
國 立 交 通 大 學

資訊學院資訊科技（IT）產業研發碩士班

碩 士 論 文

NTP-DRMT：測試行動設備中 OMA數位使用權管理功能

的符合性與互通性之測試工具

NTP-DRMT：A Conformance and Interoperability Test Tool for

OMA Digital Rights Management of Mobile Devices

研 究 生：黃亭愷

指導教授：林一平 教授

陳懷恩 教授

中 華 民 國 九 十 七 年 七 月

NTP-DRMT：測試行動設備中 OMA數位使用權管理功能的符合性與互

通性之測試工具

NTP-DRMT：A Conformance and Interoperability Test Tool for OMA

Digital Rights Management of Mobile Devices

研 究 生：黃亭愷 Student：Ting-Kai Huang

指導教授：林一平 Advisor：Yi-Bing Lin

陳懷恩 Whai-En Chen

國 立 交 通 大 學
資訊學院資訊科技（IT）產業研發碩士班

碩 士 論 文

A Thesis

Submitted to College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Industrial Technology R & D Master Program on
Computer Science and Engineering

July 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年七月

NTP-DRMT：測試行動設備中 OMA 數位使用權管理功能的符合性與互通

性之測試工具

學生：黃亭愷

指導教授：林一平

陳懷恩

國立交通大學資訊學院產業研發碩士班

中文摘要

本論文開發一個數位使用權管理(Digital Rights Management)的符合性與互

通性之測試工具，測試待測物(如:手機)是否符合開放行動通訊聯盟(Open

Mobile Alliance)的服務互通性測試之標準。數位使用權管理是一種防護(或

保護)的機制，發行者利用使用權來管理被使用者取得的多媒體資料。使用

者必須依照使用權物件(Rights Objects)的規則來存取被數位使用權所保護

的文件(DRM Content)。當行動數位裝置使用 DRM的應用服務之前，我們

必須測試此 DRM應用服務的開發是正確的依照 OMA所訂定的規格。我們

將展示在 Testing and Test Control Notation version 3 (TTCN-3)下如何有效率

的開發 DRM的測試例子。

 i

NTP-DRMT：A Conformance and Interoperability Test Tool for OMA Digital

Rights Management of Mobile Devices

student：Ting-Kai Huang

 Advisors：Dr. Yi-Bing Lin
 Dr. Whai-En Chen

Industrial Technology R & D Master Program of
Computer Science College

National Chiao Tung University

Abstract

This thesis describes a conformance and interoperability test tool for Digital Rights

Management (DRM) developed on an Open Mobile Alliance (OMA) service interoperability

test platform. DRM is a security (protection) mechanism that allows a content issuer to

manage the media objects to be delivered to the users with copyright protection. In DRM, the

users then access DRM Content (i.e., the protected media objects) according to the Rights

Objects. Before a DRM application is launched for a mobile device, it is essential to conduct

testing to ensure that the DRM mechanism is correctly implemented. Based on the Testing

and Test Control Notation version 3 (TTCN-3) specifications, we show how DRM test cases

can be efficiently implemented.

 ii

Acknowledgment

I would especially like to thank my advisors, Prof. Yi-Bing Lin and Prof. Whai-En Chen.

Without their supervision and perspicacious advices, I cannot complete this thesis. I would

also like to thank my colleagues in Laboratory 117.

I would also like to thank Chun-Chieh Wang and Pai-Tsan Huang for their help in developing

NTP-DRMT.

I would also like to express my thanks to my friends. They encourage me and make me feel

confidence to complete this thesie.

Finally, I want to thank my dear parents and my sister for their unfailing love and firmly

support in these years.

 iii

Contents

中文摘要 .. i

Abstract ... ii

Acknowledgment ...iii

Contents.. iv

List of Figures ... v

Chapter 1 Introduction .. 1

1.1 OMA DRM... 1

1.2 NTP-DRMT.. 3

1.3 Test Procedure for the DRM Registration ... 5

Chapter 2 TTCN-3 Based Test System... 7

2.1 DRM Test Management and Control (TMC)... 8

2.2. DRM TTCN-3 Executable (TE).. 10

2.3. DRM SUT Adapter (SA)... 12

Chapter 3 TTCN-3 Interfaces for DRM.. 14

3.1 The TTCN-3 Control Interface (TCI) for DRM..................................... 14

3.2. The TTCN-3 Runtime Interface (TRI) for DRM.................................. 17

Chapter 4 A DRM Conformance Test Scenario .. 20

Chapter 5 Conclusions .. 25

Reference... 26

Appendix A The conformance and interoperability test cases 28

 iv

List of Figures

Figure 1. The DRM architecture. .. 2

Figure 2. The Rights Object format. ... 3

Figure 3. Conformance and interoperability test environment for OMA DRM. .. 4

Figure 4. The test case for DRM registration procedure....................................... 6

Figure 5. TTCN-3 based NTP-DRMT. ... 7

Figure 6. Graphical test log for DRM registration.. 9

Figure 7. The structure of the DRM ETS.. 11

Figure 8. Interaction between the SA and the TE in NTP-DRMT. 12

Figure 9. An example of DRM module parameter. .. 15

Figure 10. DRM test logging example.. 15

Figure 11. DRM encode operation.. 16

Figure 12. DRM decode operation.. 17

Figure 13. DRM adapter operation. .. 18

Figure 14. DRM test case “missing States in RI Hello processing” state diagram.

... 21

Figure 15. DRM test case “missing States in RI Hello processing”. 22

Figure 16. The f_DRM_2_con_5_a_rcvMsg function. 24

 v

Chapter 1 Introduction

Open Mobile Alliance (OMA) Digital Rights Management (DRM) distributes the media

objects (e.g., a movie, an MP3 music file, and so on) with secured business models that can

control the usage of the content and manage the content lifecycle [1, 5, 6]. When a user

attempts to access the content, he/she may choose a free preview version or a complete

version with charge.

1.1 OMA DRM

OMA DRM allows a content issuer to manage DRM Content [2] to be delivered to the users

with copyright protection. In the DRM architecture [3], the user can access DRM Content

through a DRM agent (Figure 1 ①), where the DRM agent is installed in the mobile device

to manage the usage of DRM Content. The content issuer (Figure 1 ③) is responsible for

packaging the media objects into DRM Content and delivering DRM content to the users. A

rights issuer (RI; Figure 1 ④) is responsible for producing the Rights Objects [4]. Each

Rights Object is associated with a piece of DRM Content.

 1

Figure 1. The DRM architecture.

DRM Content is accessed by the DRM agent under the control of the Rights Objects. A

Rights Object specifies permissions, constraints and other features, which indicates how

DRM Content can be used. Consider an example where DRM Content consists of a movie

and two pictures, and DRM Agent 2 (Figure 1 ②) attempts to play the movie for two times

and display the pictures for unlimited times. DRM Agent 2 may download DRM Content

from the content issuer or another DRM agent (e.g., DRM Agent 1 in Figure 1 ①) who

previously downloaded DRM Content through the DRM mechanism. DRM Agent 2 must

utilize the Rights Object Acquisition Protocol (ROAP) to acquire a Rights Object from the

rights issuer, and then accesses DRM Content according to the Rights Object. The format of

the Rights Object in this example is illustrated in Figure 2. The asset field (Figure 2 ①)

specifies the identity, the hash value and the key information of DRM Content. The hash

value ensures the integrity of DRM Content. The key information identifies the encryption

 2

method used to encrypt the content encryption key (CEK), and contains the Base64-encoded

value of the encrypted CEK. The permission field (Figure 2 ②) specifies the permissions

(e.g., to play the movie) and the constraints (e.g., to play the movie two times). If the

permission field only specifies the permissions without any constraint (Figure 2 ○3), it

means that the DRM agent is granted unlimited display rights.

Figure 2. The Rights Object format.

1.2 NTP-DRMT

Before a DRM application can be launched for service, it is essential to conduct testing to

ensure that the DRM mechanism is correctly implemented in a mobile device. Although such

tests can be done manually, it is more appropriate to automatically validate the DRM

mechanism through a test tool. Under Taiwan’s National Telecommunications Program (NTP),

we have developed an OMA service interoperability test platform [16] based on the Testing

and Test Control Notation version 3 (TTCN-3) specifications [9, 10, 11, 12, 13, 14, 15].

Several OMA Push-to-talk over Cellular (PoC) test cases were deployed on this platform [17].

 3

In this thesis, we implement a DRM conformance and interoperability test tool (called

NTP–DRMT) on this platform. NTP-DRMT verifies the adherence to normative requirements

described in the OMA DRM technical specifications [7, 8]. The conformance test cases verify

whether the DRM agent follows the standard regulations described in [7]. The interoperability

test cases verify whether the system under test (SUT; Figure 3 ②), which is implemented

based on the specifications, works satisfactorily in various commercial mobile

telecommunication networks [8]. Figure 3 shows the conformance and interoperability test

environment for DRM. In this figure, NTP-DRMT (Figure 3 ④) acts as the DRM network

entities (including the content issuer and the rights issuer) in all test procedures. It

communicates with the SUT through a real cellular network or a cellular network emulator

(Figure 3 ③) such as Anritsu MD8470A [18]. In the DRM conformance test procedures,

NTP-DRMT waits for the SUT to request a Rights Object or DRM Content. This request is

issued by a tester (Figure 3 ○1). After the SUT receives the response, the tester verifies if the

results reported by the SUT are correct. The tester then reports the verdict (e.g., pass or fail) to

NTP-DRMT. In the DRM interoperability test procedures, NTP-DRMT waits for the SUT to

request DRM Content and the associated Rights Objects through different commercial mobile

networks. The tester then verifies if the SUT is capable of executing the interoperability test

cases and reports the verdict to NTP-DRMT.

Figure 3. Conformance and interoperability test environment for OMA DRM.

 4

1.3 Test Procedure for the DRM Registration

The DRM registration procedure is illustrated in Figure 4. When a user attempts to access

new DRM Content, the DRM agent first sends an HTTP_GET (Figure 4 ①) message to the

rights issuer to request the Rights Object. The rights issuer verifies the HTTP_GET message.

Then the rights issuer replies a ROAP Trigger message (Figure 4 ②). This message is used

to trigger the ROAP message exchange. The DRM agent then sends a Device Hello message

(Figure 4 ③) to provide device information (such as the Device ID and the ROAP version)

and initiate the registration procedure. The rights issuer verifies the Device Hello message

and replies a RI Hello message (Figure 4 ④). The RI Hello message provides RI preferences

and decisions according to the values provided by the DRM agent. The DRM agent then

sends a Register Request message (Figure 4 ⑤). The rights issuer verifies the Register

Request message and checks if the session ID, the device nonce, the request time and the

signature in the Register Request message are correct. Then the rights issuer replies a

Register Respose message (Figure 4 ⑥). Upon the receipt of this message, the registration

procedure is complete, and the DRM agent can acquire the Rights Object.

 5

Figure 4. The test case for DRM registration procedure.

In the remainder of this thesis, we will describe the design and implementation of

NTP-DRMT. Then we use examples to show how the DRM test cases are developed in this

test tool.

 6

Chapter 2 TTCN-3 Based Test System

The test system NTP-DRMT is implemented based on TTCN-3. This system manages DRM

test execution, interprets/executes compiled TTCN-3 code, and implements proper

communications with the SUT. As illustrated in Figure 5, NTP-DRMT consists of the

following parts.

Figure 5. TTCN-3 based NTP-DRMT.

The Test Management and Control (TMC; Figure 5 ①) is responsible for the test execution

control and the test event logging. The TTCN-3 Executable (TE; Figure 5 ②) is responsible

for the interpretation or the execution of the DRM modules (i.e., abstract test suites). The SUT

 7

Adapter (SA; Figure 5 ③) adapts the TTCN-3 communication operations between the TE

and the SUT (Figure 5 ⑤). The Platform Adapter (PA; Figure 5 ④) adapts the TE to an

operating system (e.g., Microsoft Windows XP) by creating a single notion of time for

NTP-DRMT and implementing the external functions as well as timers.

Two interfaces are defined inside NTP-DRMT. The TTCN-3 Control Interface (TCI; Figure 5

○A) specifies the interface between the TMC and the TE. The TTCN-3 Runtime Interface (TRI;

Figure 5 ○B) defines the interface between the TE and the SA/PA. A third interface Test

System Interface (TSI; Figure 5 ○C) specifies the interface of the test system towards the

SUT, which includes HTTP and ROAP.

2.1 DRM Test Management and Control (TMC)

The TMC consists of three entities: Test Management (TM; Figures 5 ⑥), Test Logging (TL;

Figure 5 ⑦) and External CoDecs (ECDs; Figure 5 ⑧). The TM is responsible for

controlling the creation and the execution of tests. In DRM test execution, the TM invokes the

DRM modules (e.g., tc_ConRoap module which will be described in Figure 7) to propagate

the module parameters and/or extra testing information to the TE.

 8

Figure 6. Graphical test log for DRM registration.

The TL is responsible for maintaining the test log, such as the logging information about test

component creation, start and termination, and data delivery to/from the SUT. The logging

requests to the TL are posted externally from the TE or internally from the TM. Figure 6

shows a graphical test log that describes the interactions between MTC (Main Test

 9

Component, i.e. NTP-DRMT; Figure 6 ①) and SYSTEM (i.e. SUT; Figure 6 ②) based on

the registration test case. When NTP-DRMT receives an HTTP_GET message (Figure 4 ①

and Figure 6 ③) from the SUT, NTP-DRMT verifies the HTTP_GET message and replies a

ROAP Trigger message (Figure 4 ② and Figure 6 ⑤) to the SUT. Then NTP-DRMT

receives the Device Hello message (Figure 4 ③ and Figure 6 ○6), verifies this message,

and replies a RI Hello message (Figure 4 ④ and Figure 6 ○8). Upon receipt of the Register

Request message (Figure 4 ⑤ and Figure 6 ○9), NTP-DRMT verifies this message and

replies a Register Response message (Figure 4 ⑥ and Figure 6 ○11). Every “match” box

(Figure 6 ○4 , ○7 and ○10) indicates that the received message matches the pass criteria

described in the conformance test specification. The final “pass” box (Figure 6 ○12) indicates

that the SUT passes this test case.

The ECDs are invoked by the TE for encoding the TTCN-3 values into the bitstrings to be

sent to the SUT or decoding the bitstrings sent from the SUT into the TTCN-3 values.

Specifically, the TE passes the TTCN-3 values to an appropriate encoder to produce the

encoded data. The received data is passed to an appropriate decoder to translate the received

data into the TTCN-3 values. In NTP-DRMT, there are two ECDs in the DRM_Codec.java

file; one for the HTTP procedure and the other for the ROAP procedure. These codecs are

implemented in JAVA language so that they can be easily ported to different test systems.

These two ECDs will be described in Section 4.

2.2. DRM TTCN-3 Executable (TE)

The TE consists of two interacting entities, Executable Test Suite (ETS; Figure 5 ⑨) and

 10

TTCN-3 Runtime System (T3RTS; Figure 5 ⑩), to execute the DRM test cases. The T3RTS

manages the ETS and interacts with the TMC, the SA and the PA. The T3RTS starts the

execution of the DRM modules in the ETS. Figure 7 illustrates the ETS structure that

classifies the DRM modules into two groups: conformance, and interoperability. Each module

consists of a set of related test cases. For example, in the conformance group, the ROAP

related conformance test case (e.g. DRM_2_con_5) is implemented in the tc_ConRoap

module. This test case is invoked by the T3RTS when NTP-DRMT receives an HTTP_GET

message (which is described in Section 1.3) to trigger the registration procedure.

Figure 7. The structure of the DRM ETS.

 11

2.3. DRM SUT Adapter (SA)

The SA adapts the communications between the TE and the SUT. The SA interacts with the

TE through the TRI. Specifically, the test component ports pt_http (Figure 8 ○3) and pt_roap

(Figure 8 ○4) that are mapped to the socket HTTPSocket (Figure 8 ○5) in the SA. The SA

binds the socket to the TSI port 8080 for the interaction with the SUT. To correctly deliver the

HTTP and the ROAP messages to and from the SUT, the TE calls the TRI functions (to be

described in Section 3.2) to associate the test component ports with the TSI port. Also, the TE

invokes the ECDs (Figure 8 ○1 and ○2) for the message encoding/decoding.

Figure 8. Interaction between the SA and the TE in NTP-DRMT.

 12

The SA is responsible for propagating the DRM requests (e.g., sending a ROAP message

through the pt_roap.send function) from the TE to the SUT and notifying the TE of any

received test events form the SUT (e.g., receiving a ROAP message through the

pt_roap.receive function) by buffering them in the TE’s port queues (Figure 8 ○6).

 13

Chapter 3 TTCN-3 Interfaces for DRM

This section elaborates on the NTP-DRMT control and runtime interfaces. We first describe

the TTCN-3 Control Interface (TCI), and then the TTCN-3 Runtime Interface (TRI).

3.1 The TTCN-3 Control Interface (TCI) for DRM

The TCI between the TE and the TMC has three sub-interfaces: Test Management Interface

(TCI-TM), Test Logging Interface (TCI-TL) and Coding/Decoding Interface (TCI-CD). The

TCI-TM supports the operations for controlling the test execution and providing module

parameters. The TCI-TM program segment in Figure 9 illustrates some DRM module

parameters. Figure 9 ○1 assigns the test system port HTTP_PORT with the value 8080.

Figure 9 ○2 assigns the test system Uniform Resource Locator (URL). Figure 9 ○3 assigns

the maximum waiting time between two received messages with the value 30.0 (seconds).

The extension function (Figure 9 ○4 ―○6) displays the descriptions of the parameters to the

tester and reminds the tester that these parameters can be changed. If the parameters are

modified, the updated parameters are provided to the test system as the module parameters

through the TCI-TM.

 14

Figure 9. An example of DRM module parameter.

The TCI-TL includes the operations for retrieving the information about the test execution.

Figure 10 illustrates a TCI-TL program segment that checks whether the signature is correct

and logs the error if the signature is incorrect in the received ROAP message. In Figure 10 ○1 ,

NTP-DRMT checks if the signature in the received message is correct. If yes, NTP-DRMT

replies a response message (Figure 10 1.1). Otherwise, NTP-DRMT logs the error information

and shows the error message in the test log (Figure 10 ○2).

Figure 10. DRM test logging example.

 15

The TCI-CD provides the operations to access codecs. In NTP-DRMT, TCI-CD is

implemented in DRM_Codec.java described in Section 2.1. Parts of the program are listed

in Figure 11. In this example, if no encoding rule is matched, then Figure 11 ○3 is executed

for the exception handling. In Figure 11 ○1 , an HTTP message is encoded as follows. Figure

11 1.1― 1.5 construct the HTTP message structure and append content, and set the content

type. Figure 11 1.6 generates a byte string from this HTTP message structure. Figure 11 ○2

encodes a ROAP message, and the details are omitted.

Figure 11. DRM encode operation.

The DRM decode operation invoked by the TE decodes a message according to the decoding

rules and returns a TTCN-3 value. Parts of the program are listed as follows. Figure 12 ○1

and ○2 decode the message as an HTTP or a ROAP message according to the message type

 16

which is set in the TRI (Section 3.2). For example, in Figure 12 ○1 , the HTTP message

decodes into a structured TTCN-3 value. Figure 12 1.2 sets the “msgType” to HTTP_GET, and

Figure 12 1.3 retrieves the Uniform Resource Identifier (URI).

Figure 12. DRM decode operation.

3.2. The TTCN-3 Runtime Interface (TRI) for DRM

The TRI supports the communication of the TE with the SUT [13]. This interface is

implemented in the SA to initialize the TSI and establish connections to the SUT. The TRI is

implemented in a JAVA program DRM_TestAdapter.java consisting of the connection

and the communication operations shown in Figure 13.

 17

Figure 13. DRM adapter operation.

 18

The connection operations include map and unmap operations. Through the connection

operations, the test component ports are mapped/unmapped to the TSI ports. An example is

the triMap function (Figure 13 ○1) called by the TE when TE executes the map operation

(Figure 15 ○1). This operation instructs the SA to establish a dynamic connection to the SUT.

The TRI also supports the communication operations which are used to exchange messages

with the SUT. The communication operations include enqueue and send operations. An

example is the triEnqueueMsg function (Figure 13 ○2) called by the SA after SA has

received a message from the SUT. When receiving an HTTP_GET message, this operation

passes the message to the test component port of the TE (i.e., pt_http) and sets the message

type HttpMsg. When receiving other messages, this operation passes these messages to

pt_roap and sets the message type RoapMsg. Note that the test component port has been

mapped to the TSI port beforehand. Another example is the triSend function (Figure 13

○4) called by the TE when the TE executes the send operation (Figure 16 ○4). This operation

instructs the SA to send a message to the SUT. For DRM testing, two types of messages are

sent by the triSend function: DRMRoapMsg for ROAP and DRMHttpMsg for HTTP.

 19

Chapter 4 A DRM Conformance Test Scenario

We use a conformance test case “missing States in RI Hello processing” to show how the

DRM test suites are implemented. This test case verifies if the SUT correctly handles an

incorrect RI Hello message without “Status" in the DRM registration procedure. The “Status”

is used to indicate if the preceding request was successfully or not. If the SUT receives this

message, it should display an error message and terminate the connection.

We utilize a Finite State Machine (FSM) to illustrate how the conformance test case “missing

States in RI Hello processing” is implemented. Figure 14 shows the state diagram of the DRM

conformance test case “missing States in RI Hello processing”.

 At State 1 (Waiting for HTTP_GET), if the HTTP_GET message is received from the

SUT, the TE sends a ROAP Trigger message to the SUT and changes the FSM to State

2 (Waiting for Device Hello). If any ROAP message is received at State 1, the TE sets

the verdict to “fail” and stops the FSM at State 4 (Test Fail). If the timer expires and the

TE does not receive any message, the TE sets the verdict to “inconc” and stops the FSM

at State 3 (Test Inconclusive).

 At State 2, if the Device Hello message sent from the SUT is correct, then the TE sends

an incorrect RI Hello message to the SUT and changes the FSM to State 5 (Waiting for

Tester Post Result). If an HTTP_GET message is received at this state, the TE resends

the ROAP Trigger message and waits for the Device Hello message. If an incorrect

Device Hello message is received at this state, the TE sets the verdict to “fail” and stops

the FSM at State 4. If the timer expires, the TE sets the verdict to “inconc” and stops the

FSM at State 3.

 20

 State 3 is the “Test Inconclusive” state.

 State 4 is the “Test Fail” state.

 At State 5, if the tester reports pass, the TE sets the verdict to “pass” and changes the

FSM to State 6 (Test Pass). If the tester reports fail, the TE sets the verdict to “fail” and

stops the FSM at State 4.

 State 6 is the “Test Pass” state.

Figure 14. DRM test case “missing States in RI Hello processing” state diagram.

Figure 15 illustrates the program segment for the test case. When the test starts, the TE first

maps the two test component ports to the test system ports (Figure 15 ○1 ; the triMap

operation at the TRI is invoked). Then it pops up an action window (Figure 15 ○2) that

notifies the tester (Figure 3 ○1) what the test case is and asks the tester to send an

HTTP_GET message from the SUT (Figure 3 ○2). In Figure 15 ○3 , the TE sets the waiting

time. Then the TE invokes the f_DRM_2_con_5_a_rcvMsg function (Figure 15 ○4) to

check whether the received messages from the SUT are correct.

 21

Figure 15. DRM test case “missing States in RI Hello processing”.

In the f_DRM_2_con_5_a_rcvMsg function, the t_tMsg timer starts at the PA (Figure

16 ○1). When an HTTP_GET message from the SUT is received, the pt_http.receive

function is executed (Figure 16 ○2) and the TE invokes the decode operation in Figure 12.

After the message is decoded, the TE stops the t_tMsg timer at the PA (Figure 16 ○3),

invokes f_sndRegTrig function (Figure 16 ○4) to send a ROAP Trigger to the SUT, and

goes to execute Figure 16 ○7 . If a ROAP message is received (Figure 16 ○5), the test result

(SC_FAIL) is returned. If the TE does not receive any message from the SUT after the

 22

t_tMsg timer expires, the PA notifies the TE of this timeout event (Figure 16 ○6) and the

f_DRM_2_con_5_a_rcvMsg function returns SC_TIME_OUT. The TE sets the verdict to

“inconc” (Figure 15 ○6) to indicate that an inconsistent exception occurs.

If the HTTP_GET message is received (Figure 16 ○8), then the TE resends the ROAP

Trigger to the SUT. If the TE receives a Device Hello message (Figure 16 ○9), then the TE

checks whether the header in the Device Hello message contains the DRM feature-tag

“devhello version” (Figure 16 ○10). If any check of the message is failed, the

f_DRM_2_con_5_a_rcvMsg function returns SC_FAIL to indicate the failure. If the

received Device Hello message is correct, then the TE sends an incorrect RI Hello message

(without “Status") to the SUT. If the t_tMsg timer expires, the

f_DRM_2_con_5_a_rcvMsg function returns SC_TIME_OUT (Figure 16 ○11).

Finally, if the f_DRM_2_con_5_a_rcvMsg function returns SC_FAIL or SC_TIME_OUT,

the TE sets the verdict to “fail” or “inconc” (Figure 15 ○5 and ○6). Otherwise, the TE pops

up a confirm box (Figure 15 ○7) to notify the tester to check whether the result reported by

the SUT is correct and report the result. Then the TE sets the verdict to “pass” or “fail”

according to the tester’s report. After the verdict is set, the TE removes the bindings between

the test component ports and the test system ports (Figure 15 ○8) using the triUnmap

operation at the TRI.

 23

Figure 16. The f_DRM_2_con_5_a_rcvMsg function.

 24

Chapter 5 Conclusions

This thesis described the architecture and the operations of NTP-DRMT which is a DRM test

system developed based on the TTCN-3 specifications. This system has been jointly

developed by the National Telecommunications Program (NTP) and the Industrial Technology

Research Institute (ITRI) in Taiwan. We used the DRM registration procedure to illustrate

how the conformance test can be implemented in NTP-DRMT. The conformance and

interoperability test cases are conformed to the OMA Enabler Test Specification

(Conformance) for DRM-V2_0 [7] and the OMA Enabler Test Specification for DRM

Interoperability [8]. Currently, 493 DRM tests cases have been developed in NTP-DRMT.

 25

Reference

[1] Open Mobile Alliance, "DRM Specification", OMA-TS-DRM-DRM-V2_0- 2006 0303-A,

2006.

[2] Open Mobile Alliance, "DRM Architecture", OMA-AD-DRM-V2_0-20060303-A, 2006.

[3] Open Mobile Alliance, "DRM Content Format", OMA-TS-DRM-DCF-V2_0-20060303-A,

2006.

[4] Open Mobile Alliance, "DRM Rights Expression Language", OMA-TS-DRM-REL-V2_

0-20060303-A, 2006.

[5] Open Mobile Alliance, "OMA DRM Requirements", OMA-RD-DRM-V2_0-20060303-A,

2006.

[6] Open Mobile Alliance, "Enabler Release Definition for DRM V2.0", OMA-ERELD-DRM

-V2_0-20060303-A, 2006.

[7] Open Mobile Alliance, "Enabler Test Specification (Conformance) for DRM- V2_0",

OMA-ETS-DRM_ CON_Test_Client-V2_0-20060615-C, 2006.

[8] Open Mobile Alliance, "Enabler Test Specification for DRM Interoperability", OMA-ETS

-DRM-INT- V2_0-20060704-C, 2006.

[9] ETSI, "Methods for Testing and Specification (MTS); The Testing and Test Control

Notation version 3; Part 1: TTCN-3 Core Language", ETSI ES 201 873-1, V3.1.1, 2005.

[10] ETSI, " Methods for Testing and Specification (MTS); The Testing and Test Control

Notation version 3; Part 2: TTCN-3 Tabular presentation Format (TFT)", ETSI ES 201

873-2 V3.1.1, 2005.

[11] ETSI, " Methods for Testing and Specification (MTS); The Testing and Test Control

Notation version 3; Part 3: TTCN-3 Graphical presentation Format (GFT)", ETSI ES

201 873-3 V3.1.1, 2005.

[12] ETSI, " Methods for Testing and Specification (MTS); The Testing and Test Control

Notation version 3; Part 4: TTCN-3 Operational Semantics", ETSI ES 201 873-4 V3.1.1,

2005.

[13] ETSI, "Methods for Testing and Specification (MTS); The Testing and Test Control

Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)", ETSI ES 201 873-5

V3.1.1, 2005.

[14] ETSI, "Methods for Testing and Specification (MTS); The Testing and Test Control

Notation version 3; Part 6: TTCN-3 Control Interface (TCI)", ETSI ES 201 873-6,

 26

V3.1.1, 2005.

[15] ETSI, " Methods for Testing and Specification (MTS); The Testing and Test Control

Notation version 3; Part 7: Using ASN.1 with TTCN-3", ETSI ES 201 873-7 V3.1.1,

2005.

[16] Lin, Y.-B., Liang, C.-F., Chen, K.-H., Liao, H.-Y. "NTP-SIOT: A Test Tool for

Advanced Mobile Services", IEEE Network. VOL 21; NUMB 1, pages 21-26, 2007.

[17] Lin, Y.-B., Wang, C.C., Lu, C.H., Hsu, M.R. "NTP-PoCT: A Conformance Test Tool for

Push-to-talk over Cellular Network", Wireless Communications and Mobile Computing.

VOL 8; NUMBER 5, pages 673-686, 2008.

[18] Anritsu Corporation, MD8470A Signaling Tester Product Introduction, http://

www.us.anritsu.com/products/ ARO/North/Eng/showProd.aspx?ID=659.

 27

Appendix A The conformance and interoperability test cases

The conformance test cases

Test case ID Test case description
DRM-2.0-con-1 ROAP trigger with expired RI context
DRM-2.0-con-3 Missing Signature in Leave Domain trigger
DRM-2.0-con-4 Invalid Signature in Leave Domain trigger
DRM-2.0-con-5 Missing Status attribute in ROAP Response
DRM-2.0-con-6 Status ≠ Success in ROAP Response
DRM-2.0-con-7 Missing Signature in ROAP Response
DRM-2.0-con-8 Invalid Signature in ROAP Response
DRM-2.0-con-9 1-pass RO Response processing reception while expired RI context
DRM-2.0-con-29 Missing Session ID in Register Response processing
DRM-2.0-con-30 Invalid Session ID in Register Response processing

DRM-2.0-con-31 Missing Device ID in ROAP response; 2 pass RO acquisition and Join
Domain

DRM-2.0-con-32 Invalid Device ID in ROAP response; 2 pass RO acquisition and Join
Domain

DRM-2.0-con-33 Missing Device ID in 1-pass RO Response processing
DRM-2.0-con-34 Invalid Device ID in 1-pass RO Response processing
DRM-2.0-con-35 Missing Device Nonce in ROAP response
DRM-2.0-con-35 Missing Device Nonce in Leave Domain Response processing
DRM-2.0-con-36 Invalid Device Nonce in ROAP response
DRM-2.0-con-37 Missing RI ID in ROAP response
DRM-2.0-con-38 Invalid RI ID in ROAP response
DRM-2.0-con-40 Install Device RO from RO Response processing; Invalid Signature

DRM-2.0-con-41 Install Device RO from RO Response processing; Missing MAC
element

DRM-2.0-con-42 Install Device RO from RO Response processing; Invalid MAC
element

DRM-2.0-con-43 Install Device RO from RO Response processing; Missing RI ID
DRM-2.0-con-44 Install Device RO from RO Response processing; Invalid RI ID
DRM-2.0-con-45 Install Device RO from RO Response processing; Missing Signature
DRM-2.0-con-46 Install Device RO from RO Response processing; Invalid Signature

DRM-2.0-con-47 Install Device RO from RO Response processing; Missing MAC
element

DRM-2.0-con-48 Install Device RO from DCF; Invalid MAC element
DRM-2.0-con-49 Install Device RO from DCF; Missing RI ID
DRM-2.0-con-50 Install Device RO from DCF; Invalid RI ID
DRM-2.0-con-51 Install Device RO from DCF; RI Context Expired
DRM-2.0-con-52 Consume rights in Device RO; Invalid Hash value
DRM-2.0-con-53 Install Domain Context; Missing MAC
DRM-2.0-con-54 Install Domain Context; Invalid MAC
DRM-2.0-con-55 Install Domain Context; Missing RI ID in DomainKey
DRM-2.0-con-56 Install Domain Context; Invalid RI ID in DomainKey
DRM-2.0-con-57 Delete Domain Context
DRM-2.0-con-58 Install Domain RO; No valid RI context with corresponding RI ID

 28

DRM-2.0-con-59 Install Domain RO; Missing Signature
DRM-2.0-con-60 Install Domain RO; Invalid Signature
DRM-2.0-con-61 Install Domain RO; Missing Domain ID
DRM-2.0-con-62 Install Domain RO; Invalid Domain Generation
DRM-2.0-con-63 Install Domain RO; Device not in the domain
DRM-2.0-con-64 Install Domain RO; Missing MAC.
DRM-2.0-con-65 Install Domain RO; Invalid MAC.
DRM-2.0-con-66 Install Domain RO; RI Context Expired
DRM-2.0-con-67 Replay protection – Stateful RO with RITS; Future RITS
DRM-2.0-con-68 Replay protection – Stateful RO with RITS; In Replay cache
DRM-2.0-con-69 Replay protection – Stateful RO with RITS; Early RITS
DRM-2.0-con-70 Replay protection – Stateful RO without RITS; In Replay cache
DRM-2.0-con-71 Parent Rights object; Invalid Rights issuer
DRM-2.0-con-72 Nonce generation on Device without system shutdown
DRM-2.0-con-73 Nonce generation on Device with system shutdown
DRM-2.0-con-74 Wrong permissions for an image object
DRM-2.0-con-75 Wrong permissions for a sound object
DRM-2.0-con-76 Wrong permissions for an application object
DRM-2.0-con-77 Unknown permissions
DRM-2.0-con-78 Export permissions ("move") for DCFs with stateless rights object
DRM-2.0-con-79 Export permissions ("copy") for DCFs with stateless rights object
DRM-2.0-con-80 Export permissions ("move") for DCFs with stateful rights object
DRM-2.0-con-81 Export permissions ("copy") for DCFs with stateful rights object
DRM-2.0-con-82 Export permissions not present for DCF
DRM-2.0-con-83 Instant Preview
DRM-2.0-con-85 Erroneous Count constraint
DRM-2.0-con-86 Erroneous Timed-Count constraint
DRM-2.0-con-87 Erroneous Datetime constraint
DRM-2.0-con-88 Erroneous Interval constraint
DRM-2.0-con-89 Erroneous Accumulated constraint

The Interoperability test cases

Test case ID Test case description
DRM-2.0-int-1 To test “Forward Lock” DRM 1.0 functionality.
DRM-2.0-int-2 To test DRM 1.0 “Combined Delivery” functionality
DRM-2.0-int-3 To test DRM 1.0 “Separate Delivery” functionality
DRM-2.0-int-4 To test RO Registration and RO Acquisition
DRM-2.0-int-5 To test RO Registration with existing RI Context
DRM-2.0-int-6 To test RO Acquisition without existing RI Context
DRM-2.0-int-7 To test 1-pass RO Acquisition with existing RI Context
DRM-2.0-int-8 To test 1-pass RO Acquisition without existing RI Context
DRM-2.0-int-10 To test a situation where an RO is included in the DCF

DRM-2.0-int-11 To test behavior in the presence of a group RO for multiple DCFs, using
the Group ID mechanism

DRM-2.0-int-12 To test behavior in the presence of an individual RO for a content item
which has a Group ID

DRM-2.0-int-13 To test behavior in the presence of several rights objects for one piece of
content

 29

DRM-2.0-int-14 To test behavior in the presence of several rights objects for one piece of
content

DRM-2.0-int-15 To test DRM Agent’s capability to process Multipart DCFs from the RI
DRM-2.0-int-16 To test behavior in the presence of multiple ROs for a multipart DCF

DRM-2.0-int-17 To test behavior when different content items in a multipart DCF are
associated with different groups

DRM-2.0-int-18
To test “Superdistribution” functionality. The protected content is sent
from one DRM Agent to another. The rights object is obtained by
ROAP session to the rights issuing service.

DRM-2.0-int-19 To test the TransactionID mechanism in connection with
Superdistribution

DRM-2.0-int-20 To test <display> and <print> permissions
DRM-2.0-int-21 To test <play> permission
DRM-2.0-int-22 To test <execute> permission for an application object
DRM-2.0-int-23 To test <count> constraint for a DCF
DRM-2.0-int-24 To test <timed-count> constraint for a DCF
DRM-2.0-int-25 To test <datetime> constraint for a DCF
DRM-2.0-int-26 To test <interval> constraint for a DCF
DRM-2.0-int-27 To test <accumulated> constraint for a DCF
DRM-2.0-int-28 To test <individual> constraint for a DCF
DRM-2.0-int-29 To test <system> constraint for a DCF
DRM-2.0-int-30 To test the effect of having multiple constraints

DRM-2.0-int-31 To test the REL Permission Model in the case that the rights include a
stateful top level constraint

DRM-2.0-int-32 Initiate ROAP from DCF Preview Header with existing RI Context &
domain name NOT in Domain Name Whitelist

DRM-2.0-int-33 Initiate ROAP from DCF Preview Header with existing RI Context &
domain name in the Domain Name Whitelist

DRM-2.0-int-34 To test inheritance model when stateful constraints are involved
DRM-2.0-int-35 To test a case where the Parent Rights Object
DRM-2.0-int-36 To test inheritance model when a child RO is a group RO
DRM-2.0-int-37 Trigger-initiated domain join without existing RI Context

DRM-2.0-int-38 Trigger-initiated domain join with valid RI Context and no existing
Domain Context for this RI

DRM-2.0-int-39 Automatically-initiated domain upgrade with valid RI Context and
existing Domain Context for this RI

DRM-2.0-int-40 Trigger-initiated domain join with valid RI Context and existing
Domain Context for this RI

DRM-2.0-int-41 Domain RO Acquisition with existing RI Context
DRM-2.0-int-42 To test delivering the DomainRO inside a DCF

DRM-2.0-int-43 To test if different devices related with the same domain are able to
share DCFs

DRM-2.0-int-44 Device leaves a domain after receiving a LeaveDomain trigger

DRM-2.0-int-45 Initiate ROAP from DCF Silent Header with existing RI Context and
domain name NOT in Domain Name Whitelist

DRM-2.0-int-46 Initiate ROAP from DCF Silent Header with existing RI Context and
domain name NOT in Domain Name Whitelist

 30

