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Nuclear phonon excitations with different values of K” are correlated under the influence

of the coriolis interaction. This will lead to a correction term for the cranking moment of

inertia. It is suggested that this phonon correlation may improve the agreements between

theoretical calculations and experimental observations for nuclear ground state moments of

inertia.

The theoretical calculation of the moments of inertia for nuclear ground state is an old

problem since Inglis proposed the cranking model. ’ This model, with a self-consistent

Hartee-Fock wave function, gives results in a rigid body value for the nuclear moments of

inertia which is two to three times larger than that of the experimental observation. It was
indicated by Bohr and Mottelson2 that residual two-body forces, not inccluded in the one

body self-consistent field, would lower the moment, and that the pairing correlations would
be the most important. It was shown explicitly by Belyaev3 that residual interactions of the
pairing type indeed lower the moment of inertia from the rigid value through the following

two effects. First, there is an increased energy denominator due to the replacement of the

particle-hole excitation energy by the two-quasi-particle energy

E, + E,, , with E, = [(ek - 1)’ + A2 I l2

the quasi-particle energy, ek the Nilsson single particle energy of a state k, X the Fermi

energy and A the pairing gap parameter. Second, there is a reduction of; the jx matrix ’

element in the numerator by a factor (uví-vuí),  where u and v are the coefficients of the

Bololiubov transformation.4 The BCS cranking moment of inertia then is given by

0/(2li9 =  2
lab ljx l&Y2 = c (uk vk, -vk I+,>~ laC ljx I kí>12

kk’ E, + E,, kk’ E, + E,.
(2)

where &,> is the BCS ground state, lki?> the twoquasi-particle excited state, and E the
time reversal state of k. Numerical calculations were performed by Griffin and Rich’  and
by Nilsson and Prior.6 With the choice of the ìbestî parameter values they obtained a
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remarkable agreement with experiments for both the rare earth and the actinide nuclei.

However, the theoretical values for the moments of inertia are still systematically  about

twenty percent too small, on the average.
Corrections due to residual interactions were derived by Migda17  and by Belyaev.8

Numerical calculations by Mayer et al. ’ showed that the effects of the residual particle-hold
and the residual particle-particle on the moments of inertia of all rare earth nuclei nearly
cancel each other and leave the simple cranking value approximately unchanged. Calcula-
tions by Birbrair and NikolaevlO  and by Kammuri and Kusunorl on the same subject did

not take the rotation effects into account. Recently Luo et al.ë*  used phonon ground state

to calculate the moment of inertia of Eq. (2). That is, in Eq. (2), the quasi-particle ground
state & was replaced by the RPA phonon ground state, the 2quasi-particle  excitations by
the phonon excitations, and the two-quasi-particle energy denominator by the phonon

energy. However, the improvement was really small and the systematic deviations of the

theoretical moments of inertia from experimental values were left still not understood.
From the expression for the theoretical moment of inertia in Eq. (2) one can easily see

that only elementary states with two-quasi-particles coupled to k = l+ can have contribution
to the moment of inertia. This is true also for all the existing calculations for theoretical
nuclear moments of inertia. In this note, it is proposed that 2quasi-particle  states with K #
l+ could make a small contribution to the nuclear moment of inertia (may be about twenty

percent in the average). This contribution to the moment of inertia can be treated in the

following.
Consider a Hamiltonian H consists of a Nilsson single particle Hamiltonian with pairing

correlations and residual two-body interactions. Using a Bololiubov transformation to treat

the pairing force the Hamiltonian becomes

(3)

where U, is the BCS quasi-particle ground state energy, E, the quasi-particle energy, O$ and

cyk the quasi-particle creation and destrubtion operators, and H, the residual interactions.

To treat the residual interaction, we follow the standard approach of Beranger13  for random
phase approximation method (RPA) and define the phonon operator Q& as

where the Aís are two-quasi-particle operators

with (kkí) coupled to K. The inverse transformation is

A+ = CyKPQ+
cx

+CZ@Q
p Q 0 p a 0.

(4)

(5)

(6)
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In terms of phonon operators, the Hamiltonian can be written approximately as

H = u. + U, + ,ZZ XK,(Q+KorQKcv  + Q&Q&  = u. + uQ + c H, )
K (7)

where UQ is the ground state phonon correlation energy and hK, the phonon excitation

energy. The phonon ground state laO> and the one phonon state IaKol> are

QKaIaO>ë=  0,forallKandcu . (8)

The physical pictures of the ground state I@ë,>  and the excited state laKol> are very well
understood that (see for instance Ref. (13)) laO> is a superposition with 0,4, 8, . . . quasi-

particle states, and IaKa> has only states with 2, 6, 10, . . . quasi-particles. The com-
mutator of the operater A with A’  can be written as

[A,,AL J = 6i, + small terms including (azaap) . (10)

As long as the ground state quasi-particle density is small, the small terms in Eq. (10) can
be neglected at the end of the calculation, and we have obtained a good approximation
solution for our problem. There is a major advantage of this approach that the difficulty of

the problem of spurious states does not arise as Baranger  has shown in Ref. (13).
To treat the nuclear rotation, we shall follow the approach in Ref. (14) since by using

that approach many important nuclear rotational properties can be easily seen, for instance,

the moment of inertia and the gapless  superfluid in rotating nuclei. Introduce the semi-

classical coriolis term wjx into the Hamiltonian, instead of dealing with the quasi-particle

operators aí and a, we treat the twoquasi-particle operators A’  and A and consider their

equations of motion. In the quasi-particle representation, this coriolis term can be written

as

'kk' = <kijxIkí>,  Rzk,  = (ukvk,  + ukCvk),  R& = ukvk, - uk,vk (12)

In Hw we have omitted terms with k = *l/2 and kí = F1/2 for simplicity. In actual
calculations, we can add a correction term at the end. The basic commutator we need to
consider is the commutator of Hw with a two-quasi-particle operator. Let us consider the
operator Aí, = At h = 01; I$ or A,í = Ai k = ai CY+1 I 2 I ?

, k with (k,&)  or (k, k2) coupled to K.
we have
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(13)

(13a)

In Eqs. (13) and (13a), we have neglected terms of the quasi-particle density type as it is
usually done in the RPA treatment. The first term on the right hand side of Eq. (13)

vanishes if K is not 1 or r The commutator of A, with Hw can be obtained by taking

Hermitian conjugate of Eqs. (13) and (13a) then take a time reversal transformation,

remembering that Hw changes sign under time reversal operation. We now look at the

summation k in Eqs. (13). Since we want to have terms where jx matrix elements do not
vanish, we must have k=k, *l so k-k,=k, -k, ?l=K+l ; also, k=k, +I so ki -k=K+l. In Eqs.

(11) and (12), we assume k > 0 and kí > 0, terms with k < 0 in Eq. (13) must vanish.

Therefore, a two-quasi-particle state h!,K > with the interaction of the coriolis potential
can generate states of @,K*l >. That is, states with Kfl will certainly contribute to the

nuclear moment of inertia.
The equations of motion for Q+, and Q& can be worked out in a straightforward

manner by using Eqs. (4), (6), (13) and (13a) as

[Q+,,, H1 = f FK+lfl K+lf3  p
Ka Q’

+ z F~,,Q;_p

where

FKaK+lp

FK”  =
K-10 z 1 c us> (yKa y K+lP

&,k,)  ,(-) k, k;-) k,k, k$-)k,

Ka zK+lP  _  yKa yK+lP
+ (sn’  k&j ì)k  ,(+I  (ëk,  k,

1 I 2 k,k!+)  k,k, k,k$+)

GK”K-  lp

(14)

(15)
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(k, k,) means a pair of states k, and k2, Cjs),,, = <kl_i,Ikí>(ukvkC  + vkukC),  k(ë)  = the state
with the value of z-component of angular momentum = k f 1, during the summation over
(kik,), if the pair (k,k2) is (krk,), sn=+l, if (kik,) is (kik,),  sn= -1. The equation for

Q, can be obtained from equation (14) by replacing Q;, Q, and Aa with Qi, Q, and -Xa

repectively. The equations for Q; and Q, are the same as those for qti and Q; respectively

except the 7) terms change signs. Equations (14) has the form

d
xr=Ar+R,, o r r+r,)=A(r+r,) (16)

with R, = Ar,, or r,, = A-ëR,. Let the eigen vector be R = G(r + rO), the inverse trans-

formation is therefore

r = G-1 R _ r. = G-1 R _ A-1 R, (17)

Since the rotating frequency w is small, we are interested only in the lowest order approxi-

mation. Here R, is a first order quantity in o, A is a diagonal matrix D plus a first order

small matrix. In the combination of A-’ R, we only need D-’  R,. Let A = D + WU and

G = I + e where I is the unit matrix and E is a first order small matrix in w. Then in the first

order approximation, we have

ëij
E..  = w

1J Di - Dj
(18)

The inverse transformation G-l is I - eij. The iunperturbed  eigen energies in Eq. (14) are

(X1,h2,...,hN,-X1,-h2,-.., --AN). Using Eqs. (14), (16) and (17),  we finally obtain

FK”
Q',, = s',, - 'K&Xa -F" CA 7; Gc+lP

FFî,,

KC2 K+lP +  x, -xK_,p GMP)

GK”K+lP GK&K-l/3
- Fîí

XKa  -hK+lP qK+lP
+

hKa -xK_,p qK-lp)
(19)

The q’  and q in Eq. (19) are the eigen vectors of Eq. (14). The expression for QG can be

obtained from Eq. (19) by replacing Q,ë,  q;,, qp and V, with k, qp, q, and -77, repectiveb.
q+  and q are the new creation and destruction operators of the rotational phonon in the

rotating system with the new rotational ground state defined as

qKo! I aO(w)> = 0, for all K and Q . (20)
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Using the Hamiltonian (7), the rotational energy  of a system is (for ground state band)

E  =  <~~(w);HI~,,(o)>-<~~IH(~~>  . (21)

Therefore we have

0/(2P) =  2  c c
I jlrkPRk,(Y$ - Z$)I*

+2x [
(G::,, )* (G&, )*

+
(kk')cr h Kcg 'K(Y + 'K+lfl 'K(y +'K-1~

1 . (22)

The first term on the right hand side of Eq. (22) is just the usual cranking moment of inertia

which is due to the self-energies of the K = 1 excitations, while the 2nd term is a correction
coming from the off-diagonal parts of the interaction among excitations of all the Kís. Note

that the self-energy of K # 1 excitations do not exist. Note also that the 2nd term in Eq.
(22) is positive definite.

The coriolis Hamiltonian Hw of Eq. (11) consists of a quasi-boson term H,” and a

fermion term Hi. Let us first consider the effect of the Ht on the physical Hamiltonian H
of Eq. (7). In the Q-representation, we can write

H + HA = U, + U, + x HK + (KzjW K+l a
[Xla(Q;aQla  + QtzQiG)

+~a <Q;, +Qla - Qt(* - Qi,)l .

This can be written as

H + H; = U, +

(23)

(24)

with t, = Q, + rl,l& t, = Q, -v,/& The ground state I@,,> of the Hamiltonian (24)
is defined as .& I@,> = 0 for all o and K = 1, and QKa I@[> = 0 for all 1y and K # 1. The

boson Hamiltonian H,” has no effect on H, for K # 1. If we use iQ5> to calculate

<@,)H\@,> - <QO iHI@,>, we get exactly the moment of inertia as the first term in Eq.
(22). Now the physical picture becomes clear when we add the fermion Hamiltonian HS

into the Hamiltonian (24). It will introduce the effects described by Eqs. (13) and (13a).  ìA

quasi-boson state Ik, k2 > is an approximate boson state, but actually it is a fermion 2quasi-

particle state. The interaction H: can convert one of the fermions in Ik, k,> from a state
ki into a state ki such that, since ki + kj = K and k! = kí f 1, we have kf + kj = ki + kj + 1 =

K f 1. In this way, all the K-states are correlated so as to produce a correction term for the

moment of inertia as described by the 2nd term in Eq. (22). However, in order to see how
large this effect can contribute to the nuclear moment of inertia, numerical calculations are
certainly needed. It is hoped that, in the near future, theoretical results may be available for
experimental comparison.
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