

國 立 交 通 大 學

資訊學院 資訊學程

碩 士 論 文

嵌入式異質多核心間溝通之效能實測與最佳化

Evaluation and Optimization of Inter-processor communication

for Embedded Heterogeneous Multi-core

研 究 生：李 松遠

指導教授：曹 孝櫟 教授

中 華 民 國 九 十 八 年 九 月

嵌入式異質多核心間溝通之效能實測與最佳化

Evaluation and Optimization of Inter-processor communication

for Embedded Heterogeneous Multi-core

研 究 生：李 松遠 Student：Sung-Yuan Lee

指導教授：曹 孝櫟 Advisor：Dr. Shiao-Li Tsao

國 立 交 通 大 學

資訊學院 資訊學程

碩 士 論 文

A Thesis

Submitted to College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Computer Science

Sep 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年九月

 i

嵌入式異質多核心間溝通之效能實測與最佳化

學生: 李 松遠 指導教授: 曹 孝櫟 博士

國 立 交 通 大 學 資訊學院 資訊學程碩士班

摘要

近年來，異質多核心被大量應用於嵌入式系統中以解決耗電問題並增進系統

效能。然而異質核心間需要適當的溝通機制，才使得整個系統運作。先前的研究

發現這樣的核心間溝通機制(Inter-processor communication)將占去相當多的系統

資源，對於需要核心間頻繁溝通的應用程式來說，這樣的溝通程序將造成系統相

當大的負擔。因此在本研究中，我們透過一連串的實驗，量測與評估影響異質多

核心間溝通機制效能的各項參數。透過實驗的分析，我們得到一些建議設計與參

數，透過實際在一個嵌入式系統的案例上實作，發現所提之建議可以大幅降低

35%之處理器負擔，提升系統效能。

關鍵字:嵌入式系統，多核心處理器，異質多核心處理器，核心間溝通，效能評

估

 ii

Evaluation and Optimization of Inter-processor

communication for Embedded Heterogeneous Multi-core

Student: Sung-Yuan Lee Advisor: Dr. Shiao-Li Tsao

Degree Program of Computer Science
National Chiao Tung University

Abstract
A heterogeneous multi-core processor composed of a general purpose processor (GPP)

which handles the program flow and I/O and a digital signal processor (DSP) which

processes mass data is widely used in an embedded system to improve the

performance and energy efficiency. To exchange the data between a GPP and DSP,

inter-processor communication (IPC) mechanism is required. In this paper, we

evaluate the performance of the IPC for an embedded heterogeneous multi-core

processor under different design strategies and parameters through a comprehensive

experimental study. Based on the experimental results and findings, we further

improve the IPC performance of a voice over IP (VoIP) phone as a case study. The

experimental results demonstrate that the workload of the GPP significantly reduces

35% without scarifying the functionalities and voice quality of the VoIP system.

Key words: Embedded system, multi-core processor, heterogeneous multi-core

processor, inter-processor communication, performance evaluation

 iii

Acknowledgment

 本篇論文得到很多人的幫助才能夠完成，尤其是我的指導老師，曹孝櫟教

授，我從老師身上看到對於研究的專注態度與方法及生活中做人做事的原則，甚

至是老師在教學時的台風，都令我十分敬佩，他總是能在我陷入迷惘的時候指引

我方向，並總是適時的鼓勵我,使得我能夠繼續前進，非常感謝曹老師這幾年來

的指導。接著，我想要感謝我的論文口試委員，曾建超教授、林盈達教授與金仲

達教授，謝謝你們提供我許多寶貴的建議，讓我受益良多，同時也讓這篇論文得

以更加完善。

在實驗室的期間得到很多學長姊，同學,學弟妹的指導與協助， 在此特別謝

謝各位，另外感謝家父李文龍先生,家母張盛品女士，在日常生活對於我的關心，

能讓我安心的學習，最後，感謝每一個幫助過我的朋友，師長。

 iv

Table of Contents
摘要...i
Abstract ..ii
Acknowledgment ... iii
List of Figures ..v
List of Tables ..vi
1. Introduction..1
2. Inter-processor communication mechanism and design parameters......................4

2.1. Heterogeneous Multi-core Processor ...4
2.2. Introduction to TI DaVinci DM6446...5
2.3. IPC mechanism for an embedded heterogeneous multi-core processor7
2.4. Design strategies and parameters of the IPC mechanism10

3. Performance Evaluation and Performance Measurement of Inter-processor
Communication..12

3.1. Test Environments and Methodology..12
3.2. Hardware support and software modification..14
3.3. Big vs. Small Data Size Experiment..17
3.4. External vs. Internal Memory Experiment...18
3.5. Interrupt vs. Polling Experiment..20
3.6. Test Overhead ..21

4 Case study: VoIP..23
4.1 Case Introduction ...23
4.2 Case Test Results ...26

5 Conclusions..31
6 References..32

 v

List of Figures

FIGURE 1. OMAP5912, A HETEROGENEOUS MULTI-CORE PROCESSOR 5
FIGURE 2. TMS320DM6446 DMSOC BLOCK DIAGRAM 6
FIGURE 3. GENERIC PROCEDURES OF AN IPC 8
FIGURE 4. MEASUREMENTS OF IPC PHASES 13
FIGURE 5. ESTIMATE THE DURATION OF A FUNCTION 15
FIGURE 6. CHECK THE CYCLE COUNTS IN THE PROC DIRECTORY. 16
FIGURE 7. MODIFY THE LINUX KERNEL TO ACCOMPLISH THE TESTS. 16
FIGURE 8. LATENCY IN MICROSECOND (ΜS) OF EACH IPC PHASE 18
FIGURE 9. COMPARISON OF IPC PERFORMANCE USING INTERNAL AND EXTERNAL

MEMORY AS THE SHARED MEMORY 19
FIGURE 10. THE LATENCIES OF INTERRUPT-BASED AND POLLING-BASED

NOTIFICATION MECHANISMS 21
FIGURE 11. PERFORMANCE EVALUATION PLATFORM OF THE VOIP SYSTEM 24
FIGURE 12. ARM AND DSP EXCHANGE DATA BY THE RING BUFFERS IN THE SHARED

MEMORY 25
FIGURE 13. G.711 CHARACTERS, G.711 PAYLOAD IN THE TCP/IP HEADER AND PACKET

INTERVAL VS. LAG 26
FIGURE 14. AN EXAMPLE OF THE CAPTURED PACKETS 28
FIGURE 15. THE VOICE DATA IN A PACKET 28

 vi

List of Tables
TABLE 1. TI MS320DM6446 MEMORY 7
TABLE 2. COMPARISON BETWEEN STANDARD GETTIMEOFDAY() AND OUR OWN TIMER

DRIVER 15
TABLE 3. ARM WORKLOAD, INTER-PACKET ARRIVAL TIME AND ITS STANDARD

DEVIATION UNDER DIFFERENT IPC STRATEGIES 29
TABLE 4. ARM WORKLOAD AND NOTIFICATION UNDER DIFFERENT NOTIFICATION

STRATEGIES 30

 1

1. Introduction

Embedded systems usually handle both I/O jobs such as receiving and responding

external events and computation jobs such as processing a large amount of data. To

use either one general purpose processor (GPP) which provides better I/O controls or

one digital signal processor (DSP) which offers rich computational resources to

handle both I/O and computational jobs is usually less efficient [1]. In order to

improve the energy and performance efficiency, a heterogeneous multi-core processor

composed of GPPs and DSPs is thus widely used in an embedded system [2]. In a

heterogeneous multi-core processor, inter-processor communication (IPC) mechanism

is required for exchanging data and control messages between GPPs and DSPs.

According to previous studies, the IPC mechanism is critical for a heterogeneous

multi-core processor, especially for those embedded systems involving frequent

interactions between the two processors [3][4][5].

A number of studies have evaluated the IPC performance of a heterogeneous

multi-core processor. Gorgonio et al. [3] and Chiu et al. [4] examined the IPC

overhead and the performance of a task running on a GPP or DSP. Since the IPC

introduces a considerable overhead, it is not always efficient to assign

computation-intensive tasks to the DSP through the IPC. Their experimental results

help the designers to map their tasks to the GPP and DSP efficiently. Luiz et al. [5]

further proposed a formal model based on the timed automata for the IPC of a

heterogeneous multi-core processor. Their model helps the designers to understand

the IPC mechanism. Several hardware and software improvements have been

proposed for the IPC mechanism of a heterogeneous multi-core processor. Chen et al.

[6] proposed a new bus architecture to speed up the IPC between GPPs and DSPs. For

 2

the IPC improvements through software technologies, Kluter et al. [7] suggests using

the scratchpad memory, i.e. the internal memory, instead of the external memory as

the shared memory for the IPCs. The IPC performance by using internal shared

memory is significantly improved, especially for streaming applications which

involve frequent IPCs between GPPs and DSPs. Brisolara et al. [8] presented a

method, called “Message Aggregation”, to aggregate several IPC requests into one

single request and reduce the number of IPCs between GPPs and DSPs. This

technique also considerably reduces the IPC overhead.

Unfortunately, previous studies did not consider above design factors together and

investigate and compare the IPC performance under different design strategies and

parameters. In this paper, we establish an experimental environment and evaluate the

IPC mechanism through an experimental study. Based on experimental results and

findings, we apply appropriate IPC strategies and parameters to a case study, i.e. a

VoIP phone, to improve its performance. Experimental results indicate that with the

proposed improvements, the CPU workload could reduce 35% without scarifying the

functionalities of the VoIP phone. The main contributions of this paper are to provide

an experimental study of the IPC mechanism for an embedded heterogeneous

multi-core processor and compare the IPC performance under different design

strategies and parameters. The results offer designers a guideline in choosing the

appropriate IPC designs and parameters for an embedded system using a

heterogeneous multi-core processor.

The rest of the paper is organized as follows. Section 2 briefs the IPC mechanism, and

presents different IPC design strategies and parameters. Section 3 introduces the

performance evaluation environment, methodologies and results. Based on the

experimental results and findings, we then apply appropriate IPC designs to a case

 3

study, i.e. VoIP phone. The experimental results are presented and discussed in

Section 4. Finally, we conclude this study in Section 5.

 4

2. Inter-processor communication mechanism and

design parameters

2.1. Heterogeneous Multi-core Processor

Currently, the embedded system is requested for more functions and faster

execution speed. If the embedded system just use one general purpose processor to do

all the tasks, including code flow, I/O and complicated computation, it will incur the

low-performance and power-consumming. The DSP wich is good at computation is

added into the system in the current design. The control and computation tasks are

separated by this kind of architecture. The cores with different characters will process

their appropriate tasks. The architecture is constitute of the “Heterogeneous multi-core

processor”.

Figure 1 illustrates the block diagram for the OMAP5912 [9]. There is an ARM926

for task control and a TMS320C55X DSP for data computation. The two elements consist

of a heterogeneous multi-core processor.

 5

Figure 1. OMAP5912, a heterogeneous multi-core processor

2.2. Introduction to TI DaVinci DM6446

The dual-core architecture of the TI DaVinci DM6446 [10] provides benefits of

both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating

a TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926 EJ-S core,

which OS typically runs on it, generally performs user interface and other functions.

The TMS320C64x+ DSP features high performance and low power consumption and

is usually in charge of high-computation and real-time jobs. It will be a powerful

embedded processor to take advantage of the ARM and DSP cores.

The hardware design of TI DaVinci mainly includes three parts. They are ARM

Subsystme、DSP Subsystme and the related equipments about external memeory (eg:

DMA、DDR2 and External Memory Interface). Figure 2 shows the TMS320DM6446

DMSoC block Diagram.

 6

Figure 2. TMS320DM6446 DMSoC Block Diagram

(1) ARM Subsystem (ARMSS)

ARM subystem mainly include a ARM926 core and internal memory. Internal

memory are 16KB instruction cache 、 8KB data cache 、 16KB RAM and 8KB

ROM. Except cache, DSP can access internal memory , so they could be one of

share memory to commmunicate between ARM and DSP.

(2) DSP Subsystem (DSPSS)

C64x+DSP、Video-Imaging Coprocessor (VICP) and internal memeory are consist

of DSP subsystem. The internal memeory includes 32 KB L1 Program RAM、80

KB L1 Data RAM and 64 KB L2 RAM. ARM can access L1 and L2 internal

memeory of DSP. The internal memeory also can be used as the share memeory

between ARM and DSP.

 7

(3) Related equipments about external memeory

These parts includes DDR2 SDRAM, FLASH, CF and External Memory

Interface.These memory equipments are not in the inside of ARM or DSP, but

ARM or DSP still can be accessed them by external memory interface. Table 1

shows the memory overview of the TI MS320DM6446.

Table 1 shows the memory summary of the TI DaVinci.

Table 1. TI MS320DM6446 memory

ARM internal

memory

DSP internal

memory

External

Memories

TI DaVinci

MS320DM6446

* 16K-Byte

Instruction cache

* 8K-Byte Data

cache

* 16K-Byte RAM

* 8K-Byte ROM

* 32K-Byte L1 Program

SRAM/Cache(direct

mapped)

* 80K-Byte L1 Data

SRAM/Cache(2-way set

associated)

* 64K-Byte L2 SRAM

* DDR2 Synchronous

DRAM

* Asynchronous

EMIF/NOR/NAND

Flash

* ATA/Compact

Flash(CF)

2.3. IPC mechanism for an embedded heterogeneous multi-core

processor

 The generic procedures of the IPC mechanism of a heterogeneous multi-core

processor compose of ten steps which are shown in Figure 3. When the system starts,

the GPP program first downloads the DSP programs to the DSP internal memory so

that the DSP programs can execute when the GPP program invokes the DSP functions.

 8

Once the GPP program has a job to assign the DSP, it makes a DSP function call in

the DSP library. The DSP library then initiates an IPC which transfers the control

message and data to be processed to the DSP.

GPP DSP

Data buffer

Data buffer

Shared
Memory

1

3

5

10 6

8

9
2 4

7

Interrupt
or

Polling

Control messages

Figure 3. Generic procedures of an IPC

During the IPC, the GPP first copies the data to be processed by the DSP to the

shared memory which can be accessed by both the DSP and GPP in step . Then, in

step , the GPP prepares a control message which indicates the information of the

request such as the address and length of the data and the DSP function that the GPP

program invokes, and also stores the control message in the shared memory. The

control messages could be structured as a list so that the GPP program could

consecutively create new requests to the DSP and the DSP could process the DSP

function requests one by one. The format and address of the control message in the

shared memory shall be known by both the GPP and DSP before the IPC so that they

 9

could communicate to each other through the control messages. In step , the GPP

uses an interrupt or other mechanisms to notify the DSP that the GPP program has a

DSP function request to the DSP. The DSP is notified and reads the control messages

from the list in step . The DSP finds the data to be processed based on the control

message in step and then starts to process the request. After the DSP finishes the

job, the DSP has to copy the processed data to the shared memory in step so that

the GPP could access the results. Similar to the procedure that the GPP notifies the

DSP, the DSP also has to prepare a control message indicating the address and length

of the processed data in the shared memory in step . Finally, the DSP uses an

interrupt or other means to notify the GPP in step . The GPP is notified and reads

the response message in step . Then, the GPP program could get the processed data

in step .

After the GPP program call the DSP function, the GPP program could either wait

for the DSP function return or sets a call-back function. If the GPP program waits for

the DSP return, the GPP program is blocked for a while. Otherwise, if the GPP

program sets a call-back function, the GPP program could continue processing other

jobs without blocking. Once the DSP function is complete, the GPP program is

notified by an interrupt and then a call-back function which can handle the DSP return.

As can be seen from the above description, the IPC introduces extra GPP and DSP

workload to handle memory copies, process request, response messages, interrupts,

and notifications. In the next subsection, we discuss the IPC design strategies and

parameters which may influence the IPC performance.

 10

2.4. Design strategies and parameters of the IPC mechanism

The first design consideration for an IPC is the granularity of the IPC requests

between the GPP and DSP, i.e. the size of the data block to be passed from the GPP to

the DSP. One possible design choice is to merge several DSP function calls and their

associated data blocks together and invoke only one IPC [8]. The number of IPCs and

the IPC overhead are both reduced. However, in that case, more shared memory space

is required to store the data blocks to be processed, and the response time of the DSP

function call may increase since function calls may be deferred, merged and sent to

the DSP together.

Another design strategy is to utilize different types of the shared memory for the

IPC data exchanges. One common approach is to use the external SDRAM attached to

the system bus as the shared memory. Another possible choice is to expose the GPP

internal memory to be accessed by the DSP or vice versa. Using the internal memory

as the shared memory could significantly speed up the memory access by the GPP and

DSP [7] so that the IPC can be speeded up. However, the size of the internal memory

is much smaller than that of the external memory, and the cost of the internal memory

is much expensive than that of the external memory. The internal memory should be

carefully managed to maximize the cost-efficiency of the embedded system.

Another design consideration is to use the interrupt or polling mechanism for the

GPP and DSP to notify the other processor. The common approach is to use an

interrupt for the GPP and DSP to notify the DSP and GPP, but the interrupt involves

interrupting the handling process and results in a considerable overhead. For example,

a portable media player or voice over IP (VoIP) phone periodically calls DSP

functions to compress and decompress voice and video frames. The IPC overhead is

significant if the interrupt notification is used. Another approach is to use the polling

 11

mechanism for the notification. The polling mechanism does not use an interrupt to

notify the other processors. It simply sets and resets a flag in the shared memory when

the request and response messages and data blocks are ready in the shared memory.

For example, after step and step , the GPP sets a flag in a particular address in

the shared memory. The DSP periodically checks the flag by reading the memory

address and sees if there is a new request from the GPP. If the flag is set, the DSP

reads the request message, and processes the data. The overhead to read an internal

memory address is much less than an interrupt handling routine. However, one major

challenge of this approach is how the DSP and CPU know the time to poll the flag. If

the DSP or GPP has to poll the flag very often, the overhead also increases. On the

other hand, the delay increases if the DSP or GPP polls the flag infrequently.

Therefore, this polling notification approach is more suitable to the embedded systems

with periodical IPCs. For example, if a VoIP phone produces and consumes voice

frames every 20ms, the polling interval of the IPC could be set as 20ms so that the

notification overhead and the IPC response time could be both reduced.

 12

3. Performance Evaluation and Performance

Measurement of Inter-processor Communication

3.1. Test Environments and Methodology

In order to examine the detail IPC performance under different design parameters,

an evaluation platform is established. TI DaVinci DM6446 [9] which has an

ARM926EJS and C64x+ DSP is used for the experiments. Embedded Linux and

DSP/BIOS are running on ARM926EJS and TI C64x+ as the operating systems. Then,

ARM programs and DSP programs can execute on top of Embedded Linux and

DSP/BIOS. Programs on Embedded Linux call DSP functions through the DSP

library. The DSP library further utilizes the DSP/BIOS LINK [11] which implements

the IPC to transfer the request to the DSP. The DSP/BIOS LINK is a Linux kernel

driver and can communicate with the DSP/BIOS to complete the IPC task.

To evaluate the IPC mechanism, we develop user-space testing programs on the

ARM and DSP. We also modify the DSP/BIOS LINK in Linux so that the IPC

procedures can be tracked and the latency for each IPC phases could be gathered. In

this study, we only measure the IPC performance from the ARM processor’s point of

view. This is mainly because that the DSP usually serves as a slave co-processor and

dedicate in processing the data. On the other hand, the ARM processor usually

handles multiple tasks and the developers are more concerned about the IPC delay on

the ARM or the ARM resources occupied by the IPC.

Therefore, we divide the IPC into five major phases as shown in Figure 4 and

measure the latency of each phase. During phase (A), the ARM program copies the

data block to be processed to the DSP from a user space memory to the kernel space

memory. The kernel space memory could be the shared memory space that both the

 13

ARM and DSP can access so that additional memory copy in the kernel space is

avoided [12]. Phase (A) corresponds to step shown in Figure 3. Phase (B) is to

prepare the control message and send an interrupt to the DSP. Phase (B) corresponds

to step and step . Phase (C) composes of all the DSP procedures during an IPC.

Phase (C) includes that the DSP is interrupted, and the DSP/BIOS receives the request,

the DSP programs perform the requested functions, and responses the request. Phase

(C) corresponds to step to step shown in Figure 3. Phase (D) is the interrupt

handling procedure for receiving the response and corresponds to step of Figure 3.

Finally, phase (E) involves a memory copy of the result from the kernel space to the

user space.

Heterogeneous multi‐core processor (TI DaVinci DM6446)

ARM
program

Embedded
Linux
ARM

DSP
program

DSP/BIOS
DSP

A

B D

C

E

Figure 4. Measurements of IPC phases

 14

3.2. Hardware support and software modification

To get the time period of every step, we need hardware support and software

modification.

 Hardware timer

 To measure the performance of communication between cores, it has to measure

the time period between the ARM and DSP. Many embedded systems support the

hardware timer for profiling use. The TI DAVINCI supports two 64-Bit

general-purpose timers and one 64-Bit watch dog Timer. The resolution of the

hardware timers is 27MHZ. We will take advantage of the hardware timer as one of

our measurement tool. The test begins from the application of the user space. The user

application can not access the hardware timer directly. We need to write a driver to

access the hardware timer in the Linux kernel space and a system call for getting the

time periods from user space into the kernel.

 /proc file system

Hardware timer provides the accurate measurement. However, the test needs

many times to access hardware timer during a test. The time measurements of

accessing hardware timer in the test have to temporally save in somewhere. After the

test finished, we can get the time to calculate the duration of every period. To make

the test more accurate, the whole test results will saved in the /proc file system. We

have to add a new directory in /proc file system to save the time periods.

 Implement drivers to complete the test

In order to precisely measure the latency of each IPC phase and minimize the

instrument overhead, we implement our own timer driver instead of using standard

 15

gettimeofday() library in the Linux kernel and user programs. Standard

gettimeofday() library in Linux provides microsecond(μs)-level accuracy, but

our own timer driver which utilizes the TI DaVinci 64-Bit general-purpose timer can

offer 1/27 μs precision. Moreover, the overhead to retrieve the timer is significantly

reduced. Table 2 shows the comparison between the standard gettimeofday()

library and our own timer driver. Since we insert timer retrieval codes in the testing

program and kernel codes to gather the latency of a specific procedure, we therefore

deduct the instrument overheads, i.e. the extra delay to access the timer, from the

measurement results shown below.

Table 2. Comparison between standard gettimeofday() and our own timer driver
 User Space Kernel Space

Standard
gettimeofday()

11.85 μs 5.87 μs

Our own timer driver
get_cycle_count()

3.63 μs 0.44 μs

 We need to implement some drivers to access the hardware timer and /proc

directory processing. Now, we take an example to explain the measurement and get

the results. If we want to measure the duration of the function ABC(), the

get_cycle_count() function which gets the clock cycle count from hardware timer will

be inserted into the code. Figure 5 illustrates this case.

Figure 5. Estimate the duration of a function

 16

The time measurement results will save in the /proc/test. The test directory is
added when the test initialization.After the test finished, check /proc/test to get the
duration of ABC(). Figure 6 demonstrates the example. For instance, a test directory
is added into the /proc directory. After the test is executed, there will be some records
about the clock cycle counts from hardware timer.

Figure 6. Check the cycle counts in the proc directory.

Then, we will calculate the time period from clock cycle counts to microseconds.

At last, figure 7 demonstrates what we add in the system to accomplish the tests.

Figure 7. Modify the Linux kernel to accomplish the tests.

 17

3.3. Big vs. Small Data Size Experiment

A number of experiments are conducted to evaluate the IPC performance under

different design strategies and parameters. The first experiment considers different

sizes of data blocks to be passed to the DSP. An ARM program sends data blocks in

different sizes to the DSP, and the DSP program returns the results to the ARM. Since

we only concern the IPC performance, we assume the DSP testing program does not

process the data and simply responses the request with the same data block to the

ARM. In this experiment, we use the interrupt to notify the ARM and DSP when the

ARM requests or the DSP responses the request. Also, we use the external SDRAM

as the shared memory. Figure 8 illustrates the latency for each IPC phases under

different block sizes. The x-axis lists the five IPC phases shown in figure 4. The

y-axis shows the latency of each phase in microsecond (μs). As can be seen, the IPC

spends a large portion of the time in phase A and phase E which performs data copies

between user memory and kernel memory. The latency of Phase A and Phase E

depends on the block size. Phase B and Phase D are to process control messages and

response messages and to handle interrupt-based notifications. Phase C consumes

merely 70μs-80μs since in this experiment, the DSP program does not perform any

task, and just replies the request with the same data block. The experiment results

indicate that if the block size is small such as 128bytes, the control message process

and notification overhead, i.e. phase B and phase D, are significant. The overhead of

the interrupt notification is similar to the memory copy overhead for the IPC with

small data block. On the other hand, if we could combine multiple requests and data

blocks through less number of IPCs, the overall IPC performance can be improved.

For example, to exchange a total of 32K data block between the ARM and DSP

through 32 1Kbyes IPC, 2 16Kbytes, 1 32Kbytes IPCs spend 34ms, 10ms, 8ms,

 18

respectively.

A B C D E

128 bytes 148.8 131.2 73.5 114.4 143.8

1K bytes 416.6 132.5 73.0 114.3 405.3

16K bytes 2188.5 131.6 78.6 111.9 2160.7

32K bytes 4121.6 131.4 81.7 115.4 4101.7

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

4500.0

m
ic
ro
se
co
nd

Figure 8. Latency in microsecond (μs) of each IPC phase

3.4. External vs. Internal Memory Experiment

The second experiment considers different types of memory, i.e. internal

memory and external memory, as the shared memory for exchanging IPC data blocks.

In this experiment, we use the ARM internal SRAM as the internal memory and use

the SDRAM as the external memory. The two memory areas can be both accessed the

two processor cores. The latency of the memory accesses mainly influences phase A

and phase E which performs memory copies. This experiment only measures the

delay in the kernel space to copy different sizes of data blocks from the user space

memory to the internal or external memory. The result is less than the data shown in

Figure 8 since the delay shown in Figure 8 includes the latency for executing user lib,

 19

system call, and kernel code to handle the memory copy. Figure 9 only illustrates the

latency for memory copies in the kernel space. Obviously, the memory copies in the

internal memory are much faster than that in the external memory. In other words, the

IPC using internal memory as the shared memory is faster than that using external

memory as the shared memory. The latency depends on the data block sizes. For

example, the latency to copy an 8Kbytes data block from the user space to the ARM

internal SRAM reduces 94% time comparing with that to the external SDRAM. This

experiment indicates that to use internal memory as the shared memory considerably

improves the IPC performance, especially for exchanging large IPC data blocks.

However, internal memory is expensive and usually small. To use the internal

memory as the shared memory should be carefully considered and managed so that

the embedded system could achieve a better performance without additional cost.

128 Bytes 1K Bytes 4K Bytes 8K Bytes

external 44.6 146.4 513.3 997.4

internal 4.3 9.8 28.8 56.2

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

m
ic
ro
se
co
nd

Figure 9. Comparison of IPC performance using internal and external memory as the

shared memory

 20

3.5. Interrupt vs. Polling Experiment

The interrupt-based notification mechanism introduces serious overhead for the

IPCs with small data blocks. Therefore, the next experiments uses the polling-based

mechanism to notify the ARM and DSP instead of using interrupt-based approach. To

implement the ARM and DSP notification mechanism using the polling approach, we

use a flag. When the ARM notifies the DSP, it sets the flag in the shared memory. The

DSP could periodically check the flag and if the flag is set, the DSP process the

request. After the DSP completes the task, it resets the flag. The ARM could also

periodically poll the flag and if the flag is reset, the ARM knows the DSP task has

been finished and could retrieve the results. In this experiment, since the DSP

program does not perform any job, the ARM performs a busy waiting loop to check

the flag and see if the DSP ask is complete or not. Another implementation approach

for the polling-based notification is to periodically check the flag. If the ARM or DSP

find the flag is not set or reset, it performs other jobs. Otherwise, it processes the IPC

requests or results.

Figure 10 compares the interrupt-based notification and polling-based

notification under different block sizes. The results show that the notification

mechanism is independent of the IPC bock size. Also, the polling-based notification

approach significantly reduces 95% overhead compared with the interrupt-based

notification approach. For these embedded applications which generate frequent and

periodical IPCs with small block sizes, polling-based notification approach is a better

design choice. We use the VoIP phone as a case study and consider these design

considerations in improving the IPC performance of the VoIP phone.

 21

128 Bytes 1K Bytes 4K Bytes 8K Bytes 16K Bytes 32K Bytes

Interrupt 74.7 74.8 74.7 75.6 76.9 80.9

Polling 2.2 2.3 2.3 2.3 2.3 2.3

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

m
ic
ro
se
co
nd

Figure 10. The latencies of interrupt-based and polling-based notification mechanisms

3.6. Test Overhead

Because we add a measurement function into the original code during the test,

the section will check the overhead of the function.

According to table 2 shows that accessing the hardware timer from user space is

longer than that from kernel space. It is reasonable because accessing timer from user

space needs the system call to get into the kernel space. Then, application in the user

space can access hardware timer by the system call.

According to the figure 4, there will be totally 6 times which include 2 times

from user space and 4 times from kernel space to access timer in the whole test. The

effects to the smallest data size 128 bytes and the largest size 32Kbytes illustrate as

following:

2x3.63+4x0.44= 9.02 μs (total overhead in one experiment)

 22

148.77+131.22+75.51+114.37+143.77=613.64 μs (total time in data size test of 128

bytes)

4121.62+131.37+76.66+115.37+4101.7=8546.72 μs (total time in data size test of

32K bytes)

Test overhead in 128 bytes 9.02/613.64=1.47%

Test overhead in 32K bytes 9.02/8546.72=0.105%

Test overhead < 1.5%

We get the test overhead in 128 bytes is about 1.47% and 32Kbytes is about 0.105%.

It explains the time measurement doesn’t twist the original behavior in the

communication test.

 23

4 Case study: VoIP

This chapter will take advantage of the measurement method provided by chapter

3 for a real application. For a heavy loading processor, if the more utilization can be

squeezed, the more jobs can be processed. The utilization of a processor is an

important resource for the embedded system.

4.1 Case Introduction

Above experiments reveal that depending on the characteristics of an embedded

system, the embedded system using a heterogeneous multi-core processor may prefer

different IPC strategies and parameters which significantly influence the IPC

performance. In this section, we apply different IPC strategies and parameters to a

VoIP phone and evaluate its performance. VoIP phone is an embedded system and

usefully uses a heterogeneous multi-core processor. The GPP usually runs a VoIP

client and the DSP compresses and decompresses voice packets. The IPC frequently

occurs between two processors, e.g. every 20ms, and the size of the IPC data block is

usually small, e.g. 160bytes. The IPC occupies a significant part of the GPP resources

for the VoIP system. Therefore, we apply suitable IPC designs to the VoIP system and

improve the IPC performance.

Our experimental environment is shown in figure 11. We establish a VoIP

test-bed which composes of a public SIP [13] server which handles VoIP calls and

two client nodes which can establish a VoIP communication. One VoIP client runs

Linphone[14], an SIP user agent, on a PC and the other VoIP client uses TI DaVinci

DM6446 evaluation board. We port and modify Linphone on the embedded

evaluation board and evaluate its performance. The two VoIP clients first run and

register to the public SIP server and then can establish a VoIP communication through

 24

the SIP server.

Internet

Public SIP server

Campus network

PC/Linphone TI DM6446/Linux
Linphone

Figure 11. Performance evaluation platform of the VoIP system

Our experiments evaluate the CPU workload of the TI DaVinci board after the

VoIP call has been established and voice packets start to transmit between two clients.

We modified a popular CPU workload monitor tool, called top, on Linux and can

gather ARM workload.

The VoIP client application running on the ARM processor periodically calls the

DSP function to encode and decode voice frames. For example, if G.711 codec is used,

the VoIP client has to call the G.711 library every 20ms for decoding and encoding

voice packets. According to our experiments, the polling-based notification approach

is preferable if the application has periodical IPCs with small block sizes. Therefore,

we modify the DSP/BIOS LINK to support polling-based notification and compare its

performance with the conventional interrupt-based approach. To implement the

polling-based notification on the ARM processor, the ARM processor prepares the

control messages and data blocks in the shared memory and set a flag. Once the DSP

 25

finishes the task, it resets the flag in the shared memory. The ARM program sets a

polling timer after it sends the request to the DSP. When the polling timer expires, the

ARM program checks the flag. If the flag is reset, the ARM understands the task has

been finished, and then could access the results in the shared memory. Since the ARM

and DSP programs perform their own tasks asynchronously, we therefore have to

prepare a number of blocks in the shared memory so that the ARM program could

continually generates the requests and the DSP program could process the requests.

The blocks in the shared memory are implemented as ring buffers.

Figure 12 shows ARM and DSP exchange data by the ring buffers in the shared

memory.

Figure 12. ARM and DSP exchange data by the ring buffers in the shared memory

Another important characteristic of the VoIP application is the small packet size.

For example, the voice frame of G.711 is 1280 bits, i.e. 160 bytes. The packet size

becomes smaller if we choose other low-bit-rate codecs such as G.723. The data block

size is small so that it is affordable to use internal memory for exchanging IPC data.

Thus, we use the internal memory rather than the external memory for the IPC.

 26

The voice processing algorithm is G.711 in the tests. Figure 13[15] shows the

characters of G.711. According to the G.711, the packet inter-arrival time is about 20

ms and voice data is 1280 bits (=160 bytes).

Figure 13. G.711 characters, G.711 payload in the TCP/IP header and packet interval

vs. lag

4.2 Case Test Results

Table 3 illustrates the ARM workload under different IPC strategies. In the first

design strategy (denoted as ARM), we only use the ARM processor to handle both the

VoIP client and the voice codec. In other words, the DSP does not involve. This

approach consumes the ARM processor 47% CPU resource. In the second design

 27

strategy (denoted as ARM+DSP+Int+Ext), the DSP is involved and handles the voice

codec. Then, the IPC is required. In this design strategy, the IPC uses the external

SDRAM as the shared memory and uses the interrupt-based mechanism for IPC

notifications. This approach significantly reduces 50% of the ARM workload. The

third configuration (denoted ARM+DSP+Pol+Ext) uses the polling-based mechanism

to replace the interrupt-based mechanism. The ARM program initiates a 20ms polling

timer to periodically check the completeness of the DSP task. The experiments

indicate that the ARM workload could be further reduced 10% if polling-based

notification is used. In the fourth configuration (denoted as

ARM+DSP+Interrupt+Internal), we use the internal memory as the shared memory.

Compared the design strategy 2 and 4, we find that the ARM program improves 28%

if the internal memory is used for the IPC shared memory for the VoIP phone. For an

embedded system involving small IPC packets, to use internal memory can

significantly improves the IPC performance. Finally, we apply both internal and

polling-based technologies in the fifth configuration (ARM+DSP+Polling+Internal).

Experimental results indicate that we could reduce 35% ARM workload if we use

both polling-based notifications and the internal memory.

To use polling-based notification mechanism, the latency that the ARM can

detect the completeness of the DSP function may suffer from extra delay compared

with the interrupt-based approach. This is because the interrupt-based mechanism

could interrupt the ARM processor as soon as the complete of the DSP function.

However, the ARM processor has to wait for the next polling timer if the DSP resets

the polling flag just after the ARM checks the flag. One may concern that if we use

polling-based approach instead of the interrupt-based approach, the voice over IP

application may have extra packet delay and/or packet delay jitters. Therefore, we use

 28

Wireshark[16] running on the receiver VoIP client to measure the packet arrival time.

The figure 14 and figure 15 show the example of captured packets in the

experiment.

Figure 14. An example of the captured packets

Figure 15. The voice data in a packet

 29

Check the time, protocol and payload columns in figure 14. These show that the

packets captured meet the characters of G.711. It explains our modification didn’t

make the wrong behavior or side effect in the application layer.

Table 3 also shows the experimental results. Our experimental results show that

the polling-based approach does not introduce additional packet jitters, and provide

the same voice quality. This is mainly because most of the current VoIP client

maintains a receiving buffer with 2-3 voice packets to accommodate the network jitter.

That implies the packets arriving to the receiver are played immediately. Therefore,

jitter buffer which is usually 2 to 3 voice packets, i.e. 40ms to 60ms, accommodates

the IPC notification delay. Since the polling-based approach does not introduce

additional network jitter. The proposed approach which uses internal memory and

pooling approach can reduce 35% ARM CPU workload without scarifying the VoIP

functionalities and voice quality.

Table 3. ARM workload, inter-packet arrival time and its standard deviation under
different IPC strategies

 ARM workload
(%)

Inter-packet
arrival time (ms)

Standard deviation
of the inter-packet
arrival time

ARM 46.53 20.45 0.48
ARM+DSP+Intr+Extl 22.73 20.40 0.40
ARM+DSP+Poll+Extl 20.92 20.19 0.35
ARM+DSP+Intr+Intl 16.37 20.07 0.11
ARM+DSP+Poll+Intl 14.84 20.24 0.17

As mentioned before, the ARM processor may not be able to know the

completeness of the DSP tasks immediately when the polling-based approach is used.

Although this polling-based mechanism does not influence the applications which

 30

could accommodate the latency, some real-time embedded system may need a

guaranteed response time of the DSP task. Then, we evaluate the notification latency

by applying polling-based approach. We evaluate the notification latency use the

same VoIP programs. Table 4 shows the notification latencies and corresponding

ARM workload when we configure polling interval as 5ms, 10ms, 15ms to 20ms. As

can be seen, the CPU workload increases if we configure frequent polling timers. Also,

the notification latency decreases when we configure frequent polling timer. Table 4

shows that when we configure 5ms polling interval; the ARM workload increases but

the notification latency cannot decrease. This is because the DSP programs spend

about 6ms to process the task. If we poll the flag every 5ms, we have to poll twice and

then can know if the task is completed or not. Therefore, the notification latency if we

configure 5ms polling interval is about two polls, i.e. 10ms. One efficient approach

for the polling-based approach is to estimate the DSP function latency, and polling the

flag after the DSP can complete the task. Interrupt has the advantage of very low

latency in its processing, but get the highest CPU workload.

Table 4. ARM workload and notification under different notification strategies
 Interrupt Polling(5ms) Polling(10ms) Polling(15ms) Polling(20ms)

CPU

workload (%)

16.71 16.02 15.35 15.18 14.87

Notification

Latency (ms)

6.83 10.28 10.31 17.35 20.42

 31

5 Conclusions

In this paper, we investigated the different design strategies for the IPC of a

heterogeneous multi-core processor. We established an experimental environment

which we could gather the precise and accurate IPC performance and evaluate the IPC

performance under different design strategies and parameters. The results indicates

that the IPC overheads including copy data block to shared memory for the DSP to

process the block and IPC notification mechanism are significantly from 500

microsecond to several hundred millisecond depending on the IPC block size and IPC

notification mechanism. To improve the IPC mechanism, internal memory which

could reduce 35% CPU workload and polling approaches which could reduce 10%

CPU workload is recommended for the applications generating small IPC packets. To

evaluate the improvement in a practical example; we applied the findings to a case

study, the VoIP phone. Experimental indicates that we could improve 35% CPU

loading compared with conventional approach using external memory and interrupt

mechanism without scarifying the VoIP functionalities and quality.

 32

6 References

[1] D. Talla and J. Gobton, “Using DaVinci Technology for Digital Video Devices,”

IEEE Computer, Vol. 40, Iss. 10, pp. 53 – 61, 2007.

[2] Hung-Yi Hsieh, Sheng-Fu Liang, Li-Wei Ko, May Lin, and Chin-Teng Lin,

“Development of a Real-Time Wireless Embedded Brain Signal

Acquisition/Processing System and its Application on Driver's Drowsiness

Estimation,” IEEE International Conference on Systems, Man and Cybernetics,

Vol. 5, pp. 4374 – 4379, 2006.

[3] U. S. Gorgonio, H. R. B. Cunha, E. X. L. de Filho, S. O. D. Luiz, and A.

Perkusich, “Application Profiling in a Dual-Core Platform,” International

Conference on Consumer Electronics, 2008.

[4] Cheng-Nan Chiu, Chien-Tang Tseng, and Chun-Jen Tsai, “Tightly-coupled

MPEG-4 video encoder framework on asymmetric dual-core platforms,” IEEE

International Symposium on Circuits and Systems, Vol. 3, pp. 2132 – 2135,

2005.

[5] Saulo Oliveira Dornellas Luiz, Genildo de Moura Vasconcelos, and Leandro

Dias da Silva, “Formal Specification of DSP Gateway for Data Transmission

between Processor Cores of OMAP Platform,” 2008 ACM Symposium on

Applied Computing, pp. 1545 – 1549, 2009.

[6] Tianzhou Chen, Guobing Chen, Hongjun Dai, and Qinsong Shi “A

Function-based on-chip Communication Design in The Heterogeneous

Multi-core Architecture,” 2007 International Conference on Multimedia and

Ubiquitous Engineering, pp. 1086-1092, 2007.

[7] Theo Kluter, Philip Brisk, Edoardo Charbon, and Paolo Ienne “MPSoC Design

 33

Using Application-Specific Architecturally Visible Communication,” Fourth

International Conference High Performance Embedded Architectures and

Compilers, pp. 183-197, 2009.

[8] Lisane Brisolara, Sang-il Han, Xavier Guerin2, Luigi Carro, Ricardo Reis,

Soo-Ik Chae, and Ahmed Jerraya” Reducing Fine-grain Communication

Overhead in Multithread Code Generation for Heterogeneous MPSoC,”

Proceedings of the 10th International Workshop on Software and Compilers for

Embedded Systems, pp. 81-89, 2007.

[9] OMAP5912 Applications Processor Data Manual, Texas Instruments, MAR

2004.

[10] TMS320DM6446 Digital Media System-on-Chip, Texas Instruments, DEC

2005.

[11] DSP/BIOS™ LINK USER Guide, Texas Instruments, APR 2006.

[12] Texas Instruments Incorporated, ‘‘DSP/BIOS™ LINK ZERO COPY LINK

DRIVER’’, (Version 0.90).

[13] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. R. Johnston, J. Peterson, R.

Sparks, M. Handley, and E. Schooler, “SIP: Session Initiation Protocol,” RFC

3261, June 2002.

[14] Linphone, http://www.linphone.org/index.php/eng.

[15] Theodore Wallingford, Switching to VoIP, O'Reilly, 2005.

[16] Wireshark, http://www.wireshark.org

