USSEE § S RI0) SRS I NS
Evaluation and Optimization-of Inter-processor communication

for Embedded Heterogeneous Multi-core

PoE R R 4 L o~ E 4



g~ FREF I E AT 2T FRE R
Evaluation and Optimization of Inter-processor communication

for Embedded Heterogeneous Multi-core

Boro4 i E g Student : Sung-Yuan Lee
ERE L R Advisor : Dr. Shiao-Li Tsao

A Thesis
Submitted to College of Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master of Science

in
Computer Science

Sep 2009

Hsinchu, Taiwan, Republic of China

PERRAL L ANEAL P



-
1
bt
R
X
(:
jus}
j%i‘('-
(=
(w
Sk
N
A
o
g
;:d
—
I%
e
—_\
p

g4: 2 P RERE [ e HL

Bt d +F Fufn P F AL

Ny
TESSE B SECNTEE ) %?q‘ﬁ A0 R R TR Bk
e o R R PS B Rl a4 REER L RE R L g Y
% Bie R e B & 5 ) (Inter-processor communication)#-F 2 4p % % &7k s
TR HEH»TEP IR A Y A2 Rk E A2 5 g 2k Sugp
BoODE T AR A PSSP PR EREFRRERT S
Pos B dei hi 8 Sl B @ HR DA A PED - B2 RRFE S
Boo BT FE L BN DR R I FRATRLERT LA MR

35%2 AL E f 4 B4k sk o

BAEF gt~ 0 A5 S PLC R B S PO AL E s P B 0 ok T



Evaluation and Optimization of Inter-processor

communication for Embedded Heterogeneous Multi-core

Student: Sung-Yuan Lee Advisor: Dr. Shiao-Li Tsao

Degree Program of Computer Science
National Chiao Tung University

Abstract

A heterogeneous multi-core processor composed of a.general purpose processor (GPP)
which handles the program flowsand I/O and a digital signal processor (DSP) which
processes mass data is widely used -in an embedded system to improve the
performance and energy efficiency. To exchange-the data between a GPP and DSP,
inter-processor communication (IPC) mechanism is required. In this paper, we
evaluate the performance of the IPC for an embedded heterogeneous multi-core
processor under different design strategies and parameters through a comprehensive
experimental study. Based on the experimental results and findings, we further
improve the IPC performance of a voice over IP (VoIP) phone as a case study. The
experimental results demonstrate that the workload of the GPP significantly reduces

35% without scarifying the functionalities and voice quality of the VoIP system.

Key words: Embedded system, multi-core processor, heterogeneous multi-core

processor, inter-processor communication, performance evaluation

il



Acknowledgment

>}.
E:LN
\
Ed
q
Ee!
o
;x;
AN
>~
i
o
PN
h}
N
e

S T PR S A RS

PO REEF LT I NI AR IERE S 22 2 FY RART R H

EAEE AREOL R o 8L AL ERR o B B R i e i 4p 5]
A R PR, R E AN T AYRHE XS &

diig e B¥ O ABRR AT v FL R KR P E KRS AP

=\

3

EHRPE S HHEPREAFIFF ISR RALE LS R REEG

l,(gj.v‘:;—"b% o
BRSO T AR LY B SR e A B
WE VAR BRI WAL R RE DAL A p ¥ A EE AT

;ggg;k:ig,cgﬁgaﬁs s T (4 ,E 1-_21.- ,gﬁw,}@;\mpp ) BFE o

il



Table of Contents

BB s i
AADSTIACE ...ttt ettt et h bt et eeae et et saeen il
ACKNOWIEAZIMENT ...t ae e et e e e e e ssaaeeenaee s 1ii
LSt OF FIGUIS ..ttt ettt ettt ettt e e bt e et e e saeenseensaeennas v
LSt OF TADIES ...t st st vi
Lo INErOAUCTION ..ottt st 1
2. Inter-processor communication mechanism and design parameters...................... 4

2.1.  Heterogeneous Multi-Core ProCessor.........cocuievieeiieniienieeniienieeieesve e 4

2.2.  Introduction to TI DaVinci DM6446............ccoeevuieeeirieeeiieeeiieeeiee e 5

2.3.  IPC mechanism for an embedded heterogeneous multi-core processor ....7
2.4.  Design strategies and parameters of the IPC mechanism.......c..cccccc.e..... 10

3. Performance Evaluation and Performance Measurement of Inter-processor

COMMUNICATION ....eeitieniieeiieeneeeeeedas e ssteeeeeenseenssssunshesbeeseesseeenseesssesseessseeseesssesnseesseens 12
3.1.  Test Environments and- Methodology.......cct....ccceeviriiienieniiiiiecieee 12
3.2.  Hardware support and software modification..............c.cceeveeereveeeenreennen. 14
3.3.  Bigvs. Small Data Size EXperiment............cioooeeeiiieniieiecieeiee e 17
3.4.  External vs. Internal Memory EXperiment... i ......cccceeveveeeriieenieeeenreeennen. 18
3.5.  Interrupt vs. Polling Experiment..........cciieiiiiiniiiieieeieeee e 20
3.6, Test Overhead .......... i ittt 21
4 Case StUAY: VOIP.....ooiiiieieeeeeetee et 23
41 Case INtrodUCHION ......cccviieiiieeciie et e 23
4.2 Case Test RESUILS ......ccciiieiiiecee e 26
CONCIUSIONS ...ectieeiiieeeiiee et e et e et e e et eeetaeeeteeestaeesabaeeesseeessseeesseeesseeesseesnsseas 31
LS 1S3 1) 1 1o PSP 32

v



List of Figures

FIGURE 1. OMAP5912, A HETEROGENEOUS MULTI-CORE PROCESSOR 5
FIGURE 2. TMS320DM6446 DMSOC BLOCK DIAGRAM 6
FIGURE 3. GENERIC PROCEDURES OF AN IPC 8
FIGURE 4. MEASUREMENTS OF IPC PHASES 13
FIGURE 5. ESTIMATE THE DURATION OF A FUNCTION 15
FIGURE 6. CHECK THE CYCLE COUNTS IN THE PROC DIRECTORY. 16
FIGURE 7. MODIFY THE LINUX KERNEL TO ACCOMPLISH THE TESTS. 16
FIGURE 8. LATENCY IN MICROSECOND (MS) OF EACH IPC PHASE 18
FIGURE 9. COMPARISON OF IPC PERFORMANCE USING INTERNAL AND EXTERNAL
MEMORY AS THE SHARED MEMORY 19
FIGURE 10. THE LATENCIES OF INTERRUPT-BASED AND POLLING-BASED
NOTIFICATION MECHANISMS 21
FIGURE 11. PERFORMANCE EVALUATION PLATFORM OF THE VOIP SYSTEM 24
FIGURE 12. ARM AND DSP EXCHANGE DATA BY THE RING BUFFERS IN THE SHARED
MEMORY 25
FIGURE 13. G.711 CHARACTERS, G.711 PAYLOAD IN THE TCP/IP HEADER AND PACKET
INTERVAL VS. LAG 26
FIGURE 14. AN EXAMPLE OF THE CAPTURED PACKETS 28

FIGURE 15. THE VOICE DATA IN A PACKET 28



List of Tables

TABLE 1. TIMS320DM6446 MEMORY 7

TABLE 2. COMPARISON BETWEEN STANDARD GETTIMEOFDAY() AND OUR OWN TIMER
DRIVER 15

TABLE 3. ARM WORKLOAD, INTER-PACKET ARRIVAL TIME AND ITS STANDARD
DEVIATION UNDER DIFFERENT IPC STRATEGIES 29

TABLE 4. ARM WORKLOAD AND NOTIFICATION UNDER DIFFERENT NOTIFICATION
STRATEGIES 30

vi



1. Introduction

Embedded systems usually handle both I/O jobs such as receiving and responding
external events and computation jobs such as processing a large amount of data. To
use either one general purpose processor (GPP) which provides better I/O controls or
one digital signal processor (DSP) which offers rich computational resources to
handle both I/O and computational jobs is usually less efficient [1]. In order to
improve the energy and performance efficiency, a heterogeneous multi-core processor
composed of GPPs and DSPs is thus widely used in an embedded system [2]. In a
heterogeneous multi-core processor, inter-processor communication (IPC) mechanism
is required for exchanging data and control messages between GPPs and DSPs.
According to previous studies, the IPC mechanism is critical for a heterogeneous
multi-core processor, especially for those embedded systems involving frequent
interactions between the two processors [3][4][S].

A number of studies have ‘evaluated the IPC performance of a heterogeneous
multi-core processor. Gorgonio et al. [3] and Chiu et al. [4] examined the IPC
overhead and the performance of a task running on a GPP or DSP. Since the IPC
introduces a considerable overhead, it is not always efficient to assign
computation-intensive tasks to the DSP through the IPC. Their experimental results
help the designers to map their tasks to the GPP and DSP efficiently. Luiz et al. [5]
further proposed a formal model based on the timed automata for the IPC of a
heterogeneous multi-core processor. Their model helps the designers to understand
the IPC mechanism. Several hardware and software improvements have been
proposed for the IPC mechanism of a heterogeneous multi-core processor. Chen et al.

[6] proposed a new bus architecture to speed up the IPC between GPPs and DSPs. For



the IPC improvements through software technologies, Kluter et al. [7] suggests using
the scratchpad memory, i.e. the internal memory, instead of the external memory as
the shared memory for the IPCs. The IPC performance by using internal shared
memory is significantly improved, especially for streaming applications which
involve frequent IPCs between GPPs and DSPs. Brisolara et al. [8] presented a
method, called “Message Aggregation”, to aggregate several IPC requests into one
single request and reduce the number of IPCs between GPPs and DSPs. This
technique also considerably reduces the IPC overhead.

Unfortunately, previous studies did not consider above design factors together and
investigate and compare the IPC performance under different design strategies and
parameters. In this paper, we establish an-experimental environment and evaluate the
IPC mechanism through an experimental study. Based on experimental results and
findings, we apply appropriate IPC strategies and parameters to a case study, i.e. a
VoIP phone, to improve its performance. Experimental results indicate that with the
proposed improvements, the CPU. workload could reduce 35% without scarifying the
functionalities of the VoIP phone. The main contributions of this paper are to provide
an experimental study of the IPC mechanism for an embedded heterogeneous
multi-core processor and compare the IPC performance under different design
strategies and parameters. The results offer designers a guideline in choosing the
appropriate IPC designs and parameters for an embedded system using a
heterogeneous multi-core processor.

The rest of the paper is organized as follows. Section 2 briefs the [IPC mechanism, and
presents different IPC design strategies and parameters. Section 3 introduces the
performance evaluation environment, methodologies and results. Based on the

experimental results and findings, we then apply appropriate IPC designs to a case



study, i.e. VoIP phone. The experimental results are presented and discussed in

Section 4. Finally, we conclude this study in Section 5.

v

\ 796




2. Inter-processor communication mechanism and

design parameters

2.1. Heterogeneous Multi-core Processor

Currently, the embedded system is requested for more functions and faster
execution speed. If the embedded system just use one general purpose processor to do
all the tasks, including code flow, I/O and complicated computation, it will incur the
low-performance and power-consumming. The DSP wich is good at computation is
added into the system in the current design., The control and computation tasks are
separated by this kind of architecture. The.cores with different characters will process
their appropriate tasks. The architecture is constitute of the “Heterogeneous multi-core
processor”.

Figure 1 illustrates the block diagram for the OMAP5912 [9]. There is an ARM926
for task control and a TMS320C55X DSP for data computation. The two elements consist

of a heterogeneous multi-core processor.



Peripherals

OMAP™ v3.2 Core

C55x DSP
Subsystem Timers (x3)

; — (Instruction Cache, Watchdog Timer
SARAM, DARAN, Interrupt handler

DMA) McBSP. (x2)

MESI| (x2)

I 1 UART (X3} 3P|

SDRAM UARTADA  GP Timer (x8)

(DDR) ~ Traffic ARNM 926TE.J Mailbox GPIO
Controller/ 12e 32k-Counter
Flash g Memory /F  -ge— Subsystem McBSPZ  MMEISDIDZ

SRAM 32k timer:

finstruction Cache,

Data Cache, MMU)
Timer/ (%3} LPE (x2)
Watchdog Timer  PWLIPWT

RTC SHIMMC (%2}
Int. Ctrl Memorny.
uWire Stick ™
LeD ARMIC Key: OCcP
Controller CamerallF  USB Controller

Figure 1. OMAP5912, a heterogeneous multi-core processor

2.2. Introduction to TT DaVinci DM 6446

The dual-core architecture of the TI DaVinci DM6446 [10] provides benefits of
both DSP and Reduced Instruction Set-Computer (RISC) technologies, incorporating
a TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926 EJ-S core,
which OS typically runs on it, generally performs user interface and other functions.
The TMS320C64x+ DSP features high performance and low power consumption and
is usually in charge of high-computation and real-time jobs. It will be a powerful
embedded processor to take advantage of the ARM and DSP cores.

The hardware design of TI DaVinci mainly includes three parts. They are ARM
Subsystme ~ DSP Subsystme and the related equipments about external memeory (eg:
DMA -~ DDR?2 and External Memory Interface). Figure 2 shows the TMS320DM 6446

DMSoC block Diagram.



JTAG Interface

Systam Control

ARM Subayetam

BTESE,
YiC

Videz-imaging
Coprocessar (VICR)

DSP Subsystem

Raw (Bayer)

VI080 FIOCazaINg SUDEYSMeMm [JPES)

n r 1 ;OIEE o _ll_ Back End &b BT.E56,
Ingiil g | PLLE/Clock | vio,
Clockis) Zeneralor | — -
- i L | pr .\_L.r.ﬂu RGB
- o —— f [
PowenSleen -Cache | O | cch Reslze | an "'ﬁf-l \-'de::;_ - = —
Cantroller 3ZKB || B1KB controter [Higtagramy| || DIEPIEY | Encadar 06 Dac AL
1€ KB RAM LiPgm || L10ata (W]l wides FrA [ e F= e e ;;3"*'!"-'3-
PIn niefacs | Preview 100 DAC e
Mutiplexing 1EKE RO | | et | opn
L _ o
il W/T f? TT
N AV AV SN
Swiched Central Resource (SCR)
S
S
Peripherals
Sarlal Interfaces Syatam
M A
£ ! ! A}
- Audio sznerdl | [ysengag
EOMA < Furposs 4
Serta =< A UART i Timé i
EI}I"II'IEEU'\'”}' ProgramiData 3torage
M M
! ! ! Y
R EMAC DDRZ | |Aswnc EMIF! | | ATA! |
el | RURE | BT Mem G || NAND! | |[Compact || MME
MDIC (180320 || 2martMeda Flash ==

Figure 2. TMS320DM6446 DMSoC Block Diagram

(1) ARM Subsystem (ARMSS)

ARM subystem mainly include a ARM926 core and internal memory. Internal

memory are 16KB instruction cache ~ 8KB data cache -~ 16KB RAM and 8KB

ROM. Except cache, DSP can access internal memory , so they could be one of

share memory to commmunicate between ARM and DSP.

(2) DSP Subsystem (DSPSS)

C64x+DSP . Video-Imaging Coprocessor (VICP) and internal memeory are consist

of DSP subsystem. The internal memeory includes 32 KB L1 Program RAM -~ 80

KB L1 Data RAM and 64 KB L2 RAM. ARM can access L1 and L2 internal

memeory of DSP. The internal memeory also can be used as the share memeory

between ARM and DSP.



(3) Related equipments about external memeory
These parts includes DDR2 SDRAM, FLASH, CF and External Memory
Interface. These memory equipments are not in the inside of ARM or DSP, but
ARM or DSP still can be accessed them by external memory interface. Table 1

shows the memory overview of the TT MS320DM6446.

Table 1 shows the memory summary of the TI DaVinci.

Table 1. TI MS320DM6446 memory

ARM internal DSP internal External
memory memory Memories
* 16K-Byte * 32K-Byte L1 Program |* DDR2 Synchronous

Instruction cache  |SRAM/Cache(direct DRAM

* 8K-Byte Data mapped) * Asynchronous
TI DaVinci
cache * 80K-Byte L1 Data EMIF/NOR/NAND
MS320DM6446
* 16K-Byte RAM |SRAM/Cache(2-way set [Flash

* 8K-Byte ROM |associated) * ATA/Compact

* 64K-Byte L2 SRAM  |Flash(CF)

2.3. IPC mechanism for an embedded heterogeneous multi-core

processor

The generic procedures of the IPC mechanism of a heterogeneous multi-core
processor compose of ten steps which are shown in Figure 3. When the system starts,
the GPP program first downloads the DSP programs to the DSP internal memory so

that the DSP programs can execute when the GPP program invokes the DSP functions.




Once the GPP program has a job to assign the DSP, it makes a DSP function call in
the DSP library. The DSP library then initiates an IPC which transfers the control

message and data to be processed to the DSP.

Shared
Memory

Data buffen e
@ Data buffe G

4

Control messages

e Interrupt
or
Polling e

Figure 37 Generic procedures of an [PC

During the IPC, the GPP first copies the data to be processed by the DSP to the
shared memory which can be accessed by both the DSP and GPP in step @. Then, in
step @, the GPP prepares a control message which indicates the information of the
request such as the address and length of the data and the DSP function that the GPP
program invokes, and also stores the control message in the shared memory. The
control messages could be structured as a list so that the GPP program could
consecutively create new requests to the DSP and the DSP could process the DSP
function requests one by one. The format and address of the control message in the

shared memory shall be known by both the GPP and DSP before the IPC so that they



could communicate to each other through the control messages. In step ©, the GPP
uses an interrupt or other mechanisms to notify the DSP that the GPP program has a
DSP function request to the DSP. The DSP is notified and reads the control messages
from the list in step @. The DSP finds the data to be processed based on the control
message in step © and then starts to process the request. After the DSP finishes the
job, the DSP has to copy the processed data to the shared memory in step ® so that
the GPP could access the results. Similar to the procedure that the GPP notifies the
DSP, the DSP also has to prepare a control message indicating the address and length
of the processed data in the shared memory in step @. Finally, the DSP uses an
interrupt or other means to notify the GPP in step ®. The GPP is notified and reads
the response message in step ©. Then, the GPP program could get the processed data
in step ©.

After the GPP program call the DSP function, the GPP program could either wait
for the DSP function return or sets a call-back function..If the GPP program waits for
the DSP return, the GPP program is.blocked for a while. Otherwise, if the GPP
program sets a call-back function, the GPP program could continue processing other
jobs without blocking. Once the DSP function is complete, the GPP program is
notified by an interrupt and then a call-back function which can handle the DSP return.
As can be seen from the above description, the IPC introduces extra GPP and DSP
workload to handle memory copies, process request, response messages, interrupts,
and notifications. In the next subsection, we discuss the IPC design strategies and

parameters which may influence the IPC performance.



2.4. Design strategies and parameters of the I[PC mechanism

The first design consideration for an IPC is the granularity of the IPC requests
between the GPP and DSP, i.e. the size of the data block to be passed from the GPP to
the DSP. One possible design choice is to merge several DSP function calls and their
associated data blocks together and invoke only one IPC [8]. The number of IPCs and
the IPC overhead are both reduced. However, in that case, more shared memory space
is required to store the data blocks to be processed, and the response time of the DSP
function call may increase since function calls may be deferred, merged and sent to
the DSP together.

Another design strategy is to utilize different types of the shared memory for the
IPC data exchanges. One common.approach-is to. use the external SDRAM attached to
the system bus as the shared memory. Another possible choice is to expose the GPP
internal memory to be accessed by the DSP or vice versa. Using the internal memory
as the shared memory could significantly speed up the memory access by the GPP and
DSP [7] so that the IPC can be speeded. up. However, the size of the internal memory
is much smaller than that of the external memory, and the cost of the internal memory
is much expensive than that of the external memory. The internal memory should be
carefully managed to maximize the cost-efficiency of the embedded system.

Another design consideration is to use the interrupt or polling mechanism for the
GPP and DSP to notify the other processor. The common approach is to use an
interrupt for the GPP and DSP to notify the DSP and GPP, but the interrupt involves
interrupting the handling process and results in a considerable overhead. For example,
a portable media player or voice over IP (VoIP) phone periodically calls DSP
functions to compress and decompress voice and video frames. The IPC overhead is

significant if the interrupt notification is used. Another approach is to use the polling

10



mechanism for the notification. The polling mechanism does not use an interrupt to
notify the other processors. It simply sets and resets a flag in the shared memory when
the request and response messages and data blocks are ready in the shared memory.
For example, after step @ and step @, the GPP sets a flag in a particular address in
the shared memory. The DSP periodically checks the flag by reading the memory
address and sees if there is a new request from the GPP. If the flag is set, the DSP
reads the request message, and processes the data. The overhead to read an internal
memory address is much less than an interrupt handling routine. However, one major
challenge of this approach is how the DSP and CPU know the time to poll the flag. If
the DSP or GPP has to poll the flag very often, the overhead also increases. On the
other hand, the delay increases .if the-DSP or .GPP polls the flag infrequently.
Therefore, this polling notification approach is more suitable to the embedded systems
with periodical IPCs. For example, if a VoIP phone produces and consumes voice
frames every 20ms, the polling interval of the IPC could be set as 20ms so that the

notification overhead and the IPC response timecould be both reduced.

11



3. Performance Evaluation and Performance

Measurement of Inter-processor Communication

3.1. Test Environments and Methodology

In order to examine the detail [PC performance under different design parameters,
an evaluation platform is established. TI DaVinci DM6446 [9] which has an
ARM926EJS and C64x+ DSP is used for the experiments. Embedded Linux and
DSP/BIOS are running on ARM926EJS and TI C64x+ as the operating systems. Then,
ARM programs and DSP programs can execute on top of Embedded Linux and
DSP/BIOS. Programs on Embedded. Linux. call DSP functions through the DSP
library. The DSP library further utilizes the DSP/BIOS LINK [11] which implements
the IPC to transfer the request to.the DSP. The DSP/BIOS LINK is a Linux kernel
driver and can communicate with the' DSP/BIOS to complete the IPC task.

To evaluate the IPC mechanism, we develop.user-space testing programs on the
ARM and DSP. We also modify the 'DSP/BIOS LINK in Linux so that the IPC
procedures can be tracked and the latency for each IPC phases could be gathered. In
this study, we only measure the IPC performance from the ARM processor’s point of
view. This is mainly because that the DSP usually serves as a slave co-processor and
dedicate in processing the data. On the other hand, the ARM processor usually
handles multiple tasks and the developers are more concerned about the IPC delay on
the ARM or the ARM resources occupied by the IPC.

Therefore, we divide the IPC into five major phases as shown in Figure 4 and
measure the latency of each phase. During phase (A), the ARM program copies the
data block to be processed to the DSP from a user space memory to the kernel space

memory. The kernel space memory could be the shared memory space that both the

12



ARM and DSP can access so that additional memory copy in the kernel space is
avoided [12]. Phase (A) corresponds to step @ shown in Figure 3. Phase (B) is to
prepare the control message and send an interrupt to the DSP. Phase (B) corresponds
to step @ and step ©. Phase (C) composes of all the DSP procedures during an IPC.
Phase (C) includes that the DSP is interrupted, and the DSP/BIOS receives the request,
the DSP programs perform the requested functions, and responses the request. Phase
(C) corresponds to step @ to step ® shown in Figure 3. Phase (D) is the interrupt
handling procedure for receiving the response and corresponds to step © of Figure 3.
Finally, phase (E) involves a memory copy of the result from the kernel space to the

user Space.

program program
v
a
Embedded
Linux DSP/BIOS
ARM DSP
® ®
(0)
- \—/
v -

Heterogeneous multi-core processor (Tl DaVinci DM6446)

Figure 4. Measurements of IPC phases

13



3.2. Hardware support and software modification

To get the time period of every step, we need hardware support and software
modification.
® Hardware timer

To measure the performance of communication between cores, it has to measure
the time period between the ARM and DSP. Many embedded systems support the
hardware timer for profiling use. The TI DAVINCI supports two 64-Bit
general-purpose timers and one 64-Bit watch dog Timer. The resolution of the
hardware timers is 27MHZ. We will take advantage of the hardware timer as one of
our measurement tool. The test‘begins from the application of the user space. The user
application can not access the hardware timer directly. We need to write a driver to
access the hardware timer in'the Linux kernel space and a system call for getting the
time periods from user space into the kernel.
® /proc file system

Hardware timer provides the accurate measurement. However, the test needs
many times to access hardware timer during a test. The time measurements of
accessing hardware timer in the test have to temporally save in somewhere. After the
test finished, we can get the time to calculate the duration of every period. To make
the test more accurate, the whole test results will saved in the /proc file system. We
have to add a new directory in /proc file system to save the time periods.
® Implement drivers to complete the test

In order to precisely measure the latency of each IPC phase and minimize the

instrument overhead, we implement our own timer driver instead of using standard

14



gettimeofday() library in the Linux kernel and user programs. Standard
gettimeofday() library in Linux provides microsecond(us)-level accuracy, but
our own timer driver which utilizes the TI DaVinci 64-Bit general-purpose timer can
offer 1/27 ps precision. Moreover, the overhead to retrieve the timer is significantly
reduced. Table 2 shows the comparison between the standard gettimeofday ()
library and our own timer driver. Since we insert timer retrieval codes in the testing
program and kernel codes to gather the latency of a specific procedure, we therefore
deduct the instrument overheads, i.e. the extra delay to access the timer, from the

measurement results shown below.

Table 2. Comparison between standard gettimeofday() and our own timer driver

User Space | Kernel Space
Standa_rd 11.85 ps 5.87 ps
gettimeofday()
Our own timer driver 3.63 s 0.44 ps
get_cycle_count()

We need to implement some drivers to access the hardware timer and /proc
directory processing. Now, we take an example to explain the measurement and get
the results. If we want to measure the duration of the function ABC( ), the
get_cycle_count( ) function which gets the clock cycle count from hardware timer will

be inserted into the code. Figure 5 illustrates this case.

Cyclel=get_cycle count();
| ABC(),
| Cycle2= get_cycle_count(),

Figure 5. Estimate the duration of a function

15




The time measurement results will save in the /proc/test. The test directory is
added when the test initialization.After the test finished, check /proc/test to get the
duration of ABC( ). Figure 6 demonstrates the example. For instance, a test directory
is added into the /proc directory. After the test is executed, there will be some records

about the clock cycle counts from hardware timer.

cat fprocitest
Cyclel 407641

CycleZ: 412145
Diff.cycled-cycle1=4514

Figure 6. Check the cycle counts in the proc directory.

Then, we will calculate the time period from clock cycle counts to microseconds.

At last, figure 7 demonstrates what:we add in the system to accomplish the tests.

/( System call ]
AP /ﬁ
Kemel function ... [ fprochest
get_cgfcle_countgh \ gy [ ama ]

Wodule
(Digplink)

Eoard evm
Davinci (ARM)

Figure 7. Modify the Linux kernel to accomplish the tests.

16



3.3. Big vs. Small Data Size Experiment

A number of experiments are conducted to evaluate the IPC performance under
different design strategies and parameters. The first experiment considers different
sizes of data blocks to be passed to the DSP. An ARM program sends data blocks in
different sizes to the DSP, and the DSP program returns the results to the ARM. Since
we only concern the IPC performance, we assume the DSP testing program does not
process the data and simply responses the request with the same data block to the
ARM. In this experiment, we use the interrupt to notify the ARM and DSP when the
ARM requests or the DSP responses the request. Also, we use the external SDRAM
as the shared memory. Figure 8 illustrates the latency for each IPC phases under
different block sizes. The x-axis lists the five IPC phases shown in figure 4. The
y-axis shows the latency of each phase in microsecond (jis). As can be seen, the IPC
spends a large portion of the time in phase A and phase E which performs data copies
between user memory and kernel memory. The latency of Phase A and Phase E
depends on the block size. Phase'B and Phase-D are to process control messages and
response messages and to handle interrupt-based notifications. Phase C consumes
merely 70us-80us since in this experiment, the DSP program does not perform any
task, and just replies the request with the same data block. The experiment results
indicate that if the block size is small such as 128bytes, the control message process
and notification overhead, i.e. phase B and phase D, are significant. The overhead of
the interrupt notification is similar to the memory copy overhead for the IPC with
small data block. On the other hand, if we could combine multiple requests and data
blocks through less number of IPCs, the overall IPC performance can be improved.
For example, to exchange a total of 32K data block between the ARM and DSP

through 32 1Kbyes IPC, 2 16Kbytes, 1 32Kbytes IPCs spend 34ms, 10ms, 8ms,

17



respectively.

4500.0

4000.0

3500.0

3000.0

2500.0

2000.0

microsecond

1500.0

1000.0

500.0

0.0

0128 bytes 148.8 131.2 73.5 114.4 143.8
1K bytes 416.6 132.5 73.0 1143 405.3
B 16K bytes 2188.5 131.6 78.6 111.9 2160.7
B 32K bytes 4121.6 131.4 81.7 115.4 4101.7

Figure 8. Latency in microsecond (us) of each IPC phase

3.4. External vs. Internal Memory Experiment

The second experiment considers different types of memory, i.e. internal
memory and external memory, as the shared memory for exchanging IPC data blocks.
In this experiment, we use the ARM internal SRAM as the internal memory and use
the SDRAM as the external memory. The two memory areas can be both accessed the
two processor cores. The latency of the memory accesses mainly influences phase A
and phase E which performs memory copies. This experiment only measures the
delay in the kernel space to copy different sizes of data blocks from the user space
memory to the internal or external memory. The result is less than the data shown in

Figure 8 since the delay shown in Figure 8 includes the latency for executing user lib,

18



system call, and kernel code to handle the memory copy. Figure 9 only illustrates the
latency for memory copies in the kernel space. Obviously, the memory copies in the
internal memory are much faster than that in the external memory. In other words, the
IPC using internal memory as the shared memory is faster than that using external
memory as the shared memory. The latency depends on the data block sizes. For
example, the latency to copy an 8Kbytes data block from the user space to the ARM
internal SRAM reduces 94% time comparing with that to the external SDRAM. This
experiment indicates that to use internal memory as the shared memory considerably
improves the IPC performance, especially for exchanging large IPC data blocks.
However, internal memory is expensive and usually small. To use the internal
memory as the shared memory should be carefully considered and managed so that

the embedded system could achieve a better performance without additional cost.

1200.0
1000.0  [r-=mmmmm oo e Sennnc o oosonsE SR osmessossssoosssoosssooseesoscssoocees oo
800.0 |77 oo sooossoosssoeessooessooe oo
©
c
o
@ o0 L
wv
o
S
€
400.0
200.0 D/D/ - -
0.0 . 5//0’/‘
128 Bytes 1K Bytes 4K Bytes 8K Bytes
-1 external 44.6 146.4 513.3 997.4
—-internal 4.3 9.8 28.8 56.2

Figure 9. Comparison of IPC performance using internal and external memory as the

shared memory

19



3.5. Interrupt vs. Polling Experiment

The interrupt-based notification mechanism introduces serious overhead for the
IPCs with small data blocks. Therefore, the next experiments uses the polling-based
mechanism to notify the ARM and DSP instead of using interrupt-based approach. To
implement the ARM and DSP notification mechanism using the polling approach, we
use a flag. When the ARM notifies the DSP, it sets the flag in the shared memory. The
DSP could periodically check the flag and if the flag is set, the DSP process the
request. After the DSP completes the task, it resets the flag. The ARM could also
periodically poll the flag and if the flag is reset, the ARM knows the DSP task has
been finished and could retrieve the results. In this experiment, since the DSP
program does not perform any job, the ARM performs a busy waiting loop to check
the flag and see if the DSP ask is complete or not. Another implementation approach
for the polling-based notification is to periodically check the flag. If the ARM or DSP
find the flag is not set or reset, it performs other jobs: Otherwise, it processes the IPC
requests or results.

Figure 10 compares the interrupt-based notification and polling-based
notification under different block sizes. The results show that the notification
mechanism is independent of the IPC bock size. Also, the polling-based notification
approach significantly reduces 95% overhead compared with the interrupt-based
notification approach. For these embedded applications which generate frequent and
periodical IPCs with small block sizes, polling-based notification approach is a better
design choice. We use the VoIP phone as a case study and consider these design

considerations in improving the IPC performance of the VoIP phone.

20



90.0

80.0

70.0

60.0

50.0

40.0

microsecond

30.0

20.0

10.0

0.0

128 Bytes

4K Bytes

8K Bytes

16K Bytes

32K Bytes

O Interrupt

74.7

74.7

75.6

76.9

80.9

M Polling

2.2

2.3

2.3

2.3

2.3

Figure 10. The latencies of interrupt-based and polling-based notification mechanisms

3.6. Test Overhead

Because we add a measurement function into the original code during the test,
the section will check the overhead of the function.

According to table 2 shows that accessing the hardware timer from user space is
longer than that from kernel space. It is reasonable because accessing timer from user
space needs the system call to get into the kernel space. Then, application in the user
space can access hardware timer by the system call.

According to the figure 4, there will be totally 6 times which include 2 times
from user space and 4 times from kernel space to access timer in the whole test. The
effects to the smallest data size 128 bytes and the largest size 32Kbytes illustrate as
following:

2x3.63+4x0.44= 9.02 ps (total overhead in one experiment)

21



148.77+131.22+75.51+114.37+143.77=613.64 ps (total time in data size test of 128
bytes)
4121.62+131.37+76.66+115.37+4101.7=8546.72 ps (total time in data size test of

32K bytes)

Test overhead in 128 bytes  9.02/613.64=1.47%

Test overhead in 32K bytes 9.02/8546.72=0.105%

Test overhead < 1.5%

We get the test overhead in 128 bytes is about 1.47% and 32Kbytes is about 0.105%.
It explains the time measurement doesn’t twist the original behavior in the

communication test.

22



4 Case study: VolP

This chapter will take advantage of the measurement method provided by chapter
3 for a real application. For a heavy loading processor, if the more utilization can be
squeezed, the more jobs can be processed. The utilization of a processor is an

important resource for the embedded system.

4.1 Case Introduction

Above experiments reveal that depending on the characteristics of an embedded
system, the embedded system using a heterogeneous multi-core processor may prefer
different IPC strategies and parameters. which significantly influence the IPC
performance. In this section, we apply different IPC . strategies and parameters to a
VoIP phone and evaluate its performance. VolP phone is an embedded system and
usefully uses a heterogeneous multi-core processor. The GPP usually runs a VoIP
client and the DSP compresses and decompresses voice packets. The IPC frequently
occurs between two processors, €.g. every 20ms, and the size of the IPC data block is
usually small, e.g. 160bytes. The IPC occupies a significant part of the GPP resources
for the VoIP system. Therefore, we apply suitable IPC designs to the VoIP system and
improve the IPC performance.

Our experimental environment is shown in figure 11. We establish a VoIP
test-bed which composes of a public SIP [13] server which handles VoIP calls and
two client nodes which can establish a VoIP communication. One VoIP client runs
Linphone[14], an SIP user agent, on a PC and the other VoIP client uses TI DaVinci
DM6446 evaluation board. We port and modify Linphone on the embedded
evaluation board and evaluate its performance. The two VoIP clients first run and
register to the public SIP server and then can establish a VoIP communication through

23



the SIP server.

Public SIP server

Campus network

AR

TI DM6446/Linux
Linphone

|
PC/Linphone

Figure 11. Performance evaluation platform of the VoIP system

Our experiments evaluate the CPU workload of the TI DaVinci board after the
VolIP call has been established and voice packets start to transmit between two clients.
We modified a popular CPU workload monitor tool, called top, on Linux and can
gather ARM workload.

The VolIP client application running on the ARM processor periodically calls the
DSP function to encode and decode voice frames. For example, if G.711 codec is used,
the VoIP client has to call the G.711 library every 20ms for decoding and encoding
voice packets. According to our experiments, the polling-based notification approach
is preferable if the application has periodical IPCs with small block sizes. Therefore,
we modify the DSP/BIOS LINK to support polling-based notification and compare its
performance with the conventional interrupt-based approach. To implement the
polling-based notification on the ARM processor, the ARM processor prepares the

control messages and data blocks in the shared memory and set a flag. Once the DSP

24



finishes the task, it resets the flag in the shared memory. The ARM program sets a
polling timer after it sends the request to the DSP. When the polling timer expires, the
ARM program checks the flag. If the flag is reset, the ARM understands the task has
been finished, and then could access the results in the shared memory. Since the ARM
and DSP programs perform their own tasks asynchronously, we therefore have to
prepare a number of blocks in the shared memory so that the ARM program could
continually generates the requests and the DSP program could process the requests.
The blocks in the shared memory are implemented as ring buffers.

Figure 12 shows ARM and DSP exchange data by the ring buffers in the shared

memory.

= =
= =

ARM L=

*|rterrupts poling
*Externalirtemal memary

Figure 12. ARM and DSP exchange data by the ring buffers in the shared memory

Another important characteristic of the VoIP application is the small packet size.
For example, the voice frame of G.711 is 1280 bits, i.e. 160 bytes. The packet size
becomes smaller if we choose other low-bit-rate codecs such as G.723. The data block
size is small so that it is affordable to use internal memory for exchanging IPC data.

Thus, we use the internal memory rather than the external memory for the IPC.

25



The voice processing algorithm is G.711 in the tests. Figure 13[15] shows the
characters of G.711. According to the G.711, the packet inter-arrival time is about 20

ms and voice data is 1280 bits (=160 bytes).

G.J11  |PCM 64 kbps 20 ms 1,280 hits. ..o
:1_2':. _||:|:|:M ""'--Erl:I :ELE ................................ -.:l:l--li"l'f: """"" ":I-I-:I hits
G728 |CELP 16 kbps 10 ms 160 bits
5.7294 (CELP 8 kbps 10 ms 160 bits
GEM RPE2 or CELP |13 kbps 20 ms 160 bits
- 180 bits
Header
T e R=11RY
Header
- a6 bits
Heades
1. 280 hits lﬂq
" LiGE AT L7
Payload Paybmad Py b Payioad
/ Fackit
|t

(From: Switching to VolP ; Ey Theodore Wallingford)

Figure 13. G.711 characters, G.711 payload in the TCP/IP header and packet interval

vs. lag

4.2 Case Test Results

Table 3 illustrates the ARM workload under different IPC strategies. In the first
design strategy (denoted as ARM), we only use the ARM processor to handle both the
VoIP client and the voice codec. In other words, the DSP does not involve. This

approach consumes the ARM processor 47% CPU resource. In the second design

26



strategy (denoted as ARM-+DSP+Int+Ext), the DSP is involved and handles the voice
codec. Then, the IPC is required. In this design strategy, the IPC uses the external
SDRAM as the shared memory and uses the interrupt-based mechanism for IPC
notifications. This approach significantly reduces 50% of the ARM workload. The
third configuration (denoted ARM+DSP+Pol+Ext) uses the polling-based mechanism
to replace the interrupt-based mechanism. The ARM program initiates a 20ms polling
timer to periodically check the completeness of the DSP task. The experiments
indicate that the ARM workload could be further reduced 10% if polling-based
notification is used. In the fourth configuration (denoted as
ARM+DSP+Interrupt+Internal), we use the internal memory as the shared memory.
Compared the design strategy 2 and 4, we find that the ARM program improves 28%
if the internal memory is used for the TPC shared memory for the VoIP phone. For an
embedded system involving small IPC packets, to.use internal memory can
significantly improves the IPC. performance.: Finally,. we apply both internal and
polling-based technologies in the fifth. configuration (ARM-+DSP+Polling+Internal).
Experimental results indicate that we could reduce 35% ARM workload if we use
both polling-based notifications and the internal memory.

To use polling-based notification mechanism, the latency that the ARM can
detect the completeness of the DSP function may suffer from extra delay compared
with the interrupt-based approach. This is because the interrupt-based mechanism
could interrupt the ARM processor as soon as the complete of the DSP function.
However, the ARM processor has to wait for the next polling timer if the DSP resets
the polling flag just after the ARM checks the flag. One may concern that if we use
polling-based approach instead of the interrupt-based approach, the voice over IP

application may have extra packet delay and/or packet delay jitters. Therefore, we use

27



Wireshark[16] running on the receiver VoIP client to measure the packet arrival time.
The figure 14 and figure 15 show the example of captured packets in the

experiment.

h. I o S o

Figure 14. le of t red packets

# User Datagram Protocol, Src Port: 1rdmi (BODOD), DST POFT: 40376 (40376)
= REal-Time Transport Protocol
# [stream setup by sor (frame 1)]

10.. .... = Wersion: RFC 1BBY wersion (2)
o0 ov.. = Padding: False
.0 .... = Extension: False
. 0000 = Contributing source 1dentifiers count: O
a «us. = Marker: False

Payload type: ITU-T G.T11l PCMA (B)
saguence number: &5

[Extended sequence number: G5601]
Timestamp: 18720

synchronization Source 1dentifier: OxdZbddese (3535621694)
PayTload: CBCEFSFECEBDODDDACCCRCS DEDLDLDCDADADADC DEDEDEDSST.

i s

= o g R L T ]
00 ba 2 2 B0 OB 00 41 00 D L Y. T

Figure 15. The voice data in a packet

28



Check the time, protocol and payload columns in figure 14. These show that the
packets captured meet the characters of G.711. It explains our modification didn’t
make the wrong behavior or side effect in the application layer.

Table 3 also shows the experimental results. Our experimental results show that
the polling-based approach does not introduce additional packet jitters, and provide
the same voice quality. This is mainly because most of the current VolP client
maintains a receiving buffer with 2-3 voice packets to accommodate the network jitter.
That implies the packets arriving to the receiver are played immediately. Therefore,
jitter buffer which is usually 2 to 3 voice packets, i.e. 40ms to 60ms, accommodates
the IPC notification delay. Since the polling-based approach does not introduce
additional network jitter. The proposed-approach.which uses internal memory and
pooling approach can reduce.35% ARM CPU workload without scarifying the VoIP

functionalities and voice quality.

Table 3. ARM workload, inter-packet arrival time and its standard deviation under
different IPC strategies

ARM  workload | Inter-packet Standard deviation
(%) arrival time (ms) of the inter-packet

arrival time

ARM 46.53 20.45 0.48
ARM+DSP+Intr+Extl | 22.73 20.40 0.40
ARM+DSP+Poll+Extl | 20.92 20.19 0.35
ARM+DSP+Intr+Intl | 16.37 20.07 0.11
ARM+DSP+Poll+Intl | 14.84 20.24 0.17

As mentioned before, the ARM processor may not be able to know the
completeness of the DSP tasks immediately when the polling-based approach is used.

Although this polling-based mechanism does not influence the applications which

29




could accommodate the latency, some real-time embedded system may need a
guaranteed response time of the DSP task. Then, we evaluate the notification latency
by applying polling-based approach. We evaluate the notification latency use the
same VoIP programs. Table 4 shows the notification latencies and corresponding
ARM workload when we configure polling interval as Sms, 10ms, 15ms to 20ms. As
can be seen, the CPU workload increases if we configure frequent polling timers. Also,
the notification latency decreases when we configure frequent polling timer. Table 4
shows that when we configure Sms polling interval; the ARM workload increases but
the notification latency cannot decrease. This is because the DSP programs spend
about 6ms to process the task. If we poll the flag every Sms, we have to poll twice and
then can know if the task is completed or not. Therefore, the notification latency if we
configure 5ms polling interval is about two polls, 1.e. 10ms. One efficient approach
for the polling-based approach is to estimate the DSP function latency, and polling the
flag after the DSP can complete the task. Interrupt has the advantage of very low

latency in its processing, but get the highest CPU workload.

Table 4. ARM workload and notification under different notification strategies

Interrupt Polling(5ms) | Polling(10ms) | Polling(15ms) | Polling(20ms)
CPU 16.71 16.02 15.35 15.18 14.87
workload (%)
Notification 6.83 10.28 10.31 17.35 20.42
Latency (ms)

30




5 Conclusions

In this paper, we investigated the different design strategies for the IPC of a
heterogeneous multi-core processor. We established an experimental environment
which we could gather the precise and accurate IPC performance and evaluate the IPC
performance under different design strategies and parameters. The results indicates
that the IPC overheads including copy data block to shared memory for the DSP to
process the block and IPC notification mechanism are significantly from 500
microsecond to several hundred millisecond depending on the IPC block size and IPC
notification mechanism. To improve the IPC mechanism, internal memory which
could reduce 35% CPU workload and polling approaches which could reduce 10%
CPU workload is recommended for the applications generating small IPC packets. To
evaluate the improvement in.a practical example; we applied the findings to a case
study, the VoIP phone. Experimental indicates that we could improve 35% CPU
loading compared with conventional approach using external memory and interrupt

mechanism without scarifying the VoIP functionalities and quality.

31



[1]

6 References

D. Talla and J. Gobton, “Using DaVinci Technology for Digital Video Devices,”
IEEE Computer, Vol. 40, Iss. 10, pp. 53 — 61, 2007.

Hung-Y1 Hsieh, Sheng-Fu Liang, Li-Wei Ko, May Lin, and Chin-Teng Lin,
“Development of a Real-Time Wireless Embedded Brain Signal
Acquisition/Processing System and its Application on Driver's Drowsiness
Estimation,” IEEE International Conference on Systems, Man and Cybernetics,
Vol. 5, pp. 4374 — 4379, 2006.

U. S. Gorgonio, H. R. B. Cunha, E. X. L. de Filho, S. O. D. Luiz, and A.
Perkusich, “Application Profiling in 'a :Dual-Core Platform,” International
Conference on Consumer.Electronics, 2008.

Cheng-Nan Chiu, Chien-Tang Tseng, and Chun-Jen Tsai, “Tightly-coupled
MPEG-4 video encoder-framework on asymmetric dual-core platforms,” IEEE
International Symposium on Circuits and Systems, Vol. 3, pp. 2132 — 2135,
2005.

Saulo Oliveira Dornellas Luiz, Genildo de Moura Vasconcelos, and Leandro
Dias da Silva, “Formal Specification of DSP Gateway for Data Transmission
between Processor Cores of OMAP Platform,” 2008 ACM Symposium on
Applied Computing, pp. 1545 — 1549, 2009.

Tianzhou Chen, Guobing Chen, Hongjun Dai, and Qinsong Shi “A
Function-based on-chip Communication Design in The Heterogeneous
Multi-core Architecture,” 2007 International Conference on Multimedia and
Ubiquitous Engineering, pp. 1086-1092, 2007.

Theo Kluter, Philip Brisk, Edoardo Charbon, and Paolo Ienne “MPSoC Design

32



Using Application-Specific Architecturally Visible Communication,” Fourth
International Conference High Performance Embedded Architectures and
Compilers, pp. 183-197, 2009.

[8] Lisane Brisolara, Sang-il Han, Xavier Guerin2, Luigi Carro, Ricardo Reis,
Soo-Ik Chae, and Ahmed Jerraya” Reducing Fine-grain Communication
Overhead in Multithread Code Generation for Heterogeneous MPSoC,”
Proceedings of the 10th International Workshop on Software and Compilers for
Embedded Systems, pp. 81-89, 2007.

[91 OMAP5912 Applications Processor Data Manual, Texas Instruments, MAR
2004.

[10] TMS320DM6446 Digital Media System-on-Chip, Texas Instruments, DEC
2005.

[11] DSP/BIOS™ LINK USER Guide, Texas Instruments, APR 2006.

[12] Texas Instruments Incorporated, ““DSP/BIOS™.LINK ZERO COPY LINK
DRIVER”’, (Version 0.90).

[13] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. R. Johnston, J. Peterson, R.
Sparks, M. Handley, and E. Schooler, “SIP: Session Initiation Protocol,” RFC
3261, June 2002.

[14] Linphone, http://www.linphone.org/index.php/eng.

[15] Theodore Wallingford, Switching to VoIP, O'Reilly, 2005.

[16] Wireshark, http://www.wireshark.org

33



