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On the Nature of the Boxer-Thaler and Madwed 
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Abstmcl-The nature of Boxer-Thaler and Madwed integrators is ex- 
plored in this note. A consistent derivation of the Madwed integrator 
from the well-known derivation of the Boxer-Thaler integrator is first 
proposed. A new general computerized algorithm is also proposed for 
the kth-order Boxer-Thaler and Madwed integrators. These two dis- 
crete integrators are used in this note to replace the Tustin integrator 
for digitizing a continuous-time system. A more systematic and precise 
formulation of the Q-matrix is presented for the s-domain to z-domain 
transformation via Boxer-Thaler and Madwed integrators. Due to the 
more accurate nature of these two discrete integrators, better results can 
be obtained. A set of MATLAB programs is written to implement the 
proposed algorithms in this note. 

I. INTRODUCTION 

The Boxer-Thaler and Madwed discrete integrators were proposed in 
1951 111 and 1956 [2 ] ,  [3], respectively. These two integrators are more 
precise than the Tustin integrator in digitizing a continuous-system [4]. 
Also, the Boxer-Thaler integrator is claimed to be more accurate than 
the Madwed integrator [4]. But no proof has been seen regarding this 
fact. In this note, a consistent manner of deriving these two discrete in- 
tegrators is presented. It is by this consistent manner of derivations that 
we can clearly prove the more accurate property of the Boxer-Thaler in- 
tegrator over that of the Madwed integrator. Furthermore, we use these 
two discrete integrators to replace the Tustin integrator in digitizing a 
continuous-time system. In comparison to the Q-matrix implementation 
of the Boxer-Thaler integrator [5] and the Tustin integrator [6], our 
method is more precise and therefore, more suitable for computer pro- 
gramming. Excellent results are obtained which are better than those 
obtained by using the Tustin method. A set of MATLAB programs is 
written to implement the derived algorithms in this note. 

II. DERIVATIONS OF THE BOXER-THALER A N D  MADWED INTEGRATORS 

In this section, the Boxer-Thaler and Madwed discrete integrators are 
derived in a consistent manner. It is found in this section that these two 
integrators can be derived from the same starting point, which is con- 
tained in the well-known derivation presented by Boxer and Thaler [2], 
r31. 

A. Derivation of the Boxer- Thaler Integrator 

plane and z-plane 
First, starting from the general substitution formula between the s- 

then we expand the natural logarithm of z as a Laurent series. Let 
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z = -. 

Then, from Taylor's theorem, it follows that 
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1 - U  2 3  -In(l - U )  =In __ = U  + - + - + . . .  . 

By adding (1) and (2), we obtain 

1 + U  
I - U  

Now, replacing __ by z, we get 

Therefore, 

44 -U5 - . . 
945 I . 

1 

The Boxer-Thaler integrator of power 1 retains the principal part of (3). 
Higher order expansions of (3) can be obtained by raising both sides 
to the desired power, and retaining only the principal part and constant 
term of the expanded series. For example 

The general expression is as follows: 

N [;]'[.,+q+; + . . .+ -  U k  

uk 1 
1 +z-1 + 

= [ + I k  [uo + U l -  1-2-1 

The transition from (4) to (5) can be accomplished easily via computer 
programming. For instance, the DECONV and CONV commands in 
MATLAB [7] can be used to implement the polynomial inversion in (3) 
and polynomial multiplication in (4), respectively. By using the binomial 
theorem and discrete convolution, we get the numerator P k  (2-l ) of the 
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kth power Boxer-Thaler integrator as follows: 
k 

Pk(Z-')  = - p l  -z-')k-i(l +z-') '  

Following the previous manner, and assuming that the Madwed integrator 
for s -~ - - (  is 

(10) Fk-I (U) = Fk-1 ( z )  S -k - l  

=ku, [(*J - ( * ; i ) z - l  
I =o 

+ . . . + ( -1 )k - i  (1 I :) Z-(k -01 

[ (b)  + ( :) z-' + . . . + (:) .-i] 

B. Derivation of the Madwed Zntegmtor 

The numerators of Madwed integrators can also be derived by a pro- 
cedure similar to the derivation of Boxer-Thaler integrators. The only 
difference is that the higher order Madwed integrators are obtained by 
multiplying the lower order Madwed integrator and (3) together and re- 
taining only the principal part and constant term of the expanded series. 
From this phenomenon, we can realize that the Boxer-Thaler integrator 
is indeed more accurate than the Madwed integrator. For example 

1 4  44 
2 u  45 945 

s-2 1: 5 [i - 7 u  - -u3 - -U5 - . . ]  

*; [;I  
E [ ; I 2  [$ - 4 = - ti  1 + 42-' + z-2 

I s-3 $ [; - 5 u  1 4  - -113 - -U5 44 +.. .  

* [ : ] ' [ $ - ; I  

3! ( 1  - Z z - ' ) 2  

45 945 

t; '1 + 11z-1 l l z -2  +z-3 
= [;13 [; - 4 = 4? ( 1  - z - 1 ) 3  

(9) 

U k  I 1  
N [ ; I k  . I 1  

However, the above equation is identical to ( 5 )  except for the 
[U; U{ ". U:] vector. Therefore, we can get the following equa- 
tion immediately: 

and the numerator Nk(z- ' )  of the Madwed integrator can also be ob- 
tained as in (8), i.e., 

k 

Nk(Z-')  = c V : ( l  -Z- l )k - ' ( l  +Z- ' ) '  
I =O 

= 2 u,'[hlo + h,lz-' + h,zz-' + . . . + h , k ~ - ~ l  
I =O 

= v k m  (14) 

Vk = [ U ;  U; U; " '  U ; ] .  (15) 

where X and Z are defined in (7) and 

The transition from ( 1  1) to (12) can also be accomplished easily via 
C O W  command in MATLAB. Note that (7) is identical to (14). There- 
fore, the only difference between (7) and (14) is the variation between 
V' and VI'. 

Example I :  Derive the Boxer-Thaler and Madwed integrators for 
s-4. 

First, the X matrix defined in (7) and (8) must be computed as follows: 

r i  -4 6 -4 ' 1  
1 -2 0 2 -1 x = l l  0 -2 0 1 1  

1 2 0 -2 -1 

1 4 6 4 1  

1) The Boxer-Thaler Integrator: From (4) we have 

= pi4- P4(z-' ) 
( 1  - z - ' ) 4 .  

We can get P4(z-') from (7) as follows: 

4 P4(z- ' )  = - 0 - 0 11 [: 
*X*[l  z-' z-2 z-3 z-41' 

1 124 474 124 1 - -[-z 45 45 

*[1 z-1 z-2 z-3 z-41' 
1 124 474 -2 124 -3 - - -_ 4 5 + 4 5 z  +-z +-z - 

45 45 
& z - 4 .  
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Finally, the Boxer-Thaler integrator for sP4 is 

s-4 

1 - 1/45 + 124/45z-' + 4 7 4 / 4 5 ~ - ~  + 124 f45zP3 - 1/45zP4 
(1 -z-')4 

t: z-1 +4z-2 +z-3 t: -- - _ -  
6 ( 1  -Z-I)4 720 ' 

2) The Mudwed Integrator: From (9) and (1 l), we have 

We can get N4(z-') from (14) as follows: 

N4(z-I) = [2/15 0 - 1 0 1]*&*[1 z-l ZP2 Z-3 Z-41' 

= 2/15 + 52/15~-' + 1 3 2 / 1 5 ~ - ~  + 5 2 / 1 5 ~ - ~  + 2/15z-4. 

The previous two discrete integrators are in accordance with those in 
[I], ~41. 

IJI. DIGITIZING A CONTINUOUS-TIME SYSTEM VIA BOXER-THALER AND 

MADWED INTEGRATORS 
The Boxer-Thaler and Madwed integrators derived previously are ba- 

sically similar to the fistin integrator. They are all derived from the 
Taylor's expansion of z = eST . However, the more accurate properties 
of the Boxer-Thaler and Madwed integrators [4] can enable us to yield 
a more accurate result in digitizing a continuous-time system. The Q- 
matrix implementation for the Boxer-Thaler integrator has already been 
shown in [6]. However, a more systematic and precise formulation is 
proposed in this section. Actually, (7) and (14) play a major role in the 
following formulation. Let us consider a continuous-time transfer func- 
tion as follows: 

G ( s )  = 
a0sm + a's"-' + . * .  + a m - l s  + a,  

aoSm-n + a l S m - n - l  + . . . +a,-'s-"-' + a&-" 

bas" + b l ~ " - '  + * e *  +bn-is + bn 

n 2 m. - 
bo + bls-' + b2s- ,  + ... +bn-ls-"+' + b,,s-" 

The first objective is to obtain an equivalent discrete-time form of the 
(16) 

continuous-time transfer function G(s). Let T = ts /2 and 

R , ( z - ' )  = Pk( z-I) 

= Nk( z- I )  

of the Boxer-Thaler integrator, 

of the Madwed integrator. 

Then we obtain the corresponding discrete-time transfer function as fol- 
lows: 

+" '+am-,T"- 'Rn-l(z- ' ) ( l  -z-1 ) + amTnR,(Z-l) 
+ ' .  . +b"-lT"-'Rn-,(Z-l)(l - z-l)  + b,T"R,(z-') 

I =o 

2 a, 

&b,T'R,(z-')(l -z-l)n-l 

T'R, (z-- ')( 1 - Z - l Y  --I 

r=O - - 

I =o 

Finally, the Madwed integrator for s - ~  is Therefore, the numerator and denominator are in the same form in (17). - . . ,  
It is shown from (7) and (14) that Rk (z-l ) can be represented as follows: 

~ ~ ( 2 - 1 )  =ek(0)+ek(l)z- '  + . . .+ek(k)z-k (18) I s-4=[ ;I4[ 2/15 + 52/15z-' + 132/15z-* + 5 2 / 1 5 ~ - ~  + 2 / 1 5 ~ - ~  

(1 - z - y 4  
t: 1 + 262-' + 66z-, + 2 6 ~ - ~  + z - ~  - -  - 

120 (1 - z-')4 
where e k ( j )  = uihij (or E:=, u!hi,). Therefore, we can get the 
numerator and denominator of the z-transfer function in matrix form as 
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follows: 

n 

p i T ' R i ( z - l ) ( l  - z-')"-' 
i = O  

i = O  

" 
= diZ-' 

i =O 

where 
n 

Also, the Q and qij  are defined in (20) and (21), respectively. 
The aforementioned derivations are basically the s-domain to z-domain ' 1  transformation, i.e., 

and by the same procedure, the numerator is 

" 

i = O  

n n - t  

= a ,  -n+iTiR, ( Z - 1  1 1  (-1Y 
I =o j = O  

Z ; ]  

Z  -" 
and 

c' =a'Q d' =b'Q 

where Q is defined in (20) and 

a ' = [ O  4 a0 a ,  a2 " '  a,] (26) 

n - m terms 

b' =[bo.  bl bz . . .  b,] 

c' =[CO c1 c2 " '  c , ]  

d' =[do di dz . . .  d , ] .  

(19) Note that the Q-matrix defined in (20) is a function of T(= t, /2), n 
(order of s-domain transfer function), and integrator type (Boxer-Thaler 
or Madwed). 

Example 2: Consider the following fifth-order system in [ 5 ] :  

s2 +2s  +0.75 
s5 + 2 7 . 5 ~ ~  + 2 6 1 . 6 ~ ~  + 1039s' + 1668s + 864' 

G ( s )  = (20) 

The sampling time is also set to t, = 0.01 as in [ 5 ] .  We must first 
compute the Q-matrices from (21) for the Boxer-Thaler and Madwed 
cases. Then, the numerator and denominator coefficients can be obtained 
from (25) and (26). The following MATLAB program performs all of the 
three discrete approximations (i.e., Tustin, Madwed, and Boxer-Thaler) 
of G(s): 

clear 
format long e 
num = [l 2 0.751; 
den=[l 27.5 261.5 1039 1668 8641; 
ts = 0.01; 
n=500; 
t = Ots:ts*n; 
y = step(num,den,t); 

yo = y(2:n + 1); 
[Tnum,Tden] = Tustin(num,den,ts); 
y l  = dstep(Tnum,Tden,n); 

(21) 

Vo Numerator of G(s) 
Vo Denominator of G(s) 
Vo Sampling time = 0.01 sec 

Vo Time=0.0 sec+5.0 sec 
Vo Continuous-Time Step 

Response 

Vo Tustin Approximation 
070 Discrete-Time Step 

Response 
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[Mnum,Mden] = Madwed(num,den,ts); To Madwed Approximation 
y2 = dstep(Mnum,Mden,n); To Discrete-Time Step 

[Bnum,Bden] = Boxer(num,den,ts); Yo Boxer-Thaler 

y3 = dstep(Bnum,Bden,n); 

Response 

Approximation 
To Discrete-Time Step 

Response 
PlOt([YO Y l  Y2 Y31) 
Tus = Isqr(y0,yl) 

Mad = Isqr(yO,y2) 

Box = Isqr(yO,y3) 

To Sum-squared errors 
between 

Yo three approximations and 
continuous 

Yo -time system. 

The results are as follows: 

G ( z )  = coz5 + C I Z 4  + c2z3 + c3z2 + c4z + c5 
d0Z5 + diz4 + d2z3 + d3z2 + d4z + d5 ’ 

For the Boxer-Thaler case 

[cn CI c2 c3 c4 csl 

= [-2.437333168392555e - 01 1 4.417693787709666e - 007 

- 4.301591422233286e - 007 - 4.472204744020766e - 007 

4.356760458499852e- 007 2.437333168392555e- 0111 

[do dl d2 d3 dq d ~ ]  
= [1.000000000000000e +OOO - 4.735300689390917e + OOO 

8.965532424521376e + OOO - 8.483852047784712e + 000 

4.012324404794199e + OOO - 7.587040163291362e- 0011. 

For the Madwed case: 

[cn C I  c2 c3 c4 cs] 

= [3.663488297720488e - 008 3.320536109854195e - 007 
- 3.59022601 1977542e- 007 - 3.706990288487865e - 007 

3.634297228592907e - 0081 3.247558437035243e - 007 

[do dl dz d3 d4 dS1 

= 11.- +OOO - 4.735738861034265e +OOO 
8.967238982065885e + OOO - 8.486344516008330e + OOO 
4.013942326325186e + OOO - 7.590978556852241e- 0011. 

For the Tustin case 

[cn C I  c2 c3 c4 C S ]  

= [1.103441954183032e - 007 1.125373821517400e- 007 
- 2.162938236459465e- 007 - 2.206638096652478e - 007 

1.059824031227881e - 007 1.081592024086525e- 0071 

[do d1 d2 d3 d4 ds] 

= [1.000000000000000e + OOO - 4.736107367001773e + OOO 
8.968668581331992e +OOO - 8.488424113560411e +OOO 
4.015286718188694e +OOO - 7.594237434451435e- 0011. 

And the sum-squared errors between the step responses of G(s)  and three 
discrete approximations are 

Tus = 1.1 18476206688459e - 008 

Mad = 1.101086722161684e - 008 

Box = 1.09273 1169729238e - 008. 

It is obvious that the Boxer-Thaler discrete approximation yield the 
smallest sum-squared errors. All the above data are computed using 
PC-MATLAB and displayed here using long exponential format. The 

’hstinm, Madwedm, and B0xer.m in the previous MATLAB program 
can be obtained from the authors upon request. 

V. CONCLUSIONS 

In this note, we examine the nature and applications of the 
Boxer-Thaler and Madwed discrete integration operators. A general 
computerized algorithm is devised to derive the Boxer-Thaler and Mad- 
wed integrators consistently. Further, the digitizations of a continuous- 
time system via Boxer-Thaler and Madwed integrators are proposed in a 
more systematic and precise way. Instead of using the Tustin integrator, 
the Boxer-Thaler and Madwed integrators can be used as the substitutes 
to reduce the accumulated truncation errors [4]. This is especially true 
for a system with a longer sampling period or for higher order systems. 
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Directional Interpolation Via All-Pass Transfer Function 
Matrices and Its Application in Hankel-Norm 

Approximations 

U. SHAKED 

Abstmct- A new approach to the problem of multivariable interpola- 
tion via all-pass transfer function matrices that are not necessarily stable 
is presented. It applies both state-space and classical function theoretic 
arguments and it obtains a very simple expression for the all-pass matrix 
that satisfies the interpolation requirement. Unlike the solution that is 
ohtained by the generalized Nevanlinna-Pick algorithm, this expression 
is derived in closed form explicitly in terms of the interpolation param- 
eters. It allows a detailed investigation of the structure of the all-pass 
solution and it is readily used in Hankel-norm approximations of linear 
multivariable systems. 

I. INTRODUCTION 

The problem of interpolation via inner matrices gained much attention 
in the last few years. It has been used in the various fields of system and 
control such as Hm -optimization [ 11, [2], robust stabilization [3], 141, 
and circuit theory [ 5 ] ,  [6]. This problem was to derive a stable transfer 
function matrix U of dimensions that are appropriate to the system in 
question, that satisfies the following all-pass property: 

uHu=r (1) 

where ( . ) H  denotes the Hermitian transpose. 
The matrix U has to also satisfy interpolation requirements that are 

either given in terms of matrix values, as a direct extension of the scalar 
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