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Abstract The profile minimization problem arose from the study of sparse matrix
technique. In terms of graphs, the problem is to determine the profile of a graph G

which is defined as

P(G) = min
f

∑

v∈V (G)

max
x∈N [v](f (v) − f (x)),

where f runs over all bijections from V (G) to {1,2, . . . , |V (G)|} and N [v] = {v} ∪
{x ∈ V (G) : xv ∈ E(G)}. This is equivalent to the interval graph completion problem,
which is to find a super-graph of a graph G with as few number of edges as possible.
The purpose of this paper is to study the profiles of compositions of two graphs.
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1 Introduction

All graphs in this paper are simple, i.e., finite, undirected, loopless and without mul-
tiple edges. For a graph G, we use V (G) to denote the set of vertices of G and E(G)

the set of edges. The profile minimization problem arose from the study of sparse
matrix technique. It can be defined in terms of graphs as follows.

In a graph G, the neighborhood of a vertex v is NG(v) = {x ∈ V (G) : xv ∈ E(G)},
and the closed neighborhood of v is NG[v] = {v} ∪ N(v). If there is no ambiguity,
we often use N(v) for NG(v) and N [v] for NG[v].

A proper numbering of a graph G of n vertices is a 1–1 mapping f : V (G) →
{1,2, . . . , n}. Given a proper numbering f , the profile width of a vertex v in G is

wf (v) = max
x∈N [v](f (v) − f (x)).

The profile of a proper numbering f of G is Pf (G) = ∑
v∈V (G) wf (v), and the

profile of G is

P(G) = min{Pf (G) : f is a proper numbering of G}.
A profile numbering of G is a proper numbering f such that Pf (G) = P(G). The
profile minimization problem is to determine the profile of a graph. It is equivalent to
the interval graph completion problem described as below.

Recall that an interval graph is a graph whose vertices correspond to closed inter-
vals in the real line, and two distinct vertices are adjacent if and only if their corre-
sponding intervals intersect. It is well-known that a graph G of n vertices is an interval
graph if and only if it has an interval ordering which is an ordering v1, v2, . . . , vn of
V (G) such that

i < j < k and vivk ∈ E(G) imply vjvk ∈ E(G). (1)

This property can be re-stated as: A graph G of n vertices is an interval graph if
and only if it has an interval numbering which is a proper numbering f such that

f (x) < f (y) < f (z) and xz ∈ E(G) imply yz ∈ E(G). (2)

Interval orderings or interval numberings are used frequently in this paper.
Having the concept of interval numbering (2) in mind, it is then easy to see that for

any proper numbering f of G, the graph Gf defined by the following is an interval
super-graph of G with |E(Gf )| = Pf (G):

V (Gf ) = V (G) and E(Gf ) = {yz : f (x) ≤ f (y) < f (z), xz ∈ E(G)}.
In other words, we have

Proposition 1 (Lin and Yuan 1994) The profile minimization problem is the same as
the interval graph completion problem. Namely,

P(G) = min{|E(Ĝ)| : Ĝ is an interval super-graph of G}.
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Fig. 1 The graph P3[P5]

An interval super-graph Ĝ of a graph G with |E(Ĝ)| = P(G) is called an interval
completion of G (see Fomin and Golovach 2000).

The profile minimization problem has been extensively studied in the literature
(e.g. Guan and Williams 1998; Lai and Williams 1997; Odlyzko and Wilf 1987;
Snay 1976; Wiegers and Monien 1988), for a good survey see (Lai and Williams
1999). From an algorithmic point of view, the problem is known to be NP-complete
(see Garey and Johnson 1979). While many approximation algorithms for profiles
of various graphs have been developed (see Gibbs et al. 1976; Koo and Lee 1992;
Luo 1992; Smyth 1985), Kuo and Chang (1994) gave a polynomial-time algorithm
for finding profiles of trees. Among the non-algorithmic results for profiles, we
are most interested in those graphs obtained from graph operations. The classes of
graphs in this line include Cartesian product of certain graphs (Lin and Yuan 1994;
Mai 1996), sum of two graphs (Lin and Yuan 1994), composition of certain graphs
(Lai 1997, 2002), and Coronas of certain graphs (Lai 1997).

The purpose of this paper is to study the profiles of compositions of graphs. The
composition of two graphs G and H is the graph G[H ] vertex set V (G)×V (H) such
that (x, y) is adjacent to (x′, y′) in G[H ] if xx′ ∈ E(G) or x = x′ with yy′ ∈ E(H).
Notice that G[H ] has |V (G)||V (H)| vertices and |E(G)||V (H)|2 + |V (G)||E(H)|
edges.

For convenience, suppose V (G) = {xi : 1 ≤ i ≤ |V (G)|} and V (H) = {yj : 1 ≤
j ≤ |V (H)|}. We may write (xi, yj ) as vi,j . Let Ri = {vi,j : 1 ≤ j ≤ |V (H)|} repre-
sents the ith row (a copy of H ) of G[H ] and Cj = {vi,j : 1 ≤ i ≤ |V (G)|} the j th
column (a copy of G). See Fig. 1 for the example P3[P5].

In this paper we establish bounds for profiles P(G[H ]) of compositions of graphs
G and H . Also, exact value is determined when G is an interval graph as well as
certain graphs.
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2 Preliminary

A close related class of graphs to interval graphs are chordal graphs. A graph is
chordal if every cycle of length greater than three has a chord. A vertex v of a graph
G is simplicial if neighborhood N(v) is a clique. It is well-known that a graph G of
n vertices is chordal if and only if it has a perfect elimination ordering which is an
ordering v1, v2, . . . , vn of V (G) such that

i < j < k, vivj ∈ E(G) and vivk ∈ E(G) imply vjvk ∈ E(G). (3)

It is clear that an interval ordering is a perfect elimination ordering. Consequently, in-
terval graphs are chordal. Notice that vi is a simplicial vertex of the induced subgraph
G{vi ,vi+1,...,vn} for 1 ≤ i ≤ n.

Denote by S(G) the set of all simplicial vertices of a graph G. It is clear by the
definition that S(G) induces a subgraph GS(G) in which every component is a com-
plete graph. It is then the case that the number of components of GS(G) equals to
the maximum number of an independent set in GS(G). We use s(G) to denote this
number.

Suppose now G is an interval graph, and v1, v2, . . . , vn is an interval ordering of
G. For 1 ≤ i ≤ n and x ∈ V (G), let

Ni(x) = {vj ∈ N(x) : j ≥ i}, Ni[x] = {vj ∈ N [x] : j ≥ i},
N−(vi) = {vj ∈ N(vi) : j < i}.

If necessary, we use N−(vi;v1, v2, . . . , vn) for N−(vi) to emphasize the ordering. We
use σ(G;v1, v2, . . . , vn) to denote the number of vertices vi with N−(vi) = ∅. And
let σ(G) = maxσ(G;v1, v2, . . . , vn), where the maximum is taken over all interval
orderings of G.

Lemma 2 Suppose v1, v2, . . . , vn is an interval ordering of an interval graph G. If
vq ∈ N−(vp) and Nq [vp] ⊆ Nq [vq ], then the ordering u1, u2, . . . , un resulted from
v1, v2, . . . , vn by moving vq to the position just after vp is also an interval ordering
of G.

Proof For i < j < k with uiuk ∈ E(G), we shall verify that ujuk ∈ E(G) by consid-
ering three cases. Let ui = vi′ , uj = vj ′ and uk = vk′ .

Case 1. i′ < j ′ < k′. In this case, vi′vk′ = uiuk ∈ E(G) implies vj ′vk′ ∈ E(G) and
so ujuk ∈ E(G).

Case 2. q = k′ < j ′ ≤ p. In this case, vpvq ∈ E(G) implies vj ′ ∈ Nq [vp] ⊆
Nq [vq ] and so ujuk = vj ′vq ∈ E(G).

Case 3. q = j ′ < i′ ≤ p < k′. In this case, vi′vk′ = uiuk ∈ E(G) implies vk′ ∈
Nq [vp] ⊆ Nq [vq ] and so ujuk = vqvk′ ∈ E(G). �

Proposition 3 For any interval graph G, we have σ(G) = s(G).

Proof Suppose v1, v2, . . . , vn is an interval ordering of G with σ(G;v1, v2, . . . , vn) =
σ(G). By the definition of an interval ordering, any vertex vi with N−(vi) = ∅ is
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simplicial. Also, N−(vi) = N−(vj ) = ∅ imply that vi and vj are not adjacent. So,
σ(G) ≤ s(G).

Suppose σ(G) < s(G). Then, by the definitions of σ(G) and s(G), the graph
GS(G) has a component C containing no vertex vi with N−(vi) = ∅. Let vp be
an arbitrarily vertex in C. For vp−1 ∈ N−(vp), since vp is simplicial, Np−1[vp] ⊆
Np−1[vp−1]. According to Lemma 2, we can move vp−1 to the position just after vp

to get a new interval ordering of G. Continue this process we shall get an interval or-
dering u1, u2, . . . , un with N−(vp) = ∅. More precisely, if N−(vp;v1, v2, . . . , vn) =
{vq, vq+1, . . . , vp−1}, then in fact u1, u2, . . . , un is obtained from v1, v2, . . . , vn by
moving vp into the position between vq−1 and vq . So, N−(vi;u1, u2, . . . , un) =
N−(vi;v1, v2, . . . , vn) for i < q or i > p. Notice that by the definition of C and vp ,
we have N−(vi;v1, v2, . . . , vn) 
= ∅ for q ≤ i ≤ p. Hence, N−(vp;u1, u2, . . . , un) =
∅ implies that σ(G;v1, v2, . . . , vn) < σ(G;u1, u2, . . . , un), a contradiction. This
proves the proposition. �

For a graph G, define ŝ(G) = max{s(Ĝ) : Ĝ is an interval completion of G} and
σ̂ (G) = max{σ(Ĝ) : Ĝ is an interval completion of G}.

Proposition 4 If x is a simplicial vertex of a graph G, then x is also simplicial in
any interval completion Ĝ of G.

Proof Suppose to the contrary that x is not simplicial in Ĝ. Choose an interval or-
dering v1, v2, . . . , vn of Ĝ with x = vp . We may assume that the interval ordering is
chosen such that p is as small as possible. Then, there are vq, vr ∈ NĜ(vp) such that
q < r and vqvr 
∈ E(Ĝ). We may assume that q is chosen as large as possible. It is
the case that q < p by the interval ordering property. In fact, q = p − 1 for otherwise
we have Np−1[vp] ⊆ Np−1[vp−1]. In this case, by Lemma 2, we may switch vp−1
and vp to get a new interval ordering of G in which x has a smaller index than p,
a contradiction.

Let s be the least index with vs ∈ N−(vp). It is easy to see that v1, v2, . . . , vn

is an interval ordering of Ĝ − vsvp . If vsvp 
∈ E(G), then Ĝ − vsvp is an interval
super-graph of G with fewer edges than Ĝ, a contradiction. So, vsvp ∈ E(G).

Since vr ∈ NĜ(vp) − NĜ(vp−1), the least index t with vt ∈ N−(vr ) is p. Again,

vpvr ∈ E(G) for otherwise v1, v2, . . . , vn is an interval ordering of Ĝ − vpvr which
is an interval super-graph of G with fewer edges than Ĝ.

Since vp is simplicial in G, both vsvp, vpvr ∈ E(G) imply that vrvs ∈ E(G) ⊆
E(Ĝ). As s ≤ q < r , by the interval ordering property, vqvr ∈ E(Ĝ), a contradic-
tion. �

Proposition 5 If I is an independent set of a graph G and I ⊆ S(Ĝ) for an interval
completion Ĝ of G, then I is also independent in Ĝ and so |I | ≤ σ̂ (G).

Proof Suppose to the contrary that x, y ∈ I are such that xy 
∈ E(G) but xy ∈ E(Ĝ).
Choose an interval ordering v1, v2, . . . , vn of Ĝ. Let x = vp and y = vp′ . Without
loss of generality, we may assume that p < p′ and the interval ordering is chosen
so that p is as small as possible. We then have N−(vp) = ∅, for otherwise there is
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some vertex vq ∈ N−(vp). Since vp is simplicial in Ĝ, we have Nq [vp] ⊆ Nq [vq ].
According to Lemma 2, we can move vq to the position just after vp to get a new
interval ordering of Ĝ in which x has a smaller index than p, a contradiction.

As x = vp and y = vp′ are two adjacent simplicial vertices in Ĝ, we have
NĜ[vp] = NĜ[vp′ ]. The fact that N−(vp) = ∅ then implies that the least index t with
vt ∈ N−(vp′) is p. It is then easy to see that Ĝ − vpvp′ is an interval supper-graph of
G, a contradiction. This proves the proposition. �

3 Bounds for profiles of compositions of graphs

This section establishes upper and lower bounds for the profiles P(G[H ]) of com-
positions of graphs G and H . Exact value is also determined when G is an interval
graph.

First, an upper bound.

Theorem 6 If Ĝ is an interval supper-graph of a graph G of order m and H is a
graph of order n, then

P(G[H ]) ≤ |E(Ĝ)|n2 + (m − σ(Ĝ))

(
n

2

)
+ σ(Ĝ)P (H).

Proof Choose an interval completion Ĥ of H . Then, G[H ] is a subgraph of Ĝ[Ĥ ]
and so P(G[H ]) ≤ P(Ĝ[Ĥ ]). Choose an interval ordering x1, x2, . . . , xm of Ĝ such
that there are exactly σ(Ĝ) vertices xi with N−(xi) = ∅. Also, choose an interval
ordering y1, y2, . . . , yn of Ĥ . Consider the ordering

v1,1, v1,2, . . . , v1,n, v2,1, v2,2, . . . , v2,n, . . . , vm,1, vm,2, . . . , vm,n

using the lexicographical ordering. That is, (i, j) < (i′, j ′) if and only if i < i′ or
i = i′ with j < j ′. We shall check below that this is an interval ordering for the
supper-graph Θ of Ĝ[Ĥ ] with V (Θ) = V (Ĝ[Ĥ ]) and E(Θ) = E(Ĝ[Ĥ ])∪{vi,j vi,j ′ :
N−(xi) 
= ∅,1 ≤ j 
= j ′ ≤ n}. Suppose (i1, j1) < (i2, j2) < (i3, j3) with vi1,j1vi3,j3 ∈
E(Θ).

Case 1. i1 ≤ i2 < i3. In this case, vi1,j1vi3,j3 ∈ E(Θ) implies that xi1xi3 ∈ E(Ĝ).
By the interval ordering property, xi2xi3 ∈ E(Ĝ) and so vi2,j2vi3,j3 ∈ E(Ĝ[Ĥ ]) ⊆
E(Θ).

Case 2. i1 < i2 = i3. In this case, vi1,j1vi3,j3 ∈ E(Θ) implies that xi1xi3 ∈ E(Ĝ)

and so N−(xi3) 
= ∅. By the definition of Θ , we have vi2,j2vi3,j3 ∈ E(Θ) since i2 = i3
and j2 
= j3.

Case 3. i1 = i2 = i3. In this case, j1 < j2 < j3. Suppose vi2,j2vi3,j3 
∈ E(Θ). By the

definition of Θ , we have N−(xi3) = ∅ and so vi1,j1vi3,j3 ∈ E(Ĝ[Ĥ ]). Then, yj1yj3 ∈
E(Ĥ ) and so yj2yj3 ∈ E(Ĥ ) which in turn implies that vi2,j2vi3,j3 ∈ E(Ĝ[Ĥ ]) ⊆
E(Θ).

Therefore, Θ is an interval super-graph of Ĝ[Ĥ ] with |E(Ĝ)|n2 + (m −
σ(Ĝ))

(
n
2

) + σ(Ĝ)P (H) edges. The theorem then follows. �
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Corollary 7 If G is a graph of order m and H is a graph of order n, then

P(G[H ]) ≤ P(G)n2 + (m − σ̂ (G))

(
n

2

)
+ σ̂ (G)P (H).

Proof The corollary follows from Theorem 6 by choosing an interval completion Ĝ

of G with σ̂ (G) = σ(Ĝ). �

Next, we consider a lower bound.

Theorem 8 If G is a graph of order m without K2,3 as an induced subgraph and H

is a graph of order n, then

P(G[H ]) ≥ |E(G)|n2 + (m − σ̂ (G))

(
n

2

)
+ σ̂ (G)P (H).

Proof Suppose K is an interval completion of G[H ]. Notice that K is chordal. Let

V (G) = {xi : 1 ≤ i ≤ m},
V (H) = {yj : 1 ≤ j ≤ n},
V (K) = {vi,j = (xi, yj ) : 1 ≤ i ≤ m,1 ≤ j ≤ n},
R(K) = {xi ∈ V (G) : KRi

is not a clique in K} and η = |R(K)|,
R′(K) = {x ∈ R(K) : x is not simplicial in G}.

Claim 1 R(K) is an independent set in G.

Proof of Claim 1 Suppose to the contrary that xpxq ∈ E(G) for some xp, xq ∈
R(K). By the definition of R(K), there are four vertices vp,a, vp,b, vq,c, vq,d in
K such that vp,avp,b /∈ E(K) and vq,cvq,d /∈ E(K). Since xpxq ∈ E(G), we have
{vp,avq,c, vp,avq,d , vp,bvq,c, vp,bvq,d} ⊆ E(K) and hence vp,avq,cvp,bvq,dvp,a is a
chordless 4-cycle, a contradiction to the fact that K is chordal. �

Claim 2 If xi ∈ R(K) and xp 
= xq are in NG(xi), then vp,avq,b ∈ E(K) for 1 ≤
a,b ≤ n.

Proof of Claim 2 By the definition of R(K), vi,j vi,k /∈ E(K) for two distinct vertices
vi,j and vi,k . For 1 ≤ a, b ≤ n, in the 4-cycle vp,avi,j vq,bvi,kvp,a , since vi,j vi,k /∈
E(K) we have vp,avq,b ∈ E(K). �

Claim 3 If σ̂ (G) < η, then K has at least (|E(G)| + � η−σ̂ (G)
2 �)n2 non-horizontal

edges.

Proof of Claim 3 According to Claim 1, R(K) is independent in G. Since σ̂ (G) < η,
by Proposition 5, in each interval completion Ĝ of G, there are at least r = η −
σ̂ (G) = η − ŝ(G) vertices xi1, xi2, . . . , xir of R(K) which are not simplicial in Ĝ.
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By Proposition 4, they are not simplicial in G and so are in R′(K). For each xij

choose two neighbors xpj

= xqj

with xpj
xqj

/∈ E(G). By Claim 2, there are n2 non-
horizontal edges vpj ,avqj ,b in K , where 1 ≤ a, b ≤ n. As G contains no K2,3 as an
induced subgraph, each {xpj

, xqj
} may equal to at most one {xpj ′ , xqj ′ } with j 
=

j ′. Therefore, there are at least � η−σ̂ (G)
2 �n2 non-horizontal edges other than those

already in G[H ]. �

We are now ready to prove the theorem. First, by the definition of R(K), there are
at least (m − η)

(
n
2

) + ηP (H) horizontal edges in K . If σ̂ (G) ≥ η, then

P(G[H ]) ≥ |E(G)|n2 + (m − η)

(
n

2

)
+ ηP (H)

≥ |E(G)|n2 + (m − σ̂ (G))

(
n

2

)
+ σ̂ (G)P (H),

since P(H) ≤ (
n
2

)
. If σ̂ (G) < η, then by Claim 3 we have

P(G[H ]) ≥
(

|E(G)| +
⌈

η − σ̂ (G)

2

⌉)
n2 + (m − η)

(
n

2

)
+ ηP (H)

≥ |E(G)|n2 + (m − σ̂ (G))

(
n

2

)
+ σ̂ (G)P (H),

since n2

2 >
(
n
2

)
and η > σ̂ (G). The theorem then follows. �

Corollary 9 If G is a chordal graph of order m and H is a graph of order n, then

P(G[H ]) ≥ |E(G)|n2 + (m − σ̂ (G))

(
n

2

)
+ σ̂ (G)P (H).

Proof The corollary follows from that any chordal graph does not contain K2,3 as an
induced subgraph. �

Notice that the difference between the upper bound in Corollary 7 and the lower
bound in Corollary 9 is at their first terms P(G)n2 and |E(G)|n2. For the case when
the graph is interval, we have P(G) = |E(G)| and so

Corollary 10 If G is an interval graph of order m and H is a graph of order n, then

P(G[H ]) = P(G)n2 + (m − σ̂ (G))

(
n

2

)
+ σ̂ (G)P (H). (4)

It is our interest to know for which graph G equality (4) holds for any graph H . For
this purpose, let

Ω = {G : P(G[H ]) = P(G)|V (H)|2 + (|V (G)| − σ̂ (G))

(|V (H)|
2

)

+ σ̂ (G)P (H) for any graph H }.
So, we have that Ω contains all interval graphs.

A slightly different lower bound is as follows.
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Theorem 11 If G is a graph of order m and H is a graph of order n, then either
G ∈ Ω or

P(G[H ]) ≥ (P (G) + 1)n2 + (m − η)

(
n

2

)
+ ηP (H)

≥ (P (G) + 1)n2 + (m − α(G))

(
n

2

)
+ α(G)P (H)

for some nonnegative integer η ≤ α(G), where α(G) is the independence number
of G.

Proof We use precisely the same notation K,V (G),V (H),V (K),R(K),η,R′(K)

as in the proof of Theorem 8. Notice that Claims 1 and 2 are still valid.
Case 1. η ≤ σ̂ (G).
For j1, j2, . . . , jm ∈ {1,2, . . . , n}, The subgraph K{vi,ji

:1≤i≤m} is an interval super-
graph of G and so has at least P(G) edges. For each non-horizontal edge vi′,j ′vi′′,j ′′
in K , there are nm−2 subgraphs K{vi,ji

:1≤i≤m} contain this edge. Since there are nm

subgraphs K{vi,ji
:1≤i≤m}, there are at least nmP (G)/nm−2 = P(G)n2 non-horizontal

edges in K . By the definition of η, we have

P(G[H ]) ≥ P(G)n2 + (m − η)

(
n

2

)
+ ηP (H)

≥ P(G)n2 + (m − σ̂ (G))

(
n

2

)
+ σ̂ (G)P (H),

This together with Corollary 7 gives that G ∈ Ω .
Case 2. η > σ̂ (G).
In this case, we claim that each K{vi,ji

:1≤i≤m} has at least P(G) + 1 edges and
hence the desired inequalities hold. Suppose to the contrary that there is some
K{vi,ji

:1≤i≤m} having just P(G) edges. We may view vi,ji
as xi and then K{vi,ji

:1≤i≤m}
is an interval completion of G. By Claim 1, R(K) is independent in G. By Claim 2,
R(K) ⊆ S(K{vi,ji

:1≤i≤m}). Hence, by Proposition 5, R(K) is also independent in
K{vi,ji

:1≤i≤m}. And then η = |R(K)| ≤ σ̂ (G), a contradiction. �

Corollary 12 If α(G) − σ̂ (G) ≤ 2, then G ∈ Ω .

Proof Suppose to the contrary that G 
∈ Ω . According to Corollary 7 and Theo-
rem 11,

(P (G) + 1)n2 + (m − α(G))

(
n

2

)
+ α(G)P (H)

≤ P(G)n2 + (m − σ̂ (G))

(
n

2

)
+ σ̂ (G)P (H)

for some graph H of n vertices. This gives n2 ≤ (α(G) − σ̂ (G))(
(
n
2

) − P(H)) ≤
n(n − 1) − 2P(H), which is impossible. Therefore, G ∈ Ω . �
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4 Gap between the upper and the lower bounds

There is a gap between the upper bound in Corollary 7 and the lower bound in The-
orem 11. This section gives examples for which the upper or the lower bound are
attainable. We also give conditions for which the upper bound attains.

The join of graphs G1 and G2 is the graph G1 ∨G2 with V (G1 ∨G2) = V (G1)∪
V (G2) and E(G1 ∨ G2) = E(G1) ∪ E(G2) ∪ {xy : x ∈ V (G1) and y ∈ V (G2)}.

Theorem 13 If G1 is a graph of m1 vertices and G2 a graph of m2 vertices, then

P(G1 ∨ G2) = min

{
P(G1) + m1m2 +

(
m2

2

)
,P (G2) + m1m2 +

(
m1

2

)}
.

Furthermore, if P(G1 ∨G2) = P(Gi)+m1m2 + (mj

2

)
for i 
= j , then σ̂ (G1 ∨G2) =

σ̂ (Gi).

Proof The theorem follows from the fact that for any interval super-graph K of
G1 ∨ G2, either V (G1) or V (G2) is a clique in K . This is because if xiyi 
∈ E(K)

for xi, yi ∈ V (Gi) (i = 1,2), then x1x2y1y2x1 is a chordless 4-cycle in K which is
impossible. �

Theorem 14 If G1 is a graph of m1 vertices, G2 a graph of m2 vertices and H a
graph of n vertices, then (G1 ∨ G2)[H ] = G1[H ] ∨ G2[H ] and so

P((G1 ∨ G2)[H ])

= min

{
P(G1[H ]) + m1m2n

2 +
(

m2n

2

)
,P (G2[H ]) + m1m2n

2 +
(

m1n

2

)}
.

Proof The first equality follows from definition. The second equality then follows
from Theorem 13. �

Now, let G1 be the path P7 of 7 vertices and G2 the graph obtained from K1,6 by
adding a new edge. Notice that both G1 and G2 are interval graphs of 7 vertices; and
G1 has 6 edges while G2 has 7 edges. Also, σ(G1) = 2 and σ(G2) = 5. Then, for
any graph H of n vertices, we have

P(G1 ∨ G2) = 6 + 7 · 7 +
(

7

2

)
= 76,

P (G1[H ]) = 6n2 + (7 − 2)

(
n

2

)
+ 2P(H) = 8.5n2 − 2.5n + 2P(H),

P (G2[H ]) = 7n2 + (7 − 5)

(
n

2

)
+ 5P(H) = 8n2 − n + 5P(H),

P ((G1 ∨ G2)[H ]) = min{P(G1[H ]),P (G2[H ])} +
(

7n

2

)
+ 7n · 7n

= min{P(G1[H ]),P (G2[H ])} + 73.5n2 − 3.5n,
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σ̂ (G1 ∨ G2) = 2,

α(G1 ∨ G2) = 5,

upper bound = 76n2 + (14 − 2)

(
n

2

)
+ 2P(H) = 82n2 − 6n + 2P(H),

lower bound = (76 + 1)n2 + (14 − 5)

(
n

2

)
+ 5P(H)

= 81.5n2 − 4.5n + 5P(H).

Depending on H , it is possible that P(G1[H ]) < P (G2[H ]) or P(G1[H ]) ≥
P(G2[H ]). For the former case, P((G1 ∨ G2)[H ]) is equal to the upper bound; for
the later case, P((G1 ∨ G2)[H ]) is equal to the lower bound.

Theorem 15 Suppose G1,G2 and H are graphs of order m1,m2 and n, respectively.
If G1 ∈ Ω , G2 
∈ Ω ,

(
m2
2

) − (
m1
2

) ≤ P(G2) − P(G1) and α(G2) ≤ σ̂ (G1) + 2, then
G1 ∨ G2 ∈ Ω and

P((G1 ∨ G2)[H ])

=
(

P(G1) + m1m2 +
(

m2

2

))
n2 + (m1 + m2 − σ̂ (G1))

(
n

2

)
+ σ̂ (G1)P (H).

Proof By the assumption
(
m2
2

) − (
m1
2

) ≤ P(G2) − P(G1) and Theorem 13, we have

P(G1 ∨ G2) = P(G1) + m1m2 +
(

m2

2

)
and σ̂ (G1 ∨ G2) = σ̂ (G1).

Now

P(G1[H ]) + m1m2n
2 +

(
m2n

2

)

= P(G1)n
2 + (m1 − σ̂ (G1))

(
n

2

)
+ σ̂ (G1)P (H) + m1m2n

2 +
(

m2n

2

)

=
(

P(G1) + m1m2 +
(

m2

2

))
n2 + (m1 + m2 − σ̂ (G1))

(
n

2

)
+ σ̂ (G1)P (H)

≤
(

P(G2) + m1m2 +
(

m1

2

))
n2 + (m1 + m2 − α(G2))

(
n

2

)

+ α(G2)P (H) + 2

(
n

2

)

≤ (P (G2) + 1)n2 + (m2 − α(G2))

(
n

2

)
+ α(G2)P (H) + m1m2n

2 +
(

m1n

2

)

≤ P(G2[H ]) + m1m2n
2 +

(
m1n

2

)
.
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Notice that in the above formulas, the first equality follows from that G1 ∈ Ω , the
second equality from that

(
m2n

2

) = (
m2
2

)
n2 + m2

(
n
2

)
, the third inequality from that(

m2
2

) − (
m1
2

) ≤ P(G2) − P(G1) and α(G2) ≤ σ̂ (G1) + 2, the forth inequality from

that
(
m1n

2

) = (
m1
2

)
n2 +m1

(
n
2

)
and 2

(
n
2

) ≤ n2, and the fifth inequality from Theorem 11.
The theorem then follows from Theorem 14. �

Theorem 16 Suppose G1,G2 and H are graphs of order m1,m2 and n, respectively.
If G1 ∈ Ω , G2 ∈ Ω ,

(
m2
2

) − (
m1
2

) ≤ P(G2) − P(G1) and σ̂ (G2) ≤ σ̂ (G1), then G1 ∨
G2 ∈ Ω and

P((G1 ∨ G2)[H ])

=
(

P(G1) + m1m2 +
(

m2

2

))
n2 + (m1 + m2 − σ̂ (G1))

(
n

2

)
+ σ̂ (G1)P (H).

Proof The arguments are similar to those for the proof of Theorem 15. �

5 Exact value

By using the theorems in the previous sections, we are able to get exact values for
many P(G[H ]) when G are given precisely. At the end of this paper we only consider
one of the case that can not be deduced directly by the previous properties, namely
for the case when G = Cm with m ≥ 4.

Lemma 17 If m ≥ 4 and C is a non-complete interval super-graph of Cm, then
|E(C)| ≥ 2m − 5 + s(C).

Proof Since C is chordal, C contains at least m − 3 chords of Cm and so |E(C)| ≥
2m − 3. The lemma is clearly true for s(C) ≤ 2. We may now assume that s(C) ≥ 3.
It is then the case that m ≥ 6. Choose an interval ordering v1, v2, . . . , vm of C. Let
i < j < k and vi, vj , vk are independent simplicial vertices of C. Choose an vi–vk

path P in Cm not passing vj . As i < j < k, in this path there are adjacent vertices
vi′ and vk′ with i′ < j < k′. By the interval ordering property, we have vjvk′ ∈ E(C).
Let vj ′ , vj ′′ be the two neighbors of vj in Cm. Then vj ′vj ′′ ∈ E(C) as vj is simplicial
in C. So C′ = C − vj is an interval super-graph of Cm−1 with s(C′) ≥ s(C) − 1 ≥ 2,
which implies that C′ is not a complete graph. By the induction hypothesis, |E(C′)| ≥
2(m − 1) − 5 + s(C) − 1. As the path P does not pass vj , we have vk′ 
∈ {vj ′, vj ′′ }
and so |E(C)| ≥ |E(C′)| + 3 ≥ 2m − 5 + s(C). �

Theorem 18 If m ≥ 4 and H is a graph of order n, then

P(Cm[H ]) = (2m − 3)n2 + (m − 2)

(
n

2

)
+ 2P(H).

Consequently, Cm ∈ Ω .
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Proof Let G = Cm and we use the same notation K,V (G),V (H),V (K),R(K),η,

R′(K) as in the proof of Theorem 8. Notice that Claims 1 and 2 are still valid.
Consider the interval super-graph C′ obtained from Cm by adding m − 3 chords

passing a fixed vertex. Then |E(C′)| = 2m − 3 and σ̂ (C′) = s(C′) = 2. Suppose C′′
is an interval completion of Cm with σ(C′′) = σ̂ (Cm). It is clear that C′′ is not a
complete graph, and so σ̂ (C′′) ≥ 2. By Lemma 17, 2m − 3 = |E(C′)| ≥ |E(C′′)| ≥
2m − 5 + σ(C′′) ≥ 2m − 3 and so in fact P(Cm) = 2m − 3 and σ̂ (Cm) = 2.

By Corollary 7, P(Cm[H ]) ≤ (2m−3)n2 + (m−2)
(
n
2

)+2P(H). To see the other
inequality, we consider two cases.

Case 1. η ≤ 2.
For ji, j2, . . . , jm ∈ {1,2, . . . , n}, the subgraph K{vi,ji

:1≤i≤m} is an interval super-
graph of Cm and so has at least P(Cm) = 2m − 3 edges. For each non-horizontal
edge vi′,j ′vi′′,j ′′ in K , there are nm−2 subgraphs K{vi,ji

:1≤i≤m} contain this edge.

Since there are nm subgraphs K{vi,ji
:1≤i≤m}, there are at least nm(2m − 3)/nm−2 =

(2m − 3)n2 non-horizontal edges in K . By the definition of η, we have

P(Cm[H ]) ≥ (2m − 3)n2 + (m − η)

(
n

2

)
+ ηP (H)

≥ (2m − 3)n2 + (m − 2)

(
n

2

)
+ 2P(H).

Case 2. η > 2.
In this case, we may view vi,ji

as xi and then C = K{vi,ji
:1≤i≤m} is an interval

super-graph of Cm. By Claim 1, R(K) is independent in Cm. By Claim 2, R(K) ⊆
S(C). Hence, s(C) ≥ η and so |E(C)| ≥ 2m− 5 + s(C) ≥ 2m− 5 +η by Lemma 17.
As in the proof of case 1, there are at least (2m− 5)+η non-horizontal edges. By the
definition of η, we have

P(Cm[H ]) ≥ (2m − 5 + η)n2 + (m − η)

(
n

2

)
+ ηP (H)

≥ (2m − 3)n2 + (m − 2)

(
n

2

)
+ 2P(H). �
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