R
B
‘%
“%
0%

S (IT) A £ LT

ML @

NTP-DRMT : R3¢ 7 #3K % ¢ OMA #ciz ¢ * %? LB

SRR s B I e AE) =Y RN

P

NTP-DRMT : A Conformance. and Interoperability Test Tool for
OMA Digital Rights, Management of Mobile Devices

Moy oA L F R
ERE - T KR
FURE Fdx

PoE R |4 L - B =

NTP-DRMT : iplz# 7 &3k & ¢ OMA #ci @ * {5 127 i cfd S48 3
W2 jpzEa B
NTP-DRMT : A Conformance and Interoperability Test Tool for OMA

Digital Rights Management of Mobile Devices

I N -4 Student : Ting-Kai Huang
R - T Advisor : Yi-Bing Lin
PR S Whai-En Chen
Bz 2~ 7
FTRERTAE (IT) A EAgFmirr
ML @~

A Thesis
Submitted to College of Computer Science
National Chiao Tung University
in partial Fulfillment.of the Requirements
for the Degree of
Master

in

Industrial Technology R & D Master Program on
Computer Science and Engineering

July 2008

Hsinchu, Taiwan, Republic of China

PER R4 L S

NTP-DRMT = 5% gk It OMA Bt i = AR RN ooy f 3 152 2
(EAE AN

N L bR e 2
RS

B2l * B FAF i LA E ML 5

7‘3}%

¥ £
Amv By - B#ci * g ¢ 32 (Digital Rights Management):is & (220 3
W2 Pl B PRRFR (RS E T 2 & B (T H i 2 B B (Open
Mobile Alliance) s PR7% 7 i |1RI5AZ 1538 o foix @ * {5 L E -~ fA1r (&
)l B FE I RAGERFILARR * B S FRE R o R
% & JF kP * R4 i (Rights Objects)enp] k 5 Bt dic i i * 47 o3k
¢ 2 (DRM Content) 4 ##fici= %% & * DRM ehjip * JRI*2 % » s
& B RIEE Y DRM R * PRI P F B 0 Faenik o OMA #1737 Ten3ife o 34 i
#-/% o+ 7 Testing and Test Control Notation version 3 (TTCN-3) T 4r i@ 3 x5

B % DRM epig i) F o

NTP-DRMT : A Conformance and Interoperability Test Tool for OMA Digital

Rights Management of Mobile Devices

student : Ting-Kai Huang Advisors : Dr. Yi-Bing Lin
Dr. Whai-En Chen

Industrial Technology R & D Master Program of
Computer Science College
National Chiao Tung University

Abstract

This thesis describes a conformance and interoperability test tool for Digital Rights
Management (DRM) developed-on an Open Mabile /Alliance (OMA) service interoperability
test platform. DRM is a security(protection).mechanism that allows a content issuer to
manage the media objects to be delivered to the users with copyright protection. In DRM, the
users then access DRM Content (i.e., the protected media objects) according to the Rights
Objects. Before a DRM application is launched for a mobile device, it is essential to conduct
testing to ensure that the DRM mechanism is correctly implemented. Based on the Testing
and Test Control Notation version 3 (TTCN-3) specifications, we show how DRM test cases

can be efficiently implemented.

Acknowledgment

I would especially like to thank my advisors, Prof. Yi-Bing Lin and Prof. Whai-En Chen.
Without their supervision and perspicacious advices, | cannot complete this thesis. 1 would

also like to thank my colleagues in Laboratory 117.

I would also like to thank Chun-Chieh Wang and Pai-Tsan Huang for their help in developing
NTP-DRMT.

I would also like to express my thanks to my friends. They encourage me and make me feel

confidence to complete this thesie.

Finally, I want to thank my dear parents and my sister for their unfailing love and firmly

support in these years.

Contents

PR BB & s i
N 0111 - T SRS i
ACKNOWIBAGMENT ... ii
(O00] 0] =10 KRR PPTR v
LISE OF FIQUIES ..ottt et et e e ens vV
Chapter 1 INtrOAUCTIONcc.eoiiiiiic et 1
1.1 OMA DRM. ..ttt 1
L2 NTP-DRMT ..ottt e e e e sbae e e ennne e 3
1.3 Test Procedure for the DRM Registrationccccovvveviveieesiiesnieeneennenn 5
Chapter 2 TTCN-3 Based TeSt SYStEM......ccceveviieiiieiesee e cie e 7
2.1 DRM Test Management and Contral,(TMC).........ccccevvevieive v, 8
2.2. DRM TTCN-3 Executable (TE) ittt e e 10
2.3. DRM SUT Adapter(SA) i et 12
Chapter 3 TTCN-3 Interfaces ToF DRM....ciic oo 14
3.1 The TTCN-3 Control Interface (TCI) for DRM..........cccovvviviveiiniininnnn 14
3.2. The TTCN-3 Runtime Interface (TRI) for DRM........c.ccccovvviviniinnnnns 17
Chapter 4 A DRM Conformance Test SCENArI0cccovvvvivvereeiieiie e e 20
Chapter 5 CONCIUSIONSocvveiiiiiecie et 25
RETEIENCE ... nre e 26
Appendix A The conformance and interoperability test casescccccvevrnee. 28

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

List of Figures

The DRM arChiteCtUIe.c.oeieeiie et 2
The Rights Object format.ccocoeiiiiiiiicc e 3
Conformance and interoperability test environment for OMA DRM. .. 4
The test case for DRM registration procedure..........ccoeveveeivenivennieennnn 6
TTCN-3 based NTP-DRMTccciiiiiiiirierese e 7
Graphical test log for DRM registration...........ccccoeeveivevvenvesieesnesnnn, 9
The structure 0f the DRM ETS.......ooiiiiiiieceee e 11
Interaction between the SA and the TE in NTP-DRMT. 12
An example of DRM module parameter.cccoccvvvviieneeninnensnennn 15
. DRM test logging example.ccooveiieiiiiii e 15
. DRM encode Operation. oidi e ieeeieee e esieesieeseesee e seee e 16
. DRM decode OperatiOn. .ci: it iiae s eeeeeeeeeeesieesiee e siee e sieeseee e 17
. DRM adapter Operation. e . .ivoiiieeesee e eiesieesieesieesee e sse e 18
. DRM test case “missing States in' Rl Hello processing” state diagram.
.. 21
. DRM test case “missing States in Rl Hello processing”. 22
.The ¥ DRM_2 con_5 a rcvMsg function.ccccccvevveennne. 24

Chapter 1 Introduction

Open Mobile Alliance (OMA) Digital Rights Management (DRM) distributes the media
objects (e.g., a movie, an MP3 music file, and so on) with secured business models that can
control the usage of the content and manage the content lifecycle [1, 5, 6]. When a user
attempts to access the content, he/she may choose a free preview version or a complete

version with charge.

1.1 OMA DRM

OMA DRM allows a content issuer to manage DRM Content [2] to be delivered to the users
with copyright protection. In the DRM-architecture 3], the user can access DRM Content
through a DRM agent (Figure 1),"where the' DRM agent is installed in the mobile device
to manage the usage of DRM Content. The content issuer (Figure 1) is responsible for

packaging the media objects into DRM Content and delivering DRM content to the users. A

rights issuer (RI; Figure 1) is responsible for producing the Rights Objects [4]. Each

Rights Obiject is associated with a piece of DRM Content.

DRM Agent 1

DRM Agent 2

Rights Issuer

4

Figure 1. The DRMarchitecture.

DRM Content is accessed by the DRM-agent under the control of the Rights Objects. A
Rights Object specifies permissions;.constraints and other features, which indicates how
DRM Content can be used. Consider an example where DRM Content consists of a movie
and two pictures, and DRM Agent 2 (Figure 1) attempts to play the movie for two times
and display the pictures for unlimited times. DRM Agent 2 may download DRM Content
from the content issuer or another DRM agent (e.g., DRM Agent 1 in Figure 1) who
previously downloaded DRM Content through the DRM mechanism. DRM Agent 2 must
utilize the Rights Object Acquisition Protocol (ROAP) to acquire a Rights Object from the
rights issuer, and then accesses DRM Content according to the Rights Object. The format of
the Rights Object in this example is illustrated in Figure 2. The asset field (Figure 2)

specifies the identity, the hash value and the key information of DRM Content. The hash

value ensures the integrity of DRM Content. The key information identifies the encryption

method used to encrypt the content encryption key (CEK), and contains the Base64-encoded
value of the encrypted CEK. The permission field (Figure 2) specifies the permissions
(e.g., to play the movie) and the constraints (e.g., to play the movie two times). If the

permission field only specifies the permissions without any constraint (Figure 2 ®), it

means that the DRM agent is granted unlimited display rights.

O?;SE:SID Assetl Asset2 Asset3 Permission Permission2
Content1 -I;ZTUTEP in-f::hr?n::}'c;n Permission1: || Constraint1: di E;;Tisglﬁzﬁiz
L Content1 || of Content1 play content 1| play 2 times content3
Figure2. The Rights Object format.
1.2 NTP-DRMT

Before a DRM application can be launched for service, it is essential to conduct testing to
ensure that the DRM mechanism is correctly implemented in a mobile device. Although such
tests can be done manually, it is more appropriate to automatically validate the DRM
mechanism through a test tool. Under Taiwan’s National Telecommunications Program (NTP),
we have developed an OMA service interoperability test platform [16] based on the Testing
and Test Control Notation version 3 (TTCN-3) specifications [9, 10, 11, 12, 13, 14, 15].

Several OMA Push-to-talk over Cellular (PoC) test cases were deployed on this platform [17].

In this thesis, we implement a DRM conformance and interoperability test tool (called
NTP-DRMT) on this platform. NTP-DRMT verifies the adherence to normative requirements
described in the OMA DRM technical specifications [7, 8]. The conformance test cases verify
whether the DRM agent follows the standard regulations described in [7]. The interoperability
test cases verify whether the system under test (SUT; Figure 3), which is implemented
based on the specifications, works satisfactorily in wvarious commercial mobile
telecommunication networks [8]. Figure 3 shows the conformance and interoperability test
environment for DRM. In this figure, NTP-DRMT (Figure 3) acts as the DRM network
entities (including the content issuer and the rights issuer) in all test procedures. It
communicates with the SUT through a real cellular network or a cellular network emulator
(Figure 3) such as Anritsu MD8470A [18]. In the DRM conformance test procedures,
NTP-DRMT waits for the SUT t@request-a Rights‘Object or DRM Content. This request is
issued by a tester (Figure 3 (©).-After the SUT receives the response, the tester verifies if the
results reported by the SUT are correct. The tester then reports the verdict (e.g., pass or fail) to
NTP-DRMT. In the DRM interoperability test procedures, NTP-DRMT waits for the SUT to
request DRM Content and the associated Rights Objects through different commercial mobile
networks. The tester then verifies if the SUT is capable of executing the interoperability test

cases and reports the verdict to NTP-DRMT.

Cellular Network
.-:-"ﬂ;:___, Inlernet

Base Statll:rn
Qn
Tester suUT — —e NTP-DRMT
(DREM Agent) ﬁ @

Cellular Core
Metwork Emulator

©

Figure 3. Conformance and interoperability test environment for OMA DRM.

4

1.3 Test Procedure for the DRM Registration

The DRM registration procedure is illustrated in Figure 4. When a user attempts to access
new DRM Content, the DRM agent first sends an HTTP_GET (Figure 4) message to the
rights issuer to request the Rights Object. The rights issuer verifies the HTTP_GET message.
Then the rights issuer replies a ROAP Trigger message (Figure 4). This message is used
to trigger the ROAP message exchange. The DRM agent then sends a Device Hello message
(Figure 4) to provide device information (such as the Device ID and the ROAP version)
and initiate the registration procedure. The rights issuer verifies the Device Hello message
and replies a Rl Hello message (Figure 4). The RI Hello message provides RI preferences
and decisions according to the values provided by the DRM agent. The DRM agent then
sends a Register Request message (Figure 4 .). The rights issuer verifies the Register
Request message and checks if the session_1D, the-device nonce, the request time and the
signature in the Register Request message are correct. Then the rights issuer replies a
Register Respose message (Figure 4). Upon the receipt of this message, the registration

procedure is complete, and the DRM agent can acquire the Rights Object.

Rights Issuer DRM Agent

<«— @) HTTP_GET
—e ROAP Trigger ——p
- o Device Hello
— @) RiHelo ———»
<«— @) Register Request ——

— @ Register Response —»

Figure 4. Thetest case for DRM registration procedure.

In the remainder of this thesis, we" ‘will “describe the design and implementation of
NTP-DRMT. Then we use examples to show how the DRM test cases are developed in this

test tool.

Chapter 2 TTCN-3 Based Test System

The test system NTP-DRMT is implemented based on TTCN-3. This system manages DRM
test execution, interprets/executes compiled TTCN-3 code, and implements proper
communications with the SUT. As illustrated in Figure 5, NTP-DRMT consists of the

following parts.

Y 1

Tester System Under Test(SUT) &
------------------ TSI®
(< & ; : = =)
- ™ E -~ ~ E s ™
Test Management and E DRM TTCN-3 E DRM SUT Adapt
Control (TMC) @ ' Executable (TE) N el
= ——/] MO
LS IR ST B UL @ E Exacutabla Tasl Suite E \ J
/) ET3) €) H
: e ™)
Test Logaing (TL) €@ : :
; TTCN-3 Runtime System | [A—¢ %] DRM Platform
External CoDecs (ECDs) () E r3rTs) AR Adapter (PA) 4
L A E L A E . A
e H H "y

TCl TRI @
Figure 5. TTCN-3 based NTP-DRMT.
The Test Management and Control (TMC; Figure 5) is responsible for the test execution

control and the test event logging. The TTCN-3 Executable (TE; Figure 5) is responsible

for the interpretation or the execution of the DRM modules (i.e., abstract test suites). The SUT

Adapter (SA; Figure 5) adapts the TTCN-3 communication operations between the TE
and the SUT (Figure 5). The Platform Adapter (PA; Figure 5) adapts the TE to an

operating system (e.g., Microsoft Windows XP) by creating a single notion of time for

NTP-DRMT and implementing the external functions as well as timers.

Two interfaces are defined inside NTP-DRMT. The TTCN-3 Control Interface (TCI; Figure 5

®) specifies the interface between the TMC and the TE. The TTCN-3 Runtime Interface (TRI;
Figure 5 (®) defines the interface between the TE and the SA/PA. A third interface Test

System Interface (TSI; Figure 5 (©) specifies the interface of the test system towards the

SUT, which includes HTTP and ROAP.

2.1 DRM Test Management and Control (TMC)

The TMC consists of three entities: Test Management (TM; Figures 5), Test Logging (TL;
Figure 5) and External CoDecs (ECDs; Figure 5). The TM is responsible for

controlling the creation and the execution of tests. In DRM test execution, the TM invokes the
DRM modules (e.g., tc_ConRoap module which will be described in Figure 7) to propagate

the module parameters and/or extra testing information to the TE.

tc. DEM_2 con_5.DEM_2 con 5 b
Start : 20080321 13:54:05.308
End ;200803-21 13:54:18.001

MTC SYSTEM @)
13:54:05.402 I User Action Required: "Missing Elal.ls attribute in ROAP Response
-t I I III
13:54:06.091 % timer2(30.0) R BRSO PIOCSRRILE)
1 receive
13:54:0747 B o | ..
13:5407 532 EoapMsg
13:54:07.53¢ —— timer2(1.448)
; send RoapMsg
13:54:07.664 o o 3 —
13:54:07.847 S timer2(30.0)
: receive
13:54:08.731 (6] o
13:5408.742 RoapMsg
13:54:08.75C —< timer2(0.903)
i send RoapMsg
13:34:08.781 pl_roap @ - pl_roap
13:54:08 815 X timer3(30.0)
i receive
13:54:00.07€ I 9 | ..
13:5400.08¢ @ match | RoapMsg
13:54:00.002 ——> timer3(0.278)
k send RoapMsg
13:54:09.092 ®, -
13:54:17.955
13:54:17.955
13:54:18.061

Figure 6. Graphical test log for DRM registration.

The TL is responsible for maintaining the test log, such as the logging information about test
component creation, start and termination, and data delivery to/from the SUT. The logging
requests to the TL are posted externally from the TE or internally from the TM. Figure 6

shows a graphical test log that describes the interactions between MTC (Main Test

Component, i.e. NTP-DRMT; Figure 6) and SYSTEM (i.e. SUT; Figure 6) based on
the registration test case. When NTP-DRMT receives an HTTP_GET message (Figure 4

and Figure 6) from the SUT, NTP-DRMT verifies the HTTP_GET message and replies a
ROAP Trigger message (Figure 4 and Figure 6) to the SUT. Then NTP-DRMT
receives the Device Hello message (Figure 4 and Figure 6 (®), verifies this message,
and replies a RI Hello message (Figure 4 and Figure 6 (®). Upon receipt of the Register
Request message (Figure 4 and Figure 6 (®), NTP-DRMT verifies this message and
replies a Register Response message (Figure 4 and Figure 6 @). Every “match” box
(Figure 6 ®, (D and @) indicates that the received message matches the pass criteria
described in the conformance test specification. The final “pass” box (Figure 6 @) indicates

that the SUT passes this test case.

The ECDs are invoked by the TE forencoding the. TTCN-3 values into the bitstrings to be
sent to the SUT or decoding the bitstrings“sent from the SUT into the TTCN-3 values.
Specifically, the TE passes the TTCN-3 values to an appropriate encoder to produce the
encoded data. The received data is passed to an appropriate decoder to translate the received
data into the TTCN-3 values. In NTP-DRMT, there are two ECDs in the DRM_Codec. java
file; one for the HTTP procedure and the other for the ROAP procedure. These codecs are
implemented in JAVA language so that they can be easily ported to different test systems.

These two ECDs will be described in Section 4.

2.2. DRM TTCN-3 Executable (TE)

The TE consists of two interacting entities, Executable Test Suite (ETS; Figure 5) and

10

TTCN-3 Runtime System (T3RTS; Figure 5), to execute the DRM test cases. The T3RTS

manages the ETS and interacts with the TMC, the SA and the PA. The T3RTS starts the
execution of the DRM modules in the ETS. Figure 7 illustrates the ETS structure that
classifies the DRM modules into two groups: conformance, and interoperability. Each module
consists of a set of related test cases. For example, in the conformance group, the ROAP
related conformance test case (e.g. DRM_2 con_5) is implemented in the tc_ConRoap
module. This test case is invoked by the T3RTS when NTP-DRMT receives an HTTP_GET

message (which is described in Section 1.3) to trigger the registration procedure.

tc_ConRdr module
REL/DCF Related Conformance Test Cases

—— Conformance

tc_ConRoap module
ROAP Related Conformance Test Cases

tc_IntSIt module
Silent Header Test Cases

DRM_Main —

tc_IntDmn module
Domain Test Cases

tc_IntPvw module
Preview Test Cases

tc_IntCst module
Constraint Model Test Cases

— Interoperability —

tc_IntPrm module
Permission Model Test Cases

| tc_IntMro module
Multiple Rights Object For Single DCF Test Cases

tc_IntDro module
Device Rights Object Included In DCF Test Cases

tc_IntRoap module
ROAP Test Cases

Figure 7. The structure of the DRM ETS.

11

2.3. DRM SUT Adapter (SA)

The SA adapts the communications between the TE and the SUT. The SA interacts with the

TE through the TRI. Specifically, the test component ports pt_http (Figure 8 ®) and pt_roap
(Figure 8 @) that are mapped to the socket HTTPSocket (Figure 8 (®) in the SA. The SA

binds the socket to the TSI port 8080 for the interaction with the SUT. To correctly deliver the
HTTP and the ROAP messages to and from the SUT, the TE calls the TRI functions (to be
described in Section 3.2) to associate the test component ports with the TSI port. Also, the TE

invokes the ECDs (Figure 8 (O and (@) for the message encoding/decoding.

ECD
HTTP codec o ROAP codec e

HTTP Socket Q |

bind

port 8080

Figure 8. Interaction between the SA and the TE in NTP-DRMT.

12

The SA is responsible for propagating the DRM requests (e.g., sending a ROAP message
through the pt_roap.send function) from the TE to the SUT and notifying the TE of any
received test events form the SUT (e.g., receiving a ROAP message through the

pt_roap.receive function) by buffering them in the TE’s port queues (Figure 8 (®).

13

Chapter 3 TTCN-3 Interfaces for DRM

This section elaborates on the NTP-DRMT control and runtime interfaces. We first describe

the TTCN-3 Control Interface (TCI), and then the TTCN-3 Runtime Interface (TRI).

3.1 The TTCN-3 Control Interface (TCI) for DRM

The TCI between the TE and the TMC has three sub-interfaces: Test Management Interface
(TCI-TM), Test Logging Interface (TCI-TL) and Coding/Decoding Interface (TCI-CD). The
TCI-TM supports the operations for controlling the test execution and providing module
parameters. The TCI-TM program. segment-in Figure 9 illustrates some DRM module
parameters. Figure 9 (O assigns thetest-system port HTTP_PORT with the value 8080.

Figure 9 (2 assigns the test system Uniform Resource Locator (URL). Figure 9 (3 assigns

the maximum waiting time between two received messages with the value 30.0 (seconds).

The extension function (Figure 9 »—®) displays the descriptions of the parameters to the

tester and reminds the tester that these parameters can be changed. If the parameters are
modified, the updated parameters are provided to the test system as the module parameters

through the TCI-TM.

14

group SysParameters {
modulepar {
@ integer HTTP_PORT :=8080;
@ charstring DRMURL :="http://localhost:8080";
3 float DRM _SYS WAIT :=30.0;
b
with {
@ extension (HTTP PORT)
"Description: Specify the port number of HT TP protocol";
©) extension (DRMURL)
"Description: The test system URL.";
® extension (DRM_SYS WAIT)
"Description: Maximum time between two received messages.";
3
¥

Figure 9. An example of DRM module parameter.

The TCI-TL includes the operations for retrieving the information about the test execution.
Figure 10 illustrates a TCI-TL program.segment that checks whether the signature is correct
and logs the error if the signature is incorrect in the received ROAP message. In Figure 10 @,
NTP-DRMT checks if the signature in the received message is correct. If yes, NTP-DRMT

replies a response message (Figure 10). Otherwise, NTP-DRMT logs the error information

and shows the error message in the test log (Figure 10).

@O ifiDRM Verify Signature(v_recvMsg.roReq.sign)){
&) f DRM 2 con 31 a senRORsp(v_recvMsg);
return SC_SUCCESS;
} else {
@ log("Signature verify failed"):
return SC_FAIL;
3

Figure 10. DRM test logging example.

15

The TCI-CD provides the operations to access codecs. In NTP-DRMT, TCI-CD is
implemented in DRM_Codec . java described in Section 2.1. Parts of the program are listed

in Figure 11. In this example, if no encoding rule is matched, then Figure 11 (® is executed
for the exception handling. In Figure 11 (@, an HTTP message is encoded as follows. Figure
11 9—C9 construct the HTTP message structure and append content, and set the content
type. Figure 11 generates a byte string from this HTTP message structure. Figure 11 @

encodes a ROAP message, and the details are omitted.

public TriMessage encode(Value value) {
try{
if (value.getType().getName().equals("HitpMsg"))4

RecordValue rvMsg = (RecordValue)value:
StringBuffer sh=new StringBuffer():
sb.append("CON"+""):
sb.append(Encode. Charstring(rvMsg, "file")+" "):
sb.append(Encode. Charstring(rvMsg, "conType"));
retumn new TriMessagelmpl(sb.toString().getBytes()):

CRCNCRCNCRONC

}
@ else if (value. get Type().getName().equals("RoapMsg")) {

)

...... ROAP message encoding

(3 }catch (IOException €) {
RB.tciTMProvided.tciError("Encoding error @ "+e.getMessage()):

Figure 11. DRM encode operation.

The DRM decode operation invoked by the TE decodes a message according to the decoding

rules and returns a TTCN-3 value. Parts of the program are listed as follows. Figure 12 O
and (@ decode the message as an HTTP or a ROAP message according to the message type

16

which is set in the TRI (Section 3.2). For example, in Figure 12 O, the HTTP message

decodes into a structured TTCN-3 value. Figure 12 4 sets the “msgType” to HTTP_GET, and

Figure 12 @ retrieves the Uniform Resource Identifier (URI).

public Value decode(TriMessage message. Type decodingHypothesis) {

if(decodingHypothesis.getName().equals(“HttpMsg™)){
RecordValue ret = (RecordValue)decodingHypothesis.newInstance();
Decode.Enumerated(ret, "msgType","HTTP_GET"):
Decode.Charstring(ret, "uri", new String(message.getEncodedMessage())):
return ret;

}

else if(decodingHypothesis.getName().equals(“RoapMsg™)) {
.... [/ ROAP message decoding

¥

return null;

®Oe0ea0

®

Figure 12..DRM-decode operation.

3.2. The TTCN-3 Runtime Interface (TRI) for DRM

The TRI supports the communication of the TE with the SUT [13]. This interface is
implemented in the SA to initialize the TSI and establish connections to the SUT. The TRI is
implemented in a JAVA program DRM_TestAdapter . java consisting of the connection

and the communication operations shown in Figure 13.

17

public class DRM TestAdapter extends TestAdapter {
(D public TriStatus triMap(final TriPortld compPortld, final TriPortld tsiPortld)
{

TriStatus mapStatus = CsaDef.triMap(compPortld, tsiPortld):
if (tsiPortld. getPortName().equals("pt_roap")) {

(-

Cte.triEnqueueMsg(tsiPortld, new TriAddressImpl(new byte[]{}).

compPortld.getComponent(), new TriMessagelmpl(msg));
}

... [lother map functions
retum mapStatus:

(-

public TriStatus triUnmap(TriPortld compPortld, TriPortld tsiPortld) {

CsaDef.triUnMap(compPortld, tsiPortld);
...//unmap functions
retumn supertriUnmap(compPortId, tsiPortld):

@) public TriStatus triSend(TriComponentld compld, TriPortld tsiPortld,

TriAddress address, TriMessage message) {

if (tsiPortld. getPortName().equals("pt_roap")) {

...//send a ROAP message

}

else if (tsiPortld. getPortName().equals("pt_http")) {
FileInputStream fr=message.getEncodedMessage():
ByteArrayOutputStream os=new Byte ArrayOutputStream();
byte data[]=new byte[1];
while(frread(data)!=-1)

os.write(data);

out.write(os.toByteArray());
retum new TriStatusImpl():

Figure 13. DRM adapter operation.

18

The connection operations include map and unmap operations. Through the connection
operations, the test component ports are mapped/unmapped to the TSI ports. An example is

the triMap function (Figure 13 () called by the TE when TE executes the map operation

(Figure 15 (©). This operation instructs the SA to establish a dynamic connection to the SUT.

The TRI also supports the communication operations which are used to exchange messages
with the SUT. The communication operations include enqueue and send operations. An

example is the triEnqueueMsg function (Figure 13 (@) called by the SA after SA has

received a message from the SUT. When receiving an HTTP_GET message, this operation
passes the message to the test component port of the TE (i.e., pt_http) and sets the message
type HttpMsg. When receiving other messages, this operation passes these messages to
pt_roap and sets the message type Roapsg: Note: that the test component port has been
mapped to the TSI port beforehand. Another example is the triSend function (Figure 13

@) called by the TE when the TE executes thesend-operation (Figure 16 (®). This operation

instructs the SA to send a message to the SUT. For DRM testing, two types of messages are

sent by the triSend function: DRMRoapMsg for ROAP and DRMHttpMsg for HTTP.

19

Chapter 4 A DRM Conformance Test Scenario

We use a conformance test case “missing States in Rl Hello processing” to show how the
DRM test suites are implemented. This test case verifies if the SUT correctly handles an
incorrect Rl Hello message without “Status™ in the DRM registration procedure. The “Status”
is used to indicate if the preceding request was successfully or not. If the SUT receives this

message, it should display an error message and terminate the connection.

We utilize a Finite State Machine (FSM) to illustrate how the conformance test case “missing

States in RI Hello processing” is implemented. Figure 14 shows the state diagram of the DRM

conformance test case “missing States in Rl/Hello processing”.

® At State 1 (Waiting for HTTP_GET),-tf the HTTP_GET message is received from the
SUT, the TE sends a ROAPTrigger message to the SUT and changes the FSM to State
2 (Waiting for Device Hello). If any' ROAP message is received at State 1, the TE sets
the verdict to “fail” and stops the FSM at State 4 (Test Fail). If the timer expires and the
TE does not receive any message, the TE sets the verdict to “inconc” and stops the FSM
at State 3 (Test Inconclusive).

® At State 2, if the Device Hello message sent from the SUT is correct, then the TE sends
an incorrect Rl Hello message to the SUT and changes the FSM to State 5 (Waiting for
Tester Post Result). If an HTTP_GET message is received at this state, the TE resends
the ROAP Trigger message and waits for the Device Hello message. If an incorrect
Device Hello message is received at this state, the TE sets the verdict to “fail” and stops
the FSM at State 4. If the timer expires, the TE sets the verdict to “inconc” and stops the

FSM at State 3.

20

® State 3 is the “Test Inconclusive” state.

® State 4 is the “Test Fail” state.

® At State 5, if the tester reports pass, the TE sets the verdict to “pass” and changes the
FSM to State 6 (Test Pass). If the tester reports fail, the TE sets the verdict to “fail” and
stops the FSM at State 4.

® State 6 is the “Test Pass” state.

m! :l;ngslg; Waiting for Wa';'fbsr *:r Tester
e Device Hello ost Result
Recelve HTTP_GET Receive correct Device Hallo
Band ROAF gger Send Rl Hallo without "Status™
Statell State 2

<\

Time oul Time out

Set verdict to Sat verdict o :l-' dlli.:c:ﬁ.;Tlr GET message
inconclusive inconclusive an rigger massage

@ Hecave incorrest Device Heallo
Setl verdict 1o fal

Test
Inconclusive Receive Tester Fail report
Set verdict to fall

Receha Tester Pass repont
Set verdict to Pass

Slate G

Tast Fail Tast Pass

Receiva ROAP message
Set verdict to fail

Figure 14. DRM test case “missing States in RI Hello processing” state diagram.

Figure 15 illustrates the program segment for the test case. When the test starts, the TE first

maps the two test component ports to the test system ports (Figure 15 @; the triMap
operation at the TRI is invoked). Then it pops up an action window (Figure 15 (@) that
notifies the tester (Figure 3 () what the test case is and asks the tester to send an
HTTP_GET message from the SUT (Figure 3 @). In Figure 15 (3, the TE sets the waiting
time. Then the TE invokes the ¥ DRM_2 con_5 a rcvMsg function (Figure 15 ®) to

check whether the received messages from the SUT are correct.

21

testcase DRM_2 con_ 5 a() runs on DrmComp system DrmComp {

C]

)

® ©

©

©

C)

C)

map(mtc:pt_http, system:pt_http);

map(mtc:pt_roap, system:pt_roap);

f action("Missing Status attribute in ROAP Response (RI Hello processing) !
Please send a HTTP message ");

v_sysWait := DRM_SYS WAIT;

result:=f DRM 2 con 5 a rcvMsg ();

if (result.rc = SC_FAIL) {

setverdict(fail);
}
else if (result.rc = SC_TIME OUT) {
setverdict(inconc);
}
else {
if(DRMConfirmBox("DRM Device receives RI Hello response without
status !1!"){
setverdict(pass);
}
else{
setverdict(fail);
}
}

unmap(mtc:pt_http, system:pt http);
unmap(mtc:pt_roap, system:pt roap);

Inthe £ DRM_2 con_5 a rcvMsg function, the t_tMsg timer starts at the PA (Figure

16 ©). When an HTTP_GET message from the SUT is received, the pt_http.receive
function is executed (Figure 16 (@) and the TE invokes the decode operation in Figure 12,
After the message is decoded, the TE stops the t_tMsg timer at the PA (Figure 16 (®),
invokes ¥ _sndRegTrig function (Figure 16 (®) to send a ROAP Trigger to the SUT, and
goes to execute Figure 16 (D. If a ROAP message is received (Figure 16 (®), the test result

(SC_FAIL) is returned. If the TE does not receive any message from the SUT after the

Figure 15. DRM test case “missing States in RI Hello processing”.

22

t_tMsg timer expires, the PA notifies the TE of this timeout event (Figure 16 (®) and the

f DRM_2 con_5 a rcvMsg function returns SC_TIME_OUT. The TE sets the verdict to

“inconc” (Figure 15 (®) to indicate that an inconsistent exception occurs.

If the HTTP_GET message is received (Figure 16 (®), then the TE resends the ROAP
Trigger to the SUT. If the TE receives a Device Hello message (Figure 16 (), then the TE

checks whether the header in the Device Hello message contains the DRM feature-tag

“devhello version” (Figure 16 @). If any check of the message is failed, the

f DRM_2 con_5 a rcvMsg function returns SC_FAIL to indicate the failure. If the
received Device Hello message is correct, then the TE sends an incorrect Rl Hello message
(without “Status™) to the SUT." It +.the t_tMsg timer expires, the

f DRM_2 con_5_a_rcvMsg-functioen feturns SC_TIME_OUT (Figure 16 @9).

Finally, if the £ DRM_2 con_5_ a.rcvMsg.function returns SC_FAIL or SC_TIME_OUT,

the TE sets the verdict to “fail” or “inconc” (Figure 15 & and (®). Otherwise, the TE pops
up a confirm box (Figure 15 (D) to notify the tester to check whether the result reported by

the SUT is correct and report the result. Then the TE sets the verdict to “pass” or “fail”
according to the tester’s report. After the verdict is set, the TE removes the bindings between

the test component ports and the test system ports (Figure 15 (®) using the triUnmap

operation at the TRI.

23

function f DRM_2 con 5 a rcvMsg () runs on DrmComp return RetResult{
t tMsg.start(v_sysWait);

TR

®UE

©

Q

C]

C]

alt{

}

[Ipt_http.receive(a_httpget){

b

t_tMsg.stop;
f sndRegTrig();

[Ipt_roap.receive(){

}

t tMsg.stop:
ret.rc:= SC_FAIL;
return ret;

[Jt_tMsg.timeout{

log("timeout and nothing received");
retrc:=SC_TIME_OUT;
return ret;

t_tMsg.start(v_sysWait);

alt{

[Ipt_http.receive(a httpget){

}

t_tMsg.stop;
f sndRegTrig():
repeat;

[Ipt roap.receive(v_devhello) -> value v_recvMsg{

b

t tMsg.stop:
if(not ispresent(v_ devhello.version)){
retre:=SC_FAIL;
return ret;
¥
.../Icheck other headers in the received Device Hello message
f DRM 2 con 5 a sndRiHello();
ret.re:=SC_SUCCESS:;
return ret;

[1t tMsg.timeout{

log("timeout and nothing received");
retre;=SC_TIME OUT:
return ret;

Figure 16. The ¥ DRM_2 con_5 _a_rcvMsg function.

24

Chapter 5 Conclusions

This thesis described the architecture and the operations of NTP-DRMT which is a DRM test
system developed based on the TTCN-3 specifications. This system has been jointly
developed by the National Telecommunications Program (NTP) and the Industrial Technology
Research Institute (ITRI) in Taiwan. We used the DRM registration procedure to illustrate
how the conformance test can be implemented in NTP-DRMT. The conformance and
interoperability test cases are conformed to the OMA Enabler Test Specification
(Conformance) for DRM-V2_0 [7] and the OMA Enabler Test Specification for DRM

Interoperability [8]. Currently, 493 DRM tests cases have been developed in NTP-DRMT.

25

Reference

[1] Open Mobile Alliance, "DRM Specification”, OMA-TS-DRM-DRM-V2_0- 2006 0303-A,
2006.

[2] Open Mobile Alliance, "DRM Architecture”, OMA-AD-DRM-V2_0-20060303-A, 2006.

[3] Open Mobile Alliance, "DRM Content Format”, OMA-TS-DRM-DCF-V2_0-20060303-A,
2006.

[4] Open Mobile Alliance, "DRM Rights Expression Language”, OMA-TS-DRM-REL-V2_
0-20060303-A, 2006.

[5] Open Mobile Alliance, "OMA DRM Requirements”, OMA-RD-DRM-V2_0-20060303-A,
2006.

[6] Open Mobile Alliance, "Enabler Release Definition for DRM V2.0", OMA-ERELD-DRM
-VV2_0-20060303-A, 2006.

[7] Open Mobile Alliance, "Enabler Test Specification (Conformance) for DRM- V2_0",
OMA-ETS-DRM_ CON_Test_Client-V20-20060615-C, 2006.

[8] Open Mabile Alliance, "Enabler Test:Specification for DRM Interoperability”, OMA-ETS
-DRM-INT- V2_0-20060704-C, 2006.

[9] ETSI, "Methods for Testing and. Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language”, ETSI ES 201 873-1, V3.1.1, 2005.

[10] ETSI, " Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 2: TTCN-3 Tabular presentation Format (TFT)", ETSI ES 201
873-2 V3.1.1, 2005.

[11] ETSI, " Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 3: TTCN-3 Graphical presentation Format (GFT)", ETSI ES
201 873-3 V3.1.1, 2005.

[12] ETSI, " Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 4: TTCN-3 Operational Semantics"”, ETSI ES 201 873-4 V3.1.1,
2005.

[13] ETSI, "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)", ETSI ES 201 873-5
V3.1.1, 2005.

[14] ETSI, "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 6: TTCN-3 Control Interface (TCI)", ETSI ES 201 873-6,

26

V3.1.1, 2005.

[15] ETSI, " Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3", ETSI ES 201 873-7 V3.1.1,
2005.

[16] Lin, Y.-B., Liang, C.-F., Chen, K.-H., Liao, H.-Y. "NTP-SIOT: A Test Tool for
Advanced Mobile Services", IEEE Network. VOL 21; NUMB 1, pages 21-26, 2007.

[17] Lin, Y.-B., Wang, C.C., Lu, C.H., Hsu, M.R. "NTP-PoCT: A Conformance Test Tool for
Push-to-talk over Cellular Network™, Wireless Communications and Mobile Computing.
VOL 8; NUMBER 5, pages 673-686, 2008.

[18] Anritsu Corporation, MD8470A Signaling Tester Product Introduction, http:/
www.us.anritsu.com/products/ ARO/North/Eng/showProd.aspx?1D=659.

27

Appendix A The conformance and interoperability test cases

The conformance test cases

Test case ID Test case description
DRM-2.0-con-1 ROAP trigger with expired RI context
DRM-2.0-con-3 Missing Signature in Leave Domain trigger
DRM-2.0-con-4 Invalid Signature in Leave Domain trigger
DRM-2.0-con-5 Missing Status attribute in ROAP Response
DRM-2.0-con-6 Status # Success in ROAP Response
DRM-2.0-con-7 Missing Signature in ROAP Response
DRM-2.0-con-8 Invalid Signature in ROAP Response
DRM-2.0-con-9 1-pass RO Response processing reception while expired RI context

DRM-2.0-con-29

Missing Session ID in Register Response processing

DRM-2.0-con-30

Invalid Session ID in Register Response processing

DRM-2.0-con-31

Missing Device ID in ROAP response; 2 pass RO acquisition and Join
Domain

DRM-2.0-con-32

Invalid Device ID in ROAP response; 2 pass RO acquisition and Join
Domain

DRM-2.0-con-33

Missing Device ID in 1-pass RO Response processing

DRM-2.0-con-34

Invalid Device 4D in 1-pass RO Response processing

DRM-2.0-con-35

Missing Device Nonce in'/ROAP response

DRM-2.0-con-35

Missing Device Nonce in Leave Domain Response processing

DRM-2.0-con-36

Invalid Device Nonce .in ROAP response

DRM-2.0-con-37

Missing RIZID in ROAP response

DRM-2.0-con-38

Invalid RI ID in ROAP response

DRM-2.0-con-40

Install Device RO-from RO Response processing; Invalid Signature

DRM-2.0-con-41

Install Device RO from RO Response processing; Missing MAC
element

DRM-2.0-con-42

Install Device RO from RO Response processing; Invalid MAC
element

DRM-2.0-con-43

Install Device RO from RO Response processing; Missing R1 1D

DRM-2.0-con-44

Install Device RO from RO Response processing; Invalid RI 1D

DRM-2.0-con-45

Install Device RO from RO Response processing; Missing Signature

DRM-2.0-con-46

Install Device RO from RO Response processing; Invalid Signature

DRM-2.0-con-47

Install Device RO from RO Response processing; Missing MAC
element

DRM-2.0-con-48

Install Device RO from DCF; Invalid MAC element

DRM-2.0-con-49

Install Device RO from DCF; Missing RI ID

DRM-2.0-con-50

Install Device RO from DCF; Invalid RI ID

DRM-2.0-con-51

Install Device RO from DCF; RI Context Expired

DRM-2.0-con-52

Consume rights in Device RO; Invalid Hash value

DRM-2.0-con-53

Install Domain Context; Missing MAC

DRM-2.0-con-54

Install Domain Context; Invalid MAC

DRM-2.0-con-55

Install Domain Context; Missing RI ID in DomainKey

DRM-2.0-con-56

Install Domain Context; Invalid RI ID in DomainKey

DRM-2.0-con-57

Delete Domain Context

DRM-2.0-con-58

Install Domain RO; No valid RI context with corresponding RI ID

28

DRM-2.0-con-59

Install Domain RO; Missing Signature

DRM-2.0-con-60

Install Domain RO; Invalid Signature

DRM-2.0-con-61

Install Domain RO; Missing Domain 1D

DRM-2.0-con-62

Install Domain RO; Invalid Domain Generation

DRM-2.0-con-63

Install Domain RO; Device not in the domain

DRM-2.0-con-64

Install Domain RO; Missing MAC.

DRM-2.0-con-65

Install Domain RO; Invalid MAC.

DRM-2.0-con-66

Install Domain RO; RI Context Expired

DRM-2.0-con-67

Replay protection — Stateful RO with RITS; Future RITS

DRM-2.0-con-68

Replay protection — Stateful RO with RITS; In Replay cache

DRM-2.0-con-69

Replay protection — Stateful RO with RITS; Early RITS

DRM-2.0-con-70

Replay protection — Stateful RO without RITS; In Replay cache

DRM-2.0-con-71

Parent Rights object; Invalid Rights issuer

DRM-2.0-con-72

Nonce generation on Device without system shutdown

DRM-2.0-con-73

Nonce generation on Device with system shutdown

DRM-2.0-con-74

Wrong permissions for an image object

DRM-2.0-con-75

Wrong permissions for a sound object

DRM-2.0-con-76

Wrong permissions for an application object

DRM-2.0-con-77

Unknown permissions

DRM-2.0-con-78

Export permissions ("move") for DCFs with stateless rights object

DRM-2.0-con-79

Export permissions (:'copy") for DCFs with stateless rights object

DRM-2.0-con-80

Export permissions ("move™).for DCFs with stateful rights object

DRM-2.0-con-81

Export permissions,(“copy") for DCFs with stateful rights object

DRM-2.0-con-82

Export permissions not present for DCF

DRM-2.0-con-83

Instant Preview

DRM-2.0-con-85

Erroneous Count constraint

DRM-2.0-con-86

Erroneous Timed-Count constraint

DRM-2.0-con-87

Erroneous Datetime.constraint

DRM-2.0-con-88

Erroneous Interval constraint

DRM-2.0-con-89

Erroneous Accumulated constraint

The Interoperability test cases

Test case ID Test case description

DRM-2.0-int-1 | To test “Forward Lock” DRM 1.0 functionality.

DRM-2.0-int-2 | To test DRM 1.0 “Combined Delivery” functionality

DRM-2.0-int-3 | To test DRM 1.0 “Separate Delivery” functionality

DRM-2.0-int-4 | To test RO Registration and RO Acquisition

DRM-2.0-int-5 | To test RO Registration with existing Rl Context

DRM-2.0-int-6 | To test RO Acquisition without existing Rl Context

DRM-2.0-int-7 | To test 1-pass RO Acquisition with existing Rl Context

DRM-2.0-int-8 | To test 1-pass RO Acquisition without existing Rl Context

DRM-2.0-int-10 | To test a situation where an RO is included in the DCF

DRM-2.0-int-11 To test behavior in thg presence of a group RO for multiple DCFs, using
the Group ID mechanism

DRM-2.0-int-12 To test behavior in the presence of an individual RO for a content item
which has a Group ID

DRM-2.0-int-13 To test behavior in the presence of several rights objects for one piece of

content

29

DRM-2.0-int-14

To test behavior in the presence of several rights objects for one piece of
content

DRM-2.0-int-15

To test DRM Agent’s capability to process Multipart DCFs from the RI

DRM-2.0-int-16

To test behavior in the presence of multiple ROs for a multipart DCF

DRM-2.0-int-17

To test behavior when different content items in a multipart DCF are
associated with different groups

DRM-2.0-int-18

To test “Superdistribution” functionality. The protected content is sent
from one DRM Agent to another. The rights object is obtained by
ROAP session to the rights issuing service.

DRM-2.0-int-19

To test the TransactionlD mechanism in connection with

Superdistribution

DRM-2.0-int-20

To test <display> and <print> permissions

DRM-2.0-int-21

To test <play> permission

DRM-2.0-int-22

To test <execute> permission for an application object

DRM-2.0-int-23

To test <count> constraint for a DCF

DRM-2.0-int-24

To test <timed-count> constraint for a DCF

DRM-2.0-int-25

To test <datetime> constraint for a DCF

DRM-2.0-int-26

To test <interval> constraint for a DCF

DRM-2.0-int-27

To test <accumulated> constraint for a DCF

DRM-2.0-int-28

To test <individual> constraint for a DCF

DRM-2.0-int-29

To test <system> constraint for a DCF

DRM-2.0-int-30

To test the effect of having multiple constraints

DRM-2.0-int-31

To test the REL Permission:Maodel in the case that the rights include a
stateful top level constraint

DRM-2.0-int-32

Initiate ROAP from DCF Preview Header with existing Rl Context &
domain name NOT in“‘Domain Name Whitelist

DRM-2.0-int-33

Initiate ROAPR from:DCF-Preview Header with existing Rl Context &
domain name in‘the Domain.Name Whitelist

DRM-2.0-int-34

To test inheritance madel when stateful constraints are involved

DRM-2.0-int-35

To test a case where the Parent Rights Object

DRM-2.0-int-36

To test inheritance model when a child RO is a group RO

DRM-2.0-int-37

Trigger-initiated domain join without existing Rl Context

DRM-2.0-int-38

Trigger-initiated domain join with valid RI Context and no existing
Domain Context for this RI

DRM-2.0-int-39

Automatically-initiated domain upgrade with valid RI Context and
existing Domain Context for this RI

DRM-2.0-int-40

Trigger-initiated domain join with valid RI Context and existing
Domain Context for this RI

DRM-2.0-int-41

Domain RO Acquisition with existing Rl Context

DRM-2.0-int-42

To test delivering the DomainRO inside a DCF

DRM-2.0-int-43

To test if different devices related with the same domain are able to
share DCFs

DRM-2.0-int-44

Device leaves a domain after receiving a LeaveDomain trigger

DRM-2.0-int-45

Initiate ROAP from DCF Silent Header with existing RI Context and
domain name NOT in Domain Name Whitelist

DRM-2.0-int-46

Initiate ROAP from DCF Silent Header with existing RI Context and
domain name NOT in Domain Name Whitelist

30

