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The main purpose of this paper is to prove that if H is a 4-uniform hypergraph 

with n vertices and m edges, then the transversal number r(H) <2(m +n)/9. 
0 1990 Academic Press, Inc. 

All standard terminology of hypergraphs is from [ 11. Suppose 
H = (V, E) is a k-uniform hypergraph with n vertices and m edges. Tuza 
[2] proposed the problem of finding an upper bound for the transversal 
number r(H), of the form t(H) < ck(n + m), where ck depends only on k. 

More precisely, we want to determine ck z sup z(H)/(m + n), where H runs 
over all k-uniform hypergraphs of n vertices and m edges. It is easy to see 
that c1 = 4 and c2 = i. Tuza [2] proved that c3 = $ and asked if ck is 
0(1/k). 

For any positive integer p we can construct a k-uniform hypergraph H 
of n = k + p vertices xi, . . . . x, and m = [n/p1 edges e,, . . . . e,, where 

ej= {x, ~~~~r-Yn}-{-xip-p+I~ ...txjp} for l<i,<m-1 
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e, = {Xl) . ..) Xk}. 

Then r(H) = 2. To make r(H)/(n + m) large, we only have to find p 
such that n + m = k + 1 + p + [k/p] is minimum. It is an easy exercise 
to check that n + m achieves minimum at p = LJif]. So ck B bk = 
2/(k + 1 + L$j + rk/LkJ). Note that ck = b, = l/(k + 1) for k < 3. The 
main purpose of this paper is to prove that cq = b, = $. In fact we prove a 
more general theorem. 

THEOREM. Suppose H = (V, E) is a 4-uniform hypergraph of n vertices 
and m edges. Zf H has t end edges, which are edges containing vertices of 
degree one, then z(H) < (2n + 2m - t)/9. 

ProoJ Without loss of generality we may assume that H is connected. 
We shall prove the theorem by induction on m. The theorem is trivial for 
m=O since z(H)=t=O. 

Suppose X= {vi, . . . . tak} c V is a set of k vertices. Denote by H’ the 
hypergraph obtained from H by deleting all edges e, , . . . . eP that meet X and 
ail vertices only in e, u . . . u eP. Then 

z(H) d k + z( H’) < (2n’ + 2m’ - t’ + 9k)/9, 

n’=n-r, 

m’=m-p, 

t’=t-q+s, 

where r is the number of vertices only in e, u . . . u eP, q is the number of 
end edges in e,, . . . . eP, and s is the number of end edges in H’ which are 
not end edges in H. Consequently, 

T(H) < (2n + 2m - t)/9 - (2p + 2r + s - q - 9k)/9. 

So the theorem holds when A* - 2p + 2r + s - q 2 91x1. In the case when 
each vertex in X is of degree 2 2, r > q + k and the theorem holds when 
A=2p+r+s>81XI. 

Case 1. If there is a vertex x of degree p 2 4, then choose X= {x}. 
pa4 implies A>81XI. 

Case 2. Suppose all vertices of H are of degree 3. Choose a k-cycle 
C= (x1, el, x2, f3, . . . . xk, ek, x, ) of minimum length. Denote by e; the edge 
other than e,-i and ei that contains xi. 
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In the case k=2, let X=(x,}. Thenp=3; r>2 when e;=e;; ral and 
s>l when e;#e;. Thus d>8lXI. 

Now assume k 2 3. Choose a vertex x E ek ~ f - { xk _ i, x,}; denote by e’ 
and e” the edges other than eke, that contain x. By the minimality of the 
length of C, the edges e,, . . . . ek, e;, . . . . eh, e’, err are distinct. Now consider 
x= {Xl, x3, x5, . . . . X& 1 } when k is even and X = {x,, x3, . . . . xkm2, x} 
when k is odd. Then p = 3k/2 and r, s > /XI = k/2 when k is even (see Fig. 1 
for k = 6); and p = 3(k + 1)/2 and r, s 3 1x1 = (k + 1)/2 when k is odd (see 
Fig. 2 for k = 5). In any case d >, 81X(. 

Case 3. Suppose all vertices are of degree at most 3 and there is a 
vertex x of degree 3 contained in e,, e,, e3 ; but e, has at least one vertex 
of degree 6 2. 

If e, is an end edge, then consider X= {x}. p = 3 and r > 2 imply 
A > 81x1. So we can assume that e, is not an end edge. Suppose y is a ver- 
tex of degree 2 in e,, say yee, ne. If e=e2 or e3, then consider X= {x}. 
Againp=3 and r>2 imply A>81XI. So assume e#e, and e#e,. If e is 
not an end edge, then consider X= ix}. p = 3, r 2 1 and s B 1 imply 
A 2 81x1. 

Now we can assume e = (y, y,, 112, y3} with 1 = deg(y,) ddeg(y,) 6 
deg(y,)<3. If deg(y,)=3, then choose X= {y3} to get A>8lXI. So 
assume deg( u3) = 2, say y, E e n e’. In the case of deg( yz) = 1 or e’ is an end 
edge we consider X= { y3}, then p = 2, r > 3, and s > 1; in the case of 
deg(y,) = 2 and e’ is not an end edge we consider X= { y2}, then p = 2, 
r>2, and ~22. In any case A~8lXl. 

Case 4. Suppose all vertices of H are of degree at most 2. Suppose 
there is an end edge e containing at least two vertices of degree one. 
Choose X= {x}, where x is a vertex in e of maximum degree p. Then 
either p=q=l and r=4, which imply d*>9=9lXI; or else p=2 
and r>q+233 which imply A*=2p+2r-q+s>2p+2q+4-q+sa 
9 = 91x1. So we can assume that every and edge has exactly one vertex of 
degree one. Count the degrees of all vertices. There are t vertices of degree 
one and n - t of degree 2; then we have 4m = t + 2(n - t) = 2n - t. 

Suppose there are two distinct edges e and f such that le n f 1 = 3, say 
e={x,,x,,x,,x,} andf=( x1, x2, x3, x5}. If deg(x,) = 1 or deg(x,) = 1, 
then we choose X= (xi}. In this case p = 2 and r 2 4, which imply 
Aa8lX(. So we may assume deg(x,)=deg(x,)=2, say x4eene’ and 
x5 E f  n f  ‘. If e’ or f' is not an edge, then we choose X= (xi }. In this case 
p = 2, r = 3, and s 2 1, which imply A 3 8 [XI. So we may assume that e’ and 
f’ are end edges, say e’= (x4,~,,y2,y3} with deg(y,)= 1 and deg(y,)= 
deg(y,) = 2 (since every end edge has exactly one vertex of degree one). Let 
y1 E e’ n e, and y, E e’ n e2. If e, or e2 is an end edge, we can without loss 
of generality assume that e, is an end edge. Now choose X= { JJ, }. Then 
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either p = 2, r = 3, and s > 1 (when e, is an end edge), or else p = 2, r = 2, 
and s3 2 (when e, is not an end edge). In any case A > 8. So we can 
assume that Je n fl d 2 for any two distinct edges e and J: 

Choose maximum number of vertices xr , . . . . xk of degree 2, say xi E ej n f, 
for 1 d id k, such that e,, fr, e,, fi, . . . . ek, fk are distinct. Let g1 , . . . . g,- Zk 
be the remaining edges of E. By the maximality of k, the edges gj are 
pairwise disjoint. Each edge gj has at least three vertices of degree 2, which 
are also in some e,. or f,; call such vertices common vertices. Note that there 
are at least 3(m - 2k) common vertices. On the other hand, e, u fj has at 
most three common vertices for any i. Otherwise the fact that any two 
distinct edges intersect at no more than two vertices implies that either 
lej n f, 1 = lei n gj 1 = (f, n gr 1 = 2 for some gj or else there are common ver- 
tices x7 E e, A gj and x,* * Ef, n gj, for distinct j and j’. For the former case, 
H has exactly 3 edges and 6 vertices and t(H) = 2, so the theorem holds. 
For the latter case, we can replace xi by XT and x,+* to get k + 1 vertices 
whose containing edges are distinct, in contradiction to the maximality of 
k. Hence 3(m - 2k) < 3k, i.e., m d 3k. Since x1, . . . . xk together with a vertex 
in gj for 1 < j < m - 2k form a transversal, 

r(H)<k+m-2k 

d 2mJ3 

= (2m + 2n - t)/9 

(since m < 3k) 

(since 4m = 2n - t). Q.E.D. 
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