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SUMMARY 
The use of multiobjective optimization techniques, which may be regarded as a systematic sensitivity 
analysis, for the selection and modification of system parameters is presented. A minimax multiobjective 
optimization model for structural optimization is proposed. Three typical multiobjective optimization 
techniques-goal programming, compromise programming and the surrogate worth trade-off method-are 
used to solve such a problem. The application of multiobjective optimization techniques to the selection of 
system parameters and large scale structural design optimization problems is the main purpose of this paper. 

INTRODUCTION 

In most structural optimization problems, it is desirable that the structure should be of minimum 
weight and simultaneously meet some requirements such as strength, deflection and frequency. 
Usually, these requirements are imposed as inequality constraints, where the allowable strength, 
deflection and frequency are selected as fixed parameters in the problem formulation.' Parameter 
sensitivity analysis is thus needed if the requirements are modified after the optimization is 
complete. Interest toward this topic can be seen in the literature.'. It is noted that parameter 
analysis provides only a measure of changes of the optimum design within its neighbourhood. 
Another approach to treat the selection and modification of problem parameters is the use of 
multiobjective optimization techniques which may be regarded as a systematic sensitivity ana- 
l ~ s i s . ~  

A general multiobjective optimization problem is to find the vector of design variables 
x = ( x ~ ,  x2, . . . , x , ) ~  which minimizes a vector objective function f(x) = (fi(x),fi(x), . . . ,A(x))~ 
over the feasible design space X. It is the determination of a set of non-dominated solutions (or 
Pareto optimum solutions, non-inferior solutions or efficient solutions) that achieves a compro- 
mise among several different, usually conflicting, objective functions. The set of non-dominated 
solutions is a set of solutions in which no decrease can be obtained in any of the objectives 
without causing a simultaneous increase in at least one of the other objectives. The associated set 
of non-dominated objectives generally represents a collection of incomparable solutions for the 
objectives which are usually non-commensurable to begin with. Thus, here arises the decision 
making problem from which a partial or complete ordering of the set of non-dominated 
objectives is accomplished by considering the preferences of the decision maker (DM). Most of 
the multiobjective optimization techniques are based on how to elicit the preferences and 
determine the best-compromise solution. 
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In this paper, a general multiobjective optimization model for structural optimization is 
presented. The traditional minimum weight problem can be reformulated as a optimization 
problem with multiple minimax objectives to consider the significant design requirements 
simultaneously and be treated as the parameter selection problem. Multiobjective optimization 
methods available in the literature are mostly linear in n a t ~ r e . ~  Only a few non-linear methods 
are proposed with simple testing problems. The application of multiobjective optimization 
techniques to large scale problems is still rare. Three typical multiobjective optimization tech- 
niques, goal-programming, compromise programming and the surrogate worth trade-off method, 
are used to solve large scale structural systems with multiple minimax objectives. The determina- 
tion of system parameters by means of multiobjective optimization process is also discussed here. 

PROBLEM FORMULATION 

A common minimum weight structural optimization problem may be stated as the following. 

satisfy stress constraints 
Find the design variables x = (xl, x2, . . . , x , ) ~  to minimize the weight of the structuref(x) and 

Jail<aia i = 1 , 2 ,  . . . ,  n ( 1 )  

lzjl < zja (2) 

oi < oF i = 1,2 , .  . . , n  (3) 

5 a  < t (4) 

( 5 )  

displacement constraints 

j = 1,2 , .  . . , r 

buckling constraints 

fundamental frequency constraints 

and design variable bounds 

xi1 d xi d Xi" 

where x can be the cross sectional area, length, width, . . . , etc, of each member; cia and zja are the 
allowable stress for the i th member and allowable displacement for the j th  displacement 
component, respectively; qi is the stress in the ith member; z j  is the j th  displacement component. 
The allowable buckling stress a! is obtained from the equation of the Euler critical load. 5, is the 
allowable eigenvalue calculated from the specified lower limit on the fundamental frequency. The 
fundamental frequency o can be calculated by solving the following eigenvalue problem: 

W ) Y  = 5M(X)Y (6) 
where M(x) is the r x r mass matrix, y is an eigenvector and 5 is an eigenvalue which equals w2. 
For detailed information of the derivation and calculation, references can be consulted in 
References 1 and 6. 

Once the problem is formulated, a non-linear programming algorithm is exploited to perform 
the design optimization. But it should be noted that the specification of allowable parameters 
could be hard to select for the engineer. In fact, one may originally hope to minimize the weight 
and nodal displacements as well as member stresses and maximize the fundamental natural 
frequency simultaneously, which lead to a multiobjective optimization problem. All these objec- 
tives are non-commensurable and conflict in nature. From this point of view, it is desirable to 
relax the original single objective optimization problem to the multiobjective one. 
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Engineers and the decision makers will communicate to make a best-compromise design 
during the multiobjective optimization solution process. This would be beneficial to the balance 
among the specified objectives. As a result, we redefine the structural optimization problem as the 
following. 

Find the design variable x which minimizes the weight of the structure, the maximum member 
stress and the maximum nodal displacement while the fundamental natural frequency is maxi- 
mized. Mathematically, it can be stated as 

minf, (XI (7) 

minf,(x) = max oi, i = 1,2, . . . , n (8) 
minf,(x) = max z j ,  j = 1,2, . . . , I (9) 

minf,(x) = - o (10) 
subject to 

Since the buckling strength of each member is o!, determined once the geometric property is 
given, the buckling constraint will not be treated as an objective here. With these objectives, one 
may be able to choose the system parameters by the solution of the multiobjective optimization 
problem, even for large scale ones. For example, a material with a strength greater than or equal 
to the maximum stress would be an appropriate selection for the structure. On the other hand, the 
maximum displacement should be reduced to fit the requirement of the performance of the 
structure. A higher fundamental frequency is preferred for the sake of vibration control. All the 
information obtained during the multiobjective optimization solution process is useful for the 
determination of allowable parameters of structural systems. 

In the above general formulation, the selection of objectives depends on the DM and the 
engineer. Only those the DM considers worthwhile or whose performance is not certain to the 
engineer will appear in the set of objectives. Since most of the structural optimization problems in 
the real world are large scale ones, we have to deal with large scale structural optimization 
problems with multiple minimax objectives. Through the design of three structures, we attempt to 
show how multiobjective optimization techniques perform in the selection of system parameters 
as a systematic parameter sensitivity analysis and how they are adopted to solve large scale design 
problems. 

SOLUTION PROCEDURES 

A set of multiobjective optimization techniques which have been or may be applied to structural 
design problems was presented in References 4, 7 and 8. Generally, multiobjective optimization 
techniques can be classified into three categories according to the articulation of the decision 
maker's preference structure over the multiple objectives prior to, during or after the optimiza- 
tion. Based on this classification, an overall review of multiobjective optimization techniques and 
their applications is available in Reference 9. Three typical multiobjective optimization tech- 
niques-goal programming, compromise programming and the surrogate worth trade-off 
method-are thus chosen in this study, mainly because of their representative and thier promising 
features for future development in engineering design optimization. 
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Goal programming 

Goal programming, first presented in References 5 and 7, requires prior articulation of 
preferences by the DM. It allows the decision maker to specify a target for each objective function. 
A preferred solution is then defined as the one that minimizes the sum of the absolute values of 
deviations from the prescribed set of goal values. 

A general formulation of goal programming for non-linear programming problems can be 
stated as follows:’o 

i = l  

subject to 

g,(x) < 0, i =  1,2,. . . ,m 
hi@) = 0, i = 1,2, . . . , p 

J i ’ ( x ) - d : + d ; = T ,  i = l , 2  , . . . ,  k 
d: 20, i = 1,2, . . . , k 
d ;  20, i = 1,2, . . . , k 

where I;: represents the target or goal set by the DM for the ith objective functionf,’(x) and d: and 
d;  are, respectively, the under-achievement and over-achievement of the ith objective and defined 
as 

Note that the value of p is based on the utility function chosen by the DM and it is possible to 
obtain non-dominated solutions by varying the values of p and Ti .  

Compromise programming 

Compromise programming” is based on the concept of distance from an ideal solution, and 
the solutions which are closest to the ideal point are called compromise solutions and form the 
compromise set. When each objective functioni, i = 1, . . . , k,  is characterized by ‘more is better’, 
one can set f*  = (f:, . . . ,f;), where f f  = sup($(x)lx E XI. In this case, f* is called an ideal 
point because usually f * is not attainable. Compromise was once remarked as the art of cutting 
the cake so that everyone thinks he or she got the largest piece. Here, compromise is considered as 
an effort to approach the ideal solution as closely as possible. The ideal solution, usually 
infeasible, is the situation where everybody does get the largest possible piece, though in 
compromise it is assumed that the cake is always smaller than the sum of claims on it. 

The generalized distance measure used in compromise programming to evaluate how close the 
set of non-dominated points come to the ideal point is the family of L, matrices defined as 

X(x) - f: llS 
Ls = { 

- ft I 1 
where 1 < s < co; ai are weights,ff andimax are the minimum value and the worst value for the 
ith objective respectively;f,(x) is the value of implementing the design variable x with respect to 
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the ith objective. Therefore, the compromise programming model is formulated as follows: 

min L,(x) = L,(xf) 
subject to x E X 

for a given set of weights cli and for all 1 6 s 6 co, where X denotes the feasible region. 
To find a compromise solution, one needs to know the ideal point f * = (f?, . . . , ff)  and the 

parameter s for the L,(x) matrices. For s = 1, all deviations fromff are taken into consideration 
in proportion to their magnitude. For 2 < s < 00, the larger the deviation, the larger the weight 
in L,. As s become larger and larger, and finally s = 00, the largest deviation is the only one taken 
into account. 

The surrogate worth trade-of method 

The surrogate worth trade-off (SWT) method5’ 12* l 3  is an interactive method, which can be 
applied when design variables are continuous and objective functions and constraints are twice 
differentiable. It assumes that the preference of the decision maker is monotonic and can be 
exhibited as an implicit multiattribute utility function as the DM systematically compares two 
objectives at a time. The SWT method consists of three main steps. First of all, generate 
a representative subset of non-dominated solutions called ‘promising solutions’ and obtain the 
relevant trade-off information for each generated solution. Secondly, interact with the DM to 
elicit the preference (worth) structure. Finally, select the best-compromise solution from the 
information obtained. 

Consider the E-constraint problem Pi(&) 

min A ( x )  (18) 
subject to $(x) 6 e j ,  j # i ,  j = 1,2, . . . , k 

X € X  

where X is the original design space of the multiobjective optimization problem and E~ are known 
as the maximum tolerable levels. It is used in the method to yield the promising solutions and 
associated trade-off information. By use of the concept of duality theory and Lagrange multipliers 
as well as the Kuhn-Tucker conditions, the trade-off function Ti can be defined as 

or 
T.. = - 1.. 
V 1J 

1, is the generalized Lagrange multiplier associated with the ith E-constraint. More details of the 
derivation of the trade-off function can be seen in the Appendix and References 12 and 13. The 
trade-off ,Iij represents the marginal rate of substitution between the ith and j th objectives. Note 
that only positive trade-offs are of interest here. Once the trade-offs have been identified, the 
decision maker is supplied with the trade-off information and then asked to express his ordinal 
preference. The DM’s preference is embodied in the surrogate worth function wij,  which is ordinal 
and ranges from - 10 to + 10. It is an estimation of the desirability of the trade-off lij .  Thus, 
+ 10 would indicate that 1, marginal units of the ith objective are very much more worthwhile 

than one marginal unit of thejth objective, while - 10 would indicate the opposite and 0 would 
signify an even trade. The best-compromise solution is determined when all trade-off ratios are 
selected to make the surrogate worth functions simultaneously equal to 0. 
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Numerical implementation 

Since the techniques for the single (scalar) objective optimization problem are well established, 
most multiobjective optimization techniques are based on transforming multiobjective problems 
into single objective ones in order to obtain the best-compromise solution by applying single 
objective optimization techniques directly. From the comparative studies of various single 
optimization algorithms available in the recent literat~re,'~-'* the mathematical programming 
method known as sequential quadratic programming (SQP) is selected in this paper for its 
accuracy, reliability and efficiency. The auxiliary single objective optimization problems needed 
during the solution process are solved by using the SQP algorithm in the optimization solver 
IDESIGN3.51. The IDESIGN3.51 program with a subroutine format is modified from 
IDESIGN3.5." It has been robustly implemented and extensively tested in a wide range of highly 
non-linear small and large scale problems for the SQP algorithm.20 

One typical approach to a single minimax objective is the solution of the minimization of an 
introduced artificial variable which is the upper bound of the maximum value of the objective. 
For minimax multiobjective optimization problems, they can be treated along the way of the 
solution of a single objective problem to have more than one artificial variable. In the SWT 
method, for the trade-off interpretation in the minimax multiobjective problem one may refer to 
Chankong and Haimes.13 

The ideal point is selected as the goal in goal programming. Since the ideal/worst point is the 
point at which each individual objective is minimized/maximized without regard to other 
objectives, the over-achievement constraint in equation (13) will be eliminated. But to find an 
ideal/worst point is not always attainable from the numerical point, which can be provided by the 
DM during the solution process. All the information of ideal and worst point for both goal and 
compromise programming may be calculated in the implemented program or given by the DM 
from input data. 

For the analysis of the structures, the finite element method is used. And the necessary design 
sensitivity analysis is performed by the hybrid method,2' which combines the advantage of the 
direct differential method (DDM) and the adjoint variable method (AVM). The implementation 
of the three techniques is used for the solution of three large scale numerical design examples. 

DESIGN EXAMPLES 

Three structural optimization problems frequently appearing in the literature are reformulated as 
multiobjective optimization problems, as discussed previously. They are, as shown in Figures 1-3, 
a ten-member cantilever truss, a twenty-five-member transmission tower and a two-hundred- 
member plane truss.' Three design problems are imposed, all constrained. The ten-member 
cantilever truss is solved with loading case 11. The twenty-five-member transmission tower design 
problem is considered under two loading conditions and the 200-bar truss is treated with three 
loading conditions. All the numerical data are the same as those in Reference 1, while the 
allowable parameters are abandoned and will be determined during the multiobjective optimiza- 
tion solution (decision making) process. 

Tables I-V shows the best-compromise solutions and trade-off information for the three 
example problems. Note that the ideal value and worst value of maximum stress, displacement 
and minus frequency are provided by the DM or the engineer. The range between the ideal and 
worst values may be associated with the properties of available materials or requirements of the 
design. Trade-offs between the objectives prior to, during or after the solution process are 



M ULTIMAX MULTIOBJECTIVE OPTIMIZATION 

- XI 

Figure 1. Ten-member cantilever truss 

Table I. Results for the ten-member cantilever truss by (i) goal programming; 
(ii) compromise programming 

Goal programming 
p = l  p = 2  

Compromise programming 
s = l  s = 2  

Design x*, in2 
X i  

x2 

x3 

x4 
x5 

x7 

X8 

x9 

X I 0  

Objective f* 
Weight, Ib 
Max. stress, psi 
Max. displ., in 
Frequency, Hz 
Under-achievements 

x6 

d: 
d: 
d: 
d: 
CPU time (sec) 

2.514E1 
1.071EO 
2-615E1 
1.299E1 

1.972E0 
1.328E1 
1.566E1 
1.728E1 

1.000E - 1 

1WOE - 1 

4.785E3 
2.49 1 E 1 
2900EO 

- 2.200E1 

24300 
4.910 
1.500 
3.000 

18.0 

2.509E1 
9.984E - 1 
2-65 1El 
1.294E 1 

2.1 11EO 
1.397E1 
1.560E1 
1.714E 1 

1OOOE - 1 

1OOOE - 1 

4.822E3 
2.332E1 
2.000EO 

- 2’200E1 

39.000 
3.320 
1.500 
3.000 

14.0 

6.879E1 
1.094EO 
5632E1 
3.038E1 

2.454EO 
2.378E1 
6.228El 
3.871 E 1 

1OOOE - 1 

1.000E - 1 

1.209 E4 
2.000E 1 
7’890E - 1 

- 2‘500E1 

- 

- 

- 

- 
39.0 

6.522E1 
1.085EO 
5.380E1 
2.888E1 

2.455E0 
2.365E1 
5.939E1 
3.702E1 

1.000E - 1 

1.000E - 1 

1.157E4 
2WOE 1 
8.275E - 1 

- 2.496El 

- 

- 

- 

- 

30.0 

1219 

Weight: min = 4.783E3, max = 2.941E4 
Max. stress: rnin = 20.0, max = 25-0 
Max. displacement: min = 0.5, max = 2.0 
Frequency: rnin = - 25.0, max = - 22.0 



1220 C. H. TSENG AND T. W. LU 

Figure 2. Twenty-five-member transmission tower 

Table 11. Trade-off information and the best-compromise solution for the ten-member cantilever truss 
design problem by the SWT method assuming the existence of a decision maker 

f, h f, f, 4 2  1 1 3  '$4 w12 w13 w14 

Ideal value: 

Worst value: 
4.783E3 200 0.5 - 25-0 

2.941 E4 25.0 2.0 - 22.0 

Referenced objective: Weight ( A  ) 
Maximum tolerable levels: 

Trade-off 
22.5 1-2 - 23.0 

1 9.98E3 2'15E1 9'20E - 1 - 2.38E1 1'17E2 9.66E3 4.89E3 0 + 3 - 2 
2 9.34E3 215E1 9.90E - 1 - 2'40E1 1-3382 8'99E3 5'09E3 0 0 + 2 
3 9.32E3 2.15E1 9'90E - 1 - 2.39E1 1'28E2 8.99E3 4.87E3 0 0 0  

Objectives 
Best-compromise solution 

f, h f, 
9.3 192E3 2.1500E1 9'9000E - 1 - 

f 4  
2.3900E1 

Designs 
1 2 3 4 5 6 7 8 9 10 

55.775 1.147 4.964 2.420 0.1 2.279 18.447 38.470 31.887 0.1 

CPU time (sec) 55.0 
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accomplished by communication of the DM or the engineer to the program. Resources and 
constraints affect the solution process largely. For example, materials available for the design 
should be taken into consideration when the trade-off between maximum stress and other 
objectives proceeds. Maximum displacement directly affects the performance of the structure. 
And weight represents the cost, while fundamental frequency is important for excitation vibra- 
tion. All these objectives are non-commensurable and may conflict with each other. After the 
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Table 111. Results for the twenty-five-member transmission tower design problem by 
(i) goal programming; (ii) compromise programming 

Goal programming 
p = l  p = 2  

Compromise programming 
s = l  s = 2  

Member no. 
1 
2, 3, 4, 5 
6, 7, 8, 9 
10, 11, 12, 13 
14, 15, 16, 17 
18, 19, 20, 21 
22, 23, 24, 25 
Objective f* 
Weight, lb 
Max. stress, psi 
Max. displ., in 
Frequency, Hz 
Under-achievements 
d:  
a,+ 
a: 
a,' 
CPU time (sec) 

1WOE - 1 
2.175EO 
2.407E0 

1.109EO 
2.035E0 
2.963E0 

19OOE - 1 

6.062E2 
3.500E1 
3.425E - 1 

- 7.750E1 

12.10 
0.OOO 
0333 
2.500 

54.0 

1WOE - 1 
2.971E0 
3.209E0 

1.09 1 EO 
2.764E0 
4.268E0 

3.132E - 1 

8.094E2 
3.500El 
2.538E - 1 

- 7.750E1 

215.3 
0.000 
0.244 
2.500 

54.0 

1QOOE - 1 1.577E0 
1.464E1 1.436E1 
1.714E1 1.48 1 E 1 

7.462E0 8.368EO 
1.503E1 1.678E1 
2.33 1El 2.143E1 

9.685E - 1 1'000E - 1 

4.40 1 E3 4.363E3 
3.500E1 3.500E1 
4'862E - 2 5.0458 - 2 

- 7'992El - 7.992E1 

67.0 44.0 

Weight: min = 5.941E2, max = 3.131E4 
Max. stress: min = 35.0, max = 40.0 
Max. displacement: min = 0.01, max = 0.35 
Frequency: min = - 80.0, max = - 77.5 

best-compromise solution is reached, system parameters can be determined according to the 
solution. It is noted that design alternatives are compared systematically during the solution 
process while traditional parameter sensitivity analysis yields only local information after the 
optimization. 

Goal programming gives maximum values for maximum displacement and frequency objec- 
tives with p = 1 and p = 2 in 10-bar truss design problem, as shown in Table I. Frequency 
objective achieves the worst point for all the cases except p = 1 in 200-bar case. In the 25- and 
200-bar truss design problems, the maximum stress equals the ideal value. All this information is 
clear with the investigation of under-achievements. It should be noted that a solution is 
a dominated solution if the under-achievements are all zero. 

The last row of the tables shows the CPU time needed on Apollo DN 570. Evidently the 
200-bar truss design case requires much CPU time. Generally, compromise programming 
requires more CPU time than goal programming does. It produces higher weight and lower 
maximum displacement for all the cases. This is the scaling and weighting effect, both of weight 
and maximum displacement. 

For goal and compromise programming, the ideal point is selected as the goal. However, the 
DM may choose his favourite point as his goal and the balance between the objectives may be in 
terms of the value of p and s or the weightings a. So the best-compromise solution would be 
different for other DMs. This can be seen in the solution process of the SWT method. 



MULTIMAX MULTIOBJECTIVE OPTIMIZATION 1223 

Table IV. Trade-off information and the best-compromise solution for the twenty-five-member trans- 
mission tower design problem by the SWT method assuming the existence of a decision maker 

Ideal value: 

Worst value: 

Referenced objective: Weight ul ) 
Maximum tolerable levels: 

Trade-off 
1 1.68E3 3.70E1 1.24E - 1 - 7.92E1 0.0 1.68E3 + 6  - 
2 1.46E3 3.70E1 1'43E - 1 - 7.92E1 0-0 2-04E3 - + 2  
3 1.46E3 3'70E1 1'43E - 1 - 7'90E1 0.0 1.46E3 1.76E3 + 5 0 
4 104E3 3'70E1 200E - 1 - 7'90E1 0.0 l94E3 1.26E3 0 0 

5.94 1 E2 3 5.0 0.01 - 80.0 

3.1 3 1 E4 40.0 0.35 - 77.5 

38.0 0.2 - 78.5 

- 

- 

Objectives 
Best-compromise solution 

f, f, f, h 
1W2E3 3.700E1 2.000E - 1 - 7'895E1 

Designs (Member group) 
1 2 3 4 5 6 7 

0.1 3.796 4.01 7 0590 1.184 3-550 5.828 
CPU time (sec) 3187.0 

Table V. Results for the two-hundred-member plane truss design problem by (i) goal programming; 
(ii) compromise programming 

Objective f * 
Weight, lb 
Max. stress, psi 
Max. displ., in 
Frequency, Hz 

Under-achievements 

CPU time (sec) 

Goal programming Compromise programming 
p = l  p = 2  s = l  s = 2  

2.94 1 E4 
2.500E1 
5.000E - 1 

- 5'000EO 

O.Oo0 
O W 0  
0.456 
5.OOo 

20 825.0 

3.580E4 
2.500E1 
4.267E - 1 

- 6.444E0 

0.639E4 
O~OOO 
0.382 
3.556 

17 259.0 

1.518E5 
2.500E1 
1.415E - 1 

- 1OOE1 

37 342.0 

1-582E5 
2.500E1 
1.3938 - 1 

- 9.745E0 

20 361.0 

Weight: rnin = 2.941E4, max = 6-578E5 
Max. stress: min = 25.0, max = 30.0 
Max. displacement: min = 0.0445, max = 0.5 
Frequency: min = - 10.0, max = - 5.0 
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Recall that we are dealing with positive Lagrange multipliers as the trade-offs. It is necessary to 
treat zero trade-offs Li j  because of the improper selection of cj or the non-conflicting nature 
between the j th objective and the referenced objective. The situation may occur if there are several 
objectives. In the solution of 25- and 200-bar design problems, we have encountered such a case. 
It is noted that the given cj  for the &-constraint of the stress objective may not produce a positive 
trade-off rate because of the limitation of buckling constraints and the interaction with other 
objectives. To handle such zero Li i s ,  we have to ask the DM the following question: 'How would 
you like to decreasef, by A:, units and change6 by V ~ ( X ' )  * dx(c ' ) /dc ,  units, while increasingf; by 
one unit? Given that fj = 6 ( x i )  for all j = 1, . . . , n.' 

Note that determining dx(~')/ds, is not easy for large scale problems, especially for structural 
optimization problems. This may be the main difficulty we have to overcome. Here in this section 
we use forward difference to compute ~ X ( E ~ ) / ~ E ,  as 

dX(&i) X(Ef) - x i  
d E l  8% 

x 

where cf = (c i ,  E : ,  . . . , cf + B E , ,  . . . , EL- As a result, we have to solve more auxiliary single 
objective optimization problems each time before the above question is asked, depending on the 
number of positive &'s. Moreover, the trade-off rate between minimax objectives should be 
noted. 

Tables 11, IV and VI display the summary of the trade-off information and the best-compro- 
mise solution obtained by the SWT method. From these results, we may realize that trade-offs of 
weight to maximum displacement and frequency are much more significant than to the maximum 

Table VI. Trade-off information and the best-compromise solution for the two-hundred-member plane 
truss design problem by the SWT method assuming the existence of a decision maker 

f, "6 f, 

Ideal value: 

Worst value: 

Referenced objective: 
Maximum tolerable levels: 

Trade-off 

2.941E4 25.0 4.452E - 2  

6578E5 300 0 5  

28.0 035  

1 7.54E4 270E1 228E-  1 
2 6.66E4 2'70E1 2'58E - 1 
3 6.48E4 2'70E1 2.58E - 1 
4 6.37E4 2'70E1 2.65E - 1 

- 10.0 

- 7.0 

- - 8'20EO 0 0  7.44E4 + 6  - 
- 8'20E1 0.0 5.89E4 - + 3  
- 7*90E1 0.0 6.38E4 4.51E4 + 1 - 1 

6.27E4 458E4 0 0  - 7.98El 0 0  

- 

Objectives 
Best-compromise solution 

A "6 f, f, 
6.371E4 2.70 1 E 1 2.645E - 1 - 7'975E1 

CPU time (sec) 192 566.0 



SELECT THE REFERENCE OBJECTIVE : (1.4) 
1 

PROVIDE THE MAXIMUM TOLERABLE LEVEL OF OBJECTIVE 2 : ( 2.500E+01, 3.000E+01) 
28.0 

PROVIDE THE MAXIMUM TOLERABLE LEVEL OF OBJECTIVE 3 : (  4.4523-02, 5.OOOE-01) 
0.35 

PROVIDE THE MAXIMUM TOLERABLE LEVEL OF OBJECTIVE 4 :(-1.000E+01,-5.000E+OO) 
-7.0 

TOLERA8LE LEVEL OF OBJECTIVE 2 USED IS 2.800000000E+01 
TOLERABLE LEVEL OF OBJECTIVE 3 USED IS 2.2780705203-01 
TOLERABLE LEVEL OF OBJECTIVE 4 USED IS -8.200000000E+00 
*****THE SUBPROBLEM IS FEASIBLE***** 

HOW MUCH WOULD YOU LIKE TO DECREASE F1 BY 7.4423+04 UNITS AND CHANGE F2 BY 
O.OOE+OO UNITS WHILE INCREASING F3 BY ONE UNIT ? GIVEN THAT : 
OBJECTIVE 1: 7.5373+04 2: 2.701E+01 3: 2.2783-01 4:-8.2003+00 

PLEASE PROVIDE YOUR SURROGATE WORTH : (10,-lo)? 
6 
TOLERABLE LEVEL OF OBJECTIVE 3 USED IS 2.5835301093-01 

HOW MUCH WOULD YOU LIKE TO DECREASE F1 BY 5.8873+04 UNITS AND CHANGE F2 BY 
O.OOE+OO UNITS WHILE INCREASING F4 BY ONE UNIT ? GIVEN THAT : 
OBJECTIVE 1: 6.6573+04 2: 2.701E+01 3: 2.5843-01 4:-8.200E+00 

PLEASE PROVIDE YOUR SURROGATE WORTH : (10,-lo)? 
3 
TOLERABLE LEVEL OF OBJECTIVE 4 USED IS -7.899918000E+00 
*****THE SUBPROBLEM IS FEASIBLE***** 

HOW MUCH WOULD YOU LIKE TO DECREASE F1 BY 6.3833+04 UNITS AND CHANGE F2 BY 
O.OOE+OO UNITS WHILE INCREASING F3 BY ONE UNIT ? GIVEN THAT : 
OBJECTIVE 1: 6.4763+04 2: 2.701E+01 3: 2.5843-01 4:-7.9003+00 

PLEASE PROVIDE YOUR SURROGATE WORTH : (10,-lo)? 
1 

HOW MUCH WOULD YOU LIKE TO DECREASE F1 BY 4.5103+04 UNITS AND CHANGE F2 BY 
O.OOE+OO UNITS WHILE INCREASING F4 BY ONE UNIT ? GIVEN THAT : 
OBJECTIVE 1: 6.4763+04 2: 2.701E+01 3: 2.584E-01 4:-7.900E+00 

PLEASE PROVIDE YOUR SURROGATE WORTH : (10,-lo)? 
-1 

TOLERABLE LEVEL OF OBJECTIVE 2 USED IS 2.800000000E+01 
TOLERABLE LEVEL OF OBJECTIVE 3 USED IS 2.6446220273-01 
TOLERABLE LEVEL OF OBJECTIVE 4 USED IS -7.974930500E+OO 

HOW MUCH WOULD YOU LIKE TO DECREASE F1 BY 6.274Et04 UNITS AND CHANGE F2 BY 
0.000Et00 UNITS WHILE INCREASING F3 BY ONE UNIT ? GIVEN THAT : 
OBJECTIVE 1: 6.371Et04 2: 2.701Et01 3: 2:645E-01 4:-7.975EtOO 

PLEASE PROVIDE YOUR SURROGATE WORTH : (10,-10)? 
0 

HOW MUCH WOULD YOU LIKE TO DECREASE F1 BY 4.580E+04 UNITS AND CHANGE F2 BY 
O.OOOE+OO UNITS WHILE INCREASING F4 BY ONE UNIT ? GIVEN THAT : 
OBJECTIVE 1: 6.3713+04 2: 2.701E+01 3: 2.645E-01 4:--7.9753+00 

PLEASE PROVIDE YOUR SURROGATE WORTH : (10,-lo)? 
0 

*****REACH THE BEST-COMPROMISE SOLUTION***** 

Figure 4. An illustration of the interactive solution process for the optimization of structures with multiple minimax 
objectives by the SWT method assuming the existence of a decision maker (200-bar case) 
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stress. This agrees with those obtained by goal and compromise programming methods. Figure 
4 is an illustration of the interactive solution process for the optimization of structures with 
multiple minimax objectives. During the interactive process, the D M  or the engineer can 
systematically compare the objectives from the trade-off information provided by the program 
and reach the best-compromise solution. 

CONCLUSION 

The use of a minimax multiobjective optimization model to provide a systematic parameter 
sensitivity analysis is discussed. Three structural optimization problems are reformulated and 
solved by three multiobjective optimization techniques. Among these methods, goal and compro- 
mise programming need less computational effort but the trade-off between objectives is much 
difficult than for the SWT method. This is because the SWT method uses first order information 
of the objectives. If the D M  or the engineer has already had a favourite goal in mind, goal 
programming may be used. On the other hand, compromise programming will be chosen if the 
computational efforts are emphasized and the specific goal is not provided in advance. The SWT 
method gives a very good procedure for the systematic parameter sensitivity analysis though it 
requires much more computational effort. Numerical experience of the SWT method shows that 
the optimum point for each auxiliary single objective optimization problem may be taken as the 
initial guess for the next one. Such a treatment may significantly save computational effort. 

The selection of the system parameters before the optimization is difficult. It is even more 
difficult for large scale problems. This paper solved the problem and completed the application of 
multiobjective optimization techniques to large scale structural design optimization problems. 
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APPENDIX 

Trade-ofS functions 

For the multiobjective optimization problem formulated as 

min Ji (X) ,  i = 1,2, . . . , k 

&(X) d 0, i = 1,2, . . . , m 
subject to 

the trade-off function, denoted T j ( x ) ,  between the ith and j th objectives, is defined as 

where 

It is evident that the direct use of the definition is impractical and prohibitive. Thus, the concept 
of duality theory and Lagrange multipliers in non-linear programming as well as the &-constraint 
method are used as the alternative approach to construct the trade-off matrix. 
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The &-constraint problem Pi(&) can be considered as 

minX(x) (A41 

subject to 
f ; . ( x ) < ~ ~ ,  j # i ,  j = l , 2  , . . . ,  k 

gl(x) < 0, 1 = 1,2, . . . , rn (A6) 

where ej = f j * ( x )  + &>, j # i, j = 1,2, . . . , k, 2 0,j # i, j = 1,2, . . . , k.f*(x) are the minimum 
solution of the ith objective of problem (Al)  and E; will be varied parametrically in the process of 
constructing the trade-off functions. c j  are known as the maximum tolerable levels. The gener- 
alized Lagrangian L of problem (A4) is 

?n k 

where p k  and lij are the generalized Lagrange multipliers. The behaviour of the minimum value of 
the objective function as E~ varies is of special interest, so we have 

or 
aL 
aEj ‘.. = - - 

Applying the Kuhn-Tucker conditions, 

Aij  2 0, Aij(fi(x) - e j )  = 0, j # i, i, j = 1,2, . . . , k (‘410) 

p L r > O ,  p l g l = O ,  Z = l , 2  , . . . ,  m (A1 1) 

andfi’(x) = L. 
We find that equations (AlO)-(All) hold only if A, = 0, or fj(x) - e j  = 0, or both. Only 

non-zero Lagrange multipliers correspond to the non-dominated solutions, whereas the zero 
Lagrange multipliers correspond to the dominated solutions. It should be noted that only those 
Lij > 0, which impliesJ(x) = E ~ ,  are important for our analysis. Therefore, equation (A9) becomes 

or 
T. .  = - 1.. 

1J 1J 

There exist the following relationships between 1,: 

lkj = l k i A i j  for all k # j 6414) 

and 
1 

’ k i  = 

The use of the trade-off function relationships can dramatically save computational effort. 
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