Discrete Mathematics 84 (1990) 315-318 North-Holland

NOTE

A NOTE ON THE ASCENDING SUBGRAPH DECOMPOSITION PROBLEM

Hung-Lin FU

Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan, People's Rep. of China

Received 16 September 1987 Revised 14 October 1988

Let G be a graph with $\binom{n+1}{2}$ edges. We say G has an ascending subgraph decomposition (ASD) if the edge set of G can be partitioned into n sets generating graphs G_1, G_2, \ldots, G_n such that $|E(G_i)| = i$ (for $i = 1, 2, ..., n$) and G_i is isomorphic to a subgraph of G_{i+1} for $i = 1, 2, \ldots, n - 1.$

In this note, we prove that if G is a graph of maximum degree $d \leq (n+1)/2$ on $\binom{n+1}{2}$ edges, then G has an ASD. Moreover, we show that if $d \le |(n-1)/2|$, then G has an ASD **with each member a matching. Subsequently, we also verify that every regular graph of degree a prime power has an ASD.**

1. Introduction

In [1] the authors give the following decomposition conjecture.

Conjecture. Let G be a graph with $\binom{n+1}{2}$ edges. Then the edge set of G can be partitioned into *n* sets generating graphs G_1, G_2, \ldots, G_n such that $|E(G_i)| = i$ (for $i=1,2,\ldots,n$) and G_i is isomorphic to a subgraph of G_{i+1} for $i=1,2,\ldots,n$ $n-1$.

A graph G that can be decomposed as described in the conjecture will be said to have an ascending subgraph decomposition (abbreviated ASD). The graphs G_1, G_2, \ldots, G_n are said to be members of such a decomposition.

In $[1, 2]$, the conjecture has been verified for star forests. Also, in $[2]$ it is proved that if G is a graph of maximum degree d on $\binom{n+1}{2}$ edges and $n \ge 4d^2 + 6d + 3$, then G has an ASD with each member a matching.

In this note, we prove that if G is a graph of maximum degree $d \leq (n + 1)/2$ on $\binom{n+1}{2}$ edges, then G has an ASD. Moreover, we show that if $d \leq \lfloor (n-1)/2 \rfloor$, then G has an ASD with each member a matching. As a special case we also verify that every regular graph of degree a prime power has an ASD.

2. Main results

Let N be the set $\{1, 2, \ldots, n\}$, and A_1, A_2, \ldots, A_k be mutually disjoint subsets of N such that $\bigcup_{i=1}^{k} A_i = N$. Let $s(A_i)$ be the sum of all elements in

0012-365X/90/\$03.50 @ **1990 - Elsevier Science Publishers B.V. (North-Holland)**

 $A_i(s(\phi) = 0)$. We will say that N can be decomposed into subsets of type $\langle s_1, s_2, \ldots, s_k \rangle$ if there exists a collection of mutually disjoint subsets of N, A_1, A_2, \ldots, A_k , such that their union is N and $s(A_i) = s_i$, $i = 1, 2, \ldots, k$. Obviously, $\sum_{i=1}^{k} s_i = \binom{n+1}{2}$. For example $\{1, 2, \ldots, 6\}$ can be decomposed into subsets of type $(3, 5, 6, 7)$. $(A_1 = \{3\}, A_2 = \{1, 4\}, A_3 = \{6\}, A_4 = \{2, 5\}$.)

An edge-coloring of a graph is an assignment of colors to its edges so that no two incident edges have the same color. If a graph G has an edge-coloring with k colors, then G is called k-colorable. (Let δ_i denote the number of edges in G which are colored c_i , $i = 1, 2, ..., k$.) After a bit of reflection, we have the following proposition. (Unless stated otherwise, we assume that G has $\binom{n+1}{2}$ edges and that the number of edges that are colored c_i is δ_i .)

Proposition 1. Let G be a k-colorable graph. If N can be decomposed into subsets *of type* $\langle \delta_1, \delta_2, \ldots, \delta_k \rangle$, *then* G has an ASD with each member a matching.

Proof. Since N can be decomposed into subsets of type $\langle \delta_1, \delta_2, \ldots, \delta_k \rangle$, it follows that $s(A_i) = \delta_i$, $i = 1, 2, ..., k$. We can choose G_i as the collection of *i* edges that are colored c_i if $i \in A_i$. \Box

We call an edge-coloring equalized if $|\delta_i - \delta_j| \le 1$ ($1 \le i \le j \le k$). McDiarmid [3] and de Werra [5] independently proved that if a graph has an edge-coloring with *k* colors then it has an equalized edge-coloring with *k* colors. We can easily prove the following result by using the above fact.

Proposition 2. Let G be a graph with maximum degree $d \leq \lfloor (n-1)/2 \rfloor$, then G *has an* ASD *with each member a matching.*

i-roof. By Vizing's Theorem [4] G has edge chromatic number $\chi'(G)$ at most $[(n-1)/2]+1$. Hence we can color G with $n/2$ or $(n+1)/2$ colors depending on whether n is even or odd. By the theorem of McDiarmid and de Werra, we obtain an equalized edge-coloring with $n/2$ or $(n + 1)/2$ colors as the case may be. If *n* is even, then each color occurs $n + 1$ times. Since, N can be decomposed into subsets of type $\langle n+1, n+1, \ldots, n+1 \rangle$ (n/2-tuple), we conclude that G has an ASD with each member a matching by Proposition 1. Similarly, if n is odd, then each color occurs n times. Since N can be decomposed into subsets of type $\langle n, n, \ldots, n \rangle$ ($(n+1)/2$ -tuple), we have the proof. \square

As a matter of fact, if G is of class one, i.e. $\chi'(G) = d$, then we can let $d \leq (n + 1)/2$ in Proposition 2. Actually, if we simply want to prove that G has an ASD, we can improve the upper bound of *d* a bit.

Proposition 3. Let G be a graph with maximum degree $d \leq |(n+1)/2|$, then G *has an* ASD.

Proof. From Proposition 2, the only cases left are $d = n/2$ (*n* is even) and $d = (n + 1)/2$ (*n* is odd). If *n* is even, then G is $(n/2 + 1)$ -colorable. Since we have an equalized edge-coloring, hence we can color the edges by the way: $n/2$ colors occur $n - 1$ times and one color occurs n times. Since N can be decomposed into subsets of type $(n-1, n-1, \ldots, n-1, n)$ $((n/2+1)$ -tuple), we are done. For the case when *n* is odd, G is $((n + 1)/2 + 1)$ -colorable. Similarly, we can color the edges in the following way: $(n - 3)/2$ colors occur $(n - 2)$ times and 3 colors occur $(n - 1)$ times. Without loss of generality, we let those three colors which occur $(n-1)$ times be c_1, c_2 , and c_3 . It is not difficult to see $\{1, 2, \ldots, n-3\}$ can be decomposed into subsets of type $(n-2, n-2, \ldots, n-2)$ $((n-3)/2$ -tuple), therefore we can choose $G_1, G_2, \ldots, G_{n-3}$ subsequently. We conclude the proof by letting G_{n-2} be the collection of edges colored c_1 except for one edge e, G_{n-1} be the collection of edges colored c_2 , and G_n be the collection of those edges colored c_3 and e . \Box

From Proposition 3, it is easy to see every regular graph of degree a prime power has an ASD.

Proposition 4. *Every regular graph of degree a prime power has an* ASD.

Proof. Let the degree and order of G be d and v respectively. Then $d \cdot v =$ $n \cdot (n+1)$. Hence we have $d \mid n(n+1)$. Since *d* is a prime power and the common divisor of *n* and $n + 1$ is 1, $d | n$ or $d | n + 1$. If $d < n$, then $d \le (n + 1)/2$. By Proposition 3, G has an ASD. If $d = n$, then $G = K_{n+1}$. The theorem follows from the fact that K_{n+1} has an ASD. \Box

As we have seen above, if the maximum degree of the graph is not too large, it has an ASD. In what follow we suggest a slightly different approach to the problem.

A vertex covering in a graph is any set of vertices such that each edge of the graph has at least one of its end vertices in the set. We will say $(\beta_1, \beta_2, \ldots, \beta_k)$ is a covering pattern for a graph G , if we can find a vertex covering $\{v_1, v_2, \ldots, v_k\}$ such that there are β_i edges incident with the vertex v_i , $i = 1, 2, \ldots, k$ and each edge can be counted only once. For example, *Fig. 1* has a covering pattern $(5, 4, 3, 3)$.

Since the following proposition is easy to see, it will be stated without proof.

Proposition 5. Let G be a graph with a covering pattern $\langle \beta_1, \beta_2, \ldots, \beta_k \rangle$. If N *can be decomposed into subsets of type* $(\beta_1, \beta_2, \ldots, \beta_k)$, *then G* has an ASD *with each member a star.*

The following proposition is also easy to prove, we simply state it.

Proposition 6. *Zf a graph can be partitioned into edge disjoint paths of length* r_1, r_2, \ldots, r_k respectively, and the set N can be decomposed into subsets of type $\langle r_1, r_2, \ldots, r_k \rangle$, then G has an ASD with each member a path.

3. Acknowledgement

The author would like to express his appreciation to the referee for his helpful comments and his patience in correcting errors.

References

- [1] Y. Alavi, A.J. Boals, G. Chartrand, P. Erdős and O.R. Oellermann, The ascending subgrap decomposition problem, Congr. Numer. 58 (1987) 7-14.
- $[2]$ R.J. Faudree, A. Gyartas, and R.H. Schelp, Graphs which have an ascending subgrap decomposition, Congr. Numer. 59 (1987) 49-54.
- **[31** C.J.H. McDiarmid, The solution of a time-tabling problem, J. Inst. Maths. Applies. 9 (1972) 23-24.
- **14** V.G. Vizing, On an estimate of the chromatic class of a *p*-graph, Diskret. Analiz. 3 (1964) 25–30.
- [5] D. de Werra, Equitable colorations of graphs, Rev. Fran. Inf. Rech. Oper. 5 (1971) 3-8