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具 有 優 先 權 特 性 之 移 動 式 感 測 器 派 遣 方 法 的 設 計 與 建 置 

學生：王文杰 

 

指導教授：曾煜棋 
 

 

國立交通大學資訊學院產業研發碩士專班 

摘 要       

無線感測器網路的使用提供一個方便的方式來監控環境。但其並非一定會在

我們關注的區域部署感測器，而在這樣的情形下，如何獲得環境狀態是一個很大

的挑戰。在本篇論文中，我們嘗試利用移動式感測器在沒有部署感測器網路的待

測環境中快速並詳細的得知事件的發生。在這樣的動作中會要求移動式感測器對

環境作全區域的掃描，藉此發現事件在哪裡發生，之後再派遣感測器到事件的發

生地作更進一步的資料收集。我們在移動式感測器上使用一個以優先權為基礎的

派遣方式，接著我們會根據事件發生的位置與事件本身的優先權定義作為拜訪事

件時的判斷條件，若事件的優先權較高且移動距離較短者將優先拜訪。在這樣的

定義下，移動式感測器將能快速完成他們的工作並且更重要的事件也能在消失前

優先分析。我們建立了一個系統驗證我們的派遣方法。模擬的結果也呈現這個方

法的效果。 
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ABSTRACT 

Wireless sensor networks provide a convenient way to monitor the physical environment. 
However, it is not always possible to have a deployment of a sensor network in the region of 
interest. In this case, how to obtain the environmental situations is a big challenge. In this 
paper, we propose to use mobile sensors to quickly capture and analyze the events occurred in 
a region without any deployment of sensor networks. The idea is to request mobile sensors to 
fully scan the environment to find out where events occur and then dispatch mobile sensors to 
event locations to conduct more advanced data collections. We propose a priority-based 
dispatch scheme for mobile sensors to visit events according to events' locations and priorities. 
In particular, events with higher priorities and shorter moving distances will be visited first. In 
this way, mobile sensors can quickly finish their jobs and the most important events can be 
analyzed earlier before they disappear. We have implemented a prototyping system to 
demonstrate our dispatch idea. Simulation results are also presented to verify the effectiveness 
of the proposed schemes. 
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Chapter 1

Introduction

Recently, mobile sensors have attracted a lot of attentions by researchers.

By mounting sophisticated sensing devices on mobile platforms [1–3], we can

move these mobile sensors to conduct sensing missions at certain locations.

With mobility, mobile sensors can significantly extend the capability of sensor

networks.

In this thesis, we consider how to quickly obtain the events occurred in a

region without any pre-deployment of sensor networks. This issue is quite im-

portant for those surveillance applications in some harsh environments where

it is difficult to deploy static sensors in advance. Under such a scenario, one

possible solution is to dispatch mobile sensors to collect rough environmen-

tal information and then carefully analyze events later. In particular, we

first request mobile sensors to fully scan the environment to collect basic
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information of events (e.g., locations and priorities). Then, we can dispatch

mobile sensors to visit these events to conduct more advanced analysis. For

example, one can imagine a surveillance application to detect gas leakage in

an airtight factory without deployment of sensor networks. We can dispatch

mobile sensors to fully scan the factory to collect the densities of gas in differ-

ent locations and find out potential sources of leakage. Then, mobile sensors

can be dispatched to these sources to obtain more detailed information.

Given the priorities of event locations, it is a critical issue to efficiently

dispatch a mobile sensor to visit all event locations such that the total moving

time of the mobile sensor is minimized and the event locations with higher

priorities can have a shorter waiting time, where the waiting time of an

event location is defined as the duration until the mobile sensor reaches that

location. Clearly, we should reduce the total moving time of the mobile

sensor so that events can be quickly analyzed to satisfy the requirements of

surveillance applications. On the other hand, since events may disappear in

short time, the mobile sensor should first visit event locations with higher

priorities earlier.

In the literature, a large amount of researches on mobile sensors have fo-

cused on how to use mobile sensors to deploy a sensor network [4–7], how to

enhance the network coverage [8], and how to improve the network connec-

tivity [9]. The work in [10] discusses how to move more mobile sensors close
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to event locations, but it focuses on maintaining complete coverage of the

sensing field. Several studies [11, 12] implement the pursuer-evader game by

a sensor network, where a pursuer (i.e., a mobile sensor) needs to intercept

an evader (i.e., a moving object) by the assistance of a static sensor net-

work. However, these works focus on how to quickly tell the pursuer where

the evader is through the sensor network. Some works [13, 14] consider to

dispatch mobile sensors to visit events in a sensor network consisting of both

static and mobile sensors. In [13], static sensors that have detected events

will invite and navigate nearby mobile sensors to move to their locations.

The mobile sensor that has shorter moving distance and more energy, and

whose leaving will not cause a large coverage hole, will be invited by the

static sensors. The work in [14] addresses how to balance the loads of mobile

sensors when dispatching them to visit event locations, so that the system

lifetime of mobile sensors can be extended. However, these works assume

that events have the same importance, so their results may not be directly

applied to our sensor dispatch problem.

In this thesis, we propose a priority-based dispatch scheme for mobile

sensors to visit event locations. Given an environment with obstacles, we

first request mobile sensors to fully scan the environment to obtain the lo-

cations and priorities of events. Then, we dispatch mobile sensors to visit

and carefully analyze these events based on their locations and priorities. In

3



 

particular, the dispatch problem can be viewed as a variance of the traveling

salesman problem (TSP) that considers the priorities of visiting locations.

Since TSP is NP-complete, we thus propose a heuristic approach to effi-

ciently calculate the dispatch schedule of mobile sensors. We also develop

a prototyping system to demonstrate our dispatch idea. This prototype is

used to monitor the densities of carbon dioxide (CO2) in an indoor environ-

ment. Specifically, we mount CO2 sensing devices on a mobile platform and

dispatch these mobile sensors to monitor CO2 densities and to analyze po-

tential CO2 sources. Simulations are also conducted to validate the efficiency

of our dispatch scheme in a large-scale scenario.

Major contributions of this thesis are two-fold. First, our proposed dis-

patch scenario allows people to monitor and analyze important events oc-

curred in a region with obstacles, even though there is no infrastructure of

sensor networks inside that region. By dispatching mobile sensors to fully

scan the region and visit event locations based on their locations and prior-

ities, we can quickly assess the whole environment situation. This may be

especially helpful for rescuing applications in some hazardous regions. Sec-

ond, we implement a prototyping system to realize our dispatch idea. This

prototype system also demonstrates a surveillance application to monitor the

CO2 densities in an indoor environment.

The rest of this thesis is organized as follows: Section 2 formally defines
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the dispatch problem and reviews some related works. Section 3 proposes our

priority-based dispatch scheme. Section 4 shows our prototyping experiences.

Section 5 gives some simulation results. Section 6 concludes this thesis.
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Chapter 2

Preliminary

2.1 Problem Statement

We consider a sensing fieldA possibly with obstacles, as shown in Fig. 2.1(a).

We assume that these obstacles do not partition A. Otherwise, full scan-

ning wouldn’t be possible. For convenience, we logically divide A into small

squares (called grids). In this way, obstacles can be modeled by grids (marked

by gray in Fig. 2.1(b)). Mobile sensors will patrol inside A along these grids

to conduct full scanning and to visit event locations. Each mobile sensor has

four basic moving patterns: east, west, north, and south, where the mobile

sensor will move toward the specified direction with one-grid length. Moving

from one grid to another will take ∆m time to finish. The other four diagonal

directions can be each combined by two basic moving patterns. However, it
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requires ∆t time for a mobile sensor to make a 90-degree turn.

obstacles

mobile

sensor

grid

(a) (b)

Figure 2.1: An example to model the environment: (a) sensing field A with

obstacles and (b) logically dividing A into grids.

We assume that after a mobile sensor fully scans A, we can obtain a set

of event locations L = {(l1, p1), (l2, p2), · · · , (ln, pn)}, where li = (xi, yi) and

pi > 0 are the location and priority of an event i, respectively. A smaller

value of pi means a higher priority. Note that two events may have the same

priority. Our sensor dispatch problem is stated as follows: Given a mobile

sensor initially located at l0 = (x0, y0) and the set L, how to dispatch the

mobile sensor to visit all locations in L such that the total moving time of

the mobile sensor is minimized and event locations with higher priorities can

have shorter waiting time.

Note that the above modeling does not consider the moving time to fully
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scan the sensing field A and the time to detect events. Since fully scanning

A requires the mobile sensor to visit every grid inside A and the time to

analyze an event depends on the sensing capability of the mobile sensor,

we thus ignore these two latencies. In addition, we focus on the dispatch

problem of one mobile sensor. In the case of multiple mobile sensors, we can

partition A into multiple non-overlapped subregions and then dispatch one

mobile sensor to travel inside each subregion.

2.2 Related Works

Our dispatch problem can be viewed as a TSP variance that considers the

priorities of visiting locations. TSP is one of the famous NP-complete prob-

lems and there have been many approximation solutions proposed to solve it

and its variances [15]. Given an undirected weighted graph G = (V , E), TSP

asks how to find a Hamilton cycle C on G such that the total edge weight of

C can be minimized. To solve TSP, Blaser [16] suggests that we can first find

the minimum spanning tree on G and then visit all vertices in V by a pre-

order tree walk of the spanning tree. The visiting sequence of vertices is the

approximate solution of TSP. Some works adopt more sophisticated methods

to solve TSP. For example, Zhu and Chen [17] solve TSP by simulating ants’

behaviors. In particular, each time when an ant passes through a path, it

8



 

will leave pheromone along that path. Such pheromone will attract other

ants to walk through this path. Thus, when a path is walked by more ants,

it will have a larger amount of pheromone. By adopting this concept, we

can first try some paths to visit vertices in the graph. When a “good” path

is found, it will leave more pheromone and thus attracts more ants to walk

through it. Finally, the path with the most pheromone will be the solution.

Other works use simulated annealing [18], genetic algorithm [19], and tabu

search method [20] to solve TSP. Obviously, these methods can approximate

a better solution, but they may suffer from a higher computation cost.

On the other hand, several works consider the variances of TSP. The work

in [21] introduces the concept of time window to TSP, where each location

is associated with a time duration where we expect the salesman will visit

that location within the specified time duration. This can be applied to

some applications with timetables such as bus scheduling or consignment

of goods. The work [22] considers a dynamic environment, where visiting

locations may be disappeared or changed as time goes by. This can be used

in some applications like realtime computing in satellite systems. Given

a set of locations L, the work [23] considers how to visit locations in L

with a minimum cost, where a subset L′ ⊆ L of locations may follow some

probability model. As can be seen, the solutions of these works may not be

directly applied to our problem.
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Chapter 3

A Priority-Based Dispatch

Scheme

Given the sensing field A and a mobile sensor initially located to l0, our

priority-based dispatch scheme involves the following steps:

1. Dispatch the mobile sensor to visit all grids in A to collect locations

and rough information of events in L. To conduct such a full scanning,

we can adopt the solutions proposed in [24].

2. Calculate the shortest distance d(li, lj) between any two locations li and

lj, where li and lj ∈ L ∪ {l0}. Note that the above calculation should

consider the existence of obstacles. How to calculate d(li, lj) will be

discussed in Section 3.1.
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3. Construct a weighted complete graph G = (V , E), where V = L ∪ {l0}.

For each vertex li ∈ L, we associate it with a priority value pi. How

to assign the priority depends on the application requirement. One

possible assignment is based on events’ strengths (e.g., gas’s densities).

The weight wi,j of each edge (li, lj) ∈ E is defined as the moving time

for a mobile sensor to move along the shortest distance d(li, lj).

4. Find a Hamilton cycle (l0, lv1 , lv2 , · · · , lvn , l0) on G to minimize

w0,v1 +
n−1∑
i=1

wvi,vi+1
+ wvn,0, (3.1)

such that

x−1∑
i=1

wvi,vi+1
≤

y−1∑
i=1

wvi,vi+1
,∀pvx ≤ pvy . (3.2)

Eq. (3.1) means that we should minimize the total moving time for the

mobile sensor to visit all event locations, and Eq. (3.2) indicates that

an event location lvx with a higher priority should have smaller waiting

time compared with another event location lvy with a lower priority.

Note that we eliminate the term w0,v1 from both the left and right

parts of Eq. (3.2). How to find such a Hamilton cycle will be discussed

in Section 3.2.

5. Dispatch the mobile sensor to visit event locations following the se-

quence of lv1 , lv2 , · · · , lvn and then come back to l0. The mobile sensor
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will move along the shortest path calculated in step 2 when visiting an

event location.

6. Go to step 1 to conduct full scanning again after a predefined period

of time.

3.1 Calculating the Shortest Distance between

Two Locations

In this section, we discuss how to calculate the shortest distance between

any two locations, considering the existence of obstacles. Given the structure

of the sensing field and two locations lS and lD, the calculation of the shortest

distance between lS and lD involves the following steps:

1. For each grid i that is not an obstacle, we associate it with a grade gi.

Initially gi = ∞ for all i.

2. We start from the grid with lD and set gD = 0. Then, for each adjacent

grid j (in the directions of north, south, east, and west) of a grid i that

has already been assigned with a non-infinite grade, we set gj = gi + 1.

If such a grid j is an obstacle, we just ignore it.

3. Repeat step 2 until the grid with lS has been assigned with a non-

infinite grade.
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4. We then start from the grid with lS. For the current grid i, we always

select the adjacent grid j that is not an obstacle and gj = gi − 1 as

the next grid to move toward. If two or more such grids are found,

we select the one without changing the current moving direction. In

the case that all candidates for the next grid will change the current

moving direction, we randomly select one grid to move.

5. Repeat step 4 until we arrive at the grid with lD.

Fig. 3.1 gives an example, where the sensing field is modeled by a 5 × 5

grids. Two locations lS and lD are located at grids (0, 0) and (1, 4), respec-

tively. We start from the grid (1, 4) and assign a grade to each grid, until to

the grid (0, 0), as shown by the numbers in Fig. 3.1(b). Then, we start from

grid (0, 0) and find the shortest path to grid (1, 4) following the decreasing

order of grades, as shown in Fig. 3.1(c). Note that when we arrive at grid

(0, 1), there are two grids (0, 2) and (1, 1) that can be selected as candidates

to move. Since the current moving direction is east (from (0, 0) to (0, 1)),

we will select grid (0, 2) as the next grid because it need not to change the

moving direction. The total moving time for a mobile sensor to move along

this shortest distance is 5∆m + 2∆t.
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Figure 3.1: An example to calculate the shortest distance between two loca-

tions lS and lD.

3.2 Finding a Suitable Hamilton Cycle

Recall that given a weighted complete graph G, our goal is to find a

Hamilton cycle starting from l0 such that both Eqs. (3.1) and (3.2) can be

satisfied. However, minimizing the total moving time of the mobile sensor

(that is, to satisfy Eq. (3.1)) may not always guarantee that event locations

with a higher priority can have a smaller waiting time (that is, to satisfy

Eq. (3.2)), and vice versa. Therefore, we use a cost C to take care of the

effects of both Eqs. (3.1) and (3.2):

C = f(v1) · w0,v1 + f(v2) · wv1,v2 + · · ·+ f(vn−1) · wvn−2,vn−1 + wvn−1,vn + wvn,0,

(3.3)

where f(·) ≥ 1. In particular, we should find a Hamilton cycle with a

minimum cost C in step 4. Here, the cost should take both the total moving

time and the priorities into consideration. Thus, we use a penalty function
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f(·) to reflect the effect of priority. Intuitively, f(vi) should return a larger

value if an event location lvi
with a lower priority is selected. By f(·), those

event locations with higher priorities could be selected first. However, to

avoid the case that some nearer event locations are not selected due to their

lower priorities, which may cause the mobile sensor to move in a too long

distance, the returning value of f(·) cannot be too large. Therefore, we

suggest setting the penalty function f(·) as follows:

f(vi) = 1 +
pvi
− pmin

pmax − pmin

, (3.4)

where pmin = min
∀lj∈L−LV

{pj} and pmax = max
∀lj∈L−LV

{pj}, where LV is the set of

event locations that have already been visited. In Eq. (3.4), we can observe

that when an event locations lvi
with a larger value of pvi

(i.e., lower priority)

is selected, the cost C will be increased since its corresponding weight wvi−1,vi

will increase. On the other hand, because 1 ≤ f(·) ≤ 2, the effect of penalty

function will not be too significant. In this way, a nearer event location with

lower priority could be selected to minimize the total moving time. Note that

in Eq. (3.3), the term wvn−1,vn is not multiplied by the factor f(vn) because

lvn is the only candidate to be selected as the next visiting location.

It can be observed that finding a Hamilton cycle with a minimum cost C is

NP-hard because we can reduce TSP to this problem by setting all f(·) = 1

in Eq. (3.3). Thus, we propose a heuristic solution by adopting a simple
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greedy idea. Specifically, we start finding the cycle from the vertex l0. Given

the current location li, we select an unvisited vertex lj as the next visiting

location such that the value of f(j) · wi,j can be minimized. We repeat the

above operation until all event locations are visited. With such a greedy

selection, we can obtain a Hamilton cycle with a smaller cost.

Fig. 3.2 gives an example to show how to find the Hamilton cycle with

the minimum cost. By adopting the TSP solution, we will obtain a Hamilton

cycle 0 → 7 → 9 → 2 → 5 → 0, which has a total edge weight of 8 + 11 +

9 + 9 + 9 = 46. However, it will have a cost of

(1 +
7− 2

9− 2
)× 8 + (1 +

9− 2

9− 2
)× 11 + (1 +

2− 2

5− 2
)× 9 + 9 + 9 = 62.71.

On the other hand, our greedy approach will obtain a Hamilton cycle of 0 →

2 → 5 → 7 → 9 → 0, which has a total edge weight of 9+9+8+11+12 = 49.

This greedy approach will result in a cost of

(1 +
2− 2

9− 2
)× 9 + (1 +

5− 5

9− 5
)× 9 + (1 +

7− 7

9− 7
)× 8 + 11 + 12 = 49.

As can be seen, although our greedy approach will find a Hamilton cycle with

a total edge weight larger than that of the TSP solution, it can result in a

quite smaller cost. In this way, event locations with higher priorities can be

visited first.
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Figure 3.2: An example to show how to find the Hamilton cycle with the

minimum cost.

3.3 Time Complexity Analysis

Next, we analyze the time complexity of our priority-based dispatch

scheme. Let n be the number of event locations, and k be the number of

grids in the sensing field, excluding those grids used to model obstacles. In

step 1, conducting a full scanning takes O(k) time because the mobile sensor

has to travel all grids. In steps 2 and 3, we need to calculate the shortest

distance between any two locations. This operation takes O(k) time to assign

grade to each grid and requires at most O(k) time to calculate the shortest

path since the worst case is to pass through all grids. The above operation

will be repeated
(

n+1
2

)
times. So, it takes totally

(
n+1

2

) · O(k) = O(n2 · k) to

conduct steps 2 and 3. Step 4 takes O(n) time due to the greedy selection,

and step 5 requires at most O(k) time for the mobile sensor to visit all event

locations (because the worst case is to travel all grids). Therefore, the total
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time complexity of our priority-based dispatch scheme is

O(k) + O(n2 · k) + O(n) + O(k) = O(n2 · k).
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Chapter 4

Prototyping Experiences

We have implemented a prototyping system to monitor CO2 densities in

an indoor environment. Such a prototyping system is consisted of a control

server and a mobile sensor. The mobile sensor will be commanded to fully

scan the environment to collect CO2 densities inside the room. Then, the

control server will identify some locations with higher CO2 densities (that is,

potential CO2 sources) and request the mobile sensor to visit these locations,

according to our proposed greedy dispatching approach. Below, we give

our prototyping experiences, including hardware specifications and the user

interface at the control server.
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4.1 Hardware Specifications

Fig. 4.1 shows our mobile sensor. It consists of following major compo-

nents:

• Stargate processing board: The Stargate [25] is the major process-

ing platform of the mobile sensor. It is composed of a 32-bits, 400-MHz

Intel PXA-255 XScale RISC processor with 64 MB main memory and

32 MB extended flash memory. It also has a daughter board with an

RS-232 serial port, a PCMCIA slot, a USB port, and a 51-pin exten-

sion connector. It drives the CO2 sensor through a COM port, and

an IEEE 802.11 WLAN card through its PCMCIA slot. The Stargate

controls the LEGO car via a USB port connected to a LEGO infrared

(IR) tower, as shown in Fig. 4.1.

• LEGO car: The LEGO car [26] supports mobility for the mobile

sensor. It has an infrared ray receiver in the front to receive commands

from the tower (which are passed from the Stargate processing board)

and two motors on the bottom to drive wheels. It also has several light

sensors for the navigation purpose, which will be described later.

• CO2 sensor: The CO2 sensor is used to collect the CO2 densities inside

the room. Here, we adopt TGS4161 [27] as our CO2 sensor. TGS 4161
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is a solid electrolyte CO2 sensor that provides miniaturization and low

power consumption. It can detect a range of 350 to 5000 ppm of CO2

density.

• IEEE 802.11 WLAN card: The control server will pass commands

(for example, full scanning command and dispatching command) to the

mobile sensor via the IEEE 802.11 WLAN card. When collecting CO2

readings from the CO2 sensor, the mobile sensor can also report the

data to the control server through the WLAN card.

Note that some more sophisticated sensing devices can be attached to the

mobile sensor to increase its sensing capability. For example, we can attach

a webcam on the mobile sensor so that it can take snapshot at the event

locations to provide image information. The size of the mobile sensor is

approximately 20 cm× 15 cm.

Fig. 4.2 gives the operating flowchart of the mobile sensor. Once powering

on, the Stargate processing board will configure all corresponding hardwares,

including the drivers of the IEEE 802.11 WLAN card, USB ports, and the

COM port. Then, it will communicate with the control server to obtain

a dynamic IP (this can be done by setting a DHCP server at the control

server) and set up all necessary network configurations. After establishing

the communication link with the control server, the Stargate processing board
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Figure 4.1: The mobile sensor.

will notify the CO2 sensor to start collecting data and then wait commands

from the control server (via the WLAN card). When receiving a dispatching

command from the control server, the mobile sensor will move to the specified

locations and report the CO2 densities of these locations to the control server.

In our prototyping, an experimental 9× 5 grid-like sensing field is imple-

mented, as shown in Fig. 4.3. Black tapes represent roads and golden tapes

represent intersections. One mobile sensor is placed on the sensing field. We

use some boxes to model obstacles. Red crosses on the sensing field indicate

the event locations, where we can put some small piece of dry ice to simulate

CO2 sources.
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Figure 4.2: The operating flowchart of the mobile sensor.

4.2 User Interface at the Control Server

We have also designed a user interface at the control server for users to

monitor the statues of the sensing field and to control the actions of the

mobile sensor, as shown in Fig. 4.4. It has four areas: information, monitor,

status, and control areas. The information area shows the current status of

the mobile sensor, including the readings of the CO2 density, the location and

direction of the mobile sensor, and so forth. The monitoring area illustrates

the state of the sensing field, where the blue rectangle represents the mobile

sensor, the small yellow rectangles indicate event locations, and the grids

marked with oblique lines are obstacles. The status area gives the server’s

status, including the contents of packets exchanged with the mobile sensor.
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Figure 4.3: A 9× 5 grid-like sensing field in our experiment.

Finally, the control area provides an interface for users to control the motion

of the mobile sensors. Users can issue a high-level command such as taking

full scanning of the sensing field, or a low-level command such as moving

one-grid length or making a 90-degree turning.

At the control server, we also set up a DHCP server to assign dynamic IPs

to mobile sensors. Here, we use DHCPD32 [28] (version 1.10) as our DHCP

server, as shown in Fig. 4.5. In addition, we also provide an interface for

users to edit the map, as shown in Fig. 4.6. Users can specify the size of the
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Figure 4.4: User interface at the control server.

map, where the minimum and maximum map sizes are 2× 2 and 100× 100

grids, respectively. Obstacles can be specified by clicking corresponding grids.

With this map editor, users can easily model the sensing field.

Fig. 4.7 shows some snapshots of the user interface when executing our

priority-based dispatch scheme. Fig. 4.7 (a) illustrates the shortest path

between two locations. Fig. 4.7 (b) gives the final cost matrix (with six

locations), where the number in each grid indicates the length of the shortest
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Figure 4.5: The DHCP server.

path between two locations. Fig. 4.7 (c) shows the basic motion operations of

mobile sensor. For example, it takes four steps for the mobile sensor to move

to the event location with priority 1. The mobile sensor should move to east

with one grid-length, move to south with three grid-lengths, move to east

with three grid-lengths, and finally move to north with three grid-lengths.

Fig. 4.7 (d) shows the final result of the patrolling path of the mobile sensor.
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Figure 4.6: The map editor.
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(a) calculation of one path (b) the cost matrix

(c) the basic motion operations of the mobile sen-

sor

(d) the patrolling path of the mobile sensor

Figure 4.7: Snapshots of the user interface when executing the priority-based

dispatch scheme.
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Chapter 5

Simulation Results

We also develop a simulator to evaluate the performances of the proposed

dispatch scheme. We set up a sensing field as a 100 × 100 grids, on which

there may be several obstacles. We randomly pick up 50, 100, 150, 200,

250, and 300 grids (excluding those grids representing obstacles) as event

locations. The values of ∆m (that is, the cost to move one grid-length)

and ∆t (that is, the cost to make a 90-degree turning) are set to 1 and 2,

respectively. We mainly compare our priority-based dispatch scheme with

the TSP approximate solution [16].

Fig. 5.1 shows the comparison of the total moving time of the mobile

sensor under our priority-based dispatch scheme and the TSP approximate

solution. We can observe that the TSP solution has a larger total moving

time, because it is only an approximate solution. Our priority-based dispatch
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scheme adopts a greedy approach, so that it can have a smaller total moving

time.
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Figure 5.1: Comparison on the total moving time of the mobile sensor.

Fig. 5.2 gives the comparison of the costs (by Eq. (3.3)) of the Hamilton

cycles found by our dispatch scheme and the TSP solution. As can be seen,

our priority-based dispatch scheme can find a Hamilton cycle with a cost

smaller than that of the TSP solution. This indicates that event locations

with higher priorities could be visited first.

Fig. 5.3 shows the waiting time of event locations, by adopting our priority-

based dispatch scheme. In this experiment, we randomly select 100 locations

as event locations. In Fig. 5.3, we can observe that event locations with

higher priorities can have a shorter waiting time, which satisfy our goal.
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Figure 5.2: Comparison on the costs of the Hamilton cycles.
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Figure 5.3: Waiting time of event locations.
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Chapter 6

Conclusions

In this thesis, we have proposed a scenario to use mobile sensors to de-

tect events in a region without any deployment of wireless sensor network.

Mobile sensors will be first requested to conduct fully scanning of the region

to collect rough information of the environment and to identify potential

event locations. Then, mobile sensors will be dispatched to visit these event

locations according to their priorities. We have proposed a priority-based

dispatch scheme for mobile sensors to visit event locations. In particular,

our dispatch scheme can reduce the total time for the mobile sensor to visit

all event locations, while event locations with higher priorities can be vis-

ited first. In this way, those event locations with higher priorities will suffer

from lower waiting time. Simulation results have shown that our proposed

dispatch scheme outperforms the approximated solution of TSP, on both the
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total moving time of the mobile sensor and the average waiting time of event

locations with higher priorities. In this thesis, we have also implemented

a prototyping system to realize our dispatch idea. Such a prototyping sys-

tem can be used to monitor CO2 densities in an indoor environment. The

prototyping experience is also reported in this thesis.
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