IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 35, NO. 10, OCTOBER 1990

On the Nature of the Boxer-Thaler and Madwed
Integrators and Their Applications in
Digitizing a Continuous-Time
System
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Abstract— The nature of Boxer-Thaler and Madwed integrators is ex-
plored in this note. A consistent derivation of the Madwed integrator
from the well-known derivation of the Boxer-Thaler integrator is first
proposed. A new general computerized algorithm is also proposed for
the kth-order Boxer-Thaler and Madwed integrators. These two dis-
crete integrators are used in this note to replace the Tustin integrator
for digitizing a continuous-time system. A more systematic and precise
formulation of the Q-matrix is pr ted for the s-d to z-d
transformation via Boxer-Thaler and Madwed integrators. Due to the
more accurate nature of these two discrete integrators, better results can
be obtained. A set of MATLAB programs is written to implement the
proposed algorithms in this note.

1. INTRODUCTION

The Boxer-Thaler and Madwed discrete integrators were proposed in
1951 {1] and 1956 {2], [3], respectively. These two integrators are more
precise than the Tustin integrator in digitizing a continuous-system [4].
Also, the Boxer-Thaler integrator is claimed to be more accurate than
the Madwed integrator [4]. But no proof has been seen regarding this
fact. In this note, a consistent manner of deriving these two discrete in-
tegrators is presented. It is by this consistent manner of derivations that
we can clearly prove the more accurate property of the Boxer-Thaler in-
tegrator over that of the Madwed integrator. Furthermore, we use these
two discrete integrators to replace the Tustin integrator in digitizing a
continuous-time system. In comparison to the Q-matrix implementation
of the Boxer-Thaler integrator [5] and the Tustin integrator [6], our
method is more precise and therefore, more suitable for computer pro-
gramming. Excellent results are obtained which are better than those
obtained by using the Tustin method. A set of MATLAB programs is
written to implement the derived algorithms in this note.

II. DerivaTions oF THE BoXER-THALER AND MADWED INTEGRATORS

In this section, the Boxer-Thaler and Madwed discrete integrators are
derived in a consistent manner. It is found in this section that these two
integrators can be derived from the same starting point, which is con-
tained in the well-known derivation presented by Boxer and Thaler [2],
[3].

A. Derivation of the Boxer-Thaler Integrator

First, starting from the general substitution formula between the s-
plane and z-plane

t
=1 t =
s =In(2)/t; =5 (3
then we expand the natural logarithm of z as a Laurent series. Let
_1+u
=1

Then, from Taylor’s theorem, it follows that
23

u
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By adding (1) and (2), we obtain
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Now, replacing } iz

by z, we get
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Therefore,
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The Boxer-Thaler integrator of power 1 retains the principal part of (3).
Higher order expansions of (3) can be obtained by raising both sides
to the desired power, and retaining only the principal part and constant
term of the expanded series. For example
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The general expression is as follows:
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The transition from (4) to (5) can be accomplished easily via computér
programming. For instance, the DECONV and CONV commands in
MATLAB (7] can be used to implement the polynomial inversion in (3)

and polynomial multiplication in (4), respectively. By using the binomial
theorem and discrete convolution, we get the numerator Py (z~') of the
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kth power Boxer-Thaler integrator as follows:
k

Pe@™) =) w1 =z )T+ 27

Sl ()50

S [()-()e
G ey
Q) 0)]

k
= Zv;[hio +huz 7 thpz T 4+ gz ]

i=0

hoo  hoy hok 1
hwo hu Ry 7!
= un v ve)
—k
hro  hi hik z
=Viz (@)
where ““!” denotes matrix transpose and
Vi=[w v v vl
7' =01 z7' z7? 279
= [hij]{i,j=0, RV
J k—i i
hu‘=Z(—l)’_q ( ) ( ) (®)
g=0 J—q q

B. Derivation of the Madwed Integrator

The numerators of Madwed integrators can also be derived by a pro-
cedure similar to the derivation of Boxer-Thaler integrators. The only
difference is that the higher order Madwed integrators are obtained by
multiplying the lower order Madwed integrator and (3) together and re-
taining only the principal part and constant term of the expanded series.
From this phenomenon, we can realize that the Boxer-Thaler integrator
is indeed more accurate than the Madwed integrator. For example
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Following the previous manner, and assuming that the Madwed integrator
for s7¢ " is

s = Fi(w) = Fr1(2) (10)
we have the Madwed integrator for s™* as follows:
44
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However, the above equation is identical to (5) except for the
vy vl v;] vector. Therefore, we can get the following equa-
tion ¥mmediately:
k
- t Ne(z™hH
sTh o~ || A (13)
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and the numerator N, (z™') of the Madwed integrator can also be ob-
tained as in (8), i.e.,
k
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where JC and Z are defined in (7) and
V¥ =[vy v wv; vel- (15)

The transition from (11) to (12) can also be accomplished easily via
CONV command in MATLAB. Note that (7) is identical to (14). There-
fore, the only difference between (7) and (14) is the variation between
Vtand V¢,
Example 1: Derive the Boxer-Thaler and Madwed integrators for
—4

’ First, the 3C matrix defined in (7) and (8) must be computed as follows:
r -4 6 —4 1
1 -2 0 2 -1
x={1 0 -2 0 1
1 2 0 -2 -1

1 4 6 4 1
1) The Boxer-Thaler Integrator: From (4) we have
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We can get P4(z ") from (7) as follows:
14 4
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The previous two discrete integrators are in accordance with those in

(11, [4].

III. Dreimizing A Continuous-TiMe System Via Boxer-THALER AND
MADWED INTEGRATORS

Finally, the Boxer-Thaler integrator for s~ is

s~ A
T2

[ ~ 1/45 + 124/457" + 474457~ + 124/457 — 1/457™*
-z

sically similar to the Tustin integrator. They are all derived from the
Taylor’s expansion of z = e*7. However, the more accurate properties
of the Boxer-Thaler and Madwed integrators [4] can enable us to yield
a more accurate result in digitizing a continuous-time system. The Q-
matrix implementation for the Boxer-Thaler integrator has already been
shown in [6]. However, a more systematic and precise formulation is
proposed in this section. Actually, (7) and (14) play a major role in the
following formulation. Let us consider a continuous-time transfer func-
tion as follows:

} The Boxer-Thaler and Madwed integrators derived previously are ba-

_ iz 444 gt
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2) The Madwed Integrator: From (9) and (11), we have

G171 1 4 4“4
SO BN | I S Jr SRR My
§ [2”:4 3T Y T ws ] 3(#)

G aps™ + ais™ N+ s ta, s+ ay,
s) =
(1Lt 4 4 1 2 (s) bos™ + bys"" 14 o- +b, s+ b,
= | = —_ - —— - — RS £ S —
B [2] [u 34T T s uw  3u A" 4 s 4 s a5 +ams""n>m
bo+bys™' + bys™ 4 - b, s 4 b5
(16)

gRICE R

We can get N,(z~!) from (14) as follows:

The first objective is to obtain an equivalent discrete-time form of the
continuous-time transfer function G(s). Let T = £ /2 and

Ri(z7') = P(z7!)  of the Boxer-Thaler integrator,

Ne@ H=[2/15 0 —1 0 1Jxge+ll z7! 772 oz 7Y = Nk(Z_]) of the Madwed integrator.
Then we obtain the corresponding discrete-time transfer function as fol-
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—1 -1
a, 7" Rn—m_(lzn_)m +-ta,T" Rn(z_l)n
Gz ) = d-z7) a-z"7)
| -1 -1
bo +b,T Ri(z _l) + 5,12 Rz(i’._‘)2 +--~+b,,T"-&—(le)—
(1-z7) 1-z7Y) -z

_aoT" "R, (271 =27 +a T TRy @7 27!
T bl -2 A B TR =27 T 4+ B TPR (2T =2 )R

+ 4 am TR (2T Y 27 + 2 TR (2T
+oo by TR 2T — 27 + B T"RA(27)

Za,r"—m+fkn_m+,-(z—‘)(1 —z=hym

== (since Ro(z™H) = 1)

> BTR @Y -2

i=0

m
S AT Ry @~ 2

j=m-—n

= - (since a; =0 for j < 0)
> bTRGE Y-z

i=0

an

n

Z“m—n+iTiRi(z_')(1 -y

_ i=0

Eb,»T"R,-(z“)(l —z

i=0

Finally, the Madwed integrator for s~* is Therefore, the numerator and denominator are in the same form in (17).

It is shown from (7) and (14) that R, (z~') can be represented as follows:

2
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where e (j) = Ek vih;j (or Zk v/h;;). Therefore, we can get the
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numerator and denominator of the z-transfer function in matrix form as
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follows:
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Also, the @ and g;; are defined in (20) and (21), respectively.
The aforementioned derivations are basically the s-domain to z-domain
transformation, i.e.,

66 =29 6@ - 58 @4
and
¢ =a'Q d' =b'Q (25)
where Q is defined in (20) and
a =[0 --- 0 a a a aml (26)
n —m terms
b =[by by b, ba)
¢'=[ce ¢1 € cnl
d =[dy d\ d, d,].

Note that the Q-matrix defined in (20) is a function of T(= #; /2), n
(order of s-domain transfer function), and integrator type (Boxer-Thaler
or Madwed).

Example 2: Consider the following fifth-order system in [5]:

Gls) = s? +25 +0.75
T 5° +27.55* +261.65° + 10395 + 1668s + 864

The sampling time is also set to z, = 0.01 as in [5]. We must first
compute the Q-matrices from (21) for the Boxer-Thaler and Madwed
cases. Then, the numerator and denominator coefficients can be obtained
from (25) and (26). The following MATLAB program performs all of the
three discrete approximations (i.e., Tustin, Madwed, and Boxer-Thaler)
of G(s):

clear
format long e

num=[1 2 0.75};

den=[1 27.5 261.5 1039 1668 864];
ts=0.01;

n=500;

t=0:ts:ts*n;

y = step(num,den,t);

yo=yQ2:n+1);
[Tnum,Tden] = Tustin(num,den,ts);
y1 =dstep(Tnum,Tden,n);

% Numerator of G(s)
% Denominator of G(s)
% Sampling time = 0.01 sec

% Time = 0.0 sec—5.0 sec
% Continuous-Time Step
Response

% Tustin Approximation
% Discrete-Time Step
Response
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[Mnum,Mden] = Madwed(num,den,ts); % Madwed Approximation
y2 = dstep(Mnum,Mden,n); % Discrete-Time Step

Response
[Bnum,Bden] = Boxer(num,den,ts); % Boxer-Thaler
Approximation
y3 =dstep(Bnum,Bden,n); % Discrete-Time Step
Response

plot({y0 y1 y2 y3D
Tus = Isqr(y0,y1) % Sum-squared errors

between
% three approximations and

continuous
% -time system.

Mad = Isqr(y0,y2)

Box =Isqr(y0,y3)

The results are as follows:

co?’ + ¢z +022° +¢32° +caz +0s
do?’ +diz* +dad +da7? vdaz +ds
For the Boxer-Thaler case

sl

G(z) =

[co- €1 €2 €3 ¢4

= [-2.437333168392555¢ — 011 4.417693787709666¢ — 007
— 4.301591422233286¢ — 007 — 4.472204744020766e — 007
4.356760458499852¢ — 007 2.437333168392555¢ ~ 011]
do dv dr dy dy ds)

= [1.000000000000000e + 000 — 4.735300689390917¢ + 000

8.965532424521376e + 000 — 8.483852047784712¢ + 000
4.012324404794199¢ + 000 — 7.587040163291362¢ — 001].
For the Madwed case:
[co 1 2 ¢35 cs cs]
= [3.663488297720488e — 008 3.320536109854195¢ — 007
— 3.590226011977542¢ - 007 — 3.706990288487865¢ — 007
3.247558437035243e — 007 3.634297228592907e — 008]
[do dv d» dy d, ds)
= [1.000000000000000e + 000 — 4.735738861034265¢ + 000
8.967238982065885¢ + 000 — 8.486344516008330¢ + 000
4.013942326325186e + 000 — 7.590978556852241e — 001].
For the Tustin case
[co €1 ¢z ¢z ca cs)
=[1.103441954183032¢ — 007 1.125373821517400e — 007
— 2.162938236459465¢ — 007 — 2.206638096652478¢ — 007
1.059824031227881e — 007 1.081592024086525¢ — 007]
ldo d\ d, dy d, ds]
= [1.000000000000000e + 000 — 4.736107367001773¢ + 000
8.968668581331992¢ + 000 — 8.488424113560411e + 000
4.015286718188694e + 000 — 7.594237434451435¢ — 001].

And the sum-squared errors between the step responses of G(s) and three
discrete approximations are

Tus = 1.118476206688459¢ — 008
Mad = 1.101086722161684¢ — 008
Box = 1.092731169729238e — 008.

It is obvious that the Boxer-Thaler discrete approximation yield the
smallest sum-squared errors. All the above data are computed using
PC-MATLAB and displayed here using long exponential format. The
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Tustin.m, Madwed.m, and Boxer.m in the previous MATLAB program
can be obtained from the authors upon request.

V. CoNcCLUSIONS

In this note, we examine the nature and applications of the
Boxer-Thaler and Madwed discrete integration operators. A general
computerized algorithm is devised to derive the Boxer-Thaler and Mad-
wed integrators consistently. Further, the digitizations of a continuous-
time system via Boxer-Thaler and Madwed integrators are proposed in a
more systematic and precise way. Instead of using the Tustin integrator,
the Boxer-Thaler and Madwed integrators can be used as the substitutes
to reduce the accumulated truncation errors [4]. This is especially true
for a system with a longer sampling period or for higher order systems.
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Directional Interpolation Via All-Pass Transfer Function
Matrices and Its Application in Hankel-Norm
Approximations

U. SHAKED

Abstract— A new approach to the problem of multivariable interpola-
tion via all-pass transfer function matrices that are not necessarily stable
is presented. It applies both state-space and classical function theoretic
arguments and it obtains a very simple expression for the all-pass matrix
that satisfies the interpolation requirement. Unlike the solution that is
obtained by the generalized Nevanlinna-Pick algorithm, this expression
is derived in closed form explicitly in terms of the interpolation param-
eters. It allows a detailed investigation of the structure of the all-pass
solution and it is readily used in Hankel-norm approximations of linear
multivariable systems.

1. INnTRODUCTION

The problem of interpolation via inner matrices gained much attention
in the last few years. It has been used in the various fields of system and
control such as H°°-optimization [1}, [2], robust stabilization [3], 4],
and circuit theory [5], [6]. This problem was to derive a stable transfer
function matrix U of dimensions that are appropriate to the system in
question, that satisfies the following all-pass property:

vfu =1 ¢))

where ( -) denotes the Hermitian transpose.
The matrix U has to also satisfy interpolation requirements that are
either given in terms of matrix values, as a direct extension of the scalar
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