finite Automata of Canonical XML

In previous section, Canonical XML is converted into a new language. Now we can begin to

construction the Finite Automata [3] to accept the language and generate Canonical XML. Finite

18

automata have three major models generator, acceptor and transducer [22]. Generator only outputs
and without input. Acceptor only receives input and without output. Transducer accepts input and
generates output. For proposed scheme, we need a transducer to accept the structure sequence and
generate Canonical XML. The transducer can be implement interpreter or compiler etc. Therefore,
we want to construct a finite state transducer. A finite state transducer is a 7-tuple (Q, Z, 5, q0, F,
I', &) [5]. The term Q is a finite set of states. The term X is the finite set of input symbols. The term
d is transition function for states. The term qO is the initial state in Q. The term F is the set of final
states in Q. The term I is the finite set of output symbols. The term A is the output function. The
finite state transducer for proposed scheme is named Canonicalization Finite Automata

(CFA).The definition of the Finite State Transducer CFA is defined as follows.

CFA=(Q,%,d,q,F,I,4)

Q is a finite set of states for CFA

Y is the input alphabet, it denotes the set of structure identifiers in the Canonical
XML plus the end symbol

qo < Q is the initial state for finite automata CFA

F < Q is the set of final states for finite automata CFA

0 : Qx Z— Qs the state transition function for DOM tree structure

I' is the output alphabet, it denotes the set of functions call for generate canonical
form each structure

A QxX —Tis the output function

Figure 4-3 Definition of CFA

Now, the term in CFA will be explained in the following. First, the set of alphabets is
defined by structure of identifier in Section 4.2. Because the automata accepts the language

defined in Section 4.2. If the automata accepts the sequence of structures, the structure validation

19

of XML document is correct. We collect all identifiers defined in Section 4.2 and plus an
identifier EOS for the set of alphabet. The EOS is indicating the end of sequence. The list of all
alphabets is defined in the following.

¥ = {All structure identifiers defined in Section 4.2} U EOS

= {DS,DE,STB,STE,ET,ATTRN,ATTRV,CDS,TN,PIC,PIB,PIA,CNC,CNB,CNA,EOS}

By the set of alphabet, we can define the set of states Q. The definition of state is that if a state S;
can accept alphabet A, the state is moving to Sa. Sa is label name of the state after transition .The
definition is rewrite as follows.

V AeXZ,d S,eQ
In addition, we define a state for the initial state and named “Start”. Because any state can accepts
the alphabet “EOS” must move to the final state, so the state Sgog is the final state. Now, we can
define all states in Q.

Q=Start U {Sa|forallA X}

qo = Start

F = { Sgos }
The set of output alphabet I" is the function call for each structure. It depends on the alphabet Z. If
any state can accept alphabet A in X, the transition must output a function call G(A). Therefore,
the definition of output function can be rewrite as follows.

A: V AeX,3 G(A)e T

=>I'={G(A)|forall AeX}
The function call G(A) will be defined in Section 4.4. Finally, we will define the transition
function 9§ for each state in Q. Because the state presents the structure of Canonical XML in DOM
traversing, the transition can be find in XML DOM structure.

In following, we will induct the transitions of state from the DOM structure and traversing
order in Cl4n. First, we represent the DOM structure to a Context-Free Grammar in the
following.

20

(D<S> - <Start><Document><End> | <Start><Document fragment><End>

@<Document>—><Start Document><PCg><Element><PC,><End Document>

(3O<PCp>—> <PIg><PCp> | <COMMENTE><PCp> | ¢

B<PCp>> <PI\><PC,> | <COMMENT,><PCp>| ¢

(®<Document fragment> = <Element> | <PI> | <PIg> | <PI,>| <Comment> | <COMMENT3> |

<COMMENT > | <Text> | <CDATASection>

(®<Element> - <Beginning of Start Element><Attrs><Ending of Start
Element><Content><End Element>

(D<Content> > <Element><Content> | <PI><Content> | <Comment><Content> |
<Text><Content> | <CDATASection><Content> | €

®<Attrs> > <Attr><Attrs>| €

@<Attr> 2 <Attribute name><Attribute value>

(9<Start Document> = DS

(D<End Document> = DE

(2<Beginning of Start Element> - STB

@(3<Ending of Start Element> >STE

(»<End Element> 2>ET

3<Attribute name> = ATTRN

(9<Attribute value> 2> ATTRV

()<Text> >TN

®®<CDATASection> = CDS

9<PI> > PIC

20<Plgz> - PIB

@)<PI,> - PIA

@)<Comment> = CNC

2)<COMMENTE> > CNB

2)<COMMENT > >CNA

@d<Start> > €

29<End> - EOS

The transition of each state in Q is the set of alphabets it can be accepted. Because the state
Sa is the result of state S;accepted alphabet A, to find the next adjacent alphabet with alphabet A
in this language can get the transition of So. We can find the next adjacent alphabet by derived

from the CFG. The derive process are showed in the following.

21

The transition of state “Start” is derived as follows :

Because the Start is the initial state, the alphabet A is¢ for this sate by previous description. The
alphabet ¢ can be map to variable <Start>. By rule 1, the next adjacent variables of “<Start>"
are <Document> and <Document fragment>. Each arrow in the following indicates the derive
process. The rule defined in context-free grammar in this section is applied in each derive process.

The rule number is appending in each arrow.

<Document>
16
<Start Document><PCg><Element><PC,><End Document>
!
DS

<Document fragment>

26,
<Element> | <PI> | <PIg> | <PI,>| <Comment> | <COMMENTg> | <COMMENT > | <Text> |
<CDATASection>
<Element>
' ®
<Beginning of Start Element><Attrs><Ending ofStart Element><Content><End Element>
'@
STB
<PI> <PIp><PI,> <Comment> <COMMENTz> <COMMENT ;> <Text> <CDATASection>
ol @ '@ ! @ 2] 'O !
PIC PIB PIA CNC CNB CNA TN CDS

The state of “Start” can accept alphabets DS, STB, PIC, PIB, PIA, CNC, CNB, CNA, TN and
CDS.

The transition of state “Sgtg” is derived as follows :
By rule 6, the alphabet STB is mapping to variable “<Beginning of Start Element>" for state Sgrg.

By rule 6, the next adjacent variable of “<Beginning of Start Element>" is <Attrs>.

22

<Attrs>

' ®
<Attr><Attrs>| €

20,

<Attribute name><Attribute value>

| B
ATTRN

If <Attrs> is € , the next adjacent variable of “<Beginning of Start Element>" in rule 6 is

<Ending of Start Element>.

<Ending of Start Element>

a®)
STE

The state of “Ssrg” can accept alphabets ATTRN and STE.

The transition of state “Sgrg” is derived as follows :
By rule 13, the alphabet is mapping to yariable “<Ending of Start Element>" for state Ssrg.

By rule 6, the next adjacent variable of f*<Ending of Start Element>" is <Content>.

<Content>
'@
<Element><Content> | <PI><Content> | <Comment><Content> | <Text><Content> |

<CDATASection><Content>| €

<Element>
' ®
<Beginning of Start Element><Attrs><Ending of Start Element><Content><End Element>
'@
STB
<PI> <Comment> <Text><CDATASection>
AT '@ @ | ®
PIC CNC TN CDS

If < Content > is € , the next adjacent variable of “<Ending of Start Element>" in rule 6 is <End
Element>.
<End Element>
'@
ET

The state of “Sstg”” can accept alphabets STB, PIC, CNC, TN, CDS and ET.

23

The transition of state “Sgr” is derived as follows :

By rule 14, the alphabet ET is mapping to variable “<End Element>" for state Sgr.

By rule 6, the <End Element> is in the end of this rule. Therefore, we want to find the next
adjacent with <Element>.

By rule 2, the next adjacent variable of “<Element>" is <PCx>.

<PCp>
20,
<PI,><PC,> | <COMMENT><PCp>| €
V@ '@
PIA CNA

If <PC> is €, the next adjacent variable in rule 2 is “<End Document>".
<End Document>

)

DE
By rule 5, we find the “<Element>" is the end of this rule; we want to find the next adjacent
variable with “<Document fragment>".

By rule 1, the next adjacent variable of “‘<Document fragment>" is “<End>".

<End>
)
EOS

By rule 7, the next adjacent variable of “<Element>" is <Content>.

<Content>
20
<Element><Content> | <PI><Content> | <Comment><Content> | <Text><Content> |

<CDATASection><Content>| €&

<Element>
'®
<Beginning of Start Element><Attrs><Ending of Start Element><Content><End Element>
V@
STB
<PI> <Comment> <Text><CDATASection>
T '@ 'O '@
PIC CNC TN CDS

24

If < Content > is € , the next adjacent variable of “<Ending of Start Element>" in rule 6 is <End
Element>.
<End Element>
!
ET

The state of “Sgr”” can accept alphabets PIA, CNA, DE, EOS, STB, PIC, CNC, TN, CDS and ET

The transition of state “S rrry” is derived as follows :
By rule 15, the alphabet ATTRN is mapping to variable “<Attribute name>" for state Sarrrn.

By rule 9, the next adjacent variable of “<Attribute name>" is <Attribute value>.

<Attribute value>
|
ATTRV

The state of “Sarrrn” can accept alphabet ATTRV

The transition of state “S,rrry” is derived as follows :

By rule 16, the alphabet ATTRV is.mappingitorvariable, “<Attribute value>" for state Sxrrry.
By rule 9, the <Attribute value> is'the end of this rule. Therefore, we want to find the next

adjacent variable with <Attr>.

By rule 8, the next adjacent variable of “Attr™ 1s “Attrs”.

<Attrs>
|
<Attr><Attrs>| €
'®

<Attribute name><Attribute value>
| ®
ATTRN
If <Attrs> is € , the next adjacent variable of “<Attrs> in rule 6 is <Ending of Start Element>.
<Ending of Start Element>

A®)
STE

The state of “Sarrry” can accept alphabets ATTRN and STE.

The transition of state “Stx” is derived as follows :

By rule 17, the alphabet TN is mapping to variable “<Text>" for state Stn.

25

By rule 5, the variable “<Text>" is the end of this rule. Therefore, we want to find the next
adjacent variable with “<Document fragment>"".

By rule 1, the next adjacent variable of “<Document fragment>" is “<End>".

<End>
)
EOS

By rule 7, the next adjacent variable of “<Text>" is <Content>.
<Content>
20
<Element><Content> | <PI><Content> | <Comment><Content> | <Text><Content> |

<CDATASection><Content>| €

<Element>
'®
<Beginning of Start Element><Attrs><Ending of Start Element><Content><End Element>
V@
STB
<PI> <Comment> = <Text> <CDATASection>
AT '@ ' AT
PIC CNC TN CDS

If < Content > is € , the next adjacent variable of “<Ending of Start Element>" in rule 6 is <End
Element>.

<End Element>

e
ET

The state of “Stn”’ can accept alphabet EOS, STB, PIC, CNC, TN, CDS and ET.

The transition of states “Scps”, “Spic”, “Scnc” is derived as follows :

By rule 18, the alphabet CDS is mapping to variable <CDATASection> for state Scps.

By rule 19, Spic is mapping to variable <PI>.

By rule 22, Sene is mapping to variable <Comment>.

All three variables are in rule5 and rule7, the transition is same as “Stn”

The states of “Scps”,” Spic” and “Scne” can accept alphabets EOS, STB,PIC,CNC,TN,CDS and

ET.

26

The transition of state “Spip” is derived as follows :
By rule 20, the alphabet PIB is mapping to variable <Plg> for state Spyg.

By rule 3, the next adjacent variable of <Plg> is <PCpg>.

<PCg>
26,

<PIz><PCp> | <COMMENTp><PCg>| €
'@ '@
PIB CNB

If <PCg> is €, the next adjacent variable of “<PCg>" in rule 2 is <Element>.

<Element>
'®
<Beginning of Start Element><Attrs><Ending of Start Element><Content><End Element>
V@
STB

By rule 5, we find the “<PIg>" is the end of this rule; we want to find the next adjacent variable

with <Document fragment>.

By rule 1, the next variable of “<Document fragment>" is <End>.
<End>

'@
EOS

The state of “Spig” can accept alphabets PIB, CNB, STB and EOS.
The transition of state “Sprs” is derived as follows :
By rule 21, the alphabet PIA is mapping to variable <PI,> for state Spya.

By rule 4, the next adjacent variable of <PI,> is <PC,>.

<PCp>
'@
<PI,><PC,> | <COMMENT,><PC,>| €
‘@ '@
PIA CNA

If <PC> is €, the next adjacent variable of “<PC,>"" in rule 2 is <End
Document>.

<End Document>

w
DE

27

By rule 5, the “<PI,>" is the end of this rule; we want to find the next adjacent variable with
<Document fragment>.
By rule 1, the next adjacent variable of “<Document fragment>" is <End>.
<End>
@
EOS

The state of “Spra” can accept alphabets PIA, CNA, DE and EOS.

The transition of state “Scng” is derived as follows :
By rule 23, the alphabet CNB is mapping to variable <COMMENTg> for state Scng.

By rule 3, the next adjacent variable of <COMMENTE> is <PCp>.

<PCg>
26,

<PIg><PCp> | <COMMENTg><PCg>| €
'@ '@
PIB CNB

If <PCp> is €, thé'next adjacentvariable.of “<PCg>" in rule 2 is <Element>.

<Element>
®
<Beginning of Start Element><Attrs><Ending of Start Element><Content><End
Element>
@
STB

By rule 5, the “<COMMENTg>" is the end of this rule; we want to find the next adjacent variable
with <Document fragment>.
By rule 1, the next adjacent variable of “<Document fragment>" is <End>.
<End>

| ®
EOS

The state of “Scng” can accept alphabets PIB, CNB, STB and EOS.
The transition of state “Scna” is derived as follows :
By rule 24, the alphabet CNA is mapping to variable <COMMENT 2> for state Scna.-

By rule 4, the next adjacent variable of <COMMENT z> is <PCx>.

28

<PC,>

'@

<PI,><PC,> | <COMMENT,><PC,>| &
V@ | @
PIA CNA

If <PC,> is €, the next adjacent variable of “<PC,>"in rule 2 is <End
Document>.
<End Document>

VO
DE

By rule 5, the “<COMMENT ,>" is the end of this rule; we want to find the next adjacent variable

with <Document fragment>.

By rule 1, the next adjacent variable of “<Document fragment>" is <End>.

<End>
| @
EGS

The state of “Scna” can accept alphabets PIAS-CNA, DE-and EOS.

The transition of state “Sps” is derived as follows :
By rule 10, the alphabet DS is mapping to variable <Start Document> for state Sps.

By rule 2, the next adjacent variable of “<Start Document>" is <PCg>.

<PCg>
26,

<PIg><PCg> | <COMMENTR><PCp>| €
V@ '@
PIB CNB

If <PCg> is €, the next adjacent variable of “<PCg>" in rule 2 is <Element>.

<Element>
'®
<Beginning of Start Element><Attrs><Ending of Start Element><Content><End Element>
V@
STB

The state of “Sps” can accept alphabets PIB, CNB, and STB.

29

The transition of state “Spg” is derived as follows :

By rule 11, the alphabet DE is mapping to variable <End Document> for state Spg.

By rule 2, the “<End Document>" is the end of this rule; we want to find the next adjacent
variable with <Document>.

By rule 1, the next adjacent variable of “<Document>" is <End>.

<End>

' ®
EOS

The state of “Spg” can accept EOS.

The Sgos is the final state. It cannot accept any alphabet. Finally, we get all the transitions in Table

4-1 and the diagram of finite state transducer in Figure 4-4.

ut STB |STE JET JATTRN 'JATTRV |TNACDSJPIC [PIB |PIA |CNCJCNBJCNA|DS |DE [EOS
Stal
Start SSTB STNISCDSYSPICISPIBISPIA JSCNSCNBESCNA JSDS
SSTB SSTE| SATTRN
SSTE SSTB SET STNISEDsSpi(] ScNg
SET SSTB SET STNISCDSSpI(] SPIAJSCNG SCNA SDEJSEOS
SATTRN SATTRV
SATTRV SSTE| SATTRN
STN SSTB SET] STNISCDS|SpI(] ScNg SEOS
ScDs SSTB SET] STNISCDS|SpI(] ScNg SEOS
SpIC SSTB SET| STNISCDS|SpI(] ScNg SEOS
SPIB SSTB SPIB SCNB SEOS
SPIA SPIA SCNA SDEJSEOS
ScNC SSTB SET STNISCDSESPI(] ScN(g SEOS
SCNB SSTB SPIB SCNB SEOS
SCNA SPIA SCNA SDERSEOS
SDS SSTB SPIB SCNB
SDE SEOS
SEOS

Table 4-1 Transition Table of CFA

30

4.4. Output Function for Generate Canonical Form

In this Section, we will describe the output function call defined in Section 4.3.
I'={G(A)|forall AcZ}

In Section 4.2, the Canonical XML is converted into two sequences of structure identifier
and its vocabulary. The vocabulary sequence is the input of function G. The function G may read
a vocabulary from vocabulary sequence to generate its canonical form for each structure. All
function call in I" will be defined as follows.

Each function may be call the function ReadV() to generate Canonical XML. The function

ReadV() is define to read one vocabulary from vocabulary sequence.

G(DS){ do nothing } G(TN){ G(CNC) {

G(STB) { print ReadV(); print "<!- -";
print '<'; } print ReadV();
print ReadV(); G(CDS) { print "- - >";

} print ReadV ; j
G(STE){ } G(CNB){
print >'; G(PIC){ print "<!- -";
} piint "<2": print ReadV();
G(ET){ print ReadV() ; print "- - >";
print ReadV(); print "?>"; print '0xA" ;
print "</"; } }
print >'; G(PIB){ G(CNA){ print '0xA';
h print "<?""; print "<!- -";

G(ATTRN){ print ReadV() ; print ReadV();
print 0x20; //a space print "?>"; print "- - >";
print ReadV(); print '0xA'; H
print '="; }

) G(DE){

G(ATTRV){ G(PIA){ print '0xA'; do nothing

print "' ; print "<?""; ;

Print ReadV(); print ReadV() ;

Print " print "?>"; G(EOS) {do nothing}
} }

32

4.5. Example for CFA

In Figure 4-5, a simple xml document is converted into two sequences of structure identifier
and vocabulary. For implementation, we also convert vocabulary sequence into vocabulary table
and its index sequence. Then we can combine structure sequence with vocabulary sequence. The
vocabulary index follows structure alphabet. The process to generate canonical xml from this

sequence by CFA will be illustrated in the following.

<?pi-without-data >
<!--Comment 1-->
<doc xmlns:ns1="nctu:csie"><elel ns1:id="ec202">hello<![CDATA[everyone]]></ele]></doc>

pi-without-data Structure with vocabulary Sequence

Comment 1
doc DS PIB 1 CNB 2 STB 3 ATTRN 4 ATTRV 5 STE STB 6

xmlns:ns1 ATTRN 7 ATTRV 8 STE TN 9 CDS 10 ET 6 ET 3 DE EOS
nctu:csie

elel
nsl:id
ec202
hello

everyone

o (00 (X | [N [A|W (N -

—
=]

(O @<?pi-without-data?>
(3)<!--Comment 1-->

®<doc® xmlns:ns1=(6)"nctu:csie"(D>@<elel @ nsl:id=10"ec202"1)>{Dhello@everyone(d</ele1>19</doc>19 1)

Figure 4-5 Example of CFA

Stepl: We start with the Start state and read input DS. The state moves to Spg from Start.
This step does not generate any output.

Step2: To read input PIB, the state moves to Spg from Sps. The engine of CFA reads
vocabulary index 1 and converts index 1 to real vocabulary “pi-without-data”. This
step generates output <?pi-without-data?> before a newline.

Step3: To read input CNB, the state moves to Scng from Spig, The engine of CFA reads
vocabulary index 2 and converts index 2 to real vocabulary “Comment 1. This step

generates output “<!--Comment 1-->" before a newline.

33

Step4:

Step5:

Step6:

Step7:

Step8:

Step9:

To read input STB, the state moves to Scng from Sgrg. The engine of CFA reads
vocabulary index 3 and converts index 3 to real vocabulary “doc”. This step
generates output “<doc”.

To read input ATTRN, the state moves to Sarrrn from Ssrp. The engine of CFA reads
vocabulary index 4 and converts index 4 to real vocabulary “xmlns:ns1”. This step
generates output “xmlns:ns1=""after a space.

To read input ATTRYV, the state moves to Sarrry from Sartrn. The engine of CFA
reads vocabulary index 5 and converts index 5 to real vocabulary “nctu:csie”. This
step generates output “nctu:csie”.

To read input STE, the state moves to Sstg from Sarry. This step generates output
=

To read input STB, theistep moves t0-Sstg from Sste. The engine of CFA reads
vocabulary index 6 -and. converts .index 6 to real vocabulary “elel”. This step
generates output “<elel”;

To read input ATTRN, the'state moves to Sarrrn from Sstp. The engine of CFA reads
vocabulary index 7 and converts index 7 to real vocabulary “nsl:id”. This step

generates output “ns1:id="" after a space.

Step10: To read input ATTRYV, the state moves to Sarrrv from Sarrrn. The engine of CFA

reads vocabulary index 8 and converts index 8 to real vocabulary “ec202”. This step

generates output " ec202".

Step11: To read input STE, the state moves to Sgtg from Sarrry. This step generates output

e
>,

Step12: To read input TN, the state move to Sty from Sarrry. The engine of CFA reads

vocabulary index 9 and converts index 9 to real vocabulary “hello”. This step

generates output “hello”.

Step13: To read input CDS, the state moves to Scps from Stn. The engine of CFA reads

34

vocabulary index 10 and converts index 10 to real vocabulary “everyone”. This step
generates output “everyone”.

Step14: To read input ET, the state moves to Sgr from Scps. The engine of CFA reads
vocabulary index 6 and converts index 6 to real vocabulary “elel”. This step
generates output “</elel1>".

Step15: To read input ET, the state moves to Sgr from Sgr. The engine of CFA reads
vocabulary index 3 and converts index 3 to real vocabulary “doc”. This step
generates output “</doc>"".

Step16: To read input DE, the state moves state to Spg from Sgr. This step does not generate
any output.

Step17: To read input EOS, the state moves to Sgos from Spg. The engine of CFA reach final

state and the process is finishing.

We get a Canonical XML octet stream-[9] in the end of the process with the sequence. In

addition, we also get a streaming model for generate Canonical XML.

4.6. Support for XPath Transformation

For XPath transformation [8] [12], we must test each node in DOM to decide which node
satisfy the XPath [12] expression. Finally, we can get a node set for this transformation. The node
set is a partial of full document or document fragment. The serialization of the node set is not a
valid xml, so we cannot parse it again. If we want to keep canonical form of original xml and hold
down the XPath transformation result in this transformation model, the engine of CFA must
decides which node is including in the node set after XPath transformation. For this purpose, the
operations of canonicalization and XPath node testing will be combined in a process. XPath node
testing is executed to check which node satisfies XPath expression before node formalize. To
mark the structure identifier is an efficient method to identify which node is in the set after XPath

35

transformation. For implementation, the structure identifiers are all defined less than 128. Thus,
the last bit of a byte can be used to mark the node for XPath transformation.

The engine of CFA only needs to check the mark with each structure identifier in sequence
for XPath transformation. The complexity of each operation in state is not increasing. The process

of CFA with XPath filtering is showed as follows.

SeqA: the sequence of structure identifier

Mark: the result of XPath node testing (true or false)

SeqA: (A1LLA2,.....cccceeentn An-1,An)
T 7T Add? T 1
Mark : M1,M2,.................. Mn-1,Mn)
CFA
L(CFA) —— + —— C14n(XML) with XPath Transformation
Mark Check

4.7. Complexity Analysis for CFA

In this section, we will analysis the complexity of CFA. The automata accept the sequence of
structure identifier is always in linear time. Therefore, the complexity of output function call G(A)
defined in Section 4.4 is the only factor for total complexity. The function calls G(A) define in
Section 4.4 is just printing something. The complexity of each function call G(A) is O(1). For the
sequence of CFA, there are at most n function calls G(A). The complexity of CFA is O(n). If the
XPath transformation is added to CFA, the complexity is not change. Because it only escape some
structure identifier in sequence for function call by mark describe in Section 4.6. The sequence of
function call is less then without XPath transformation. The complexity is still O(n). In any cases,

the CFA guaranteed that the complexity is O(n). This analysis is showed as follows.

36

Sn : (X1,X2,X3....Xn-1,Xn) is the sequence of structure identifier.
(X1,X2,X3...Xn-1,Xn) —F2 > (G(X1),G(X2),G(X3)....G(Xn-1),G(Xn))
There are n G(A).
Each G(A) function call is just print something. The complexity of G(A) is O(1).

n x O(1) =0(n)

37

S. Performance Analysis

The proposed scheme CFA guarantees that the complexity is always O(n) for any cases with
Canonical XML and XPath transformation. To prove this improvement, the performance will be
compared with original C14n scheme.

For performance testing, we make two test cases to show the difference of whether XPath
transformation is enabled. Because XPath transformation is very complex, the huge performance
gap is expected after XPath transformation enables. Therefore, the casel is not including XPath
transformation, and case2 is XPath transformation enabled. The testing document a small xml
with all node type in C14n, and then clone the child nodes of the root element to expand size for
samples. Therefore, the node number of test document is proportional to its size. The sample of

xml document for performance testing is showed in'Appendix II.

The C14n engine of Apache:XML Security 1.4.1[21] is the implementation of original C14n
scheme. The engine of CFA is also developing with the same language and platform from Apache
XML Security 1.4.1. We also use the same I/O package in Apache XML Security 1.4.1 to serialize
data. Thus, the performance issue only depends on algorithm.

The configuration of testing is showed in Table 5-1.

Experimental Host
ICPU AMD Athlon XP 1700+
RAM 1GB
|OS Windows XP
JVM JDK1.4.2
Control Group
(Original C14n |Apache XML Security 1.4.1
scheme)

Table 5-1 testing environment

38

For XPath transformation testing, we design three XPath predicate as follows to filter nodes.

The complexity of each XPath predicate is different, but the result set of nodes is equivalent.

% the node is text

C14N-1 : self::text()

X the node is text or the parent of this node is context node and it has xxx children
C14N-2 : self::text() | parent::node()/child::xxx

kthe node is text or the node has bbb ancestor and its ancestor bbb also has xxx children

C14N-3 : self::text() | ancestor::bbb/descendant-or-self::node()/child::vvv

These predicates are sorted by complexity as follows.

Cl4N-1 < CIl14N-2 << CI4N-3

The detail of testing result is'showed in Table 5-2."The node number of each sample is also
presented in Table 5-2. We can find the node number of test document is proportional to its size.
In Table 5-2(a), it presents the processing time of original C14n scheme and CFA without XPath
transformation. In Table5-2(b), it presents the processing time apply the XPath transformation in
C14n and CFA with different XPath predicate. This table also presents the Input/output sequence
length of CFA. The result set of nodes is same for all three XPath predicates. Therefore, the output
sequence length is not change for these predicates. Because the time of CFA only depends on
output sequence length after XPath transformation, the process time is also not change for
different predicates. Figure5-1(a) is showed the performance comparison without XPath
transformation. Figure5-1(b) is showed the performance comparison with XPath transformation.
In Figure5-1(a), the CFA always 60 times faster than Apache XML Security. In Figure5-1(b), the
time of Apache XML Security is increasing very huge following document size and XPath

predicate complexity. However, the time of CFA is not increasing any more, on the contrary the

39

time is decreasing. Because the complexity of CFA is not change for XPath transformation [§]
[12], but the sequence length of output is decreasing after XPath filtering. For IMB document
sample in Figure5-1(b), the CFA 6000 times faster than case C14N-1. Cases C14N-2 and C14N-3
is more complex than C14N-1, therefore the performance gap is bigger than C14N-1. CFA won

the performance testing for all cases.

non-XPath transformation

%SSZSB) Time(ms) Apache XML Security CFA
100 / 8660 211 7
200 /17300 62 9
300 /25780 657 12
400 /43060 860] 15
500 /51700 1156] 20
600 /43060 1266] 23
700460180 1531 25
800 / 68820 1734] 29
900 / 77460 2046 32
1000 /85940 24061 37
(@)
XPath transforfation
size(K Time(ms) | Apache XML Security | Apache XML Security | Apache XML Security CFA Input/Output
/ nodes CI4N-1 C14N-2 CI14N-3 CFA sequence length
100 / 8660 2046 2517 67766 4115803/3406
200 /17300 5828 7969 258516 6[31571/6808
300 /25780 11797 17469 572938 7147047/10147
400 /43060 20312 31156 1042500 7162815/13549
500 /51700 30766 47984 1499516] 10]78583/16951
600 /43060 43796 68265 2121906] 14194351/20353
700 /60180 59813 94484 2843907 15]109827/23692
800 / 68820 78438 121312 3751828| 15]125595/27094
900 /77460 98375 151031 4759438] 15]141363/30496
1000 / 85940 121438 187421 6627812] 18]156839/33835
(b)

Table 5-2 results of performance testing

40

non-XPath transformation

10000
1000
g
% 100
=
10
1
100 200 300 400 500 600 700 800 900 1000
document size(KB)
| —8— C14N(Apache XML Security) —&— CFA |
Figure 5-1 (a) Comparison without XPath transformation
XPath transformation
IOOOOOOO F - - === f == === === =========== = B
1000000 -
100000 " b e ——
E IO F g
g
& 1000 e —.,,,,——"_|_|"|"__|"__"""_"_"___|_"_,_
100
10
1

100 200 300 400 500 600 700 800 900 1000

document size(KB)

| —8— C14N-1 —&—C14N-2 —%—C14N-3 ——CFA |

Figure 5-1(b) Comparison with XPath transformation

41

6. Conclusion

XML is common use in computer and internet application. To protect application security, the
XML security is designed for these purposes. XML Signature is the core technology in XML
Security, but the performance issue is always the big problem. In proposed scheme, Canonical
XML is converted into a new language of structure and its vocabulary. Then the finite automata
CFA is constructed to process this language. This finite automata generates Canonical XML in
linear time. This scheme provides a method to accelerate the XML Signature verification, and we
can reduce the effect of XML Signature performance issue to minimize. Some device with
limited-resource or low computing capability such as firewall or mobile device may be support
XML Security but does not affect its performance by this scheme. W3C create a project to
research efficient XML [16], but does-not include XML Security. This scheme improves not only
the performance of XML Signature but also exchanges XML. Canonical XML is same with
original XML in logically. If we ‘ean improve Canonical XML processing, XML exchanging is
also improved. This research may be providing a-solution to improve performance issue for XML

and XML Security concurrently.

42

Appendix I The Algorithm of C14n Conversion

The sequences A and V are the transformation result. C14n-TO-CFA procedure converts

Canonical XML to CFA.

A: structure identifier sequence

V: vocabulary sequence

C14n-TO-CFA(Node)

1 if Node.type = Document

2 then add document start identifier(DS) into A

3 child € getFirstChild(Node)

4 while child # NIL

5 do C14n-TO-CFA(child)

6 child € getNextSibling(child)
7 add document end identifier(DE) into A

8

9

if Node.type=Element

then name < getNodeName(Node)
10 add start tag beginning identifier(STB) into A
11 add name into V
12 attributes € getAllAttributes(Node)
13 SortingAndProcess(attributes)
14 for 1<0 to length(attributes)
15 do C14n-TO-CFA(attributes|[i])
16 add start tag ending identifier(STE) into A
17 child € getFirstChild(Node)
18 while child # NIL
19 do C14n-TO-CFA(child)
20 child € getNextSibling(child)
21 add end tag identifier(ET) into A
22 add name into V

23 if Node.type=Attribute

24 then name < getNodeName()

25 Add attribute name identifier(ATTRN) into A
26 Add name into V

27 attributeValue €< getNodeValue(Node)

43

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

attributeValue € formalizeAttribute(attributeValue)
add attribute value identifier(ATTRV) into A
add attributeValue into V
if Node.type = Comment
then location € SearchLocation(Node)
if location=BeforeRootElement
then add CNB into A
CommentValue €< getCommentValue(Node)
CommentValue < FormalizeComment(CommentValue)
Add CommnetValue into V
if location=AfterRootElement
then add CNA into A
CommentValue €< getCommentValue(Node)
CommentValue < FormalizeComment(CommentValue)
Add CommnetValue into V
if location=InnerRootElement
then add CNC into A
CommentValue €< getCommentValue(Node)
CommentValue €< FormalizeComment(CommentValue)
Add CommnetValue into V
If Node.type =PI
then location € SearchLocation(Node)
if location=BeforeRootElement
then add PIB into A
PIContent €< getPIContent(Node)
PIContent <FormalizePI(PIContent)
Add PIContent into V
if location=AfterRootElement
then add PIA into A
PIContent €< getPIContent(Node)
PIContent <FormalizePI(PIContent)
Add PIContent into V
if location=InnerRootElement
then add PIC into A
PIContent €< getPIContent(Node)
PIContent <FormalizePI(PIContent)
Add PIContent into V
if node.type=Text
then textValue < getTextValue(Node)

44

67
68
69
70
71
72
73
74

textValue <FormalizeText(textvalue)
add Text identifier(TN) into A
add textValue into V

if Node.type=CDATASection

then CDSectionValue €< getCDATASectionValue(Node)

CDSectionValue €FormalizeCDataSection(CDSectionValue)
add CDATASection identifier(CDS) into A
add CDSectionValue into

45

Appendix II The Sample of XML Document For

Performance Testing

<?xml version="1.0" 7>
<IDOCTYPE doc [
<IATTLIST e9 attr CDATA "default">
<!ATTLIST normld id ID #IMPLIED>
<!ATTLIST normNames attr NMTOKENS #IMPLIED>
<IATTLIST e2 xml:space (default/preserve) 'preserve™
<IATTLIST e3 id ID #IMPLIED>
<IATTLIST €9 attr CDATA "default">
>
<?xml-stylesheet href="doc.xsl"
type="text/xsl" 7>
<!-- Hello every one -->
<aaa><kkk><NNN/></kkk>
<!-- Inner --><?pi-without-data 7>
<bbb id="xxx" xml:lang="xxx" xmlns="aaa:bbb:ccc" xmlns:aaa="xxx:aaa" xmlns:xxx="bbb:ccc">
<doc attr="
">
Hello, world<!-- Comment 1 --><![CDATA[value>"0" &&
value<"10" ?"valid":"error"][></doc>

<!-- Comment 2 -->
<!-- Comment 3 -->
<doc>

<clean> </clean>
<dirty> A B </dirty>

<mixed>
A
<clean> </clean>
B
<dirty> A B </dirty>
C
</mixed>
</doc>
<doc>
<el />
<e2 ></e2>
<e3 name ="elem3" id="elem3" />
<e4 name="elem4" id="elem4" ></e4>

<eS a:attr="out" b:attr="sorted" attr2="all" attr="T'm"
xmlns:b="http://www.ietf.org"
xmlns:a="http://www.w3.org"
xmlns="http://www.uvic.ca"/>

46

<e6 xmlns="" xmlns:a="http://www.w3.org" xml:lang="en">
<e7 xmlns="http://www.ietf.org">
<e8 xmlns="" xmlns:a="http://www.w3.org">
<e9 xmlns="" xmlns:a="http://www.ietf.org"/>
</e8>
</e7>
</e6>
</doc>

<doc>
<text>First lineSecond line</text>
<value>2</value>
<compute></compute>
<compute expr="value>"0" && value<"10" ?"valid":"error"">valid</compute>
<norm attr=' ' 
	 ' />
<normNames attr=' A 
	 B />
<normld id=' ' 
	 ' />
</doc>

<doc xmlns="http://www.ietf.org" xmlns:w3c="http://www.w3.org">
<el>
<e2 xmlns="">
<e3 id="E3"/>
</e2>
</el>
</doc>

<doc>

<el/>

<e2></e2>

<e3 xmlns="http://www.kimo.com" xmlns:n1="http://xxx.tw" name="elem3" id="elem3" />

<e4 xmlns:n1="http://xxx.tw" name="elem4" id="elem4"></e4>

<e5 a:attr="out" b:attr="sorted" attr2="all" attr="I'm" xmlns:b="http://www.ietf.org"
xmlns:a="http://www.w3.org" xmlns="http://example.org"/>

<e6 xmlns="" xmlns:a="http://www.w3.org">

<e7 xmlns="http://www.ietf.org">

<e8 xmlns="" xmlns:a="http://www.w3.org">

<e9 xmlns="" xmlns:a="http://www.ietf.org"/>

</e8>

</eT>

</e6>

</doc>

</bbb>

</aaa>

<?pi-without-data 7><!-- The End -->

47

References

[1] W. Lu, K. Chiu, A. Slominski, and D. Gannon. A streaming validation model for SOAP digital
signature. In 14th IEEE Symposium on High Performance Distributed Computing, pages
243-252, July 2005.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-03293-7.
Section 22.3: Depth-first search, pp.540-549.

[3] Michael Sipser. Introduction to the theory of computation, Second Edition. Thomson Course
Technology, 2006. ISBN 0-619-21764-2.

[4] Kangasharju, Jaakko. Efficient Implementation of XML Security for Mobile Devices. In Web

Services, 2007. ICWS 2007. IEEE International Conference, pages 134 - 141, July 2007.

[5] Mehryar Mohri, Finite-state transducers in language and speech processing, Computational
Linguistics, v.23 n.2, p.269-311, June 1997

[6] Todd J. Green , Ashish Gupta , Gerome Miklau’, Makoto Onizuka , Dan Suciu, Processing
XML streams with deterministic automata and stream indexes, ACM Transactions on
Database Systems (TODS), v.29 n.4, December 2004

[7] Tim Bray, Dave Hollander, Andrew Layman and Richard Tobin. Namespaces in XML (Second
Edition), W3C Recommendation. eds. 16 August 2006.

[8] M. Bartel,J. Boyer,B. Fox,B. LaMacchia and E. Simon. XML-Signature Syntax and
Processing. W3C Recommendation, 12 February 2002.

[9] J. Boyer. Canonical XML 1.0. W3C Recommendation. March 2001.

[10] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, Francois Yergeau and John
Cowan. Extensible Markup Language (XML) 1.1 (Second Edition), W3C Recommendation.

eds. 16 Augest 2006.

48

[11]A.L. Hors,P.L. Hegaret,L.. Wood,G. Nicol,J. Robie,M. Champion and S. Byrne. Document
Object Model (DOM) Level 3 Specification. W3C Recommendation., 7 April 2004.
[12]J. Clark, S. DeRose. XML Path Language (XPath) Version 1.0. W3C Recommendation.
October 1999.
[13] P. Hoffman and F. Yergeau. UTF-16, an encoding of ISO 10646. rfc2781, February 2000.
[14] FIPS PUB 186-2 . Digital Signature Standard (DSS). U.S. Department of
Commerce/National Institute of Standards and Technology, 27 January 2000.
[15] F. Yergeau. UTF-8, a transformation format of ISO 10646. RFC 2279, January 1998.
[16] G. White,J. Kangasharju,D. Brutzman,S. Williams. Efficient XML Interchange Measurements
Note. W3C Working Draft, 25 July 2007.
[17] SAX: The Simple API for XML. D. Megginson, et al. May 1998.
http://www.megginson.com/SA X/index.html
[18] OASIS. ebXML Message Service Specification 2.0.-OASIS ebXML Messaging Services
Technical Committee, 2002.
[19] W3C. Standard Generalized Markup-Language. ‘http://www.w3.org/MarkUp/SGML/,1995
[20] W3C. Web Services. http://www.w3.0rg/2002/ws/,2002
[21] Apache. Apache XML Security.http://santuario.apache.org/Java/index.html, 2007
[22] Wen-Hsiang Tsai. Formal Languages and Theory of Computation. Department of Computer
Science/National Chiao TungUniversity.
http://www.cis.nctu.edu.tw/~whtsai/Course%20Teaching%20A ffairs/Formal%20Languages/

Chapter%200/Chapter 0 Introduction.ppt, pp 13-16

49

