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摘要 

在有線通訊中，回音消除、預先編碼、與等化是常用的信號處理運算。對於如數位

用戶迴路(DSL)等之高速通訊系統，通道響應通常是非常的長，因此前述的信號處理

計算複雜度需求也是相當的高。在本論文中，我們提出了一種基於內插濾波的高效

率演算法以降低複雜度運算量。內插濾波是由一個有限脈衝響應(FIR)濾波器、一個

內插有限脈衝響應濾波(IFIR)與一種將述兩個濾波器係數重疊的方法串聯實作而成。

內插濾波方法可有效的降低計算複雜度同時保有傳統有限脈衝響應濾波器的數值穩

定性優點與性能。 

基於所提出的內插濾波器架構，我們將其廣泛運用於回音消除、決策回授等化 

(DFE)、與 Tomlinson-Harashima 預先編碼(THP)等信號處理功能。在論文中，我們對

所提濾波器架構做了完整的理論分析，相關的理論公式如最佳解與輸出訊號雜訊比

(SNR)等也提供了詳細的推導。爲了適應通道變化與降低實作複雜度，我們使用最小

平均平方(LMS)法作為適應性演算法。對於所提之適應性演算法，其收斂行為與理

論效能，我們也做了完整的理論分析與驗證。論文所提出的適應性內插演算法，可

以較低的計算複雜度達到傳統演算法相同的效能。對內插回音消除而言，模擬結果

顯示在各種單迴路高速用戶迴路(SHDSL)拓撲下，可消除 73.0 分貝(dB)的回音同時

可節省 57%的複雜度。對內插決策回授等化、與內插預先編碼，複雜度節省則可高

達 76%。 

渦輪等化是一種結合等化與錯誤更正解碼的重複等化方法，其效能遠超越傳統

的分離式等化與錯誤更正解碼方法。然而，前者的複雜度卻遠超過後者。以往的研
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究主要集中在無線方面的運用。因無線通道的響應長度是屬於較短或稀疏的，以格

子(trellis)為基礎的演算法如軟輸出 Viterbi 演算法或 BCJR 演算法可有效的運用於無

線系統。很不幸地，此類演算法的複雜度與通道的響應長度成指數成長。針對此一

問題，Tüchler等人於西元 2002年提出了以濾波器為架構的低複雜度渦輪等化器。雖

然複雜度可以大幅度的降低，但當通道的響應長度很長時，複雜度還是相當的高。

由於數位用戶迴路的通道的響應長度通常長達數百，到目前為止，尚無可行的渦輪

等化器可供使用。 

基於內插濾波的概念，我們提出一個可應用於長通道的快速渦輪等化器。該快

速等化器可將複雜度降低十倍以上。在Tüchler的渦輪等化器中，最佳濾波器係數運

算與等化濾波運算的計算量相當的大。我們以理論證明，不同的最佳濾波器是可以

被內插的。我們僅需事先計算好少數的最佳濾波器係數，之後便可以內插的方式來

快速計算出最佳濾波器係數。因此，複雜度便可大幅度的降低。如果最佳濾波器響

應或通道響應本身也是可以被內插的，則我們可運用IFIR方式再次減低複雜度。就

我們所知，我們所提出的快速渦輪等化器是目前唯一可應用於SHDSL系統也是世界

上複雜度最低的渦輪等化器。在數位位元錯誤率(BER)得等於 10-5時，我們可用四次

重複等化方式得到 8.8 分貝的效能改進，而複雜度僅需Tüchler渦輪等化器的 3.7%。

就整體複雜度而言，所提出的快速渦輪等化器大約為傳統分離式等化與錯誤更正解

碼方法的三倍，但這已代表所提的方法已可達到實際應用的目標。
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Abstract 

Echo cancellation, precoding, and equalization are common signal processing operations 

performed in wireline communications. For high-speed systems such as digital subscriber 

line (DSL), the channel response is usually very long and the computational complexity 

requirement for those operations is very high. In this thesis, efficient algorithms based on 

interpolated filtering are developed to solve the problem. The idea of interpolated filtering 

is realized with a cascade of an FIR and an interpolated FIR (IFIR) filter, and with a 

tap-weight overlapping method. The interpolated filtering scheme can effectively reduce 

the computational complexity while inherits all the numerical stability advantages of the 

conventional FIR filter. 

The interpolated filtering framework is then applied to echo cancellation, decision 

feedback equalization (DFE), and Tomlinson-Harashima precoding (THP). Performance is 

theoretically analyzed and close-form solutions such as optimum solutions and output 

signal to noise ratio (SNR) are derived also. For accommodating the channel variation and 

reducing implementation complexity, adaptive algorithms based on the least-mean-squared 

(LMS) algorithm are then considered. Convergence behavior is analyzed and the 

performance is theoretically evaluated. While proposed adaptive interpolated algorithms 

can achieve similar performance as conventional algorithms, the computational complexity 

is much lower. For echo cancellation, simulations with a wide variety of loop topologies 

show that the interpolated echo canceller can effectively cancel the echo up to 73.0 dB and 

achieve 57% complexity saving (in SHDSL applications). For DFE and THP, the 

computational saving can be as high as 76%. 
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It is well known that a turbo equalizer, a joint iterative equalization and decoding 

scheme, can significantly outperform a conventional receiver performing equalization and 

decoding separately. However, the complexity is much higher than the conventional 

receiver. Previous works mainly focus on the wireless applications in which the channel 

length is short or sparse. This enables the use of the trellis-based algorithms such as 

soft-output Viterbi algorithm (SOVA) and BCJR. Unfortunately, the computational 

complexity of these algorithms grows exponentially with the channel length. In 2002, 

Tüchler et al. proposed a low-complexity filter-based turbo equalizer reducing the 

complexity dramatically. Even so, the computational complexity remains tremendous if the 

channel length is long. So far, there is no turbo equalizer with reasonable complexity 

designed for a channel with hundreds of taps, which is common in DSL applications. 

With the interpolated filtering approach, a fast turbo equalizer with complexity an 

order of magnitude less is proposed. The most computationally intensive operations in 

Tüchler’s equalizer are the calculation of optimal filter coefficients and the filtering 

operation of the equalizer. The relationship between optimal filter coefficients and 

reliability information is exploited and a fast algorithm, which calculates the current 

optimal coefficients by interpolating two pre-calculated known optimal coefficients, is 

proposed. If the channel response has a smooth shape, the interpolated equalizer can be 

applied to reduce the complexity further. Closed-form expressions for interpolated optimal 

filter coefficients are also derived. To the best of our knowledge, the computational 

complexity of the proposed turbo equalizer (for SHDSL application) is the lowest in the 

world. The performance gain at BER 10-5 is about 8.8 dB (with four iterations) and the 

complexity is only 3.7% of the conventional turbo equalization. Also, the complexity is 

less than three times of the conventional un-turbo equalizer scheme. This indicates that the 

complexity of the proposed turbo equalizer is lower enough such that real-world 

implementation becomes feasible. 
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Chapter 1

Introduction

SO far, the twisted-pair copper wire is known to be the most popular broadband access media

in the world. Several digital subscriber line (DSL) technologies have been proposed and

successfully commercialized. With these technologies, the broadband internet access era has

been becoming reality. While the DSL transmission rate is greatly enhanced, it is still far

from Shannon’s limit. Sophisticated communication systems and advanced signal processing

schemes are still continuously developed.

In the DSL environment, there exists a couple of major impairments that impose challenges

for receiver signal processing. This includes echo cancellation, channel equalization, and pre-

coding. To achieve full duplex transmission over a single pair of wire, a hybrid circuit is

employed in the transmitter. However, echoes are produced due to the impedance mismatch

problem. The echo will significantly interfere the receive signal. In many cases, the echo inter-

ference is so strong and the receiver becomes impossible to work properly. A common remedy

to this problem is to use an echo canceller. The echo channel response is usually very long

and this puts a computational complexity burden for the receiver. Originally, the twisted-pair

channel is used for voice transmission and the bandwidth is narrow. It will introduce a severe

intersymbol interference (ISI) for high speed data transmission. In DSL, it is not uncommon to

observe a channel with hundreds taps. Channel equalization and precoding are the techniques

1
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to combat this problem. Similar to the echo canceller, the computational complexities of these

devices are very high. Though above techniques are suggested in standards and popular in

the off-the-shelf DSL related products, the computational complexity due to the long channel

response remain an issue, specially when the transmission rate is further increased.

In this dissertation, we will focus on the complexity reduction issue in echo cancellation,

channel equalization, and precoding. We explore the DSL channel characteristics and propose

effective signal processing schemes. Our goal is to develop algorithms with implementable

complexity for the next generation DSL applications. There are two distinct properties in the

DSL environment. The first one is that the channel and echo responses are almost static. This

means that many signal processing structures and parameters can remain the same for a long

period of time and this is a great design advantage. The other property is that the channel and

echo responses exhibits low-pass characteristics. This indicates that even though the channel or

echo response is long, we can use a low-order system to model it. Exploiting these two proper-

ties, we develop our low-complexity algorithms through a general framework of interpolation.

To guarantee the stability, we use the finite impulse response (FIR) structure for the interpolated

filters. With our interpolated signal processing schemes, the computational complexity can be

significantly lower than the conventional approaches.

This dissertation is organized as follows. The DSL environments and impairments are

briefed in Chapter 2. In Chapter 3, we investigate the echo cancellation problem and pro-

pose a low-complexity adaptive interpolated FIR (IFIR) echo canceller. Theoretical Wiener

solution, minimum mean square error (MMSE) and convergence behaviors are analyzed in de-

tail. We also propose a least-squares method to design the optimal interpolation filter. These

results were verified with extensive simulations with versatile loop topologies and noise envi-

ronments. Base on the similar IFIR filtering structure, we then extend the interpolation scheme

to channel equalization and precoding. This is described in Chapter 4 in which we propose a

low-complexity adaptive interpolated decision feedback equalizer (DFE) and a low-complexity

interpolated Tomlinson-Harashima precoder. Theoretical Wiener solutions, minimum mean
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square errors (MMSEs) and convergence behaviors are also analyzed in details. In Chapter 5,

we study the turbo equalization algorithm. In this chapter, we propose fast interpolated turbo

equalizers with complexity an order of magnitude less than the conventional approach. An ac-

tual DSL channel is used for simulations and the results show that the performance is similar to

the conventional approach. Finally, we draw our conclusions in Chapter 6.





Chapter 2

Digital Subscriber Loop Environment

The invention of telephone is a remarkable milestone in the contemporary history of human

beings. With the telephone network, people can communicate each other without any distance

limitation. Lately, the modem was introduced and digital data can be transmitted/received over

the network. With digital processing technology, voice, text, music, picture, and video can all

be converted into their digital forms. In addition to voice, today’s telephone network extends its

application to multimedia communication.

As shown in Fig. 2.1, the telephone network consists of a core network and an access net-

work. The core network, shown on the left-side of the figure, relays information from the central

office (CO) and then conducts it to the different service networks such as circuit-switched pub-

lic switched telephone network (PSTN) for voice communication or packet-routed data network

for Internet access. The access network, shown on the right-hand side, transports information

at the customer premise (CPE) side to the CO side. The distance between the CPE and the CO

is usually around one mile. Thus, we also call it as the last mile. For the PSTN, any user within

the telephone network needs a dedicated physical link. The media cost becomes an important

issue when the access network is built. For low-cost consideration, the twisted-pair wire was

chosen as the transmission media for the last mile.

The telephone network was initially designed for the voice communication only, i.e., the so-

5
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Internet

PSTN

Core network Access network

Internet

PSTN

Core network Access network

Figure 2.1: The network architecture of digital subscriber loop - the last mile.

called plain old telephone service (POTS). The voice signal is transmitted directly on a single

pair of twisted-pair wire in its analog form. The bandwidth requirement for POTS is set as

4 KHz. The signal transmission between two end users during a phone call can be described

as follows. A 4 KHz analog voice signal is first transmitted from a CPE to a CO. Then, it

is sampled and digitized at 8 KHz rate before entering a class 5 switch (a voice switch) [1].

After the class 5 switch, the voice signal is transported and switched digitally within the core

network of the PSTN and finally converted back to the original analog waveform in a remote

class 5 switch near the called user. Due to the sampling operation, the class 5 switch limits the

bandwidth utilization of a twisted-pair wire. As we can see, the signal transmission path can be

divided into three sections. They are a twisted-pair wire section from the calling user to the first

class 5 switch, a digital link section between the first and the last class 5 switch, and finally a

twisted-pair wire section from the last class 5 switch to the called user. Note that the bandwidth

of the twisted-pair wire is wider than 4 kHz and is capable of carrying more information. The

digital section is the throughput/bandwidth bottleneck in a telephone network.

Though the original purpose of the twisted-pair wire is for voice communication, it’s possi-

ble to extend its use for other types of application. For example, fax uses the digital modulation

technology such as quadrature-amplitude-modulation (QAM) to transmit digital data. However,
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due to the sampling constraint in the class 5 switch, the bandwidth utilization of a twisted-pair

wire for digital communication is still limited to 4 KHz. For higher speed communication re-

quirement such as Internet access, the bandwidth is not sufficient. To solve the problem, the

class 5 switch is bypassed and transmission characteristic of the twisted-pair wire above 4 KHz

was exploited. This results in the development of new systems such as xDSLs (ISDN, HDSL,

SHDSL, ADSL and VDSL) pumping more throughput with wider bandwidth utilization. Note

that a new type of switch is required at CO side to handle the new applications. Using this

approach, the bottleneck in the digital section is resolved.

5800, 26 150, 24

1200, 26

1200, 26 300, 24 300, 26

feet, AWG

CO
side

CPE
side

Figure 2.2: A typical DSL loop with different size of twisted-pair wires and bridge taps.

A DSL loop may consist of twisted-wire pairs with different sizes. A typical DSL loop is

shown in Fig. 2.2, in which each segment of the twisted-pair wire is labeled with a length in

feet and a diameter in gauge number. A smaller gauge number stands for a wire with larger

diameter. Since the telephone company built the network before user subscription, it doesn’t

know who will connect to a particular DSL loop in advance. The bridge taps provide access

points for potential users in that service area. Whenever the wire gauge is changed or a bridge

tap is placed, impedance mismatch will occur and this will result in signal reflection. When the

signal is transmitted from one side to the other, it will be self-interfered with the reflection. The

destructive reflection may cause spectral nulls at some frequencies. For a given segment of a

twisted-pair wire, it is well known that the transfer function of twisted-pair wire is non-flat and

the attenuation is proportional to the square root of frequency [1]. Thus, the overall transfer

function of a typical DSL loop in Fig. 2.2 is frequency selective. The corresponding impulse
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response will have a large dispersion and this result in a severe ISI in time domain. Thus, a short

rectangular pulse transmitted from the CO side may result in a wide-spread distorted pulse at

the CPE side. Thus, an effective equalizer is needed to compensate the ISI effect at receive side.

Transmit

TransmitReceive

Receive

HybridEcho Echo

Signal
Tx

filter

Rx
filter

Hybrid

Rx
filter

Tx
filter

Channel

Figure 2.3: Full-duplexing transmission of a DSL channel.

In the telephone network, a special design was used to achieve full-duplex transmission over

a single twisted pair of wire. Fig. 2.3 shows the architecture. In the figure, we can see a device

called hybrid performing the duplexing operation. A simplified hybrid circuit [1] is shown in

Fig. 2.4. The circuitry was developed according to the Wheatstone bridge principle. In fact,

a hybrid circuit is an impedance bridge consisting of two voltage dividers. When the bridge is

balanced, i.e.,
R1

Zi

=
R2

Zb

, (2.1)

where Zi defined as the impedance measured at the primary side of the coupling transformer.

Thus, a voltage applied at transmit terminals causes zero voltage difference between receive

terminals. In the hybrid circuit, a coupling transformer shown on the bottom-left side is usually

required to couple the signal between the transceiver and the twisted-pair wire and block the

undesired DC signal (due to the unequal ground level between the CO and CPE sides). The
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loop impedance represents the impedance of the cascaded twisted-pair wire and the loading in

the receiver side. Obviously, Zi will depends on the loop to which the hybrid connects. The

balance condition in (3.1) is then difficult to hold accurately. Thus, the transmit signal will

partially return to the receive terminals and this is called echo. The echo signal will interfere

the receive signal seriously. Thus, a short rectangular pulse transmitted from CO side will return

a dispersed received pulse (echo) at the same side. An echo canceller is the commonly device

used to eliminate the unwanted echo signal. Except for ISI and echo, there are other kinds of

impairments in a telephone network such as crosstalk noise, impulsive noise, radio frequency

interference (RFI) noise, and thermal noise.

Loop
Impedance iZ

1R
2R

bZ

Transmit

Tx

Rx
(Echo)

Figure 2.4: The echo caused by the impedance mismatch of a hybrid circuit.

A transceiver must be designed to cope with the impairments mentioned above so that in-

formation can be transmitted and received properly. A transceiver usually consists of an analog

front-end and a digital processing unit. The functionality of a typical signal processing unit (for

receiver) includes error-correcting, echo cancellation, equalization, and detection. The analog

front-end is used to transform the digital signal into proper analog waveform for signal trans-

mission, and the operation is reversed for signal reception. The analog front-end includes a

transmit filter, a receive filter, an analog to digital signal conversion circuit (ADC), and digital

to analog signal conversion circuit (DAC). The transmit filter is designed to shaping the trans-

mit pulse in time domain for transmission or the power spectral density of the transmit signal
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in frequency domain controlling the interference to other systems. The receive filter is used for

anti-aliasing and filtering noises outside the signal band. ADC and DAC perform the analog

and digital signal conversion, respectively.

To increase the throughput, a wider transmission bandwidth is required and a higher clock

rate for a transceiver is necessary, too. Like the proverb said - “No pains, no gains”. A higher

clock rate will result in longer (more severe) echo and ISI responses. For low speed transmission

such as analog modem and ISDN, the response length of these impairments is not too long. The

computational complexity for the echo canceller and the equalizer is moderate. For high speed

transmission such as ADSL, SHDSL, and next generation xDSL, however, the response length

will be much longer. The computational complexity will become the main obstacle in the

transceiver design.



Chapter 3

Interpolated Echo Canceller

In a DSL environment, full duplex transmission via a single twisted pair can be achieved using

a hybrid circuit. Due to the impedance mismatch problem, the hybrid circuit will introduce

echoes. In an analog telephone, a hybrid circuit with 10-20 dB echo return loss is good enough

for voice conversation. For high-speed digital transmission, the required echo return loss, how-

ever, is much higher (50-70 dB). In versatile subscriber loop environments, it is difficult to

design a hybrid circuit achieving a high echo return loss, even when using an adaptive hybrid

circuit. Thus, an additional adaptive digital echo canceller [2, 3] is required.

A subscriber loop is composed of telephone wires with different gauges and lengthes [1],

and has many possible topologies. A typical echo response, shown in Fig. 3.1, usually consists

of a short and rapidly changing head echo, and a long and slowly decaying tail echo. Since the

subscriber loop between a central office and a customer premise is fixed, its characteristics will

not vary with time (except for temperature variation which is very slow). As a result, the echo

response is usually considered as time-invariant. Conventionally, an adaptive transversal FIR

filter, shown in Fig. 3.2, is used to synthesize and cancel the echo. For a lower speed appli-

cation such as ISDN, the echo canceller has about 50 taps, and the computational complexity

of the transversal filter structure is moderate. However, in higher speed applications such as

HDSL [4–6], HDSL2 [7], and SHDSL [8–10], the echo response is usually much longer. The

11
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echo canceller may require hundreds of tap weights, and the computational complexity of the

transversal FIR filter approach becomes very high. In order to reduce the computational com-
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Figure 3.1: A typical echo response.
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Figure 3.2: The adaptive FIR echo canceller.

plexity, some researchers tried to use an adaptive IIR filter to cancel the tail echo. However, the

adaptive IIR filtering suffers from the local minima and stability problems. Since an IIR filter

usually consists of a feedforward and a feedback filter, a compromising approach is to let the

feedforward filter be adaptive only. In [11], August et al. collected some echo responses for

the European subscriber loops, and used a criterion to determine the feedback filter optimally.

In [12], Gordon et al. considered echo cancellation as a series expansion problem. They used a
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set of IIR orthonormal functions to expand the echo response and let the expanding coefficients

be adaptive. The orthonormal responses were obtained using a set of predetermined cascaded

feedback filters. If only a small number of loops are considered, good performance can be

obtained using these methods. However, the existing loop responses are versatile, it will be

difficult to find a feedback filter that will always yields the optimal performance.

To retain the FIR structure of the echo canceller, and to reduce the complexity, an interesting

echo canceller structure was proposed in [13, 14]. The canceller is cascaded of an adaptive FIR

head echo canceller and an adaptive interpolated FIR (IFIR) tail echo canceller. Since the tail

echo always decays smoothly, an IFIR filter with a small number of coefficients can effectively

cancel the echo. Unfortunately, the IFIR filter proposed in [13, 14] has an uncontrollable tran-

sient response, and the direct cascade of an FIR and an IFIR filter will leave a certain period

of the echo response uncancelled. Although this problem is critical, it was overlooked in [14].

Recently, a new interpolated FIR echo canceller was proposed [15] to solve the problem. In this

work, the FIR and the IFIR filters are overlapped instead of being directly cascaded. Due to this

overlapping operation, some echo responses will be simultaneously cancelled by the FIR and

IFIR filters. Although this will not affect the final performance, it will slow down the conver-

gence. In order to solve the problem, some of tap-weights used in the FIR filter coefficients are

nulled. This results in a high performance yet low-complexity echo canceller.

An IFIR filter consists of an interpolation filter and an upsampled FIR filter. It is known

that the interpolation filter for an IFIR filter has great impact on the interpolated result. Many

interpolation filters have been proposed in [16]. These filters are general in the sense that they

are independent to the echoes being interpolated. Since they are general, they cannot yield best

performance for all types of echoes. If we know the characteristics of the signal which we will

interpolate, we can design a better interpolation filter. The purpose of this thesis is to enhance

the performance of the IFIR echo canceller in [15] via the interpolation filter design. We propose

a least-squares method to obtain the optimal interpolation filter for a single or multiple DSL

loops. Simulations show that the optimal interpolation filter can have much better performance
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than the conventional interpolation filters [14, 16].

This chapter is organized as follows. In Section 3.1, we describe the IFIR echo canceller

structure in [15] and review its properties. In Section 3.3, we discuss the proposed least-squares

interpolation filter design. In Section 3.4, we show the simulation results and discuss the com-

plexity reduction issues. Finally, we draw our conclusions in Section 3.5.

§ 3.1 The IFIR Echo Canceller

Let the length of an echo response be Nh and its response be h = [h0 h1 ... hNh−1]
T . The

received echo signal can be described as follows:

yk = hTxk + nk (3.1)

where xk = [xk xk−1 ... xk−Nh+1]
T is the transmitted signal, nk is a zero-mean additive noise

which may be the additive white Gaussian noise (AWGN), the near-end crosstalk (NEXT) noise,

or both combined.

From Fig. 3.1, we can clearly see that a typical echo response has a fast changing head

echo and a slowly varying tail echo. Thus, we can select a cutting point to segment these two

portions. Let hh = [h0 ... hα−1]
T , xh = [xk ... xk−α+1]

T , ht = [hα ... hNh−1]
T , and xt =

[xk−α ... xk−Nh+1]
T . Then, the echo response can be re-expressed as:

yk = hT
hxh + hT

t xt + nk (3.2)

In absence of noise, yk can be synthesized and cancelled by an Nh-tap FIR filter. This filter,

having h as its response, can be decomposed to an α-tap and an (Nh − α)-tap FIR filter; one

cancels the head echo and the other cancels the tail echo. In general, (Nh − α) is much larger

than α. As a result, the tail echo canceller will dominate the overall computational complexity.

Since the tail echo is slowly varying, we can use a filter with a lower complexity to approximate

ht. The idea is to use an IFIR filter, which is an interpolation filter cascaded by a filter with an

upsampled response [17, 18]. The detailed structure of the IFIR echo canceller is shown in Fig.
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3.3. The FIR filter w1 is used to model the head echo response hh and the IFIR filter g ∗ wU
2 ,

where ‘∗’ denotes the convolution operation, is used to model ht. Note that wU
2 is an upsampled

version of a filter w2. Basically, w2 tries to model the downsampled version of ht, and g is a

FIR filter that interpolates w2. Let the downsampling factor be M , and the FIR filter and the

IFIR filter be overlapped for No = Ng −M taps. The head echo canceller length is extended to

N1 = α + No instead of just α. As Fig. 3.3 shows, xk is the input to w1 and x̃k is that to wU
2 .

The output of the IFIR echo canceller in Fig. 3.3 can be expressed as:

ỹk = wT
1 x1,k + wT

2 x̃2,k (3.3)

where w1 = [w1,0 w1,1 · · · w1,N1−1]
T is the N1-tap head echo canceller, x1,k = [xk xk−1 · · ·

xk−N1+1]
T is its input vector, w2 = [w2,0 w2,1 · · · w2,N2−1]

T is the N2-tap tail echo canceller,

and x̃2,k =
[
x̃k−α x̃k−α−M · · · x̃k−α−(N2−1)M

]T is its input vector. In terms of z-transform

representation, we have wU
2 (z) = w2(z

−M). Rewriting (3.3), we have
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Figure 3.3: The adaptive IFIR echo canceller.

ỹk =
[

wT
1 wT

2

]




x1,k

x̃2,k





= wT x̃k. (3.4)
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Let g =
[
g0 g1 · · · gNg−1

]T be an Ng-tap interpolation filter, and its length equals 2SM − 1,

where S be the number of w2 tap-weights involved in calculating an interpolated value for a

single side span. Then, the interpolator output can be expressed as follows:

x̃k =

Ng−1
∑

i=0

gixk−i. (3.5)

Generally, the impulse response of the interpolation filter g is peaking at the center, slowly

decaying to its two sides and is symmetric around the center. The simplest response of g is a tri-

angular window function with 2M -1 taps, which gives a linear interpolation result. The design

of g is important to the IFIR filter and will be discussed later. Since the impulse response of

IFIR filter is the convolution of g and wU
2 , it exhibits two transient responses; each one decaying

to zero (each withNo samples), one in the front end of g∗wU
2 and the other in the tail end. Since

the tail end of ht always decays to zero, there is no problem with that transient response in the

tail. However, the head portion of ht has an abrupt rising edge. As a consequence, the front

end transient response of g ∗ wU
2 cannot model that of ht. A simple way to solve this problem

is to increase the length of w1, and overlap w1 with the front end transient response of g ∗ wU
2 .

The IFIR echo canceller overlap the last No taps of w1 with the first No taps of g ∗wU
2 to cover

the full front-end transient response. Fig. 3.4 shows how the FIR and IFIR responses are over-

lapped. Note that in the structure, there are (S−1) echo samples being cancelled simultaneously

by two filters; w1 and g ∗ wU
2 . As shown in [15], these taps are redundant and they will slow

down the convergence rate of the IFIR echo canceller. An easy and efficient way to overcome

this problem is to null w1; we can let the coefficients
[
w1,N1−(S−1)M · · · w1,N1−2M w1,N1−M

]

all be zeros. This nulling scheme removes the redundant taps and accelerates the convergence

rate. To obtain the tap weights of w1 and w2, an adaptive algorithm is applied. From (3.4), we

can see that the IFIR echo cancellation filter, similar to a conventional FIR filter, has a linear

structure. As a result, adaptive algorithms developed for the conventional FIR filter can be di-

rectly applied here. For the complexity consideration, the simplest adaptive algorithm, namely
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Figure 3.4: The filter responses of the IFIR echo canceller.

the least mean square (LMS), is employed. The LMS algorithm is given by [19]

wk+1 = wk + µekx̃k (3.6)

where µ is the step size controlling the convergence rate, and ek = yk − ỹk is the error signal.

The convergence behavior of the adaptive IFIR echo canceller and the upper bound of µ for

convergence will be discussed later.

The computational complexity of the adaptive IFIR echo canceller can be easily evaluated.

Table 3.1 summarizes the numbers of additions and multiplications required in the echo can-

cellation, for an IFIR and a conventional FIR echo canceller. As we can see, the complexity

reduction for the IFIR echo canceller comes from the IFIR filter. The computational complexity

of w2 is only one M -th of that of the corresponding FIR filter.
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Table 3.1: Computational complexity comparison for the FIR and IFIR echo cancellers

Echo emulation Taps weight update

Operation + × + ×
FIR Nh − 1 Nh Nh Nh

IFIR N1 +N2 +Ng − 2 N1 +N2 +Ng N1 +N2 N1 +N2

§ 3.2 Theoretical Analysis

The Wiener solution, minimum mean squared error (MMSE), and error return loss enhancement

(ERLE) of the IFIR echo canceller have been derived in [15]. Here, we only give the final

results. These formulas will be used for performance evaluation. Let R = E
[
x̃kx̃

T
k

]
be the

input correlation matrix (without nulling), and p = E [x̃kyk] a cross correlation vector. The

Wiener solution with coefficient nulling is

ŵo = R̂−1p̂ (3.7)

where R̂ and p̂ is the correlation matrix and vector for the nulled filter, respectively. R̂ and

p̂ are obtained by eliminating the i-th row and i-th column of R, and the i-th row of p, where

i ∈ {(N1−(S−1)M), · · · , (N1−2M), (N1−M)}, respectively. By doing so, the corresponding

weights in w1 will be all zeros, i.e., [w1,N1−(S−1)M · · · w1,N1−2M w1,N1−M ] = 01×(S−1).

From definition, the correlation matrix without nulling is

R =




Rx1x1 Rx1x̃2

RT
x1x̃2

Rx̃2x̃2



 . (3.8)

Assume that the transmitted signal xk is white. The correlation matrix of x1,k is

Rx1x1 = σ2
xIN1×N1

(3.9)

where σ2
x is the transmitted signal variance. The correlation matrix of x̃2,k is

Rx̃2x̃2 = σ2
xMMT (3.10)
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where

M =

















gT , 0, ..............., 0
︸ ︷︷ ︸

(N2−1)M

0, ..., 0
︸ ︷︷ ︸

M

,gT , 0, ..., 0
︸ ︷︷ ︸

(N2−2)M

...

0, ..............., 0
︸ ︷︷ ︸

(N2−1)M

,gT

















(3.11)

is anN2-by-(Nh−α) interpolation matrix. The cross correlation matrix of x1,k and x̃2,k is given

by

Rx1x̃2 = σ2
x




0α×No

0α×(Nh−N1)

INo×No
0No×(Nh−N1)



MT . (3.12)

If we assume that noise nk is independent of the transmitted signal xk, then, the cross correlation

vector is given by

p = σ2
x




h(0 : N1 − 1)

Mh(α : Nh − 1)



 (3.13)

where the notation h(i : j) denote a vector whose elements consisting of the i-th to the j-th

component of h.

The residual echo response is

∆h = h − (ŵo,1 + g ∗ ŵU
o,2) (3.14)

where ŵo,1 and ŵo,2 are the optimal weights for w1 and w2, respectively, and ŵU
o,2 is an upsam-

pled version of ŵo,2. The MMSE is then equal to the summation of the residual echo power and

the noise variance.

MMSE = (∆hT ∆h)σ2
x + σ2

n (3.15)

where σ2
n is the noise variance. The theoretical ERLE then equals

ERLE = 10 · log10

hTh

∆hT ∆h
. (3.16)
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We now analyze the convergence behavior of the adaptive IFIR filter. From (3.6), we see

that the update equation for the adaptive IFIR filter is identical to that of a standard adaptive FIR

filter, except for the input vectors. Thus, the existing results for the adaptive FIR filter can be

applied. Using the independence theory [19], we assume that {x̃k} be a sequence of statistically

independent vectors. Defining the weight-error vector as εk = ŵk − ŵo, we then have [19]

E [εk+1] =
(

I − µR̂
)

E [εk] . (3.17)

Thus, if the step size satisfies the following condition, the mean of εk will converge to zero as k

approaches infinity:

0 < µ <
2

λmax

(3.18)

where λmax is the largest eigenvalue of the correlation matrix R̂.

Let the MSE of the adaptive IFIR filter be denoted as Jk = E [e2
k]. The MSE, Jk, will

converge to a steady-state value equal to J∞ if, and only if, the step-size µ satisfies the following

two conditions [19]:

0 < µ <
2

λmax

,

N1+N2−S+1∑

n=1

µλn/2 (1 − µλn) < 1 (3.19)

where λn is the n-th eigenvalue of the correlation matrix R̂, and N1 +N2 −S+1 is the number

of adjustable tap weights in the proposed IFIR echo canceller. The MSE value in the steady

state is given by

J∞ =
Jmin

1 −
N1+N2−S+1∑

n=1

µλn/2 (1 − µλn)

(3.20)

where Jmin is the MMSE shown in (3.15). The misadjustment ψ can then be expressed as

ψ =

N1+N2−S+1∑

n=1

µλn/2 (1 − µλn)

1 −
N1+N2−S+1∑

n=1

µλn/2 (1 − µλn)

. (3.21)

From simulations we found that the convergence speed of the proposed adaptive IFIR filter

is somewhat slower than that of the conventional LMS FIR filter. This is due to the fact that the

input correlation matrix for the IFIR filter is not truly diagonal.
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§ 3.3 Optimal Interpolation Filter Design

Given a value for the interpolation factor M , the optimal interpolation filter is the ideal lowpass

filter with bandwidth π/M ; however, the corresponding impulse response is an unrealizable

sinc function. Therefore, many suboptimal interpolation filters have been proposed [16]. These

filters are general in the sense that they are independent to the signal being interpolated. If

we know the characteristics of the signals for which we will be interpolating, we can design

a better interpolation filter. In this section, we propose a least-squares method to obtain the

optimal interpolation filter for a set of given tail echo responses.

We first consider the interpolation filter design for a single tail echo response. Let

f =
[
f0 f1 ... f(N2−1)M

]T

=
[
hα hα+1 ... hα+(N2−1)M

]T (3.22)

be a tail echo response. Here, we take ((N2 − 1)M + 1)-sample from the original tail echo. If

the original tail echo is not long enough, we can pad zeros. Let

f̂ =
[

f̂0 f̂1 ... f̂(N2−1)M

]T

= [f0 0, · · · , 0
︸ ︷︷ ︸

M−1

fM 0, · · · , 0
︸ ︷︷ ︸

M−1

· · · f(N2−1)M ]T (3.23)

be the corresponding downsampled and then upsampled response used in interpolation, g be

the interpolation filter response, and

f̃ =
[

f̃0 f̃1 ... f̃(N2−1)M

]T

(3.24)

be the interpolated tail response. Note that

f̃k =

Ng−1
∑

i=0

gif̂k−i. (3.25)
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Figure 3.5: Illustration of finding optimal interpolation filter.

Let the interpolation error response be vi = fi− f̃i. We can then define a cost function using

the error response as

ξ(g) =

I2∑

i=I1

v2
i (3.26)

where I1 = Ng − 1 and I2 = (N2 − 1)M . Note that the cost function does not include the

interpolation errors for the first Ng − 1 and last Ng − 1 transient responses of f̃k, as shown in

Fig. 3.5. Obviously, the optimization problem is a classic least-squares problem. Define an

error vector as v = [vI1 vI1+1 · · · vI2 ]
T . We can rewrite the cost function in (3.26) using a

vector form.

ξ(g) = vTv

= (fs − f̃s)
T (fs − f̃s) (3.27)

where fs = f(I1 : I2) is the reduced-length tail response, f̃s = f̃(I1 : I2) is the corresponding

interpolated response. If we expressed f̃s in the following matrix form,

f̃s = Fg (3.28)
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where

F =











f̂I1 f̂I1−1 · · · f̂I1−(Ng−1)

f̂I1+1 f̂I1 · · · f̂I1−(Ng−2)

...
... . . . ...

f̂I2 f̂I2−1 · · · f̂I2−(Ng−1)











(3.29)

is a (I2 − I1 +1)-by-Ng Toeplitz matrix, then the cost function in (3.27) can be re-expressed as:

ξ(g) = (fs − Fg)T (fs − Fg). (3.30)

Taking the derivative with respect to g in (3.30) and set the result to zero, we can obtain the

least-squares solution as [20]

ĝ = (FTF)−1FT fs. (3.31)

Extending the idea developed above, we can find a single optimal interpolation filter for a

set of echo loops. Let fs,i be the reduced-length tail response for the i-th loop, N be the number

of loops considered, and f̃s,i the corresponding interpolated response. Now we augment the

interpolated response in (3.28) as follows:










f̃s,1

f̃s,2
...

f̃s,N











=











F1

F2

...

FN











g. (3.32)

where Fi is the matrix in (3.29) for the i-th loop. Let f̄s =
[

f̃s,1 f̃s,2 · · · f̃s,N

]T

, and

F̄ =
[

F1 F2 · · · FN

]T

. We can then define a cost function similar to (3.30) as

ξ̄(g) = (f̄s − F̄g)T (̄fs − F̄g) (3.33)

The cost function in (3.33) is equivalent to

ξ̄(g) =
N∑

i=1

ξi(g)

=
N∑

i=1

I2∑

j=I1

|vij|2. (3.34)
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Using the least-squares method, we can obtain the optimal interpolation filter for multiple loops

as

g̃ = (F̄T F̄)−1F̄T f̄s. (3.35)

and the sum of averaged squared errors as

ξ̄min =
∥
∥f̄s − F̄g̃

∥
∥

2

= f̄T
s

(

I − F̄
(
F̄T F̄

)−1
F̄T
)

f̄s. (3.36)

Assuming that the head echo, including the overlapped portion is cancelled perfectly, we have

the theoretical ERLE for loop i as

ERLE = 10 · log10

‖hi‖2

ξmin,i

(3.37)

where hi is the i-th echo response vector, and ξmin,i = ‖fs,i − Fig̃‖2 is the sum of the minimum

squared errors for that loop. Note that the optimal interpolation filter is usually not symmet-

ric. The computational complexity for the interpolation operations, using the optimal filter, is

higher than that when using the conventional symmetric ones. We can solve the problem by

constraining the filter response to be symmetric, i.e., gi = gNg−1−i, i = 0, 1, ...(SM − 2). The

optimal solution for a single echo loop is identical to that in (3.31) except for the matrix F. The

matrix now becomes:

F =











f̂I1 + f̂I1−(Ng−1) · · · f̂I1−(SM−1)

f̂I1+1 + f̂I1−(Ng−2) · · · f̂I1−SM

... . . . ...

f̂I2 + f̂I2−(Ng−1) · · · f̂I2−(SM−1)











. (3.38)

Compared to (3.29), the column dimension of (3.38) is reduced by half. The (Ng − 1 − i)-th

column of F in (3.29) is added to the i-th column, i = 0, 1, ...(SM − 2) except for the middle

column corresponding to the central tap of g. That means the middle column of F is unchanged

and its result is the most right column in (3.38). The dimension of g is also reduced by half.
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Using a similar method, we can find the optimal symmetric interpolation filter for a single or

for multiple loops via (3.31) or (3.35).

In this paragraph, we compare the performance of some existing interpolation filters with

proposed ones. Those we considered include the linear, the truncated-sinc, the Hanning-windowed

sinc, and the Chebyshev-windowed sinc filters. The responses of the Chebyshev-windowed

sinc, the optimal, and the optimal symmetric interpolation filters are shown in Fig. 3.6 (S = 2

and M=4), and the theoretical ERLEs for the CSA loop #1 [7] are shown in Table 3.2. Note

that the optimal interpolation filters are optimized for eight CSA loops [7] then apply to CSA

loop #1. As we can see, for the case of S=1 only the optimal interpolation filter has ERLE

higher than 70-dB. For the case of S=2, the proposed interpolation filters outperform other fil-

ters by an amount of more than 10 dB. For the case of S=3, the proposed filter still has the best

performance, however, the performance difference is reduced. Specifically the performance of

the Chebyshev-windowed sinc filter is close to that of the proposed ones. It seems that the

performance bound has been reached, and that there is no need to consider a span of more than

three. We conclude that the proposed method provides a systematic rather than a heuristic or a

trial-and-error way to find the interpolation filter. From the results shown in Table 3.2, we can

see that the two-span symmetric interpolator seems a good choice for the IFIR echo canceller.

Table 3.2: ERLE performance vs. various interpolation filters (LIN: linear, TRS: truncated sinc,

HWS: Hanning-windowed sinc, CWS: Chebyshev-windowed sinc, OPS: optimal-symmetric,

OPT: optimal)

Filter LIN TRS HWS CWS OPS OPT

S=1 62.4 32.3 31.5 28.5 68.9 70.1

S=2 - 39.1 55.1 57.8 73.2 73.3

S=3 - 43.4 66.4 75.0 75.9 76.3
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Figure 3.6: Interpolation filters (M=4, S=2).

§ 3.4 Simulation Results

In this section, we report some computer simulation results to demonstrate the effectiveness of

the optimal IFIR echo canceller. Specifically, we have taken SHDSL as the application example

and evaluated the echo cancellation performance under scenarios with different loop topologies,

echo cutting points, interpolation factors, and noise environments.

§ 3.4.1 Loop Characteristics and Topologies

To test the robustness of the optimal IFIR echo canceller, we used eight CSA loops in [7] for

simulations. The method to model echo responses was described in [1,21]. The echo path con-

tained a transmit shaping filter, a transmit differential hybrid circuit (with a 135Ω termination
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impedance), a CSA loop, a receive differential hybrid circuit, and a receive filter. The trans-

mit/receive filter was modelled as a 6-th order Butterworth lowpass filter with a 3-dB cutoff

frequency at 775 KHz. The primary inductance of the transformer in the hybrid circuits was

3 mH. For the SHDSL application, the sampling rate was as high as 775 KHz. The simulated

echo responses at the central office side (CO) and the customer premise side (CPE) are shown

in Fig. 3.7 and Fig. 3.8, respectively. The responses exhibited a short and rapidly changing

head portion and a long and slowly decaying tail portion, as was expected. The line code of
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Figure 3.7: SHDSL echo responses for CSA loops at CO side.

the transmit signal was 16-PAM. Here, AWGN with -140 dBm/Hz was used to contaminate the

received signal. The cutting point α was set as 39 and the interpolation factor M was set as 4.

The optimal symmetric interpolation filter (S=2) obtained by using the eight CSA loops, was

applied. We then have N1 = 50. During the training period, the far-end transmit signal was



28 CHAPTER 3. INTERPOLATED ECHO CANCELLER

0 50 100 150 200 250
-0.15

-0.1

-0.05

0

0.05

0.1

M
ag

ni
tu

de
 (V

)

Sample

1
2
3
4
5
6
7
8

Figure 3.8: SHDSL echo responses for CSA loops at CPE side.

turned off. After that, the transceiver was operated in a full duplex data transmission mode. For

a faster convergence, the step size was varied using the following scheme. The training period

was divided into five stages and the overall period was 12,000 samples. In each stage, the step

size was simply reduced by a factor of two. The step size was initialized as 1/Nh = 0.004. The

emulated echo response, which was an overlapped combination of the FIR and IFIR responses,

is shown in Fig. 3.9. Note that there was one nulled tap (zero weight) located in the tail end

of w1. As we can see, the tail response was modelled accurately using the IFIR filter except

for the transient response in the beginning, however, w1 compensated for that effectively. All

the eight CSA test loops both at the CO and the CPE side were simulated. The resultant ERLE

performances are shown in Fig. 3.10. As the figure shows, the ERLE was between 73.0 and

77.1 dB. The averaged ERLE was around 74.0 dB at the CO side, and 74.5 dB at the CPE side.
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Figure 3.9: Overlapping of FIR and IFIR filters (M=4, S=2, N1=50).

The low sensitivity of the optimal IFIR echo canceller to different topologies and loop char-

acteristics exhibited its feasibility to real-world applications. Generally speaking, theoretical

ERLE predictions, which are also shown in Fig. 3.10, were accurate. The higher the ERLE,

the larger the difference between the theoretical and empirical ERLEs. This was because if the

ERLE was higher, a smaller step size was required to hold the independence theory. However,

we used the same step size for all cases.

§ 3.4.2 The Cutting Point and the Interpolation Factor

In this set of simulations, all the parameters and the interpolation filters were identical to those

in the previous one. However, only CSA loop #1 was used. To show the influence of the

cutting point and the interpolation factor, we give theoretical ERLE in a two-dimensional plot
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Figure 3.10: ERLE performance for different CSA loops.

in Fig. 3.11. In the figure, the cutting point varies from 30 to 70 and the interpolation factor

from two to eight. Note that the performance surface is monotonically increasing with respect

to the increasing of the cutting point position and the decreasing with the interpolation factor.

The ERLE is always higher than 67.4 dB (76.9 dB in average). For an interpolation factor

less than (or equal to) 4 and the cutting point greater than 30, the ERLE performance excesses

70 dB. A larger cutting point or a smaller interpolation factor implies higher computational

complexity. Thus, there must be a compromise between performance and complexity. The

computational complexity comparison for the IFIR and the conventional FIR echo cancellers is

shown in Table 3.3. The complexity ratio in Table 3.3 is defined as the ratio of the computational

complexity of the IFIR canceller and that of the FIR canceller. Here, the cutting point is 39 and

the interpolation filter spans 4 samples. For the interpolation factor of 2, 4, and 8, computational
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complexity for the IFIR canceller is (in terms of additions and multiplications) 62%, 43%, and

36% of that for the conventional FIR canceller, respectively. Using the interpolation factor of

4, we can achieve more than 70-dB ERLE while reduce 57% complexity.

Table 3.3: Computational complexity ratio for different interpolation factor (N1 = 50, S=2)

Echo emulation Taps weight update Complexity ratios

×, + + × + × + ×
M=2 156 158 151 151 62% 62%

M=4 114 116 101 101 43% 43%

M=8 105 107 76 76 36% 36%

§ 3.4.3 Noise Environments: AWGN and NEXT

In this subsection, we evaluate the performance of the optimal IFIR echo canceller under differ-

ent noise environments. The scenario includes pure AWGN and a composite noise consisting

of AWGN and NEXT noise. The power spectral density (PSD) of the coupled NEXT can be

evaluated using the formula shown below [21, 22].

PSDNEXT = PSDDisturber ·
(
xnf

3/2
)

0 ≤ f <∞, n < 50, xn = 0.8536 · 10−14 · n0.6
(3.39)

where the PSDDisturber is the PSD of a disturbing xDSL line code such as 16-PAM, DMT, 2B1Q,

etc. The parameter xn is a coupling coefficient and its value depends on the number of disturbers

n. Both self-NEXT as well as foreign-NEXT were considered. For the self-NEXT case, NEXT

noise was contributed by 10-SHDSL disturbers. For the foreign-NEXT case, NEXT noise was

contributed by 24-ISDN disturbers, 10-HDSL disturbers, non-collocation1 24-T1 disturbers, or

1Contrary to [8], here, we assume that the T1 and SHDSL terminals are non-collocation, a factor of 15.5 dB

downward of interferer PSD is included for modelling the adjacent binder effect [22, 23].
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Figure 3.11: ERLE versus the cutting point and the interpolation factor.

10-downstream/upstream-ADSL disturbers. All NEXTs were from pairs in the same binder

group except T1 crosstalk that was from pairs in an adjacent binder group. Finally, NEXT and

AWGN (-140 dBm/Hz) were then summed together to form a composite noise. The ERLE

performance at the CO and the CPE side for different CSA loop under the composite noise en-

vironments were simulated and the results are shown in Fig. 3.12 and Fig. 3.13, respectively. In

either case, the ERLE under AWGN is the highest. The ERLE is lower in the NEXT environ-

ments and inversely proportional to the NEXT power. Note that the step sizes used here were

all the same. From (3.8) and (3.13), we can see that the Wiener solution is independent of the

noise power. The noise power only affects the misadjustment. It is well known that the smaller

the step size, the smaller the misadjustment [19]. This is to say that if we could reduce the step

size, all the ERLEs would be as high as that in the AWGN case. However, as we will discuss
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Figure 3.12: Simulated ERLE performance at CO side.

below, this might not be necessary.

§ 3.4.4 Discussions

The mission of an echo canceller is to cancel the echo signal produced by the transmission

symbols. It can do nothing about noise. Thus, if the level of residual echo is below that of

noise, echo is no longer the main factor limiting the system performance. So, lets define the

total echo return loss (TERL) as

TERL = (ERL + ERLE), (3.40)

where ERL is the echo return loss of the hybrid circuit. The value of ERL usually depends on

the loop topology, loop characteristics as well as the receiver location. For convenience, we
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Figure 3.13: Simulated ERLE performance at CPE side.

calculate and list ERLs in Table 3.4 for the scenarios considered above. As the table shows, the

value of ERL is between 22.0 and 26.0 dB at the CO side, and 17.0 and 26.0 dB at the CPE side.

Because the topology is more complicated at the CPE side, the hybrid circuit usually achieves

Table 3.4: Echo return loss and path loss for CSA loops

CSA loop No. 1 2 3 4 5 6 7 8

ERL-CO (dB) 24.0 24.0 25.0 22.0 24.0 25.0 26.0 26.0

ERL-CPE (dB) 24.0 17.0 25.0 23.0 25.0 25.0 17.0 26.0

PL (dB) 32.0 30.0 33.0 32.0 32.0 34.0 31.0 33.0

smaller ERL. In other words, a higher ERLE must be achieved at the CPE side for a same target

SNR at the receiver. We show TERL values in Fig. 3.14. Except for the AWGN case, all TERLs
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Figure 3.14: Total echo return loss at CPE side.

are quite close. Fig. 3.15 compares PSDs of echo, residual echo and composite noise. As we

can see, the residual echo level is below the composite noise in most frequencies. This implies

that the echo cancellation level is high enough and a higher ERLE will not improve the system

performance. If the channel is perfectly equalized (i.e., intersymbol interference free), the SNR

(in dB) after echo canceller can be calculated as follows:

SNR = Pt − [PL + (Nn +Ne)], (3.41)

where Ne = Pt − TERL, Pt is the transmit power, and equaling 18.9 dBm (-40 dBm/Hz in

power spectrum), PL is the path loss of CSA loops as tabulated in Table 3.4, Nn is the power

of the composite noise, and Ne is the power of the residual echo. Using the above formula,

the theoretical SNR, with and without echo interference for CSA #1, is calculated in Table 3.5.

For the case with echo interference, the proposed echo canceller was used to cancel the echo
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signal. As Table 3.5 shows, both SNRs are very close. This verifies the statement made above

that the echo was cancelled to a negligible level. Since the crosstalk noise from 10-SHDSL

disturbers is the strongest in the CPE side, the SNR is only 26.8 dB. The highest SNR is 65.4

dB which corresponds to the AWGN case. Finally, the simulated SNR (with echo interference)

for all kind of loops and noises is shown in Fig. 3.16. The SNR performance tabulated in Table

3.5 corresponds to one case (for CSA #1) shown in Fig. 3.16. We found that performances

for different loops are quite similar. From the simulation and theoretical results shown above,

we conclude that the proposed echo canceller can be as effective as the transversal filter echo

canceller while at the same time the computational complexity is significantly lower.
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Figure 3.15: The power spectral densities of echo, residual echo, and composite noises.
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Table 3.5: SNR with or without echo interference for CSA #1 at CPE side

AWGN ISDN HDSL T1 ADSL-US SHDSL

Without 68.1 39.7 33.4 37.2 34.2 26.8

With 65.4 39.7 33.4 37.2 34.2 26.8
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Figure 3.16: SNR (with echo cancellation) at CPE receiver.
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§ 3.5 Conclusions

An optimal IFIR echo canceller is proposed for the echo cancellation application in high-speed

baseband xDSL systems. The IFIR echo canceller inherits all the numerical stability advantages

of the conventional FIR filter while effectively reducing its computational complexity. Optimal

interpolation filters for DSL applications are designed using a least-squares method. Finally,

extensive simulations using standard test loops were conducted to demonstrate the effectiveness

of the optimal IFIR echo canceller.



Chapter 4

Interpolated Decision Feedback Equalizer

and Precoder

Decision feedback equalization [24] has been widely used as an efficient intersymbol inter-

ference (ISI) cancellation technique for several decades. In high-speed wireless and wireline

communications, the transmission bandwidth is wider and intersymbol interference is more se-

vere. The DFE then requires tens even hundreds taps in order to cancel the ISI to an acceptable

level. This will significantly increase the computational complexity of the DFE. Thus, many

methods have been proposed to solve the problem [25–30]. A common idea for complexity

reduction is to remove the redundancy commonly observed in the DFE feedback filter response.

For wireless applications, the channel may be highly sparse, so is the DFE feedback filter. This

characteristic is then used in some reduced complexity DFEs [28–30].

For wireline applications, the channel often possesses strong lowpass characteristics and

this makes the channel response look like a smoothly decaying function. In [25], Crespo et al.

proposed to use an infinite-impulse-response (IIR) filter as the DFE feedback filter (instead of

an FIR filter). This approach only uses a two-pole feedback filter to avoid possible stability

problem in the adaptive implementation. Simulation results for a 12-kft 24-gauge twisted-

pair copper wire channel were reported. Since the order of the IIR filter is low, this approach

39
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may not yield good performance for all practical channels. Young [26] used a fixed first-order

FIR feedforward filter to shorten the digital subscriber line (DSL) channel and assumed that

the resultant channel had postcursors only. The resultant channel response was then modelled

as an exponential decaying function approximated by the response of a low-order FIR filter

cascaded with a first-order IIR filter. Simulation results reported that this approach could have

comparable performance with the conventional DFE. Similar to [25], the channel modelling is

oversimplified and its applicability may be limited.

In [27], Al-Dhahir et al. used an ARMA-model to describe the channel response and pro-

posed a matrix-based multistage method to derive a low-complexity DFE. The method first

estimates the channel impulse response and solves the optimal DFE solution using the fast

Cholesky factorization algorithm [31]. Then, it uses low-order IIR filters to model the FIR

feedforward and feedback filters, and identifies their coefficients with a generalized ARMA-

Levinson algorithm [27]. Finally, the low-order IIR filters is used to implement the DFE in

run-time. The problem of this approach is that the preprocessing requires a high computational

complexity. Also, the modelling may not be adequate for all DSL channels.

In this dissertation, we focus on the DFE complexity reduction issue in DSL. A typical

DSL channel response is shown in Fig. 4.1. The response consists of a short and rapidly

changing precursor ISI, and a long and slowly decaying postcursor ISI. As we can see, the

channel response is long and highly lowpassed. For a conventional DFE, it is well known

that the feedback filter length is on the same order of the postcursor ISI length. Thus, the

feedback filter may also require hundreds of tap weights, and the computational complexity of

a transversal FIR feedback filter may be high. This problem is more apparent in a precoding

system. The purpose of precoding is to avoid error propagation problem inherent in the DFE. A

commonly used precoding technique is the Tomlinson-Harashima precoder (THP) [32–34]. The

key to avoid error propagation is to place the DFE feedback filter in the transmit side instead

of the receive side. Though the coefficients of the THP are the same as the feedback filter

coefficients, the input data characteristics are different. The input to a THP has a continuous
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value rather than discrete. That means the computation complexity requirement when precoding

is used will be much higher than a conventional DFE. Since the length of the feedback filter may

be many times greater than that of the feedforward filter, the computational complexity of the

DFE (particularly the THP) will be dominated by the feedback filter.
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Figure 4.1: Typical channel impulse response in digital subscriber loop application.

Fortunately, it is observed that the response of the DFE feedback filter is similar to that of

the postcursor ISI. Thus, the optimal response of the feedback filter is also a slowly decaying

function [25–27]. Note that the overall ISI is jointly cancelled by the feedforward and feedback-

ward filters in a DFE. That means there may exist some sub-optimal pairs of the feedbackward

and feedback filter solution that can cancel the ISI without too much performance degradation.

This is to say that when the feedback filter response is not able to approach the optimal one, the

feedforward filter will try to compensate for that. Using the jointly ISI cancellation property,

we propose a new DFE structure called interpolated DFE that can significantly reduce the com-
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putational complexity in the feedback filter. As mentioned, the feedback filter response always

decays smoothly and an interpolated FIR (IFIR) filter [17, 18] with a small number of coeffi-

cients is able to cancel most of the postcursor ISI effectively. We further apply the least mean

square (LMS) algorithm to train the tap weights and obtain an adaptive IDFE. Using the sim-

ilar approach, we also propose a low-complexity interpolated Tomlinson-Harashima precoder

(ITHP). The distinct feature of the proposed algorithm, compared to existing ones, is that the

feedback filter remains the FIR structure. Thus, the proposed algorithm is free of the stability

problem. Note that the idea of the interpolated filtering has been successfully applied in the

problem of echo cancellation [15]. However, the problem becomes more involved here.

This chapter is organized as follows. In Section 4.1, we briefly describe the system model,

the conventional DFE, and its optimal tap weights solution. In Section 4.2, the proposed IDFE

and adaptive IDFE are introduced, theoretical performance and convergence behavior are ana-

lyzed in detail, and the complexity reduction and interpolation filter design issues are discussed.

In Section 4.3, we report simulation results and evaluate the validity of derived close-form ex-

pressions. Finally, we draw conclusions in Section 4.4.

§ 4.1 System Model and Conventional DFE

Let the length of an equivalent discrete response of a DSL channel be Nh and its response be

h = [h0, h1, · · · , hNh−1]
T . The received signal corrupted by additive noise can be described as

follows:

yk =

Nh−1∑

i=0

hixk−i + nk (4.1)

where xk denotes the transmit signal and nk denotes the noise. Here, we assume that both nk

and xk have zero means and they are independent each other. A conventional DFE is shown in

Fig. 4.2.

Let f and b be the tap weight vectors of the feedforward and feedback filters and Nf and Nb
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be their tap weight lengths, respectively. Then, we have

f =
[
f0, f1, · · · , fNf−1

]T (4.2)

b = [b1, b2, · · · , bNb
]T (4.3)

Also, let the input vectors to the feedforward and feedback filters be expressed as

yk =
[
yk, yk−1, · · · , yk−Nf+1

]T (4.4)

x̂k = [x̂k−∆−1, x̂k−∆−2, · · · , x̂k−∆−Nb+1]
T , (4.5)

where x̂k−∆ is the decision value with the desired delay ∆. Then the DFE output value (before

decision) is then

zk = zf,k − zb,k (4.6)

where zf,k = fTyk and zb,k = bT x̂k are the output values of the feedforward and feedback

filters, respectively. The Wiener solution for f and b can be derived as follows. Assume that all

the decisions are correct, i.e., x̂k−∆ = xk−∆, x̂k = xk = [xk−∆−1, xk−∆−2, · · · , xk−∆−Nb+1]
T .

Let ek = xk−∆ − zk be the estimation error. Then, the mean square error (MSE), denoted as J ,
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is

J = E
{
e2k
}

= E
{∣
∣xk−∆ −

(
fTyk − bT x̂k

)∣
∣
2
}

= σ2
x + fTRyyf + bTRxxb − 2fTRyxb − 2pT

yxf (4.7)

where E {·} denotes the expectation operation, σ2
x = E {x2

k} is the transmit signal power,

Rxx = E
{
x̂kx̂

T
k

}
= E

{
xkx

T
k

}
, Ryy = E

{
yky

T
k

}
, Ryx = E

{
ykx̂

T
k

}
, and pyx = E {ykxk−∆}.

Taking the partial derivatives of J with respect to f and b, we have

∂J

∂f
= 2Ryyf − 2Ryxb − 2pyx (4.8)

∂J

∂b
= 2Rxxb − 2RT

yxf (4.9)

Then, setting both (4.8) and (4.9) to zero, we have the optimal f and b as

fmmse =
(
Ryy − RyxR

−1
xxR

T
yx

)−1
pyx (4.10)

bmmse = R−1
xxR

T
yxf . (4.11)

Applying the above optimal tap weights fmmse and bmmse into (4.7), we can obtain the minimum

MSE (MMSE) of the conventional DFE denoted as Jmin,DFE. The signal to noise ratio (SNR) of

the MMSE DFE before decision is found to be [35]

SNRDFE,MMSE =
σ2

x

Jmin,DFE
. (4.12)

Let nk be white and its variance be σ2
n. Correlation matrices and the cross-correlation vector in

(4.10) can be then expressed as follows:

Ryy = σ2
xHHT + σ2

nINf×Nf
(4.13)

Ryx = σ2
xH
[

0Nb×(∆+1) INb×Nb
0Nb×(Nf+Nh−Nb−∆−2)

]T

(4.14)

pyx = σ2
xH
[

0Nb×∆ 1 0Nb×(Nf+Nh−∆−2)

]T

(4.15)
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where H is the channel matrix given by

H =











h0 h1 · · · hNh−1 0 · · · 0

0 h0 h1 · · · hNh−1 0 · · ·
...

...

0 · · · 0 h0 h1 · · · hNh−1











Nf×(Nf+Nh−1)

. (4.16)

The detailed derivation for (4.13)∼(4.15) can be found in Appendix A. Substituting (4.13)∼(4.15)

into (4.10)∼(4.12), we can obtain the theoretical SNR and optimal tap weights. In simulations,

these expressions will used to obtain theoretical DFE performance bounds.

§ 4.2 The Proposed Interpolated DFE

In this section, the proposed IDFE will be elaborated in detail. First, we formulate the IDFE

structure and derive the Wiener solution as well as the MMSE for the IDFE filter. Using these

results, we can calculate the SNR performance bound. Applying the LMS algorithm to the

IDFE filter, we can obtain an adaptive IDFE. Then, we analyze the convergence behavior of the

adaptive IDFE. This includes the step size bounds and the steady state misadjustment. Finally,

the complexity reduction and interpolation filter design issues are discussed.

§ 4.2.1 Interpolated DFE

Usually, the optimal feedback filter response of a conventional DFE is a smoothly decay-

ing function as shown in Fig. 4.3(a). The smooth shape makes it interpolatable and a low-

complexity structure possible. As assumed, the feedback filter length of the DFE is Nb. We

can then select a cutting point called α to separate the optimal feedback filter response into

two parts; one is an α-tap head response and the other is an (Nb − α)-tap tail response. In

general, (Nb − α) is much larger than α. As a result, if the tail response is implemented by

a low-complexity filter, the overall computational complexity can be reduced dramatically. As
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shown in Fig. 4.3(b), we use a low-complexity IFIR filter to model the tail response, and use

an FIR filter to model for the head response. Thus, an interpolated feedback equalizer shown

in Fig. 4.4 can be constructed. The proposed interpolated DFE consists of a conventional feed-

forward filter, and an interpolated feedback filter. The interpolated feedback filter consists of a

feedback head filter and an interpolated feedback tail filter. Generally, an interpolated filter is

a cascade of an interpolation filter and a filter with an upsampled response. Let f̃ , b1, g, b2 be

the tap weight vectors of the feedforward, the interpolated feedback tail, the interpolation, and

the feedback head filter, respectively. Then, we define

f̃ =
[

f̃0, f̃1, · · · , f̃Nf−1

]T

(4.17)

b1 = [b1,1, b1,2, · · · , b1,Nb1
]T (4.18)

g =
[
g−(M−1), g−(M−2), · · · , g(M−1)

]T (4.19)

b2 = [b2,1, b2,2, · · · , b2,Nb2
]T (4.20)

where M is the interpolation factor, Ng = 2M − 1 is the length of the interpolation filter, Nb1

is the length of the interpolated feedback tail filter, and Nb2 is the length of the feedback head

filter. Note that Nb1 =
⌊

(Nb−α)
M

⌋

, where b·c takes the nearest integer towards zero. The length

of the feedback head filter is then Nb2 = α + (M − 1).

Generally, the impulse response of the interpolation filter g is peaking at the center, slowly

decaying to its two sides and is symmetric around the center. The simplest response of g is

a triangular window function with 2M -1 taps, which gives a linear interpolation result. Since

the impulse response of the interpolated feedback tail filter is the convolution of g and b
↑M
1 ,

where b
↑M
1 = [b1, 0, · · · , 0

︸ ︷︷ ︸

M−1

, b2 0, · · · , 0
︸ ︷︷ ︸

M−1

, b3, 0, · · · , bNb1
]T is a M -upsampled response of b1, as

shown in Fig. 4.3(b), it exhibits transient responses in two sides, each one decaying to zero.

The first one is in the front end of g ∗ b
↑M
1 , where * stands for the convolution operation, and

the other one is in the tail end. Since the tail of the feedback filter response always decays to

zero, there is no problem with the transient response in the tail. But the front-end response of
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Figure 4.3: (a) Optimal feedback filter response of conventional DFE. (b) Interpolated feedback

filter response of proposed IDFE.

a conventional feedback filter usually does not decay to zero and it cannot be modelled by the

front-end transient response of g ∗ b
↑M
1 . One simple way to solve this problem is to use a FIR

filter to compensate for the transient response in the front-end. We can then increase the length

of the feedback head filter, b2, such that it overlaps its last M − 1 taps with the first M − 1

taps of g ∗ b
↑M
1 . The combined response of the overlapped effect is illustrated in Fig. 4.3(b).

Since the feedback head filter is an FIR filter, the IDFE allows a fast-varying response in the

head portion of the feedback filter. This design extends the applicability of the IDFE to the case

where the feedback filter has a partial smooth response.

Express the input vectors to the interpolated feedback tail and the feedback head filters as

x1,k =
[
x̃k−∆−(α+1), x̃k−∆−(α+1)−M , · · · , x̃k−∆−(α+1)−(Nb1−1)M

]T (4.21)
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x2,k = [x̂k−∆−1, x̂k−∆−2, · · · , x̂k−∆−Nb2
]T (4.22)

where x̃k is the output from the interpolation filter and

x̃k−∆−(α+1) =

(M−1)
∑

i=−(M−1)

gix̂k−∆−α−M−i. (4.23)

Note that x1,k is a vector with downsampled x̃k’s as its components. The dimension of x1,k

is Nb1 and that of x2,k is Nb2. From (4.17) to (4.23), we then have zf,k = f̃Tyk and zb,k =

bT
1 x1,k +bT

2 x2,k, where zf,k and zb,k is the output value of the feedforward and feedback filters,

respectively.

Given the interpolation filter g, the Wiener solution for f̃ , b1, and b2 can be derived as

follows. Assume that all the decisions are correct, i.e., x̂k−∆ = xk−∆. Let zk = zf,k − zb,k, and
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be the estimation error, the MSE, denoted as J , is then

J = E
{
e2k
}

= E

{∣
∣
∣xk−∆ −

[

f̃Tyk − bT
1 x1,k − bT

2 x2,k

]∣
∣
∣

2
}

= σ2
x + f̃TRyy f̃ + bT

1 Rx1x1b1 + bT
2 Rx2x2b2

− 2f̃TRyx1
b1 − 2f̃TRyx2

b2 + 2bT
1 Rx1x2b2 − 2pT

yxf̃ (4.24)

where σ2
x = E {x2

k} is the transmit signal power, Ryy = E
{
yky

T
k

}
, Rx1x1 = E

{
x1,kx

T
1,k

}
,

Rx2x2 = E
{
x2,kx

T
2,k

}
, Ryx1

= E
{
ykx

T
1,k

}
, Ryx2

= E
{
ykx

T
2,k

}
, Rx1x2 = E

{
x1,kx

T
2,k

}
, and

pyx = E {ykxk−∆}. Taking the partial derivatives of J with respect to f̃ , b1, and b2, we have

∂J

∂ f̃
= 2Ryy f̃ − 2Ryx1

b1 − 2Ryx2
b2 − 2pyx (4.25)

∂J

∂b1

= 2Rx1x1b1 − 2RT
yx1

f̃ + 2Rx1x2b2 (4.26)

∂J

∂b2

= 2Rx2x2b2 − 2RT
yx2

f̃ + 2RT
x1x2

b1. (4.27)

Using a compact representation, we have







Ryy −Ryx1
−Ryx2

−RT
yx1

Rx1x1 Rx1x2

−RT
yx2

RT
x1x2

Rx2x2







·








f̃

b1

b2








mmse

=








pyx

0

0







. (4.28)

The Wiener solution for the IDFE can be obtained as







f̃

b1

b2








mmse

=








Ryy −Ryx1
−Ryx2

−RT
yx1

Rx1x1 Rx1x2

−RT
yx2

RT
x1x2

Rx2x2








−1

·








pyx

0

0







. (4.29)

Invoking the assumptions made previously, we can obtain the results shown below.

Ryy = σ2
xHHT + σ2

nINf×Nf
(4.30)

Rx1x1 = σ2
xMMT (4.31)
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Rx2x2 = σ2
xI(M−1)×(M−1) (4.32)

Ryx1
= σ2

xH
[

0(Nb−α)×(∆+1) I(Nb−α)×(Nb−α) 0(Nb−α)×(Nf+Nh−(Nb−α)−∆−2)

]T

MT (4.33)

Ryx2
= σ2

xH
[

0(M−1)×(∆+1) I(M−1)×(M−1) 0(M−1)×(Nf+Nh−M−∆−1)

]T

(4.34)

Rx1x2 = σ2
xM




0(M−1)×α I(M−1)×(M−1)

0(Nb−M+1)×α 0(Nb−M+1)×(M−1)



 (4.35)

pyx = σ2
xH
[

01×∆ 1 01×(Nf+Nh−∆−2)

]T

(4.36)

where

M =

















gT , 0, ..............., 0
︸ ︷︷ ︸

(Nb1−1)M

0, ..., 0
︸ ︷︷ ︸

M

,gT , 0, ..., 0
︸ ︷︷ ︸

(Nb1−2)M

...

0, ..............., 0
︸ ︷︷ ︸

(Nb1−1)M

,gT

















(4.37)

is the interpolation-then-decimation matrix and H is the channel matrix shown in (4.16). The

detailed derivation can be found in Appendix B. Applying the above optimal tap weights f̃mmse,

b1,mmse and b2,mmse in (4.24), we can then obtain the MMSE of the IDFE, denoted as Jmin,IDFE.

The SNR for the MMSE IDFE before decision is then

SNRIDFE,MMSE =
σ2

x

Jmin,IDFE
. (4.38)

We will use the above formula to compute the theoretical SNR bounds for the IDFE. Note that

when the cutting point equals zero and the interpolation factor equals one, the IDFE degenerates

to a conventional DFE.
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§ 4.2.2 Adaptive IDFE

Rewrite the inputs and weights of the IDFE in an augmented vector form as

uk =








yk

x1,k

x2,k







,wk =








f̃k

−b1,k

−b2,k







. (4.39)

We can then have the DFE output expressed as

zk = wT
k uk. (4.40)

From (4.40), we can see that the proposed IDFE has a linear structure similar to a conventional

DFE. As a result, adaptive algorithms developed for the conventional DFE can be directly ap-

plied here. For the complexity consideration, the simplest adaptive algorithm, namely the LMS,

is employed. Then, the adaptive IDFE with the LMS algorithm can be summarized as follows:

Filter output:

zk = wT
k uk (4.41)

Estimation error:

ek = xk−∆ − zk (4.42)

Tap-weight adaptation:

wk+1 = wk + µekuk (4.43)

where µ is the step size controlling the convergence rate. The convergence behavior of the

adaptive IDFE will be analyzed below.

A) Convergence in the Mean

Using the independence theory [19], we assume that {uk} is a sequence of statistically inde-

pendent vectors. Defining the weight-error vector as εk = wk − wo, we then have [19]

E [εk+1] = (I − µRuu)E [εk] , (4.44)
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where Ruu = E{uku
T
k }. Thus, if the following condition is satisfied, the mean of εk converges

to zero as k approaches infinity:

0 < µ <
2

λmax

, (4.45)

where λmax is the largest eigenvalue of the correlation matrix Ruu. If a proper step size is

chosen in the adaptive IDFE, the convergence can be guaranteed. However, the actual Ruu

depends on the channel response. A simple way to solve the problem is to use a conservative

bound. Since λmax ≤ tr[Ruu], we can then use 0 < µ < 2/tr[Ruu]. Note that tr[Ruu] is just

the power of the input signal vector. The proposed adaptive IDFE inherits the same stability

advantage as that of the conventional adaptive DFE.

B) Convergence in the MSE

Let the transient MSE of the adaptive IDFE at the k-th iteration be expressed as Jk = E[e2
k]. The

MSE Jk converges to a steady-state value denoted by J∞, if and only if, the step-size parameter

µ satisfies the following two conditions [19]:

0 < µ <
2

λmax

,

Nf+Nb1+Nb2∑

n=1

µλn/2 (1 − µλn) < 1 (4.46)

where λn is the n-th eigenvalue of the correlation matrix Ruu, andNf +Nb1+Nb2 is the number

of adjustable tap weights in the adaptive IDFE. The MSE in the steady state value is given by:

J∞ =
Jmin

1 −
Nf+Nb1+Nb2∑

n=1

µλn/2 (1 − µλn)

(4.47)

where Jmin is the MMSE yielded by the Wiener solution. The misadjustment ψ, defied as

(J∞ − Jmin)/Jmin, is then equal to:

ψ =

Nf+Nb1+Nb2∑

n=1

µλn/2 (1 − µλn)

1 −
Nf+Nb1+Nb2∑

n=1

µλn/2 (1 − µλn)

. (4.48)
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From simulations, we found that the convergence rate of the adaptive IDFE is almost the

same as the conventional adaptive DFE for the application of single-pair high-speed digital sub-

scriber line (SHDSL). The convergence behavior can be explained as follows. The eigenvalue

spread of the correlation matrix in the IDFE is larger than that in the DFE (due to the inter-

polation) and this will slow the convergence. However, the number of the filter tap weights is

significantly smaller and this will accelerate the convergence. These two effects cancel out each

other and the convergence rate of the IDFE remains the same as that of the conventional DFE.

The computational complexity of the adaptive IDFE can be easily evaluated. Table 4.1

summarizes the number of the additions and the multiplications required in an adaptive IDFE

and a conventional DFE. As we can see, the complexity reduction for the proposed structure

comes from the feedback filter. We now use an example to illustrate the low-complexity merit of

the proposed IDFE. We define the complexity ratio as the ratio of the computational complexity

of the feedback filter in the IDFE over that in the DFE. Consider a DFE used in the SHDSL

application where the length of the feedforward filter is 16 and that of the feedback filter is

180. Here, we let the cutting point be zero. Fig. 4.5 shows the complexity ratio for different

interpolation factors. As we can see, the complexity ratio can be as low as 24% when M equals

8. If the computational complexity of the feedforward filter is also taken into account, the ratio

will be 31%. Clearly, the IDFE can reduce the complexity effectively.

Table 4.1: Computational complexity analysis

Complexity Filtering Taps weight update

Method + × + ×
Adaptive DFE Nf +Nb − 1 Nf +Nb Nf +Nb Nf +Nb

Adaptive IDFEa Nf+Nb1+Nb2+

2M − 3

Nf+Nb1+Nb2+

2M − 1

Nf +Nb1 +Nb2 Nf +Nb1 +Nb2

aNb1 =
⌊

(Nb−α)
M

⌋

, where b·c is the nearest integer towards zero.
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Figure 4.5: Complexity ratio with respect to a conventional DFE,(Nf , Nb)=(16,180). The min-

imum complexity ratio (C.R.) is 24% when the interpolation factor equals 8.

For the design of the optimal interpolation filter, we may apply the least-squares method

proposed in [36]. The idea is to minimize the MSE between an interpolated and the original

responses. This method is effective for the echo cancellation application. However, it is not

critical here. This is because the feedforward and feedback filters perform channel equalization

jointly. If the feedback filter deviates from the optimal due to interpolation, the feedforward

filter will compensate for that making the performance loss small. From simulations, we found

that the performance of the adaptive IDFE with a simple linear interpolation filter is almost the

same as the conventional DFE.
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§ 4.3 Simulation Results

In this section, we report some computer simulation results to demonstrate the effectiveness

and robustness of the proposed adaptive IDFE. Specifically, we take SHDSL [7–10] as the

application example. The channel impulse responses were modelled by the method described

in [1]. The channel consist of a transmit shaping filter, a transmit differential hybrid circuit

(with a 135Ω termination impedance), a CSA loop [7], a receive differential hybrid circuit, and

a receive filter. The transmit/receive filter was modelled as a 6-th order Butterworth lowpass

filter with a 3-dB cutoff frequency at 775 KHz. The primary inductance for the transformer in

the hybrid circuit was set as 3 mH. For the SHDSL application, the symbol rate is 775 KHz

and the line code is the 8-ary pulse-amplitude-modulation (8-PAM). The channel noise was

modelled as additive white Gaussian noise. For a lowest complexity consideration, we let the

cutting point be zero, the interpolation factor be eight, and the interpolation filter be linear for

all simulation scenarios. We let DFE(Nf , Nb) denote a DFE with a Nf -tap feedforward filter

and aNb-tap feedback filter, and IDFE(Nf , Nb1,M) denote an IDFE with aNf -tap feedforward

filter, a Nb1-tap interpolated feedback filter, and an M−order interpolation.

§ 4.3.1 Channel CSA No. 3

First, Channel CSA No. 3 [7], which consists of a set of different wire gauges and includes

most bridged taps, was used to evaluate the validity of the proposed IDFE. For comparison, a

DFE(16,180) was also considered. Here, the feedback filter length was determined by the THP

coefficients length suggested in standards [7,8] and the feedforward filter length was determined

by trial-and-error (for accommodating all channel responses of eight CSA loops). Similar pa-

rameters were also used in [37]. For a received signal with SNR 30-dB, an IDFE(16,22,8) was

used to perform equalization. The delay value ∆ was set to 16 pointing to the peak of the

channel response. Fig. 4.6(a) and Fig. 4.6(b) show the optimal feedforward and feebackward

filter responses, respectively. The feebackward filter response of the IDFE was obtained by



56 CHAPTER 4. INTERPOLATED DECISION FEEDBACK EQUALIZER AND PRECODER

g ∗ b
↑M
1 + b2. As we can see, the response of the IDFF is similar to that of the DFE (but not

exactly the same) and the IDFE successfully equalizes the channel. Coincidentally, the SNR

performance for the DFE and the IDFE is about the same (20.4 dB for this loop).
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Figure 4.6: (a) Optimal feedforward filter coefficients for IDFE and DFE. (b) Optimal feed-

backward filter coefficients for IDFE and DFE.

§ 4.3.2 Different Loop Topologies

To test the robustness of the IDFE, we used eight CSA loops in [7] for simulations. The theoret-

ical performance results was evaluated using (4.12) and (4.38). The delay value ∆ was set to 21

here for accommodating all eight different loops. Fig. 4.7(a) shows the performance of the DFE

and the IDFE for a received SNR of 40 dB. The averaged SNRs for the DFE and the IDFE are

29.4 dB and 29.1 dB, respectively. Fig. 4.7(b) shows the performance of the DFE and the IDFE
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for a received SNR of 20 dB. The averaged SNRs for the DFE and the IDFE are both 11.5 dB.

Though the performance is highly depends on the loop, the performance of the IDFE is always

close to that of the DFE. For the higher received SNR of 40 dB, the performance difference is

only 0.3 dB. For the lower received SNR of 20 dB, the performance of both equalizers is nearly

the same.
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Figure 4.7: (a) Performance of DFE and IDFE for eight CSA loops at received SNR=40 dB. (b)

Performance of DFE and IDFE for eight CSA loops at received SNR=20 dB.

§ 4.3.3 The Adaptive IDFE

In this subsection, we will evaluate the validity of derived expressions for the adaptive IDFE.

The filter parameters are the same as those used above. We let the step size of the LMS algorithm
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be 1/8/(Nf +Nb)=1/8/(16+180)= 0.000638. In this case, we need 500,000 iterations to achieve

convergence. A 9-kft 26 gauge loop (CSA No. 6), which is the longest CSA test loop and

usually considered as the worst case in many works, was simulated. The received SNR was

assumed to be 30 dB. Fig. 4.8 shows the simulation result. In the figure, the theoretical steady-

state MSE, J∞, and the MMSE, Jmin, are indicated with different horizontal lines. The adaptive

DFE is also simulated for performance comparison. For easier inspection and comparison, all

learning curves were filtered by an averaging filter with a window size of 1,000. From the

learning curves, we see that the convergence rate of an adaptive IDFE is almost the same as the

adaptive DFE and the convergence behavior is consistent with the theoretical analysis shown in

Section 4.2. For a same step size, the simulated steady-state MSEs of the adaptive IDFE and the

DFE are both -21.3 dB. Theoretical steady-state MSEs (including the excess MSE) are -21.5

dB and -21.6 dB, respectively, and theoretical MMSEs for the IDFE and the DFE are –21.7 dB

and –21.9 dB, respectively. The adaptive IDFE and DFE converge to theoretical bounds within

0.2 dB and 0.4 dB, respectively. These results verify that our theoretical analysis is accurate.

§ 4.3.4 Symbol Error Rate vs. SNR (for DFE and THP)

In SHDSL applications, equalization is incorporating with the THP to overcome the error prop-

agation problem. Here, two communication systems with or without error propagation were

simulated. For the “without error propagation” case, the system consists of a THP at the trans-

mit side, an adaptive IDFE and a modulo remover (for the THP) at the receive side. In this

approach, the feedback filtering operation in the DFE is moved to the transmit side. We can

first train the IDFE in the receive side and then construct the interpolated feedback filter in the

transmit side. This will result in a low-complexity interpolated THP structure. The interpolated

THP structure is shown in Fig. 4.9. Again, the complexity is only one fourth of the conventional

THP when interpolation factor M equals eight. In simulations, the adaptive IDFE was trained

with 500,000 samples. After convergence, the filter coefficients of the interpolated feedback tail

filter b1, and the feedback head filter b2 were transmitted back to the transmit side by a reliable
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Figure 4.8: Learning curves of adaptive IDFE and DFE with step size 0.000638. Theoretical

steady-state MSE (J∞), MMSE (Jmin), and misadjustment (ψ) are also shown.

reverse channel. Note that the filter coefficients of the interpolation filter g were known as a

priori at both sides. After the training period, an 8-PAM data sequence was then transmitted.

A conventional THP (with adaptive DFE) was also simulated for comparison. For the “error

propagation” case, the scenario was the same except that the THP was not used. A 9-kft 26

gauge loop (CSA No. 6) was used as the test loop, and scenarios with different received SNRs

from 20 to 36 dB were considered. Fig. 4.10 shows the simulation results. From the figure,

we can find that the performance of the adaptive IDFE in either case is almost the same as the

adaptive DFE. However, the adaptive IDFE requires a much lower computational complexity.

§ 4.3.5 Discussions

The cutting point α is used to separate the fast and slow varying response of the feedback

filter. The larger the α, the higher the complexity ratio. However, the ability to well model
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the head portion response is higher. As long as the response is smooth in the tail region, we

can always find a proper α and reduce complexity without compromising performance. For

SHDSL applications, the performance of the IDFE and DFE is nearly the same even when

α = 0. The feedback filter response of the IDFE may exhibit a different shape from that of

the DFE. This indicates that the interpolated feedback filter does not approximate the original

feedback response. It is easy to deduce that the MSE surface for the DFE has a flat bottom near

the Weiner solution. This property makes the performance of the IDFE comparable to that of

the DFE.

From our simulation experience, we found other properties with the proposed IDFE. The

IDFE is insensitive to the selection of delay value ∆. That means a wide range of delay value

reaches nearly the same performance. When the length of feedforward filterNf becomes larger,

the feedback filter response of the IDFE looks more similar to that of the DFE. This is because

the feedforward filter can help to compensate for the interpolation error in the feedback filter.
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(without error propagation), and for adaptive IDFE and DFE (with error propagation).

The other property is that a larger noise level will make the feedback filter response in the DFE

smoother. Thus, for a lower received SNR, the feedback filter response of the IDFE approaches

closer to that of the DFE.

§ 4.4 Conclusions

Using the idea of filter interpolation, we have proposed a low-complexity and fully FIR-based

adaptive filter structure for the high-speed equalization application in DSL. We have shown

that the computational complexity reduction can be as high as 76%. We have also derived

theoretical expressions regarding the adaptive IDFE and analyzed its convergence behavior.

The IDFE approach can also be extended to the THP yielding a high performance yet very

efficient equalization scheme. Simulations have shown that the proposed IDFE can have the
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same performance as the conventional DFE. Also, derived theoretical expressions predicting

the IDFE performance are accurate. Although the proposed IDFE is derived for symbol-rate

equalization, it can be generalized to fractionally-spaced (FS) equalization as well. In this case,

we have to use a FS feedforward filter instead of a symbol-spaced filter. The feedback filter can

then be interpolated using the method discussed above and a low-complexity adaptive FS-IDFE

can be obtained.



Chapter 5

Fast Interpolated Turbo Equalizer

Intersymbol interference (ISI) and channel noise are the major impairments in a communication

system. Typically, the transmitter and receiver in the system must be designed to combat these

effects. In the transmitter, there is an error correction encoder adding redundant information for

bit protection, and a signal modulator converting the bit stream into a valid analog waveform for

transmission. In the receiver, there is an equalizer for ISI compensation and demodulation, and

a decoder for error bits correction. For a long period of time, the receiver performs equalization

and decoding separately. Although this receiver architecture is popular and works well for many

systems, the achievable capacity is far from Shannon’s bound. To have better performance or

higher capacity, a turbo equalization [38] architecture, conducting equalization and decoding

jointly and iteratively, was proposed [39]. The turbo equalizer enhances the performance itera-

tively with the soft extrinsic information exchange between a soft-in/soft-out (SISO) equalizer

and a SISO decoder. The extrinsic information is extracted from the equalizer and the decoder

at an iteration and used as a priori information in the next iteration. It has been shown that the

turbo equalization can greatly enhance the receiver performance and the achievable capacity

can help to approach the Shannon’s bound.

In 1995, the first turbo equalizer [39] employing a soft output Viterbi algorithm (SOVA) [40]

was introduced. In this work, the relationship between original and the encoded bits in the error

63
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correction encoder is constructed as a trellis, so is that between the input and output signals

of the channel. Two serially concatenated SOVAs were then used to detect and decode the

received signal iteratively. The performance was improved iteratively toward the bound corre-

sponding a coded transmission over an additive white Gaussian noise (AWGN) channel. From

a standalone soft equalizer’s (or decoder’s) point of view, the SOVA is a suboptimal algorithm

though it is simpler, and further performance improvement is possible. Later, a turbo equalizer

with the maximum a posteriori probability (MAP) criterion [41] was reported. The equalizer

was realized with the BCJR algorithm which is an optimal SISO processing algorithm for the

turbo equalizer. Theoretically, the optimal receiver should consider a single but larger trellis

that combines the encoder trellis and channel trellis. However, the size of combined trellis is

usually so large that the computational complexity of the BCJR algorithm becomes prohibitive

and unrealizable. Thus, theoretical optimal receiver is rarely considered. The optimality for a

serially concatenated turbo equalizer is evaluated on a single SISO detector or decoder only.

Since both the SOVA and BCJR turbo equalizers are constructed based on the trellis structure,

such category of turbo equalizers was classified as the trellis-based turbo equalizer.

The performance of trellis-based turbo equalizer was shown to be excellent but the com-

putational complexity is a big penalty. The complexity depends on the number of processing

iterations, the signal constellation size, the memory length of the encoder, and the memory

length of the channel. The main problem is that the complexity increases exponentially with the

memory length of the encoder and that of the channel. While we can control the memory length

of the encoder, we cannot control that of the channel. For a channel with medium or large delay

spread, it is easy for the complexity to become impractically high.

The high computational complexity problem of the optimal trellis-based turbo equalizers

motivated the study of low complexity suboptimal turbo equalizers. In 1999, Wang et al. [42]

proposed a lower complexity filter-based turbo interference canceller, which consists of a soft

multiuser detector and a soft channel decoder, for the multiuser coded CDMA system. In-

stead of using complex SOVA or BCJR algorithm as the multiuser detector, a low-complexity
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filter-based soft multiuser detector was developed. Based on this concept, a low-complexity

filter-based turbo equalizer was first proposed in [43]. Although this approach does have lower

computational complexity, the optimal filter weights are time-varying (even the channel is time-

invariant) and they are updated per symbol. The complexity for the optimal weights calculation

is still high.

Motivated by [42], Tüchler et al. [44–46] also proposed a category of filter-based turbo

equalizers with much lower complexity than ever. The soft equalizer in their works modifies

the conventional linear equalizer or the decision feedback equalizer (DFE) with soft inputs. It

is well known that the optimal filter weights [35, 47] of a linear equalizer or DFE equalizer is

a function of channel response and signal-to-noise ratio (SNR), and can be solved with corre-

sponding Wiener equations. However, the Wiener solution involves matrix inversion operations.

For a direct matrix inversion, the computational complexity is on the order of O(N 3), where

N is the filter length. The complexity is still high especially when the filter tap weights are

updated per symbol. In [44], a time-recursive updated algorithm for calculating the optimal

time-varying filter was proposed; the complexity was reduced to the order of O(N 2). Exploring

special matrix properties in a time-varying soft equalizer, a less complexity block-invariant sub-

optimal soft equalizer was proposed in [45] and the complexity is further reduced to the order of

O(N). Later, in [46], three different kinds of low-complexity time-invariant soft equalizer were

proposed. The complexities are on the same order with [45], but the convergence behaviors are

quite different.

The adaptive turbo equalizer [48–52] is another low-complexity alternative. The efficiency

of an adaptive turbo equalizer depends on the convergence behavior of the adaptive algorithm.

The convergence of the adaptive algorithm can be very slow for a long-response channel such

as the wireline channel. The training period, which is usually thousands time of the received

block length, becomes much longer than the equalization period. Thus, the adaptive turbo

equalizer cannot be directly used in the application. The frequency-domain turbo equalizers

were also studied extensively [53–56]. Its complexity is usually an order of magnitude less than
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a time-domain turbo equalizer. However, it is only valid for the single-carrier frequency-domain

equalization (SC-FDE) system, which is a block-by-block transmission communication system

with periodically inserted guard intervals. It cannot be applied to the conventional single carrier

modulation system such as wireline SHDSL and wireless GSM, etc.

In this dissertation, we focus on the problem of time-domain turbo equalization over static

frequency selective channels. We propose a fast turbo equalizer with complexity an order of

magnitude less than the conventional. The proposed algorithm is based on the structure of [45]

in which the most computationally intensive operations are the optimal filter coefficients cal-

culation and filtering (equalization). We explore the characteristics of the wireline channel

responses and the optimal equalizers and propose interpolation schemes to reduce the complex-

ity. We found that the relationship between an optimal filter coefficient and reliability infor-

mation, which indicates the correctness of soft bits from the decoder, is nearly one-to-one and

monotonic. Once the reliability is estimated, the corresponding optimal filter response can be

calculated easily by interpolating two pre-calculated known optimal filter responses. In other

words, we can bypass the computationally intensive matrix operations to obtain optimal filter

coefficients. Since the reliability function ranges from 0 to 1, we only have to pre-calculate a

small number of filter coefficient sets corresponding to specific reliability values and store those

sets during initialization. Then, we can interpolate all possible optimal filters in run-time. This

will dramatically reduce the computational requirement of the filter-based turbo equalizer. If

the channel response is long and changing smoothly, we can apply the interpolated filtering [15]

to reduce the complexity further. Combining above schemes, we are able to obtain a fast inter-

polated turbo equalizer required very low-complexity. Simulation results show that while the

computational complexity is reduced dramatically, the performance of the proposed algorithm

is almost not affected; it is about the same as that in [45].

This chapter is organized as follows. In Section 5.1, we briefly describe the system model

and define some notations. In Section 5.2, the optimal BCJR turbo equalizer and suboptimal

filter-based turbo equalizers are summarized. In Section 5.3, the proposed fast interpolated
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turbo equalizer is introduced, the interpolation method for optimal filters and interpolated filter-

ing coefficients are derived, and the computational complexity is also analyzed. In Section 5.4,

the simulation results are reported and comparison to existing solutions are also made. Finally,

we draw conclusions in Section 5.5.

§ 5.1 System Model and Notations

The system model of turbo equalization signal processing for coded data transmitted over ISI

channel is shown in Fig. 5.1. The transmitter shown in the upper part consists of a convo-

lutional encoder, an interleaver, and a signal modulator. The information bit stream am is

encoded with a binary convolutional encoder to generate the coded bits stream bm,l, where

the subscript stands for the l-th bit of the m-th codeword and l ∈ {1, 2, ..., r} for a code

with rate 1/r (r ∈ Z, r ≥ 2). In other words, an information bit am will generate r coded

bits {bm,1, bm,2, ..., bm,r}. Then, bm,l is fed into the interleaver bit-by-bit with the order of

(m, l) = (1, 1), (1, 2) . . . , (1, r), (2, 1), (2, 2), . . .. The interleaver permutes and randomizes bm,l

and yields an independent interleaved bits stream ck,j , where the subscript stands for the j-th bit

of the k-th modulated symbol and j is in {1, 2, ..., ρ} for a ρ-bit modulator. That is, ρ interleaved

bits are grouped and mapped to a transmit symbol. Note that the interleaver considered here is

a bit interleaver [57] and it also performs the grouping operation for the modulator. Generally,

the last error correction codedword may not form a complete symbol and zero padding may be

necessary in that case.

The function of a modulator includes symbol mapping and analog waveform conversion.

The symbol mapping function is denoted by mi ↔ χi, where mi = [mi,1,mi,2, · · · ,mi,ρ]
T

is a ρ-bit vector and χi is a symbol belonging to one of the M -ary signal constellation set

X . Here, M = 2ρ and X = {χ0, χ1, · · · , χM−1}. Let the interleaved codeword be ck =

[ck,1, ck,2, . . . , ck,ρ]
T . Then, ck is mapped to a symbol xk = χi and converted to an analog

waveform transmitted over the ISI channel. Except for the ISI effect, the channel also introduces
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Figure 5.1: The system model of turbo equalization for coded data transmitted over ISI channel.

AWGN, nk. In the subject of turbo equalization, most of the previous works focus on wireless or

magnetic channels. In this dissertation, we will focus on the wireline communication channel.

Here, we assume that the baseband modulation scheme is the M-ary pulse amplitude modulation

(M-PAM). The symbol mapping for M-PAM can be defined as

χi =
(M − 1) − 2i

√

1
M

·
M−1∑

j=0

|(M − 1) − 2j|2
, (5.1)

where i =
ρ∑

j=1

(mi,j · 2ρ−j). As we can see, the symbol power is normalized to one. We also

assume that the channel impulse response and the noise are also real valued. For complex-

valued passband communication systems such as QAM and PSK, please see [45,58] for details.

The receiver shown in the lower part of Fig. 5.1 consists of a SISO equalizer, a deinter-

leaver, a SISO decoder, and an interleaver. At first iteration, the SISO equalizer reduces the

ISI channel effect without the assistance of any a priori information, and it outputs the soft

decision Le(ck, j) as the demodulated data for the SISO decoder. A deinterleaver is inserted

on the forward path to permute the demodulated data stream back into the original coded bit

stream. The interleaver design is important and closely related with the performance of the
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turbo equalizer. We use a random interleaver called S-random interleaver [59] in this disserta-

tion. The main characteristic of the interleaver is that it can guarantee a minimum distance of

two consecutive bits after interleaving. Then, the SISO decoder performs the error correcting

function on the deinterleaved bits L(bm,l) and generates a series of more reliable soft decisions

outputs Le(bm,l). These outputs are interleaved to yield Le(ck,j) fedback to the SISO equalizer

as a priori information. Note here that the so-called intrinsic information L(bm,l) and L(ck,j)

have been subtracted before yielding the extrinsic information Le(bm,l) and Le(ck,j), respec-

tively. The process can be repeated until a stopping criterion is met. It has been found that

there exists a certain SNR threshold [60] which the turbo equalizer can work properly. When

the SNR is higher the threshold, the performance can be improved iteratively. However, if the

SNR is below the threshold, no performance gain can be obtained.

It is well known that the optimal turbo equalizer uses the BCJR algorithm as the SISO pro-

cessing unit for both the equalizer and the decoder. For convenient comparison with previous

works [45], the SISO decoder is also implemented with the BCJR algorithm in this dissertation.

The computational complexity of the BCJR SISO equalizer is on the order of O(M µ), which

grows exponentially with the channel memory length µ [58]. Similarly, the complexity of a

BCJR SISO decoder grows exponentially with the encoder memory length. Usually the mem-

ory length of a convolutional code is constrained on a length compromising the computational

complexity with performance gain. However, the channel memory length depends on applica-

tions having a large variation; it ranges from few taps in wireless systems to hundreds of taps in

wireline systems. It is apparent that with existing results, turbo equalization is difficult to apply

for systems with long channel responses. The algorithms developed in this chapter is aimed to

solve the problem.

Since turbo equalization is an iterative processing scheme, it must operate with a block-by-

block manner. Here, we let the block length be equal to Kc bits, where Kc = rKi + Ko, Ki

is the information bits, Ko is the overhead needed to terminate the trellis states, and 1/r (r ∈
Z, r ≥ 2) is the rate of convolutional code. The trellis state of the convolutional code is both
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initialized and terminated to zero state but the equalizer is left unterminated when the BCJR

algorithm is applied.

For convenience of later use, following notations are pre-defined. Pr (·) is the probability

function, p (·) is the probability density function (PDF), L (·) is the log-likelihood ratio (LLR)

function, ln (·) is the natural logarithm function, max (·) is the maximum function, sign (·) is

the sign function, E (·) is the expectation function, cov(x,y)
∆
= E(xyT ) − E(x)E(yT ) is the

covariance matrix function, diag [v1, v2, ...] is a diagonal matrix with the vector elements in the

diagonal, and ‖x‖ =
√
∑ |xi|2 is the Euclidean vector norm (or 2-norm).

§ 5.2 Summary of Previous Works

Before the development our interpolated turbo equalizer, we first review and summarize the

existing turbo equalization schemes. Starting with the basic SISO processing unit, the BCJR

algorithm, we describe the conventional turbo equalizer. Then, we continue to the subject of the

filter-based and other low-complexity approaches.

§ 5.2.1 The BCJR Equalizer/Decoder

A) Trellis Diagram Representation of an ISI Channel

In the BCJR algorithm, the relationship between the input and output of an ISI channel or a

convolutional encoder is described with a trellis diagram. For a discrete-equivalent ISI channel

shown in Fig. 5.2, the received signal yk corrupted by additive noise can be described as follows:

yk =

µ
∑

i=0

hixk−i + nk (5.2)

where h = [h0, h1, · · · , hµ]T denotes the real-valued channel with memory length µ (note that

L = µ + 1 is defined as the channel response length), xk with a unit variance denotes the transmit

signal, and nk with a variance of σ2
n denotes the AWGN. Here, we assume that both nk and xk

have zero means and they are independent each other.
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Figure 5.2: A discrete-equivalent ISI channel with memory length µ

Define the values in the channel memory at time k as a µ-tuple, (xk−1, xk−2, · · · , xk−µ).

We then have Q possible combination of the µ-tuple where Q = M µ. We call each of the Q

possible combinations as a channel state or just state. We label the states from 0 to Q − 1,

with state 0 reserved as the idle state. Usually, the idle state is defined as the state with all

values in the memory are equals zeros. Let sk be the state label at time instant k. The diagram

shown in Fig. 5.3 is defined as a state transition diagram at time k. In the diagram, one generic

state transition (or branch) denoted as a two-tuple (p, q) is shown as a connection between these

states from the state p at time k to state q at time k + 1. Meanwhile, x(p,q)
/

v(p,q) denotes

the associated channel input/output pair. Note that at the time instant k, xk = x(p,q) ∈ X and

vk = v(p,q) =
µ∑

i=0

hixk−i. Thus, given a sequence of inputs and outputs, we can have a sequence

of state transitions. Combining all state transitions, we can then form a trellis diagram.

B) Trellis Diagram Representation of a Convolutional Code

A convolutional encoder with rate 1/r and the memory length η can be described as follows:

bm,l =

η
∑

i=0

qi,lam−i, l = {1, 2, · · · , r} , (5.3)

where bm,l is the l-th bit of the m-th codeword, qi,l ∈ {0, 1} denotes l-th convolutional code

response, and am is the input bits. Here, we assume that am’s are independent and identically

distributed (i.i.d.) binary bits. An example code with rate 1/2 is shown in Fig. 5.4. Note that

addition is performed with the binary field operation, i.e., a logic exclusive “OR”.
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Figure 5.3: The state transition diagram for the ISI channel shown in Fig. 5.2, where Q = M µ

is total numbers of states for the channel.
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Figure 5.4: A half rate convolutional encoder with memory length of η
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Similar to the case in ISI channel, we define a specific combination in a η-tuple of (am−1,

am−2, · · · , am−η) as the encoder state. Thus, we have P = 2η possible states and label them

from state 0 through state P − 1. State 0 is reserved as the idle state in which all input values

are zeros. We assume that the states outside a transmitted data block are terminated with idle

states. Let sm denote the state label at time m and the state transition diagram of the encoder

is shown in Fig. 5.5 in which a(p,q)

/
b(p,q) denotes the associated input/output pair. Note that

bm = [bm,1, bm,2, · · · , bm,r]
T is the m-th coded codeword. Given a sequence of input and

output bits, we can then have a sequence of state transitions from which we can construct a

trellis diagram.

( )1, ,m m ms a a η− −= � ( )1 1, ,m m ms a a η+ − += �

0ms =

-1ms P=

1 0ms + =

1 -1ms P+ =

ms p=

1ms q+ =

( , ) ( , )p q p qa b

time m time m+1 time m+2time m-1

Figure 5.5: The state transition diagram of the convolutional encoder shown in Fig. 5.4, where

P = 2η is total numbers of states for the code.

§ 5.2.2 The BCJR Equalizer

Two kinds of BCJR algorithms are well-known; one is expressed with the probabilistic form

and the other is with the logarithmic form. The original BCJR algorithm [61] was expressed in

the probabilistic form. The dynamic range of numerical values is larger and the computational

complexity is higher. The logarithmic BCJR algorithm is equivalent to the original BCJR al-
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gorithm and it has lower computational complexity and better numerical properties. Thus, we

use the logarithmic BCJR (simply named as BCJR without ambiguity) algorithm in our devel-

opment. The major function of the BCJR algorithm involves the calculation of branch metrics,

forward/backward state probabilities, the a posteriori probabilities (APP), and hard decisions.

We summarize the algorithm below and leave the derivation details in Appendix C.

Consider a block of symbols x = [x0, x1, · · · , xK−1]
T sent by the transmitter. Here, K is

the block length and it can be calculated as K = dKc/ρe, where d·e denotes the minimum

integer operation (toward infinity). Thus, it may be necessary to pad the last codeword with

zero bits. Assume that the idle symbols are transmitted outside the block (i.e., for all k < 0

and k > K − 1). At the receiver, the corresponding data block y = [y0, y1, · · · , yK+µ−1]
T is

received and buffered.

For a given state transition (sk = p, sk+1 = q) starting at time k, we first define the BCJR

related variables as γk(p, q), branch metric associated with the state transition from state p at

time k to state q at time k+ 1, αk (p), forward state probability on state p, and βk (p), backward

state probability on state p. Then, the algorithm of the BCJR equalizer is summarized as follows:

1. Calculate logarithmic branch metrics :

ln γk(p, q) =
−
∣
∣yk − v(p,q)

∣
∣
2

2σ2
n

+Kγ, (5.4)

whereKγ = ln
(
Pr(xk = a(p,q))

)
−ln (2πσ2

n), for p = 0, 1, · · · , Q−1, q = 0, 1, · · · , Q−1, k =

0, 1, · · · , K + µ − 1. Note that Kγ is a constant and can be omitted if the transmitted symbol

is equally probable. The probability Pr
(
xk = x(p,q)

)
, which comes from the SISO decoder,

serves as the soft input of the SISO equalizer.

2. Calculate the forward/backward state probabilities:

lnαk+1 (q) = ln

Q−1
∑

p=0

exp [ln rk (p, q) + lnαk (p)], (5.5)

ln βk (p) = ln

Q−1
∑

q=0

exp [ln rk (p, q) + ln βk+1 (q)]. (5.6)
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The forward state probability is initialized with the idle state, i.e., ln α0 = [0,−∞, · · · ,−∞],

while the backward state probability is with an unknown state, i.e., ln βK+µ = [− ln (M) ,

− ln (M) , · · · ,− ln (M)]T .

3. Normalize the forward/backward state probabilities:

αk (p) = αk (p) − max {αk (p)} , (5.7)

βk (p) = βk (p) − max {βk (p)} . (5.8)

This step will limit the maximum probability to avoid numerical overflow.

4. Calculate APPs for every signal constellation (xk = χ, χ ∈ X):

ln Pr (xk = χ|y)
∆
= ln

∑

(p,q)∈Bχ

exp [lnαk(p) + ln γk(p, q) + ln βk+1(q)]. (5.9)

where Bχ is the subset of state transitions for the input symbol equals χ. This quantity is

calculated for every χ in X , and for each input symbols from x0 to xK+µ−1. Note that the

constant term − ln p (y) is omitted in (5.9) for simplicity.

5. Select the symbol corresponds to the maximum APP value (hard decision output):

x̂k = max {ln Pr (xk = χ|y)} . (5.10)

For BPSK modulation, we can define the log-likelihood ratio (LLR) as

L (xk)
∆
= ln Pr (xk = +1|y) − ln Pr (xk = −1|y) . (5.11)

Then, (5.10) can be simplified as

x̂k = sign (L (xk)) . (5.12)

§ 5.2.3 The BCJR Decoder

The BCJR convolutional decoder described in (5.3) can be summarized below. Let a block of

information bit am with size Ka be transmitted. The rKa coded bit vector are then generated
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from the encoder. To have better performance, the encoder is initialized and terminated with

idle states. Let Ko denote the additional bits for idle state initialization and termination. Thus,

the overall block length is K = rKa +Ko. Let the codeword be modulated by BPSK and sent

to the receiver via a memoryless AWGN channel. The received signal vector ym at time m can

be described as

ym = xm + nm (5.13)

where xm = [xm,0, xm,1, · · · , xm,r−1]
T is them-th transmitted signal vector, xm,l = (−1)bm,l , l =

{0, 1, · · · , r − 1}, r ∈ Z, r ≥ 2, and nm is the noise vector with variance σ2
n in each component.

Similar to (5.4), we have the logarithmic branch metrics ln γm(p, q) as

ln γm(p, q) =
−
∣
∣ym − x(p,q)

∣
∣
2

2σ2
n

+Kγ, (5.14)

where Kγ = ln
(
Pr(am = a(p,q)) Pr(bm = b(p,q))

)
− ln (2πσ2

n) and x(p,q) = (−1)b(p,q) . Note

that since redundant bits are inserted to protect information bits, bits in the codeword are usually

not equally probable. However, for a BCJR decoder, it is common to have the block size on

the order of hundreds. Evaluating the a priori information becomes prohibitive. Thus, the

probability Pr(bm = b(p,q)) is usually assumed to be equal for all bit patterns. Calculation

of the forward and the backward state probabilities are both initialized to the idle state, i.e.,

ln α0 = [0,−∞, · · · ,−∞] and ln βK+µ = [0,−∞, · · · ,−∞]T , respectively. Except for a

different signal constellation set, the procedure for finding APPs and hard decisions are the

same as the BCJR equalizer.

§ 5.2.4 The BCJR Turbo Equalizer

With a series of observations (received signal) and the a priori information, the generic SISO

processing unit shown in Fig. 5.6 calculates and then generates a series of APPs and soft

decisions. The BCJR is an optimal implementation for the SISO processor. The BCJR equalizer

and decoder described are two examples of the standalone SISO application. From (5.4) and

(5.14), we can see that the a priori information play a crucial role in the SISO processing. The
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more reliable the a priori information, the better the performance. A BCJR turbo equalizer

shown in Fig. 5.7 is constructed as a serial concatenation of a BCJR equalizer and a BCJR

decoder, where the output APP of each one is fedback to the other as the a priori information.

The idea is to enhance the a priori information through the iteration. However, the feedback

loop should be carefully connected to avoid a strongly positive feedback, which will lead to fast

convergence to a local solution. That is the so-called turbo principle.

SISO
processing

unit

my

( )a mL a

observation

a priori  probabilities

( | )e mL a y

a posteriori  probabilities
(APP)

( )mL a

soft decision

Figure 5.6: A generic SISO processing unit.
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Figure 5.7: The block diagram of the turbo equalizer.

To satisfy the turbo principle, the a priori information is subtracted from the APP to yield

the extrinsic information feeding to another SISO processing unit. The principle can be mathe-

matically expressed as follows. For a block of transmitted binary sequence a and the received
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observations y, the APP L (am|y) for a transmit bit am at time m can be decomposed as

L (am|y) = ln

∑

∀a:am=0

p (y|a)
K∏

i=1

Pr (ai)

∑

∀a:am=1

p (y|a)
K∏

i=1

Pr (ai)

= ln

∑

∀a:am=0

p (y|a)
K∏

i=1:i6=k

Pr (ai)

∑

∀a:am=1

p (y|a)
K∏

i=1:i6=k

Pr (ai)

︸ ︷︷ ︸

extrinsic

+ ln
Pr (am = 0)

Pr (am = 1)
︸ ︷︷ ︸

a priori

= Le(am|y) + La(am), (5.15)

where K is the block length in bits, Le(am|y) is the extrinsic information, and La(am) is the a

priori information. In other words, we have

Le(am|y) = L (am|y) − La(am). (5.16)

Note that the operation of the a priori information subtraction does not show in Fig. 5.1. The

output APP (Le(ck,j) and Le(bm,l)) in Fig. 5.1 (subscripts and conditional observations are

ignored) is the extrinsic information.

For the SISO equalizer, the soft inputs are the observation yk and the a priori probability

Pr(xk) in (5.4). Thus, the configuration is the same as a standalone BCJR equalizer. Define

uk,j = (−1)ck,j . From (5.11), we have

Pr (ck,j) =
euk,jL(ck,j)

1 + euk,jL(ck,j)

=

(
1

eL(ck,j)/2 + e−L(ck,j)/2

)

· euk,jL(ck,j)/2

= Ku · euk,jL(ck,j)/2, (5.17)

where Ku are equal for all transitions and can be ignored. Assume that bits ck,j’s within a code-

word are independent. The a priori probability Pr(xk), which corresponds the soft decision,
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can be obtained from the LLR L(ck,j) as follows:

Pr (xk = χi) =

ρ−1
∏

j=0

Pr (ck,j = mi,j)

=

ρ−1
∏

j=0

Ku exp (ui,jL (ck,j)/2), (5.18)

In summary, the extrinsic information of the SISO equalizer is calculated with (5.16) and is

connected to the SISO decoder. The soft decision, however, is left unconnected.

For a SISO decoder used in a turbo equalizer, there are no observations. It only has the

extrinsic information from the SISO equalizer and this serves as the a priori information for

the SISO decoder. It is possible to consider the extrinsic information as the observation for the

SISO decoder. However, it was reported in [62] that the performance will become poorer. Due

to the lack of the observation, the configuration of a SISO decoder used in a turbo equalizer is

different from a standalone BCJR decoder. Thus, some modifications are necessary in branch

metrics calculation. The extrinsic information L(bm,l|y) is first converted into its equivalent

probability Pr(bm,l|y) with (5.18). The branch metric in (5.14) is then degenerated as

γm(p, q) = Pr(am = a(p,q)) Pr(bm = b(p,q))

= Pr(am = a(p,q))
r∏

l=1

Pr(bm,l = b(p,q),l). (5.19)

Here, bm,l’s are assumed to be independent after deinterleaving, am an i.i.d. binary bit stream,

and Pr(am = a(p,q)) equally probable (could be ignored). The SISO decoder yields its extrinsic

information in each iteration and output hard decisions at the last iteration. An interleaver

is applied to the extrinsic information and the output is fedback to the SISO equalizer. The

interleaver can reduce possible signal correlation and further reduce the positive feedback effect

in the loop.
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§ 5.2.5 Filter-based MMSE SISO Equalizer

It is well known that the complexity of conventional filter-based equalizers such as linear equal-

izer, decision feedback equalizer (DFE) is much lower than the trellis-based equalizer. Since no

soft inputs and outputs are involved in those conventional equalizers, they can not be directly

used in the turbo equalizer. In [44], the SISO entries are introduced and a filter-based SISO

equalizer with minimized mean square error (MMSE) criterion was constructed. The overall

system structure is shown in Fig. 5.8. The linear equalizer considered here is an interference

cancellation (IC) linear equalizer [63–65], which is a generalization of the conventional linear

equalizer. It can cancel not only casual (post-cursor) but also non-casual (pre-cursor) ISI. The

non-casual ISI is cancelled with the soft decision feedback. The SISO linear equalizer consists

of a soft-input MMSE equalizer, a soft-input converter, and a soft-output converter. The MMSE

equalizer estimates the transmitted symbols from the received symbols by minimizing the mean

square error (MSE) cost function E
(
|xk − x̂k|2

)
. The soft-input converter converts the a priori

information (with the LLR format) into the soft-input (x̄k = E{xk} and its associated reliability

vk = cov(xk, xk)) for the equalizer. The reliability is used in the computation of the optimal

filter coefficients. If the a priori information is more reliable, the soft decisions from the de-

coder will have more weights and vise versa. Note that a perfect ISI cancellation needs a perfect

knowledge about detected data and the channel response; either error will result in residual ISI.

Since the soft-input for the SISO decoder is the a priori information with the LLR format, the

equalized x̂k cannot be applied to the SISO decoder directly. A soft-output converter is then

necessary to perform the conversion. Detailed functions will be discussed in the later subsec-

tions. Now, we will discuss the mathematical details about the optimal filter-based SISO (OSL)

equalizer.
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Figure 5.8: A filter-based MMSE SISO linear equalizer.

A) OSL Equalizer

In this section, the OSL equalizer proposed in [45] is derived. Consider the structure shown

in Fig. 5.8. Given a sequence of symbols yk, we can express the linear estimate x̂k of the

transmitted symbol xk with the a priori information as [44]

x̂k = wT
k yk + dk (5.20)

where

yk = [yk+N1 , yk+N1−1, · · · , yk−N2 ]
T , (5.21)

wk = [wk,−N1 , wk,−N1+1, · · · , wk,N2 ]
T , (5.22)

wk is the time-varying optimal filter tap weight vector and dk is an biased term and N =

N1 + N2 + 1 is the length of wk. Here, N1 and N2 denote the length of the filter’s non-causal

and casual parts, respectively. The optimal solution using the MMSE criterion can be solved

with

(wk, dk) = arg min
wk∈RN ,dk∈R

E
(
|xk − x̂k|2

)
. (5.23)

The optimization problem can be easily solved by setting the partial derivatives ofE
(
|xk − x̂k|2

)

with respect to wk and dk to zeros.

∂E
(
|xk − x̂k|2

)

∂wk

= −2E
[(
xk − wT

k yk − dk

)
yT

k

]
= 0N , (5.24)
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∂E
(
|xk − x̂k|2

)

∂dk

= −2E
[(
xk − wT

k yk − dk

)]
= 0. (5.25)

Or equivalently,

E (xkyk) − wT
kE
(
yky

T
k

)
− dkE

(
yT

k

)
= 0N , (5.26)

E (xk) − wT
kE (yk) − dk = 0. (5.27)

From (5.26),

dk = E (xk) − wT
kE (yk) . (5.28)

Substituting (5.28) into (5.26), we have

wk =
(
E
(
yky

T
k

)
− E (yk)E

(
yT

k

))−1
(E (xkyk) − E (xk)E (yk)) , (5.29)

The optimal MMSE solutions are then

wk = cov (yk,yk)
−1 cov (yk, xk) , (5.30)

dk = E (xk) − wkE (yk) . (5.31)

From (5.20), (5.30), and (5.32), we have the filter output as

x̂k = E(xk) + cov (xk,yk) cov (yk,yk)
−1 (yk − E(yk)) (5.32)

Define the soft-input x̄k and associated reliability vk as

x̄k
∆
= E (xk) =

∑

χi∈X

χi Pr(xk = χi), (5.33)

vk
∆
= cov (xk, xk) =

(
∑

χi∈X

|χi|2 Pr(xk = χi)

)

− |x̄k|2 . (5.34)

Similar to (5.18), we assume that bits ck,j within a codeword are independent. Then, the a priori

probability can be calculated as

Pr (xk = χi) =

ρ−1
∏

j=0

Pr (ck,j = mi,j)

=

ρ−1
∏

j=0

Ku exp (ui,jL (ck,j)/2), (5.35)
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where ui,j
∆
= (−1)mi,j , Ku and is a scaling factor.

Let H be the time-invariant channel matrix as

H =











h0 h1 · · · hµ 0 · · · 0

0 h0 h1 · · · hµ 0 · · ·
...

...

0 · · · 0 h0 h1 · · · hµ











N×(N+µ)

. (5.36)

We can then express the observations with a vector form.

yk = Hxk + nk, (5.37)

where xk = [xk+N1 , xk+N1−1, · · · , xk−N2−µ]T is the transmit signal vector, and nk = [nk+N1 ,

nk+N1−1, · · · , nk−N2 ]
T is the noise vector. The noise nk is AWGN with mean zero and variance

σ2
n, and is independent with xk. If we assume that xk is i.i.d., the covariance matrix cov (xk,xk)

becomes diagonal matrix. We have

cov (yk,yk) = σ2
nIN + HVkH

T , (5.38)

cov (yk, xk) = vks
T , (5.39)

ȳk
∆
= E (yk) = HE (xk) = Hx̄k, (5.40)

where

Vk
∆
= cov (xk,xk) = diag [vk+N1 , vk+N1−1, · · · , vk−N2−µ] , (5.41)

s
∆
= H

[

01×(N2+µ) 1 01×N1

]T

, (5.42)

x̄k = [x̄k+N1 , x̄k+N1−1, · · · , x̄k−N2−µ]T . (5.43)

The estimate x̂k without applying the turbo principle becomes

x̂k = x̄k + vks
T (σ2

nIN + HVkH
T )−1(yk − Hx̄k). (5.44)
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With the turbo principle, x̂k must be independent with the a priori information L(ck,j). We then

set L(ck,j) to zero, or equivalently x̄k = 0 and vk = 1 in the computation of x̂k. Thus, (5.43)

and (5.41) can be rewritten accordingly. Let

x̄′
k = x̄k|x̄k=0

= [x̄k+N1 , · · · , x̄k+1, 0, x̄k−1, · · · , x̄k−N2−µ]T

= x̄k − [0, · · · , 0, x̄k, 0, · · · , 0]T , (5.45)

V′
k = Vk|vk=1

= diag [vk+N1 , · · · , vk+1, 1, vk−1, · · · , vk−N2−µ]

= Vk − diag [0, · · · , 0, (1 − vk), 0, · · · , 0] . (5.46)

Rewriting (5.38) and (5.39), we have

cov (y′
k,y

′
k) = (σ2

nIN + HVkH
T + (1 − vkss

T )), (5.47)

cov (y′
k, xk) = sT , (5.48)

ȳ′
k

∆
= E (yk) = Hx̄′

k. (5.49)

Thus, the estimate x̂′k with the turbo principle applied becomes

x̂′k = x̂k|x̄k=0, vk=1

= sT (σ2
nIN + HV′

kH
T )−1(yk − Hx̄′

k)

= sT (σ2
nIN + HVkH

T + (1 − vkss
T ))−1(yk − Hx̄k + (x̄k − 0)s). (5.50)

Hereafter, we ignore the superscript prime and express the OSL equalizer as

x̂k = fT
k (yk − Hx̄k + x̄ks). (5.51)

where

fk = (σ2
nIN + HVkH

T + (1 − vkss
T ))−1s. (5.52)
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Note that the the optimal filter is time-varying.

To obtain the extrinsic information Le(ck,j), the equalizer’s output x̂k is assumed to be

Gaussian distributed with xk = χi as its mean. The conditional PDF of x̂k (p(x̂k|xk =

χi) = p(x̂k|ck = mi)) is also approximated by a Gaussian distribution with the mean µk,i
∆
=

E(x̂k|xk = χi) and variance σ2
k,i

∆
= cov(x̂k, x̂k|xk = χi),

p(x̂k|xk = χi) ≈
1√

2πσk,i

exp

{

−|x̂k − µk,i|2
2σ2

k,i

}

. (5.53)

This assumption [42,45] simplifies the computation of the output extrinsic information Le(ck,j)

a lot. The mean and variance of x̂k are given by

µk,i = E(x̂k|xk = χi)

= fT
k (E(yk|xk = χi) − Hx̄k + x̄ks)

= χi · fT
k s, (5.54)

σ2
k,i = cov(x̂k, x̂k|xk = χi)

= fT
k cov(yk,yk|xk = χi)fk

= fT
k (σ2

nIN + HVkH
T − vkss

T )fk

= fT
k s(1 − fT

k s). (5.55)

The last equality in (5.55) is obtained with (5.52). Then, the extrinsic information can be calcu-

lated as

Le(ck,j) = ln

∑

∀mi:mi,j=0

[

p (x̂k|ck = mi)
ρ∏

j′=1:j′ 6=j

Pr (ck,j′ = mi,j′)

]

∑

∀mi:mi,j=1

[

p (x̂k|ck = mi)
ρ∏

j′=1:j′ 6=j

Pr (ck,j′ = mi,j′)

]

= ln

∑

∀mi:mi,j=0

exp

[

−ρk,i

2
+

ρ∑

j′=1:j′ 6=j

ui,j′L(ck,j′)
2

]

∑

∀mi:mi,j=1

exp

[

−ρk,i

2
+

ρ∑

j′=1:j′ 6=j

ui,j′L(ck,j′)
2

] , (5.56)
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where ρk,i
∆
=

(x̂k−µk,i)
2

σ2
k,i

. From (5.51), (5.54), and (5.55), we have

ρk,i =

∣
∣x̂k − χi · fT

k s
∣
∣
2

fT
k s(1 − fT

k s)
. (5.57)

Table 5.1 summarizes the formulae for calculating the soft-input, reliability, and extrinsic

information with M-PAM modulation. For detailed derivations, please refer to Appendix D.

Note that the formulae for soft-input and reliability are valid for all kind of filter-based SISO

equalizer described in this dissertation, but the extrinsic information is algorithm dependent.

The last row in Table 5.1 is also valid for other modulation schemes such as M-PSK and M-

QAM.

Table 5.1: Soft-input and soft-output conversion formulae for M-PAM

Modulation Soft-input Reliability Extrinsic information

2-PAM (BPSK) x̄k = tanh (L(xk)/2) vk = 1 − |x̄k|2 Le(ck,1) = 2x̂k

/
(1 − fT

k s)·
4-PAMa x̄k = 2L1+L2√

5
vk = 1 − 4L2

1+L2
2

5
Le(ck,1) =

ln e(
−ρ0+l2

2 )+e(
−ρ1−l2

2 )

e(
−ρ2+l2

2 )+e(
−ρ3−l2

2 )
Le(ck,2) =

ln e(
−ρ0+l1

2 )+e(
−ρ2−l1

2 )

e(
−ρ1+l1

2 )+e(
−ρ3−l1

2 )

M-PAM Eq. (5.33) Eq. (5.34) Eq. (5.56)

aFor 4-PAM, we define L1
∆
= tanh (L(ci,1)/2), L2

∆
= tanh (L(ci,2)/2); ρi

∆
= ρk,i, and lj = L(ck,j).

For BPSK modulation, the operations of the OSL equalizer can be summarized as follows.

1. Soft input conversion: convert the a priori information L(xk) into soft inputs x̄k and

reliability vk.

x̄k = tanh (L(xk)/2) , vk = 1 − |x̄k|2 . (5.58)

2. Optimal filter coefficients calculation: (assume that the noise variance and channel re-

sponse are known)

fk = (σ2
nIN + HVkH

T + (1 − vkss
T ))−1s. (5.59)
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3. Filtering: (for simplicity, some constant factors are cancelled by soft output conversion)

x̂k = fT
k (yk − Hx̄k + x̄ks). (5.60)

4. Soft output (extrinsic information) conversion:

Le(ck,j) = 2x̂k

/
(1 − fT

k s)· (5.61)

The power of the filter-based SISO linear equalizer is manifested in (5.59). With the knowl-

edge of the a priori information (the reliability matrix Vk), the equalizer changes its filter-

ing strategy (optimal filter response) adaptively. For the case of no a priori information (i.e.,

L(xk) = 0, x̄k = 0, vk = 1, which is the case at the first iteration), it performs like a classical

MMSE linear equalizer. For the case of perfect a priori information (i.e., |L(xk)| → ∞, x̄k =

xk, vk = 0), it becomes to a perfect MMSE IC linear equalizer [63]. In general, we have the a

priori information with certain reliability (i.e., 0 < |L(xk)| < ∞ ⇒ 1 < vk < 0). The equal-

izer performs optimal filtering for a given reliability (like the morphing in computer graphics)

between these two extreme cases. The similar behavior is also observed in the output extrinsic

information, which is also a function of reliability. The iterative equalization will begin with no

a priori at the first iteration, then with better and better a priori (toward the perfect a priori) at

later iterations. The equalizer’s performance is then improved iteratively.

Note that the optimal filter is time-varying and updated on the symbol-by-symbol basis.

The major complexity burden comes from the matrix inversion operation in (5.59), resulting

in an O(N 3) complexity per symbol. Though a time-recursive updated algorithm for the opti-

mal time-varying filter was proposed in [44, 45] in which the order was reduced to O(N 2), the

complexity is still high. To further reduce the complexity, Tüchler et al. [45] proposed to ap-

proximate the optimal time-variant filter with a suboptimal block time-invariant (time-invariant

within a processing block). With this approach, an O(N) complexity was achieved. We call

this a low-complexity SISO linear (LSL) equalizer. The algorithm is summarized as follows.
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B) LSL Equalizer

The reliability vk in (5.59) is replaced with its block-averaged value, i.e.,

v̄
∆
=

1

K

K∑

k=1

vk. (5.62)

Then, the optimal filter fk becomes block time-invariant. We then have the optimal filter f as

f
∆
=

(

σ2
nIN + HV̄H

T
+ (1 − v̄ssT )

)−1

· s

=
(
σ2

nIN + v̄HHT + (1 − v̄ssT )
)−1 · s, (5.63)

where

V̄
∆
=

1

K

K∑

k=1

Vk

= v̄IN+M−1. (5.64)

Since the optimal filter is changed, the output statistics of x̂k are changed accordingly.

µk,i = E(x̂k|xk = χi)

= fT (E(yk|xk = χi) − Hx̄k + x̄ks)

= χi · fT s, (5.65)

σ2
k,i = cov(x̂k, x̂k|xk = χi)

= fT cov(y′
k,y

′
k|xk = χi)f

= fT (σ2
nIN + HVkH

T − vkss
T )f . (5.66)

Note that the equality in (5.52) is not satisfied when the block time-invariant filter f is applied.

Thus, (5.66) cannot be simplified as (5.55). The output extrinsic information Le(ck,j) can be

still obtained with (5.56), but ρk,i is changed to

ρk,i =
|x̂k − µk,i|2

fT (σ2
nIN + HVkHT − vkssT )f

. (5.67)
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Since the denominator of (5.67) is time-varying, the complexity burden is shifted to the

computation of σ2
k,i. It is even larger than the computation of time-varying optimal filter co-

efficients in (5.59). Fortunately, the averaged reliability can be applied to solve this problem

without obvious performance degradation [45]. Now, ρk,i is approximated by

ρk,i ≈ |x̂k − µk,i|2

2fT (σ2
nIN + HV̄H

T − v̄ssT )f

=
|x̂k − µk,i|2
µk,i(1 − µk,i)

. (5.68)

The last equality in (5.68) is obtained with (5.63). That means the variance can be approximated

by

σ2
k,i ≈ µk,i(1 − µk,i). (5.69)

The extrinsic information for M-PAM is given in Table 5.1.

For BPSK modulation, the LSL equalizer can be summarized as follows:

1. Soft input conversion:

x̄k = tanh (L(xk)/2) , vk = 1 − |x̄k|2 , v̄
∆
=

1

K

K∑

k=1

vk. (5.70)

2. Optimal filter coefficients calculation:

f =
(
σ2

nIN + v̄HHT + (1 − v̄)ssT
)−1 · s. (5.71)

3. Filtering:

x̂k = fT (yk − Hx̄k + x̄ks). (5.72)

4. Soft output conversion:

Le(ck,1) = 2x̂k

/
(1 − fT s). (5.73)

Interestingly, the LSL equalizer is just a special case of OSL equalizer when reliability is

constant within a block, i.e., vk = v̄ (or |L(xk)| = constant). Note that the algorithm still

inherits the capability to change its filtering strategy adaptively. For the LSL equalizer, the
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filter is block time-invariant. For some special assumptions, the LSL equalizer can be further

simplified [46]. Either in the OSL or LSL equalizer, there are two mechanisms to exploit the

knowledge of the a priori information. One is in the filtering stage, and the other is in the soft

output conversion stage. If only the latter mechanism is preserved, a time-invariant equalizer

can be obtained. In other words, the filter will be the same for all iterations and also for all

blocks. There are two extreme cases yielding this result; the a priori is assumed to be totally

unknown and perfectly known all the time. The equalizer is then reduced to the classical liner

equalizer and the classical matched filter for the former and later cases, respectively. We name

the former LSL equalizer as the LSLN equalizer, and the later as the LSLP equalizer. We can

even have a hybrid of the LSLN and LSLP equalizers, which is named as the LSLH equalizer.

Since the filter is time-invariant, the complexity is lower than the LSL equalizer.

C) LSLN, LSLP, and LSLH Equalizers

In this section, we will summarize operations of the LSLN, LSLP, and LSLH equalizers. Since

the equalizer becomes time-invariant, the soft output conversion takes full responsibility for

reliability adaptation.

C.1) LSLN Equalizer For no a priori information, i.e. x̄k = 0, vk = 1 (or |L(xk)| = 0), the

optimal filter degenerates to an optimal LE filter as follows:

fNA
∆
= (σ2

nIN + HVkH
T + (1 − vkss

T ))−1s
∣
∣
x̄k=0,vk=1

=
(
σ2

nIN + HHT
)−1 · s, (5.74)

The output statistics of x̂k become

µk,i = χi · fT
NAs, (5.75)

σ2
k,i = fT

NA(σ2
nIN + HVkH

T − vkss
T )fNA. (5.76)

Unfortunately, (5.76) requires matrix multiplication operations for every symbol and the

complexity is high. To reduce the complexity, we can approximate σ2
k,i with its time average
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σ̄2
i .

σ̄2
i

∆
=

1

K

K∑

k=1

σ2
k,i

= fT
NA(σ2

nIN +
1

K

K∑

k=1

(HVkH
T − vkss

T ))fNA

≈ fT
NA(σ2

nIN + v̄(HHT − ssT ))fNA. (5.77)

Since the optimal filter is time-invariant, the extrinsic information should be calculated using

the general formula in (5.56).

For BPSK modulation, the LSLN equalizer can be summarized as follows:

1. Soft input conversion:

x̄k = tanh (L(xk)/2) , vk = 1 − |x̄k|2 , v̄
∆
=

1

K

K∑

k=1

vk. (5.78)

2. Optimal filter coefficients calculation:

fNA =
(
σ2

nIN + HHT
)−1 · s. (5.79)

3. Filtering:

x̂k = fT
NA(yk − Hx̄k + x̄ks). (5.80)

4. Soft output conversion:

Le(ck,1) = 2x̂kκ1/(κ2 + κ3v̄). (5.81)

where κ1 = fT
NAs, κ2 = σ2

nf
T
NAfNA, and κ3 = fT

NA(HHT − ssT )fNA are constants.

C.2) LSLP Equalizer For perfect a priori information, i.e. x̄k = xk, vk = 0 (or |L(xk)| =

∞), the optimal filter degenerates to a matched filter as

fMF
∆
= (σ2

nIN + HVkH
T + (1 − vkss

T ))−1s
∣
∣
x̄k=xk,vk=0

=
(
σ2

nIN + ssT
)−1 · s

= 1
/
(σ2

n + Eh) · s, (5.82)
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where Eh
∆
= sT s = hTh is the total energy of channel response. The last equality in (5.82) is

obtained with the matrix inversion lemma [19]. The output statistics of x̂k are changed to

µk,i = χi · fT
MF s = χi · Eh

/
(σ2

n + Eh), (5.83)

σ2
k,i = fT

MF (σ2
nIN + HVkH

T − vkss
T )fMF . (5.84)

Similar to LSLN equalizer, the computational complexity of (5.84) is high. We can then

approximate σ2
k,i with its time average σ̄2

i . Then, we have

σ̄2
i

∆
= fT

MF (σ2
nIN +

1

K

K∑

k=1

(HVkH
T − vkss

T ))fMF

≈ fT
MF (σ2

nIN + v̄(HHT − ssT ))fMF

= (σ2
nEh + v̄(sTHHT s − E2

h))
/
(σ2

n + Eh)
2
. (5.85)

Since the optimal filter is time-invariant, the extrinsic information should be calculated with

the general formula in (5.56).

For BPSK modulation, the LSLP equalizer can be summarized as follows:

1. Soft input conversion:

x̄k = tanh (L(xk)/2) , vk = 1 − |x̄k|2 , v̄
∆
=

1

L

L∑

k=1

vk. (5.86)

2. Optimal filter coefficients calculation:

fMF = 1
/
(σ2

n + Eh) · s. (5.87)

3. Filtering:

x̂k = fT
MF (yk − Hx̄k + x̄ks). (5.88)

4. Soft output conversion:

Le(ck,j) = 2κ1/(κ2 + κ3v̄) · x̂k. (5.89)

where κ1 = Eh(σ
2
n + Eh), κ2 = σ2

nEh, and κ3 = sTHHT s − Eh are constants.
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C.3) LSLH Equalizer Though the complexity of LSLN (or LSLP) equalizer is lower than

LSL equalizer, the performance and convergence behavior is poorer [66]. This is because the

LSLN equalizer and LSLP equalizers only consider simplified cases. For the LSLN equalizer

[46], the convergence behavior (using the EXIT charts analysis [67,68]) works well but it cannot

reach performance bound even using more iterations due to no a priori assumed. For the LSLP

equalizer [46], it provides minor improvement at first few iterations then stop quickly due to

perfect a priori assumed.

Combining the LSLN equalizer and the LSLP equalizer, we can obtain a the LSLH equalizer

[46]. The operation of the LSLH equalizer is summarized as follows. For the first few iterations,

we use the LSLN equalizer and then switch to the LSLP equalizer for remaining iterations.

The hybrid scheme overcomes the drawbacks of the LSLN/LSLP equalizer and provides a low

complexity alternative. The problem of the LSLH equalizer is the selection of the switching

point, which is system dependent. Determination of the switching point must consider the

EXIT behaviors of both the equalizer and the decoder. Since the LSLH equalizer are optimized

only at first and last iterations, there is mismatch for the iterations in between. This results in a

poor transition behavior and also affect the final performance.

In [46], a SISO DFE is also proposed to the filter-based turbo equalizer. The filter structure

is a classical DFE but the optimal feedforward and feedbackward filters are modified to take

into account the a priori information. The performance of a turbo MMSE DFE is highly chan-

nel dependent and it is not necessarily better than a turbo MMSE LE. Since its convergence

behavior cannot be analyzed with the EXIT chart and there is no low-complexity alternative of

SISO DFE proposed in [46], the turbo MMSE DFE will not be considered in this dissertation.

Although the complexity of the LSL equalizer is lower than the OSL equalizer, it is still far

from acceptable for long wireline channels. In this chapter, we propose a new filter-based turbo

equalizer to solve the problem. The proposed algorithm not only inherits all advantages of LSL

equalizer but also with much lower computational complexity.
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§ 5.3 The Proposed Fast Interpolated Turbo Equalizer

For wireline applications such as DSL, the channels often possess strong lowpass characteristics

and this makes the channel response look like a smoothly decaying function. The channel length

is long and usually on the order of hundreds of taps. It is apparent that high complexity trellis-

based turbo equalizers can not be applied to such applications. Since the channel consists of

the fixed twisted-pair copper wires, the channel is almost time-invariant. In this section, we

exploit the time-invariant and lowpass channel characteristics to propose fast interpolated turbo

equalizer. First, we formulate the fast singly interpolated SISO linear (FSISL) equalizer for

time-invariant wireline channels. Combining the idea of channel response interpolation [15,36],

we then further develop a fast doubly interpolated SISO linear (FDISL) equalizer. Finally, we

analyze the computational complexity and evaluate the performance of proposed algorithms.

§ 5.3.1 FSISL Equalizer

From previous discussion, we know that the LSL equalizer simplifies the optimal time-varying

filter to a block time-invariant optimal filter (hereafter simply named it as the optimal filter).

We also find that the optimal filter is a function of the average reliability. The average reliability

in a LSL turbo equalizer is then a function of both the iteration and block number (see (5.62)).

For simplicity, we just use reliability to refer average reliability hereafter. Thus, the optimal

filter of LSL equalizer is also a function of both the iteration and block number as shown in Fig.

5.9. In the figure, the optimal filter of the LSL equalizer is denoted as f n
i = fn

i (v̄n
i ), where the

superscript indicates the block number and the subscript the iteration number. As an example,

we show the reliability of the LSL turbo equalizer operated on the Proakis B channel [69] with

4-PAM in Fig. 5.10. The Proakis B channel is a medium-ISI channel with a 3-tap response as h

= [0.407, 0.815, 0.407]T . Except for the zero-th iteration (which the reliability is always equals

1 because of no a priori information is given), it is clear that the reliability for a certain iteration

is block-variant. For a given block, the variation process of the optimal filters of LSL equalizer
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for different iterations (from no a priori to perfect a priori) is shown in Fig. 5.11. If we overlap

the responses of optimal filters, the same variation process is also shown in Fig. 5.12. From

those figures, we can find that the responses of the optimal filters have similar shapes. Also,

the variation of a specific tap value is continuous (it will be proven theoretically later) with

respect to the reliability. Thus, it is possible to approximate an optimal filter with two other

given optimal filters. This motivates the development of our fast algorithms. Recalling (5.71),
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Figure 5.9: The optimal block time-invariant filter vs. the iteration and block number.

we have the optimal filter for a given reliability v̄ as

f =
(
σ2

nIN + v̄HHT + (1 − v̄)ssT
)−1 · s

∆
= (S1 + S2v̄)

−1 · S3

∆
= ζ(v̄). (5.90)

where S1
∆
= σ2

nIN + ssT , S2
∆
= HHT - ssT , and S3

∆
= s. Thus, if the channel and the noise

variance are given, the optimal filter becomes a function of reliability only. Here, we use ζ(·) to

denote the function. Note that this is a generic result and it is independent of the iteration and

block number.

Define the j-th tap weight of f as fj . From (5.90), we see that fj is a scalar function of v̄,

i.e., fj(v̄). From the well-known Weierstrass’ approximation theorem [70], we know that if a

function is continuous in a closed interval, there exists a polynomial so that we can approximate
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Figure 5.10: The average reliability function vs. the iteration and block numbers.

the function in that interval with infinitesimal error. In other words, if the first order derivative

f ′
j(v̄) exists in [0, 1], fj(v̄) is interpolatable with any infinitesimal error. In what follows, we

will proof that fj(v̄) is not only continuous but also an analytic, i.e., the n-th order derivative

f
(n)
j (v̄) always exists.

From linear algebra, we know that the inversion for a given square matrix A can be calcu-

lated with the following general formulae,

A−1 =
adj(A)

det(A)
, (5.91)

where adj(A) is the adjoint matrix and det(A) is the determinant of A, respectively. Define

Mmn as the determinant of the matrix without the m-th row and the n-th column. we can obtain

the adjoint matrix as

adj(A) =
[
(−1)(m+n)Mmn

]T
. (5.92)
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Figure 5.11: Optimal block time-invariant filter vs. the reliability function (Channel: Proakis B

channel with 4-PAM at SNR=18.0 dB).

Evaluating f with (5.90) with (5.91) , we can have the j-th tap weight of an optimal filter as

fj(v̄) =

N−1∑

n=0

qn,j v̄
n

N∑

n=0

pn,j v̄n

(5.93)

where pn,j and qn,j are some constants, N is the filter length, and v̄ ∈ [0, 1]. Note that fj(v̄) is a

rational function with a numerator polynomial of degree N − 1 over a denominator polynomial

of degree N . Note that the denominator cannot be zero. Otherwise, the optimal solution will

not exist. Thus, the n-th order derivative f (n)
j (v̄) always exists and fj(v̄) is an analytic func-

tion. The analytic property enables use to interpolate the optimal filters achieving computational

reduction. We can interpolate each individual tap weight with an set of interpolation parame-

ters. However, for filters with hundreds of tap weights, the complexity for the interpolation is

high. For simplicity, we propose to use a suboptimal scheme that the same set of interpolation
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parameters are used for all tap weights.

In this dissertation, we apply the piecewisely linear Lagrange interpolation [70] scheme.

Assume that (v̄1, f(v̄1)) and (v̄2, f(v̄2)) are known as a priori with (5.90) and v̄1 < v̄ < v̄2. For

a single tap weight, we can has the linear interpolation as

fj(v̄) = wf(v̄1) + (1 − w)f(v̄2) (5.94)

where w is a weighting factor. The weight factor is given by

w =
v̄ − v̄2

v̄1 − v̄2

. (5.95)

we can the partition the full range of reliability [0, 1] into a number of adjoined intervals and

approximate fj(v̄) in each interval with a piecewisely linear function.

As mentioned, we use a suboptimal interpolation scheme. For an optimal filter, assume that

(v̄1, f1 = ζ(v̄1)) and (v̄2, f2 = ζ(v̄2)) are known as a priori with (5.90) and 0 ≤ v̄1 < v̄2 ≤ 1.

For a reliability v̄i located between the interval v̄1 < v̄i < v̄2, the corresponding optimal filter

fi = ζ(v̄i) can be interpolated by two given optimal filters.

fi ≈ f̃i
∆
= ξ(f1, f2) (5.96)

where f̃i is the interpolated optimal filter and ξ(·) is the linear interpolated function as

ξ(f1, f2) = wf1 + (1 − w)f2. (5.97)

where w is a weighting factor. The weight factor is given by

w =
v̄i − v̄2

v̄1 − v̄2

. (5.98)

Thus, all coefficients of optimal filters are interpolated with the same set of parameters. From

our experience, a better approximation may be obtained in terms of the square root of reliability

(i.e., standard deviation of soft decisions). However, the square root operation is required and

this will complicate the computation. To compensate the possible performance loss, we make

the interpolation interval smaller, which will only increase implementation cost slightly.
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Define the normalized interpolated error (NIE) as

NIE ∆
=

∥
∥
∥f̃i − fi

∥
∥
∥

2

‖fi‖2 . (5.99)

If v̄1, v̄2 are close enough, the interpolated optimal filter f̃i will close to the optimal filter fi,

too. The reliability is within the range [0, 1] and we can select a set of reference reliabilities

{v̄j} = {0, v̄1, v̄2, · · · , 1}. If the number of the reference reliabilities is large enough, the NIE

will be small and the performance loss will be ignorable. Let the full range of reliability be

partitioned by Z sub-intervals, i.e., the number of reference reliabilities be (Z + 1). We can

then calculate (Z + 1) corresponding reference optimal filters and store the filter coefficients in

a table. For any reliability, we can then look up the table and obtain the corresponding optimal

filter through interpolation. This will dramatically reduce the computational requirement for

the LSL equalizer. The next problem is how to determine the values of reference reliabilities.

This can be seen as a sampling problem and the simplest one is an uniform sampling scheme as

v̄j = j∆, j = {0, 1, · · · , Z} . (5.100)

where ∆ = 1/Z is the sampling spacing. However, simulations show that the NIE performance

is satisfactory for large Z only. The reason can be explained below. For a specific tap weight,

let its value corresponding to v̄ = 1 be fN and it value corresponding to v̄ = 0 be fP . A uniform

sampling for the reliablity between v̄ = 1 does not give a uniform sampling for the tap weight

between fN and fP .

Thus, the reference reliabilities should be non-uniformly sampled. The goal is to make

the corresponding optimal filter weights be uniformly sampled (because of piecewise linear

interpolation). Although we can formulate an MMSE cost function to the nonlinear sampling

problem and find the optimal solution by the generalized Pontryagin’s maximum principle [71],

it will be time-consuming. Here, we only select a common nonlinear function to the job. We

observe that when the reliability is large, the variation of optimal weights are small. However,

when the reliability is small, the variation will be large. We then need denser sampling when
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reliability is small. This motivate us to use an exponential function for sampling. The sampling

scheme is given by

v̄j =







e−( λ
Z−1

)·j j = {0, 1, · · · , Z − 1}
0 j = Z

, (5.101)

where λ is a factor controlling the decaying rate of the exponential function. The reliability

with zero value is considered as the perfect a priori case. As we can see, the larger the entries

are, the smaller the interpolated error will be. But, the the table size will become larger. There

is a tradeoff between interpolation performance and table size.

From (5.101), we also see that the decaying factor also determines the minimum (except

zero) reliability value, namely v̄Z−1 = e−λ. The minimum reliability value is crucial to both

NIE and BER performance. This is because when the number of iteration or the SNR is high,

the corresponding reliability will be very small. It will fall into the region between v̄Z−1 = e−λ

and v̄Z = 0. The interpolation in this region becomes critical. The decaying factor is determined

through some trial-and-errors. This will be discussed in simulations section later.

The sampled reference reliability v̄j begins at v̄0 = 1 corresponding no a priori case. Then,

its value is exponentially reduced, and finally ends with v̄Z = 0 corresponding to the perfect a

priori case. If the channel is time-invariant, it can be identified during the initialization stage.

Also in this stage, we can then calculate a set of reference optimal filters {fj} = {f0, f1, · · · , fZ}
(5.90) according to the sampled reliability. Later, for any reliability v̄n

i , we can approximate the

optimal filter fn
i with the interpolation shown in (5.97). For any iteration and any block, we do

not have to re-calculate the optimal filter using (5.90). Thus, the computational complexity can

be very low. Before interpolation, we have to perform a binary search to locate the interpolation

interval (v̄1 < v̄n
i < v̄2). The required operations are log2(Z + 1) comparisons only. Our

simulations shown that 16 sampling points are large enough for a channel with length up to

hundreds of taps. That means only four comparison operators are required and the complexity

is ignorable. The complexity for computing reference optimal filters, {f n
i }, is (Z + 1) ·O(N 3).

This is also ignorable since we only have to carry out the operations once. Unless the channel
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response is changed, we do not have to re-calculate the reference filters.

§ 5.3.2 FDISL Equalizer

For the channel with hundreds of taps, the application of a turbo equalizer is difficult, if not

impossible. Even for the LSL equalizer, we may need one million operations to compute an

optimal filter. The complexity of LSLH equalizer is very low; however, the performance is

usually not satisfactory. For a long response, the convergence behavior of a turbo equalizer

become more sensitive and difficult to control. Despite the problem, the filter-based turbo

equalizer is still the only possible candidate to apply. In the previous subsection, we have

developed an interpolation scheme dramatically reducing the computational complexity of LSL

equalizer. Note that the scheme is to interpolate the whole response of an optimal filter. We call

this a whole response (WR) interpolation scheme.

Inspecting the structure of LSL equalizer in Fig. 5.13 or (5.72), we find that the equalizer

consists of two separate linear filters. One is the optimal filter f we have been working with, and

the other is a filter with soft-decisions as its inputs and channel responses as its coefficients. The

length of optimal filter is usually on the same order of the channel length. Thus, the equalization

operation will require high computational complexity when the channel length is long. If the

response of the channel and optimal filter can be interpolated, the complexity can be reduced

further. For wireline channels, this is indeed possible. Note that the scheme here is to interpolate

an individual sample of a channel or a filter response and we call this an individual response

(IR) interpolation scheme. Note that what discussed in the previous chapters belongs to the IR

interpolation schemes. Combining the WR and IR interpolation schemes, we obtain the FDISL

equalize with very low computational complexity.

Similar to the interpolated echo canceller in Chapter 3, the channel response used in (5.72)

can be approximated by a low-complexity interpolated FIR (IFIR) filter. For convenience, we

rewrite the soft observation again.

ȳk = Hx̄k. (5.102)
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Note that every row in the channel matrix H contains the channel response hT . In fact,

the soft observation can be seen as the received signal with the a priori information x̄k as

transmitted signal over channel h. This suggest that the application of the low-complexity IFIR

filtering scheme. The approach is similar that described in Chapter 3. The only difference is

that the transmit channel instead of the echo channel is considered now. Assume the channel

response can be partitioned into two portions, i.e.,

h =




hh

ht



 , (5.103)

hh = [h0, h1, · · · , ht−1]
T , (5.104)

ht = [ht, ht+1, · · · , ht+µ]T , (5.105)

where t is a cutting point selected to partition the channel response into an interpolatable (tail)

response ht and a transient (head) response hh. Note that the length of interpolatable response

is usually much greater than the length of transient response in DSL channels, i.e.,(µ− t) � t.

Then, the channel response can be approximated by

h ≈ w1 + g ∗ w
↑U
2 , (5.106)

g =
[
g−(U−1), g−(U−2), · · · , g(U−1)

]T
, (5.107)
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w1 = [w1,0, w1,1, · · · ]T , (5.108)

w
↑U
2 = [w2,0, 0, · · · , 0

︸ ︷︷ ︸

U−1

, w2,1 0, · · · , 0
︸ ︷︷ ︸

U−1

, w2,2, · · · ]T , (5.109)

where U is the interpolation factor, g is the interpolation filter, w↑U
2 is an U -downsampled-then-

upsampled response, g ∗w
↑U
2 is the IFIR response for the interpolatable channel response ht (∗

stands for the convolution operation), and w1 is the compensated response for h at head portion.

We do not use the adaptive algorithm or the Wiener solution as that in Chapter 3 to obtain w1

and w
↑U
2 . Instead, we use a simple method.

Assume that h, g, and a cutting point t are given. We simple let w
↑U
2 be the direct U -

downsampled-then-upsampled tail response, i.e, w2,i = ht+iU , and w1 be the head portion of hi

subtracted from the interpolated tail response. With mathematical expressions, we have

w
↑U
2 = [ht, 0, · · · , 0

︸ ︷︷ ︸

U−1

, ht+U 0, · · · , 0
︸ ︷︷ ︸

U−1

, ht+2U , · · · ]T , (5.110)

w1 = h − g ∗ w
↑U
2 . (5.111)

If we use standard interpolation functions, w2,i will be equal to the sampled value of ht+iU ex-

actly. However, if we use optimized functions, w2,i may not be equal to the sampled value of

ht+iU . This does no harm to the result since the overall modelling error is generally smaller.

With proper choice of parameters, the modelling error in with (5.110) is ignorable. The com-

putational complexity for obtaining w1,w
↑U
2 is also ignorable. Given a channel response, the

optimal interpolation filter g can be found offline by the least-squares solution described in

Chapter 3. The least-squares solution is capable of minimizing the interpolation error with a

single channel response or a set of responses. The later is very useful for DSL applications

since the channel responses are usually similar. We can apply the optimization scheme to the

optimal filter interpolation discussed next.

For the optimal filters, the problem is a little bit more complex since the optimal filter f n
i

is not only iteration dependent but also block dependent. In other words, there are many filters

to be interpolated instead of a single one. Fortunately, with our previous development, we only



5.3. THE PROPOSED FAST INTERPOLATED TURBO EQUALIZER 105

-180 -160 -140 -120 -100 -80 -60 -40 -20 0
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

M
ag

ni
tu

de
 o

f f
i

n-th tap

0v =

1v =

Figure 5.14: The reference optimal filters for the SHDSL CSA #6 channel at SNR=18.0 dB.

have to interpolate a set of reference optimal filters. The problem is that will all the reference

optimal filters be interpolatable? Fig. 5.14 shows the reference optimal filters for CSA #6

channel [1, 72] with 4-PAM (SNR=18.0 dB). As we can see that the optimal filter responses

varies a lot. For the case where reliability is close to one (no a priori), the filter degenerates

to the conventional linear equalizer. Since the channel has lowpass response, the equalizer

will have highpass response. This make the interpolation difficult. However, the equalizer

response is usually short in this case. In addition, this case is often observed in early iteration

stages and larger error is tolerable. For the case where reliability is close to zero (perfect a

priori), the response becomes a matched filter, a time reversal version of the channel response,

and interpolation is easy to apply. Note that the cutting point may be different for different
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reliability values. Thus, fn
i can be approximated by

fn
i ≈ g ∗ w

↑U
4 + w3. (5.112)

Since fn
i is interpolatable at its head portion (which is time reversal compared to channel re-

sponse), we have t � (µ − t). Now, g ∗ w
↑U
4 models the head response while w3 the tail

response. Similar to (5.110), the interpolated tap weights are obtained by direct U -dowsampled-

and-upsampled on fn
i (w4,j = fn

i,jU ) and

w
↑U
4 = [fn

i,0, 0, · · · , 0︸ ︷︷ ︸

U−1

, fn
i,U 0, · · · , 0
︸ ︷︷ ︸

U−1

, fn
i,2U , · · · ]T , (5.113)

w3 = fn
i − g ∗ w

↑U
4 . (5.114)

The overhead complexity is approximately equal to ≈ t+ (µ−t)
U

per block or (t+ (µ−t)
U

)
/

K per

symbol. Since the block length is much greater, the overhead complexity is ignorable (less than

one per symbol).

§ 5.3.3 Complexity Analysis

A complete turbo equalizer consists of a SISO equalizer, a SISO decoder, an interleaver, and

a deinterleaver. The detailed complexity analysis of all kinds of turbo equalizers are discussed

in Appendix E. We only summarize the results here. The interleaver or deinterleaver is simply

a table lookup operation and its complexity is minor for the overall system [55, pp. 127]. The

filter-based SISO linear equalizer consists of linear equalization and the SISO conversion. The

complexity of the SISO conversion is the same for the LSL equalizer and proposed SISO equal-

izers. From Table E.1, we can see that the complexity of SISO conversion is proportional to the

signal constellation size. For a small constellation size (e.g. 8-ary modulation), the complexity

is minor compared to that of equalization. Thus, we will focus on the equalization complexity

only. Since the LSL achieves good performance and complexity tradeoff among all SISO linear

equalizers proposed by Tüchler, we use the LSL equalizer as a reference.
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For convenience, the computational complexity used here is in terms of FLOPS being able

to combine different operations, such as multiplication, division, and table lookup, into a unified

complexity index. A FLOP [73, pp. 19] is defined as a real number floating point operation (i.e.,

a floating point addition or a multiplication, with indexing).

Finding optimal tap weights of the LSL equalizer involves matrix inversion and there are

various methods to do the job. A direct-matrix inversion method called Gaussian elimination

[73, pp. 99] costs 2
3
N3 + 3

2
N2 − 7

6
N = O(N 3) FLOPS per block. Exploiting the Toeplitz

structure of a channel matrix, one can apply the Levison method [73, pp. 187] and this will

require 4N 2 = O(N 2) FLOPS per block. Instead of direct matrix inversion, there is a FFT

approximation method [55, pp. 111] achieving a lower complexity. The complexity is on the

order of O(L log2 L), where L is the channel length. Thus, we select the FFT approximation

method for matrix inversion. The computational complexities per symbol per iteration for the

Table 5.2: Complexity of SISO equalizers without SISO conversion

Equalizer type FLOPS/symbol/iteration

LSL 10L log2 L+12L+3
K

+ 40L+ 4N + 78

FSISL (4N − 2) + 44

FDISL R(4N − 2) + 44

LSL, FSISL, and FDISL equalizers are summarized in Table 5.2. The table is extracted from

Table E.2. From the table, we see that the complexity of the LSL equalizer is

10L log2 L+ 12L+ 3

K
+ 40L+ 4N + 78 (FLOPS/symbol/iteration), (5.115)

where L is the channel length, N is the filter length, and K is the block length. The complexity

of FDISL equalizer is

R(4N − 2) + 44 (FLOPS/symbol/iteration), (5.116)
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where R ≤ 1 is the IR complexity ratio. The IR complexity ratio is defined as the complexity

of a filter (or a channel) with IR interpolation over that without. This ratio is shown to be [15]:

R =

(

⌊
N − t

U

⌋

︸ ︷︷ ︸

IFIR

+ t
︸︷︷︸

FIR

+ (s− 1)U
︸ ︷︷ ︸

overlapped

+ (2sU − 1)
︸ ︷︷ ︸

interpolationfilter

)

N

=
(
⌊

N−t
U

⌋
+ t+ (3s− 1)U − 1)

N
, (5.117)

where t is the cutting point, U is the interpolation factor, and s is the span of the interpolation

filter. Note that the FSISL equalizer is a special case of FDISL equalizer with R = 1. For

short channel length, the optimal filter is not interpolatable and no gain is achieved using the

IR interpolation in FDISL. For longer channel length; however, the IR interpolation can reduce

the complexity effectively. From (5.115), we see that the FFT method reduces the complexity

dramatically compared to the Levison method. As shown in Table E.2, it still requires many

division operations. Comparing (5.116) with (5.115), we find that the proposed FDISL equalizer

not only eliminates the matrix inversion for solving optimal filter tap weights, but also reduces

the filtering operations. Also, the proposed fast turbo equalizer is nearly division-free.

For a CSA #6 channel [7, 8] with length 180 taps, the IR complexity ratio with different

interpolation factor is shown in Fig. 5.15. From figure, we find that for interpolation factor

from 4 to 16, complexity ratio is less than 40%. That means the choice of the interpolation

factor is not sensitive and it is easy to obtain a tradeoff between the performance and complexity

reduction. In our simulations, we select an interpolation factor of eight and the IR complexity

ratio is 35%. The computational complexities for the proposed fast interpolated SISO linear

equalizers and the LSL equalizer with different channel length are compared in Fig. 5.16. The

corresponding complexity ratio is also shown in Fig. 5.17. Here, the complexity ratio of a

compared equalizer is defined as the complexity of the equalizer divided by that of the LSL

equalizer. For the FSISL equalizer, the complexity ratio is less than 13% when the channel

length is longer than 20, and is less than 10% when the channel length is longer than 80. It is to

say that the complexity of the FSISL is an order of magnitude less than that of the LSL equalizer
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Figure 5.15: The IR complexity ratio vs. interpolation factor for the SHDSL CSA #6 channel.

for medium to long channels. For very short channels, the complexity ratio is less than 38%.

For the CSA #6 channel, the complexity ratio of FSISL equalizer is only 9.5%. Since the IR

complexity ratio is 34% for this channel, the complexity ratio of FDISL equalizer is only 3.7%.

Note that the IR interpolation scheme can not offer any complexity reduction when channel

length is less than 20.

§ 5.4 Simulation Results

In this section, we report some simulation and performance comparison results. To demon-

strate the effectiveness and robustness of the proposed turbo equalizers, we consider channels

shown in Table 5.3. The selected channels cover a wide range of ISI severity level as well as
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Figure 5.16: The computational complexity of proposed fast interpolated SISO linear equalizers

(FSISL and FDISL) and LSL equalizer.

channel length. Proakis C channel possesses many spectral nulls and this can result in a poor

equalization performance and convergence behaviors. The CSA #6 channel is a standard test

loop for SHDSL transceiver [7,8]. It is also the longest CSA test loops in standards and usually

considered as the worst case in many works. Its response is shown in Fig. 5.18. As we can see,

the channel length is almost two hundreds. To the best of our knowledge, there is no suitable

turbo equalizer for such application. We use this channel to test the effectiveness of the pro-

posed FDISL turbo equalizer. At the same time, emphasize the importance of the complexity

reduction issue.

Without loss of generality, we use a bit-interleaved coded modulation (BICM) [74] trans-

mission system. In the system, we use a half-rate non-systematic convolutional (NSC) code
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Figure 5.17: The complexity ratio of proposed turbo equalizers (block length: 512 symbols).

Table 5.3: Channel models for performance evaluation

Channel type ISI severity Channel length

Proakis A low medium

Proakis C severe short

CSA #6 (SHDSL) medium long

G = [5 7], an S-random bit interleaver, and a 4-PAM modulation scheme. The interleaver is a

random interleaver with a block length 1024 and the spreading factor, S, is 22. The interleaver is

obtained by a random search scheme [59]. Note that the permutation sequence is time-invariant
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Figure 5.18: The channel response of CSA #6 channel for SHDSL application.

and is known to the transmitter and the receiver. The SNR is defined as follows

SNR
∆
=
E
[
|yk|2

]

σ2
n

. (5.118)

Since the convergence behavior is channel and SNR dependent, we perform simulations with a

wide range of SNR. In the receiver, the channel response and SNR is assumed to be perfectly

known. In the proposed FSISL and FDISL turbo equalizers, there are several additional parame-

ters needed to be determined. These parameters not only influence the equalization performance

but also the required computational complexity. Thus, they must determined properly.

§ 5.4.1 Parameters of Reference Filters

At the initialization stage, we have to find reference optimal filters and store them in a table.

Given a channel and tolerable interpolated modelling error (i.e., an NIE threshold), we can
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generate reliability according to (5.101) and then obtain the corresponding optimal filters. There

are two parameters namely the number of entries Z and decaying factor λ here. We first select

the number of entries Z, say 15 (16 entries), and then adjust the decaying factor recursively.

The main point is to check if the weights have uniform distributions. If not, adjust (increase or

decrease) the decaying factor. It is found that uniform weight distributions will lead to a better

NIE performance. If the minimum NIE is still under the target performance, then increase the

Z and repeat the process again. Fortunately, the procedure can be completed usually within few

iterations. Fig. 5.14, 5.19, and 5.20 show the results.

A table with 16 entries and λ = 8 is found to be good enough. For CSA #6 channel,

the average NIE is -44.3 dB and the worst-case NIE is -39.7 dB . The parameters are also

applicable to other short channels. From Fig. 5.19, we see that weight distributions are roughly

uniform (though it is possible to improve further). Due to the exponentially sampling (more

dense samples in higher reliability region), the NIE performance is better in the more reliable

region. This is good for the turbo equalizer since the optimal filter is more sensitive in the small

reliability region. In the earlier iteration stages, the system experiences the transition from no

a priori to better a priori. The modelling errors in optimal filters are more tolerable. However,

in the later stages, the system is about to output the results and more accurate modelling will be

required. From Fig. 5.20, we see that the proposed equalizers approximate the LSL equalizer

very well in all iterations. In our simulations, the total number of entries is 16 for all channels

though 8 entries are good enough for short channels. Fig. 5.19 shows a portion of the reference

optimal filters for CSA #6 channel with SNR 18.0 dB and filter length 180. Fig. 5.20 shows the

corresponding NIE performance where the worst case is located in the insensitive region.

§ 5.4.2 Parameters for IR Interpolation

For FDISL equalizer, we have to determine additional parameters for the IR interpolation of

the reference optimal filters. These parameters includes the cutting point, interpolation factor,

interpolation span, and the interpolation filter. The target is to minimize the NIE performance



114 CHAPTER 5. FAST INTERPOLATED TURBO EQUALIZER

-50 -45 -40 -35 -30

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

M
ag

ni
tu

de
 o

f f
i

n-th Tap

0v =

1v =

Figure 5.19: The zoom-in view of the reference optimal filters (Z = 15, λ=8, SHDSL CSA #6

channel, and SNR=18.0 dB).

with the interpolation in (5.112). The parameters determined for optimal filters interpolation

can also be used for channel interpolation in (5.106). Fig. 5.21 shows the interpolation NIE

performance for the reference optimal filters in Fig. 5.19 and that for the CSA #6 channel

response. Simulations show that with cutting point 30, interpolation factor 8, and interpolation

span 1 [15], we can achieve an NIE performance less than -40.0 dB for all filters. Fig. 5.22

shows the interpolation filter optimized for CSA #6 channel. Note that those parameters are not

only suitable for the CSA #6 channel but for all other test loops in SHDSL applications [15].

Here, we just use the CSA #6 channel as a testing example. As mentioned in previous sections,

if we want to have better results in practical DSL applications, we should jointly optimize the

parameters for all CSA loops instead of just a single one.



5.4. SIMULATION RESULTS 115

10
-2

10
-1

10
0

-60

-55

-50

-45

-40

N
IE

 (d
B

)

Average Reliability Information

NIE
NIEmax = -39.7 dB
NIEave = -44.3 dB

Figure 5.20: The NIE performance of reference optimal filters in Fig. 5.19, where the worst one

is -39.7 dB and the average is -44.3 dB.

§ 5.4.3 BER Simulations

A) Low-ISI Proakis A Channel

Proakis A channel [49,69] is a low-ISI channel with response h = [0.04, -0.05, 0.07, -0.21, -0.5,

0.72, 0.36, 0, 0.21, 0.03, 0.07]T (11 taps). We set the filter length as N1 = 15 and N2 = 10. In

addition to the BER performance turbo equalization, we also consider the BER performance of

an uncoded and a (5,7) coded systems with AWGN channel. The former result can serve as the

ISI severity indicator. If the performance of the zero-th iteration is much worst than the uncoded

system, the channel ISI is considered as severe. The later result can serve as the performance

bound for all filter-based turbo equalizers. Fig. 5.23 shows the BER performance of the LSL
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Figure 5.21: The IR interpolation for the CSA #6 channel response and the reference optimal

filters in Fig. 5.19.

equalizer and the proposed FSISL equalizer in which Z = 15 and λ = 8. The complexity ratio

is 15.3%. As we can see, the convergence behavior and the performance of both equalizer are

nearly the same. Since the channel is with low-ISI, both turbo equalizers reach the performance

bound quickly after only two iterations.

B) Severe-ISI Proakis C Channel

Proakis C [49, 69] channel is a severe-ISI channel with response h = [0.227, 0.460, 0.688,

0.460, 0.227]T (5 taps). The response has many spectral nulls and is difficult to equalize with a

linear equalizer. Unfortunately, the LSL turbo equalizer embodied a linear equalizer at its first

iteration and this results in a poor performance. The filter length is set asN1 = 15 andN2 = 15.
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Figure 5.22: The interpolation filter used for IR interpolation in Fig. 5.21.

Fig. 5.24 shows the BER performance of the LSL and the proposed the FSISL turbo equalizers

(Z = 15 and λ = 8). The complexity ratio is 20.8%. Different from the low-ISI Proakis

A channel, the channel is with severe-ISI and the SNR threshold for triggering performance

improvement is as high as 18 dB. However, the convergence behaviors and performances are

still nearly the same for both turbo equalizers.

C) Long ISI CSA #6 Channel

In contrast to previous hypothetical short channels, the CSA #6 channel is an actual channel

modelled with the transmission line theory [1, 72]. The channel consists of a transmit shaping

filter, a transmit differential hybrid circuit (with a 135Ω termination impedance), a 9-Kft 26

gauge loop, a receive differential hybrid circuit, and a receive filter. The transmit/receive filter
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Figure 5.23: BER comparison for the proposed FSISL (dashed-x) and LSL (solid) turbo equal-

izers over Proakis A channel

was modelled as a 6-th order Butterworth lowpass filter with a 3-dB cutoff frequency at 775

KHz. The primary inductance for the transformer in the hybrid circuit is set as 3 mH.

The CSA #6 channel is an 180-tap medium-ISI channel as shown in Fig. 5.18. Such a long

channel is used in standards [7, 8] for testing the implementation interoperability. The filter

length is set as N1 = 180 and N2 = 0. The channel is long and interpolatable such that we

can apply the IR interpolation scheme. Fig. 5.25 shows the BER performance of the proposed

FSISL, FDISL, and LSL turbo equalizers. Note that 16 reference filters and λ = 8 are still used

for FSISL and FDISL turbo equalizers. For the FDISL equalizer, the IR interpolation param-

eters are those obtained in Section 5.4.2. The complexity ratio of FSISL and FDISL equalizer

over the LSL equalizer is 9.5% and 3.7%, respectively. Since the channel is with medium-ISI,
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Figure 5.24: BER comparison for the proposed FSISL (dashed-x) and LSL (solid) turbo equal-

izers over Proakis C channel.

the SNR threshold is at 14 dB. Unfortunately, as we can see the BER oscillation phenomenon

occurs. For a turbo equalizer, the BER is usually expected to be improved when more iteration

is applied. However, when the oscillation phenomenon occurs, the BER performance will reach

a bound after some iterations and become worse if more iterations are applied. Note that even

the LSL turbo equalizer suffers from the same problem. The phenomenon is not uncommon and

has been reported in [75]. Most previous works used the EXIT chart [67], which is a popular

semi-analytical tool analyzing the convergence behavior of the turbo algorithms, to predict the

convergence behavior. However, the EXIT chart is not able to consider the BER oscillation

phenomenon and it cannot guarantee the convergence.

In what follows, we try to explain the phenomenon. Similar to conventional DFE, the turbo
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Figure 5.25: BER comparison for the proposed FSISL (dashed-x), FDISL (dotted-point), and

LSL (solid) turbo equalizers over SHDSL CSA #6 channel

equalizer also uses decision feedback. The difference lies in that the decision is soft. As a result,

there also exists the error propagation problem and this may cause divergence in the worst case.

The severity of error propagation depends on the error correcting capability of the SISO decoder

and the length of feedback filter. If the error correcting capability is not good enough, the turbo

equalizer will become more sensitive when the iteration number is high. In this case, the LLR

will become higher and higher and the soft decision will approach the hard decision; a wrong

decision will cause severe error propagation (than soft decision). Additional iterations will

amplify the error propagation effect. Since the channel is long, errors are easily accumulated

in a long feedback path especially when the error bits are uncorrectable to the decoder. In the

derivation of all kind of filter-based turbo equalizers, we assume that the distribution of soft
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decision is Gaussian and this may not be true. The modelling assumption may also cause the

unexpected phenomenon.

We propose a simple method to mitigate the BER oscillation phenomenon. Observe that

the output from equalizer is connected to the input of decoder as a priori [62]. The soft value

is a tanh(·) function of the LLR value (see Table 5.1). Thus, as the LLR becomes larger, the

soft decision will approach the hard decision. The idea to avoid the oscillation problem is to

limit and the maximum soft value. We propose to clip the LLR (equalizer’s output) when it is

larger than six. The clipping threshold is obtained by trial-and-error. Note that the number of

six in LLR will correspond to a probability nearly to one. That means the clipping approach

only change the behavior of high LLR values. Thus, clipping in nearly hard decision will result

in softer inputs to the SISO decoder. This makes the turbo equalizer more softer and will

alleviate the error feedback problem. Fig. 5.26 shows the BER performance with the clipping

approach. The BER oscillation phenomenon no longer exists, but the error floor starts at higher

SNR region. With four iterations, the turbo equalizers achieve 8.8 dB performance gain at BER

10−5. From Fig. 5.25 and Fig. 5.26, we can see that the performance and convergence behaviors

of proposed turbo equalizers and the LSL turbo equalizer are nearly the same.

§ 5.4.4 Discussions

From simulations, we found that the performance of filter-based turbo equalizer is close to

the MAP equalizer in Proakis A channel. It is shown in [45] that the performance of filter-

based turbo equalizer is far from the MAP equalizer in Proakis C channel. In other words,

there still have some performance gaps between the filter-based turbo equalizer and trellis-

based MAP equalizer for some severe-ISI channels. Fortunately, Proakis C channel is just a

hypothetical channel. In real cases, most channels may not have such severe ISI. As we can see,

the performance of the filter-based turbo equalizer is still far from Shannon’s capacity (e.g., in

the case of CSA #6 channel). The convolutional code used here is just a simple error correction

code. It is known that the BER performance for a system is influenced by the response, the
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Figure 5.26: BER comparison for the proposed FSISL (dashed-x), FDISL (dotted-point), and

LSL (solid) turbo equalizers over SHDSL CSA #6 channel (the LLR is clipped).

interleaver, and the error correction code. To pursue better performance, we can use a larger

interleaver with a larger S-parameter, a better error correction code, or a precoding technique.

However, this is out of the scope of this dissertation. Discussion regarding this issue may refer

to [46, 49, 76, 77] for details. Other advance coding schemes such as turbo-codes [78, 79] and

LDPC codes [80–83] may also help.

§ 5.5 Conclusions

It has been a decade since the turbo decoding scheme first proposed. Its excellent performance

enables us to push the transmission toward the Shannon limit. Based on the same turbo prin-
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ciple, the turbo equalization was developed to overcome the channel effect. While the perfor-

mance is significantly improved, the computational complexity is increased dramatically also.

Although many works has been devoted to reduce the complexity, the turbo equalizer remains

implementable only for short (or sparse) wireless or magnetic channels. For channels with

hundreds of taps like DSL, no feasible solutions have been reported yet.

In this dissertation, we propose fast turbo equalizers with implementable complexity. We

exploit special properties of the wireline channels and develop low-complexity interpolated

structures. For the SHDSL application, we have shown that the complexity of proposed turbo

equalizers is an order of magnitude less than the conventional turbo equalizers. Compare to a

conventional un-turbo equalizer, we can obtain a 8.8 dB performance gain at BER 10−5 (with

four iterations). With our doubly interpolated scheme (FDISL), the total computational cost is

only three times higher than a conventional un-turbo equalizer. This indicates that the com-

plexity of proposed turbo equalizers is lower enough for real-world implementation. Note that

our singly interpolation scheme (FSISL) does not require the channel response having a smooth

shape. If the channel is slowly varying, it can be applied to wireless channels too.



124 CHAPTER 5. FAST INTERPOLATED TURBO EQUALIZER



Chapter 6

Conclusions and Future Works

Since 1948, the Shannon’s capacity limit [84] becomes the ultimate goal of every communi-

cation engineer and researcher to work with. In 1993, turbo decoding [79] was developed and

for the first time the limit was approached as close as 0.7 dB. Since then, the turbo principle

is extensively studies and applied to many other areas including turbo equalization. The price

behind the success is the high computational complexity. In the real world, there is always a

tradeoff between performance and cost. For such reason, turbo related schemes have not found

wide applications yet. A conventional communication system usually use a suboptimal design.

This is specially true for the wireline system since the channel response is usually very long.

In this case, even conventional approaches will suffer from the high computational complexity

problem.

This dissertation investigates the complexity reduction issue in wireline communication sys-

tems (xDSL). Specifically, we focus on three subjects, echo cancellation, channel equalization,

and precoding. For equalization, we study both the conventional DFE and the turbo equal-

ization. The main theme of our methods is to explore the redundancy operations found in

conventional approaches. With the interpolation framework, we are able to effectively reduce

the computational complexity.

For echo cancellation, we propose an optimal IFIR echo canceller with low-complexity. The

125
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IFIR echo canceller inherits all the numerical stability advantages of the conventional FIR filter

while effectively reducing its computational complexity. Optimal interpolation filters for DSL

applications are designed using a least-squares method. The theoretical performance of the IFIR

echo canceller was derived and the convergence behavior of its adaptive implementation was

also analyzed. We have shown that the computational complexity reduction can be as high as

57% in the SHDSL application. Finally, extensive simulations using standard test loops were

conducted to demonstrate the effectiveness of the optimal IFIR echo canceller.

For decision feedback equalization and precoding, we propose a low-complexity adaptive

IDFE. Similar to the IFIR echo canceller, the IDFE inherits all the numerical stability advan-

tages of the conventional FIR filter while effectively reducing its computational complexity.

We have shown that the computational complexity reduction can be as high as 76%. The the-

oretical performance of the IDFE was derived and the convergence behavior of adaptive IDFE

was also analyzed. The IDFE approach was extended to the ITHP yielding a high performance

yet very efficient equalization scheme. Simulations shown that the proposed IDFE/ITHP can

have the same performance as the conventional DFE/THP. Also, derived theoretical expressions

predicting the IDFE performance are accurate.

As to the turbo equalizer, we exploit special properties of the wireline channels and develop

two low-complexity interpolated algorithms. These algorithms effectively reduce the computa-

tional complexity of the filter-based turbo equalizer. For the SHDSL application, the complexity

saving can even up to an order of magnitude. The complexity is almost as low as a conventional

un-turbo equalizer. The real-world applicability of turbo equalizer is greatly enhanced.

Based on results in this dissertation, some possible future works are in order. As mentioned

in Chapter 5, the total complexity of a turbo equalizer is dominated by the SISO equalizer

instead of SISO decoder. Also, a better error code is required for a higher performance target.

One of the best codes ever known is the turbo code. Then, it is a straightforward though to

include the turbo code into the turbo equalization. Note that the complexity of SISO equalizer

may be higher that that of the turbo decoder. Also, the performance of the SISO equalizer
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heavily depends on that of the decoder. We may then use less iterations for the equalizer and

more for the turbo decoder. The overall complexity can be lowered and the performance can be

improved.

It has been shown that the turbo equalizer with precoding is able to improve the perfor-

mance [76, 77], The precoding structure used here is not the same as the conventional THP.

The conventional THP use a modulo operator to limit the output dynamic range. The precoder

in [76,77] is in an IIR form and the dynamic range is difficult to control. The THP is simple and

effective and it can prevent error propagation. It may be a good subject to study how to include

the THP into the turbo equalizer.

The adaptive turbo equalizer proposed in previous works [48–50] is not suitable for long

channels due to slow convergence. However, it is still possible to leverage the low-complexity

property of the tap weights updating scheme. For example, we may use the non-adaptive scheme

to solve the optimal filter weights and they can be served as good initial tap weights. The

convergence can then be greatly accelerated and this may be good for time-varying channels.

In this work, the channel response and SNR are assume to be known as a priori. Though

the DSL channel is static, the mismatched or slowly-varying effect can still occur. Joint turbo

equalization and channel estimation may provide a solution [85–87]. To this end, the adaptive

method may also help.

The frequency-domain turbo equalizer has been studied and applied to the SC-FDE system

with a slowly fading wireless channel [53–56, 88]. Primary study shows that our interpolation

scheme is applicable such that the computational complexity can be reduced. However, the

performance needs to be further verified. Similarly, our scheme can be also applied to the

DMT-based DSL systems , such as ADSL, ADSL2 [89], ADSL2+ [90], VDSL [91] and VDSL2

[92]. When cyclic prefix is intentionally shortened to increase the throughput [93–95], the ISI

becomes more severe. In such case, the turbo equalization can improve performance even more

.

The key feature of turbo processing is to process signal with soft values instead of hard
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ones. This soft signal characteristic is inherent in analog signal processing. Many analog turbo

decoders have been VLSI implemented [96–99]. Contrast to digital implementation, analog

implementation resorts to the basic semiconductor physics. Thus, the complexity (usually two

order of magnitude less) and power consumption can be reduced dramatically. Since the higher

number of iterations is possible (without increasing too much complexity in analog implementa-

tion), the performance is expected to be better than digital one. Though analog implementation

is still suffering other problems, it deserves for further study. For the turbo equalizer, the prob-

lem becomes more involved since we have to consider other more sophisticated operations, such

as matrix inversion, filter weights initialization, and filter weights updating [100–102]. As the

semiconductor process is going more advanced (now is on nano-meter size), analog implemen-

tation is expected to become more and more realistic.
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Derivation of the Correlation Matrices for

DFE

The input vector for the feedforward filter can be expressed as
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Let H be the channel matrix and

H =











h0 h1 · · · hNh−1 0 · · · 0
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...
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Nf×(Nf+Nh−1)

. (A.2)

We then have

yk = Hxk + nk (A.3)

where xk =
[
xk, xk−1, · · · , xk−Nf−Nh+2

]T is the transmit signal vector, yk = [yk, yk−1, · · · ,
yk−Nf+1]

T is the received signal vector, and nk =
[
nk, nk−1, · · · , nk−Nf+1

]T is the noise vector,
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respectively.

y(k:k−Nf+1) = Hx(k:k−Nf−Nh+2) + n(k:k−Nf+1) (A.4)

Assume that xk is white and nk is the additive white Gaussian noise with variance σ2
n. Both

are also zero-mean and mutually uncorrelated to each other.
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Also assume (Nf + Nh − Nb − ∆ − 2) > 0. In other words, the delay value, the feedback

filter length, and the feedforward filter length are chosen properly so that the following matrix

E
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}
exists.
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where
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The cross-correlation vector can then be derived as

pyx = E {ykxk−∆}

= E {(Hxk + nk)xk−∆}

= E {Hxkxk−∆ + nkxk−∆}

= HE {xkxk−∆}

= σ2
xH
[

01×∆ 1 01×(Nf+Nh−∆−2)

]T

. (A.8)
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Appendix B

Derivation of the Correlation Matrices for

IDFE

The parameters are defined the same as those in Appendix A. Thus, Ryy = E
{
yky

T
k

}
and

pyx = E {ykxk−∆} are the same as (A.5) and (A.8), respectively. Note that the interpolation

filter g =
[
g−(M−1), g−(M−2), · · · , g(M−1)

]T is defined as non-causal. With this definition, we

can obtain concise expressions later. However, the interpolation filter output is still causal as

shown below.

x̃k−∆−(α+1) =

(M−1)
∑

i=−(M−1)

gix̂k−∆−α−M−i. (B.1)

Without loss of generality, we assume that the interpolated feedback filter length of the IDFE is

equal to the feedback filter length of the DFE, i.e. Nb = Ng + (Nb1 − 1)M = (Nb1 + 1)M − 1,

where Ng = 2M − 1 is the length of the interpolation filter. Also, assume all the decisions are

correct, i.e., x̂k−∆ = xk−∆.










x̃k−∆−(α+1)

x̃k−∆−(α+2)

...

x̃k−∆−(α+1)−(Nb1−1)M











=











g
−M+1

g
−M+2

· · · g
M−1

0 · · · 0

0 g
−M+1

g
−M+2

· · · g
M−1

0 · · ·
...

...

0 · · · 0 g
−M+1

g
−M+2

· · · g
M−1





















xk−∆−(α+1)

xk−∆−(α+2)

...

xk−∆−Nb











(B.2)
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Let

x̃1,k =
[
x̃k−∆−(α+1), x̃k−∆−(α+2), · · · , x̃k−∆−(α+1)−(Nb1−1)M

]T
, (B.3)

x̂1,k =
[
xk−∆−(α+1), xk−∆−(α+2), · · · , xk−∆−Nb

]T
, (B.4)

and

G =











g−M+1 g−M+2 · · · gM−1 0 · · · 0

0 g−M+1 g−M+2 · · · gM−1 0 · · ·
...

...

0 · · · 0 g−M+1 g−M+2 · · · gM−1











. (B.5)

We then have

x̃1,k = Gx̂1,k. (B.6)

Let x1,k be the M -downsampled version of x̃1,k and its first sample is x̃k−∆−α−1,

x1,k =
[
x̃k−∆−(α+1), x̃k−∆−(α+1)−M , · · · , x̃k−∆−(α+1)−(Nb1−1)M

]T
. (B.7)

Then,











x̃k−∆−(α+1)

x̃k−∆−(α+1)−M

...

x̃k−∆−(α+1)−(Nb1−1)M











=

















1, 0, ..............., 0
︸ ︷︷ ︸

(Nb1−1)M

0, ..., 0
︸ ︷︷ ︸

M

, 1, 0, ..., 0
︸ ︷︷ ︸

(Nb1−2)M

...

0, ..............., 0
︸ ︷︷ ︸

(Nb1−1)M

, 1



























x̃k−∆−(α+1)

x̃k−∆−(α+2)

...

x̃k−∆−(α+1)−(Nb1−1)M











. (B.8)

Define

D =

















1, 0, ..............., 0
︸ ︷︷ ︸

(Nb1−1)M

0, ..., 0
︸ ︷︷ ︸

M

, 1, 0, ..., 0
︸ ︷︷ ︸

(Nb1−2)M

...

0, ..............., 0
︸ ︷︷ ︸

(Nb1−1)M

, 1

















. (B.9)
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Then,

x1,k = Dx̃1,k (B.10)

x1,k = DGx̂1,k (B.11)











x̃k−∆−(α+1)

x̃k−∆−(α+1)−M

...

x̃k−∆−(α+1)−(N
b1−1)M











=

















1, 0, ..............., 0
︸ ︷︷ ︸

(N
b1−1)M

0, ..., 0
︸ ︷︷ ︸

M

, 1, 0, ..., 0
︸ ︷︷ ︸

(N
b1−2)M

...

0, ..............., 0
︸ ︷︷ ︸

(N
b1−1)M

, 1

















.











g
−M+1

g
−M+2

· · · g
M−1

0 · · · 0

0 g
−M+1

g
−M+2

· · · g
M−1

0 · · ·
...

...

0 · · · 0 g
−M+1

g
−M+2

· · · g
M−1











.











xk−∆−(α+1)

xk−∆−(α+2)

...

xk−∆−Nb











(B.12)











x̃k−∆−(α+1)

x̃k−∆−(α+1)−M

...

x̃k−∆−(α+1)−(N
b1−1)M











=

















gT , 0, ..............., 0
︸ ︷︷ ︸

(N
b1−1)M

0, ..., 0
︸ ︷︷ ︸

M

,gT , 0, ..., 0
︸ ︷︷ ︸

(N
b1−2)M

...

0, ..............., 0
︸ ︷︷ ︸

(N
b1−1)M

,gT



























xk−∆−(α+1)

xk−∆−(α+2)

...

xk−∆−Nb











. (B.13)
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Let M = DG. From (B.5), (B.9), and (B.11).

M =

















gT , 0, ..............., 0
︸ ︷︷ ︸

(Nb1−1)M

0, ..., 0
︸ ︷︷ ︸

M

,gT , 0, ..., 0
︸ ︷︷ ︸

(Nb1−2)M

...

0, ..............., 0
︸ ︷︷ ︸

(Nb1−1)M

,gT

















, (B.14)

x1,k = Mx̂1,k. (B.15)

Then, we can have Rx1x1 = E
{
x1,kx

T
1,k

}
as

Rx1x1 = E
{
x1,kx

T
1,k

}

= E
{
Mx̂1,kx̂

T
1,kM

T
}

= ME
{
x̂1,kx̂

T
1,k

}
MT

= σ2
xMMT , (B.16)

Ryx1
= E

{
ykx

T
1,k

}
as

Ryx1
= E

{
ykx

T
1,k

}

= E
{
(Hxk + nk) x̂

T
1,kM

T
}

= E
{
Hxkx̂

T
1,kM

T + nkx̂
T
1,kM

T
}

= HE
{
xkx̂

T
1,k

}
MT

= σ2
xH
[

0(N
b
−α)×(∆+1) I(N

b
−α)×(N

b
−α) 0(N

b
−α)×(Nf+Nh−(N

b
−α)−∆−2)

]T

MT ,

(B.17)
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Ryx2
= E

{
ykx

T
2,k

}
as

Ryx2
= E

{
ykx

T
2,k

}

= E
{
(Hxk + nk)x

T
2,k

}

= E
{
Hxkx

T
2,k + nkx

T
2,k

}

= HE
{
xkx

T
2,k

}

= σ2
xH
[

0Nb2×(∆+1) INb2×Nb2
0Nb2×(Nf+Nh−Nb2−∆−2)

]T

, (B.18)

Rx1x2 = E
{
x1,kx

T
2,k

}
as

Rx1x2 = E
{
x1,kx

T
2,k

}

= E
{
Mx̂1,kx

T
2,k

}

= ME
{
x̂1,kx

T
2,k

}

= σ2
xM




0(M−1)×α I(M−1)×(M−1)

0(N
b
−M+1)×α 0(N

b
−M+1)×(M−1)



 , (B.19)

and Rx2x2 = E
{
x2,kx

T
2,k

}
as

Rx2x2 = E
{
x2,kx

T
2,k

}

= σ2
xINb2×Nb2

. (B.20)
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Appendix C

Derivation of the BCJR Algorithm for

Optimal Equalization

The original BCJR algorithm was derived [61] for decoding. However, the algorithm derived

here is for the equalization purpose. Both probabilistic and logarithmic forms will be derived in

detail. Some of the derivation closely follows the lecture notes in [103].

Consider a discrete-equivalent ISI channel with real-valued response denoted as h = [h0, h1,

· · · , hµ]T , where µ is the channel memory length. The received signal yk corrupted by additive

noise can be described as follows:

yk =

µ
∑

i=0

hixk−i + nk (C.1)

where xk, with a unit variance, denotes the transmit signal and nk, with a variance σ2
n, denotes

the additive white Gaussian noise (AWGN). Both xk and nk are also assume to have zero means

and to be independent each other.

Suppose that the transmitter sends a block of K data symbols x = [x0, x1, · · · , xK−1]
T ,

drawn independently and uniformly from a discrete signal constellation set X . We assume that

one of the symbols in X is identified as the idle symbol, and that idle symbols are transmitted

outside the transmit block (i.e., time k < 0 and k > K − 1). A block of received signals is

139
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collected to form a vector y = [y0, y1, · · · , yK+µ−1]
T . The received signal yk outside the time

interval k < 0 and k ≥ K + µ are independent of x and can be ignored since they correspond

to idle symbols.

The relationship of the channel input and output can be represented with a trellis diagram.

Let [xk−1, xk−2, · · · , xk−µ] denote the state at time k. Thus, there are Q = Mµ possible states

and these states are labelled from state 0 through state Q − 1, with state 0 reserved for the

idle state. Usually, the idle state is defined as the state with all mapping bits the convolutional

encoder are equals to all zeros. Let sk be the state label in time instant k. Fig. 5.3 defines

the state transition diagram. One generic state transition (or branch), denoted as a two-tuple

(p, q), is a connection between these states from the state p at time k to state q at time k + 1.

Meanwhile, x(p,q)
/

v(p,q) (xk = x(p,q) ∈ X , vk =
µ∑

i=0

hixk−i) denotes the associated input/output

pair. The signal vk is the k-th channel output signal (without noise).

The optimal equalizer for the ISI channel is an equalizer that minimizes the probability

of error for each symbol decision or equivalently maximizes a posteriori probability (APP)

Pr (xk|y). For example, the equalizer calculates the a posteriori probability Pr (x0|y) for each

possible x0 ∈ X , and make a decision maximizing Pr (x0|y). This process is then repeated

for all K transmitted symbols. The APP for the k-th symbol xk is related to the a posteriori

transition probabilities by

Pr (xk = χ|y) =
∑

(p,q)∈Bχ

Pr (sk = p; sk+1 = p|y) , (C.2)

where Bχ denote the set of integer pairs (p, q) for which a state transition from p to q corre-

sponds to an input symbol of χ, χ ∈ X . In the context of the trellis diagram, the APPs can be

easily computed once the a posteriori state transition probabilities Pr (sk = p; sk+1 = q|y) are

known for each state transition (or branch). The BCJR algorithm provides a computationally

efficient method for finding these state transition probabilities.

The key of the BCJR algorithm is to decompose the a posteriori transition probability for

a transition at time k into three separable factors: the first one depending only on the past
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observations yi<k = {yi : i < k}, the second one depending on only the present observation

yk, and the third one depending only on the future observations yi>k = {yi : i > k}. Using

Bayes’ rule and chain rule [104], we can accomplish this through the following straightforward

substitutions.

Pr (sk = p; sk+1 = q|y) = p (sk = p; sk+1 = q;y)/p (y)

= p (sk = p; sk+1 = q;yi<k; yk;yi>k)/p (y)

= p (yi>k|sk = p; sk+1 = q;yi<k; yk) p (sk = p; sk+1 = q;yi<k; yk) ·

1/p (y), (C.3)

where p (·) stands for the PDF. Because of the Markov property of the finite-state machine

channel model, knowledge of the state at time k + 1 supersedes knowledge of the state at time

k, and it also supersedes knowledge of yk and yi<k. So, (C.3) is reduced to:

Pr (sk = p; sk+1 = q|y) = p (yi>k|sk+1 = q) p (sk = p; sk+1 = q;yi<k; yk)/p (y)

= p (yi>k|sk+1 = q) p (sk+1 = q; yk|sk = p;yi<k) p (sk = p;yi<k) ·

1/p (y). (C.4)

Exploiting the Markov property again, we can simplify (C.4) to

Pr (sk = p; sk+1 = q|y) = p (yi>k|sk+1 = q)
︸ ︷︷ ︸

αk(p)

p (sk+1 = q; yk|sk = p)
︸ ︷︷ ︸

γk(p,q)

p (sk = p;yi<k)
︸ ︷︷ ︸

βk+1(q)

·1/p (y)

= αk(p) · γk(p, q) · βk+1(q)/p (y), (C.5)

where αk(p) is a probability (density) measure for state p at time k that depends only on the past

observations yi<k, βk+1(q) is a probability measure for state q at time k + 1 that depends only

on the future observations yi>k, and γk(p, q) is a probability measure connecting state transition

form p at time k to state q at time k + 1 and it depends only on the present (k-th) observation
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yk. From (C.5), the APP now is given by

Pr (xk = χ|y) =
∑

(p,q)∈Bχ

Pr (sk = p; sk+1 = p|y)

=
1

p (y)

∑

(p,q)∈Bχ

αk(p) · γk(p, q) · βk+1(q). (C.6)

The γk(p, q) named as branch metric is the fundamental probability measure for the BCJR

algorithm. Once the branch metric is calculated, other probability measures αk(p) and βk+1(q)

can be obtained easily. The BCJR algorithm makes a forward pass and a backward pass to obtain

these probabilities and we will describe this later. The branch metric is further decomposed as

γk(p, q) = p(sk+1 = q; yk|sk = p)

= p(yk|sk = p; sk+1 = q) Pr(sk+1 = q|sk = p). (C.7)

For the channel under consideration, the first term in (C.7) equals

p(yk|sk = p; sk+1 = q) =
1

2πσ2
n

exp

{

−
∣
∣yk − v(p,q)

∣
∣
2

2σ2
n

}

. (C.8)

On the other hand, the second term in (C.7) equals

Pr (sk+1 = q|sk = p) = Pr(xk = x(p,q); sk = p)
/
Pr(sk = p)

= Pr(sk = p|xk = x(p,q)) Pr(xk = x(p,q))
/
Pr(sk = p)

= Pr(sk = p) Pr(xk = x(p,q))
/
Pr(sk = p)

= Pr(xk = x(p,q)). (C.9)

Note that (C.9) is just the a priori probability for the k-th symbol. From (C.8) and (C.9), (C.7)

now is given by

γk(p, q) =
1

2πσ2
n

exp

{

−
∣
∣yk − v(p,q)

∣
∣
2

2σ2
n

}

Pr(xk = x(p,q)). (C.10)

Comparing the branch metric of the BCJR with the Viterbi Algorithm (VA) [40,105], we found

that there is an extra factor for the a priori probability Pr(xk = x(p,q)). For some applications,
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all symbols are equally likely (i.e., Pr(xk = x(p,q)) is a constant and independent of x(p,q). The

BCJR metric is equivalent to the Viterbi metric. However, there are other applications such as

channel decoding and turbo applications in which all symbols are not equally likely. Exploiting

the knowledge of a priori probability can improve the system performance accordingly.

We now introduce some vector representation describing the BCJR more compactly. Define

a 1 ×Q row vector αk as the collection of αk(p) values at time k (one for each of the Q states

and p = 0, 1, · · · , Q− 1):

αk = [αk(0), αk(1), · · · , αk(Q− 1)] . (C.11)

Similarly, define a 1 × Q column vector βk as the collection of βk(q) values at time k (one for

each of the Q states and q = 0, 1, · · · , Q− 1):

βk = [βk(0), βk(1), · · · , βk(Q− 1)]T . (C.12)

Finally, define a Q×Q matrix for the k-th stage of the trellis according to (Γk)p,q = γk(p, q).

Then, the forward probabilities αk+1 can be calculated recursively as

αk+1 (q) = p(sk+1 = q;yi<k+1)

= p(sk+1 = q; yk;yi<k)

=

Q−1
∑

p=0

p(sk+1 = q; yk; sk = p;yi<k)

=

Q−1
∑

p=0

p(sk+1 = q; yk|sk = p;yi<k)p(sk = p;yi<k)

=

Q−1
∑

p=0

p(sk+1 = q; yk|sk = p)p(sk = p;yi<k)

=

Q−1
∑

p=0

rk (p, q)αk (p) , (C.13)

or equivalently, in a vector form as

αk+1 = αkΓk. (C.14)
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Similarly, the backward probability βk is given by

βk+1 (p) = p(yi>k−1|sk = p)

= p(yi>k; yk|sk = p)

=

Q−1
∑

q=0

p(yi>k; yk; sk+1 = q|sk = p)

=

Q−1
∑

q=0

p(yi>k|yk; sk+1 = q; sk = p)p(yk; sk+1 = q|sk = p)

=

Q−1
∑

q=0

p(yi>k|sk+1 = q)p(yk; sk+1 = q|sk = p)

=

Q−1
∑

q=0

βk+1 (q) rk (p, q), (C.15)

or equivalently, in a vector form as:

βk = Γkβk+1. (C.16)

The BCJR algorithm in the probabilistic form can be summarized as follows.

§ C.1 The BCJR Algorithm (Probabilistic Form)

1. Calculate branch metrics: γk(p, q) for p = 0, 1, · · · , Q − 1,q = 0, 1, · · · , Q − 1, k =

0, 1, · · · , K + µ− 1.

2. Calculate the forward/backward state probabilities:

αk+1 = αkΓk, k = {0, 1, · · · , K + µ− 1} , (C.17)

βk = Γkβk+1, k = {K + µ− 1, K + µ− 2, · · · , 0} , (C.18)

where the α0 and βK+µ is initialized as [1, 0, · · · , 0]T (zero state) or
[

1
M
, 1

M
, · · · , 1

M

]T (un-

known state).
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3. Calculate a posteriori probabilities (APPs):

Pr (xk = χ|y) =
1

p (y)

∑

(p,q)∈Bχ

αk(p) · γk(p, q) · βk+1(q), (C.19)

where Bχ is the subset of state transition for input symbol χ ∈ X,X = {χ0, χ1, · · · , χQ−1}.

This quantity is calculated for every χ in X , and for each input symbol x0 through xK+µ−1

(x = {x0, x1, · · · , xK+µ−1}). Note that p (y) is a constant term and is ignorable.

4. Select the maximum APP as the estimated value (hard decision output):

x̂k = max {Pr (xk = χ|y)} . (C.20)

In practice, the quantity p (y) in the denominator of (C.19) can be ignored, since it is com-

mon to all APPs and will not influence the maximization procedure. Nevertheless, a simple way

to calculate p (y) is described below. Considering the a posteriori joint PDF of (C.3), we have

Pr (sk = p; sk+1 = q|y) = αk(p) · γk(p, q) · βk+1(q)/p (y) (C.21)

Summation of all conditional PDFs must be equal to one. i.e.,

Q−1
∑

q=0

αk(p) · γk(p, q) · βk+1(q)/p (y) = 1, (C.22)

or equivalently,

p (y) =

Q−1
∑

p=0

Q−1
∑

q=0

αk(p) · γk(p, q) · βk+1(q)

= αkΓkβk+1

= αkβk. (C.23)

That means p (y) is equal to the inner product αkβk for any time k. Observe that (C.23) is valid

for any time k, including k = 0 and k = K + µ− 1. Thus, (C.23) is reduced to a constant as

p (y) = β0(0) = αK+µ(0) (C.24)
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The property of (C.24) is useful when realizing a BCJR algorithm. In run-time, we can check

if p (y) is a constant.

The above BCJR algorithm is expressed with a probabilistic form, i.e., in terms of prob-

ability and probability density function. It provides simple and closed-form expressions for

describing the BCJR algorithm but it suffers from numerical underflow problem during simu-

lations and implementation. For the forward state probability in (C.13), the next state proba-

bility αk+1 (q) is the weighted sum of the current state probability αk (p) and the branch metric

γk (p, q). The current state probability is always smaller and equal to one and branch metric is

usually smaller than one (for a low-to-medium SNR condition, the γk (p, q) has a low-and-wide

Gaussian distribution and its probability density is usually smaller than one). Thus, the value

of αk+1 (q) becomes smaller and smaller toward the zero for every forward recursion. Finally,

the underflow problem occurs. Note that for a small block length, the underflow problem is not

severe. However, if the block is large as a well-performed BCJR algorithm required to achieve

good performance, the problem becomes significant.

Similarly, from (C.15) it can be shown that the backward state probability also suffers from

the underflow problem. To solve the underflow problem, the state probabilities can be normal-

ized to one at every time instance. That is

αk =
αk

Q−1∑

p=0

αk(p)

, βk =
βk

Q−1∑

p=0

βk(p)

. (C.25)

Note that the constant property in (C.23) is not hold any more if the normalization is applied.

Though a numerical stability problem is obtained, the implementation cost for the BCJR

algorithm is still high due to the high-complex nonlinear exponential operation in γk (p, q) and

the multiplier-dominated operation in (C.13), (C.15) and (C.19). These shortcomings can be

mitigated if the algorithm is implemented in the logarithm domain.
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§ C.2 The BCJR Algorithm (Logarithmic Form or Log-MAP)

1. Calculate logarithmic branch metrics:

ln γk(p, q) =
−
∣
∣yk − v(p,q)

∣
∣
2

2σ2
n

+Kγ, (C.26)

whereKγ = ln
(
Pr(xk = a(p,q))

)
−ln (2πσ2

n), for p = 0, 1, · · · , Q−1, q = 0, 1, · · · , Q−1, k =

0, 1, · · · , K + µ− 1.

2. Calculate the forward/backward state probabilities:

lnαk+1 (q) = ln

Q−1
∑

p=0

exp [ln rk (p, q) + lnαk (p)], (C.27)

ln βk (p) = ln

Q−1
∑

q=0

exp [ln rk (p, q) + ln βk+1 (q)], (C.28)

where ln α0 and ln βK+µ is initialized as [0,−∞, · · · ,−∞]T (zero state) or [− ln (M) ,− ln (M) ,

· · · ,− ln (M)]T (unknown state).

3. Perform normalization to avoid numerical overflow:

αk (p) = αk (p) − max {αk (p)} , (C.29)

βk (p) = βk (p) − max {βk (p)} . (C.30)

This step limits the maximum probability density value at one.

4. Calculate a posteriori probabilities (APPs):

ln Pr (xk = χ|y)
∆
= ln

∑

(p,q)∈Bχ

exp [lnαk(p) + ln γk(p, q) + ln βk+1(q)]. (C.31)

where Bχ is the subset of state transition for input symbol χ ∈ X,X = {χ0, χ1, · · · , χQ−1}.

This quantity is calculated for every χ in X , and for each input symbol x0 through xK+µ−1

(x = {x0, x1, · · · , xK+µ−1}). Note that the constant term − ln p (y) is omitted in (C.31) for

simplicity.
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5. Select the maximum APP LLR as the estimated value (hard decision output):

x̂k = max {ln Pr (xk = χ|y)} . (C.32)

For simplicity, the exponential and logarithmic operations in (C.27), (C.28), and (C.31) are

usually calculated with the Jacobian formula [106]:

ln(eδ1 + eδ2) = max(δ1, δ2) + ln(1 + e−|∆|)

= max(δ1, δ2) + fc(∆)

∆
= max ∗(δ1, δ2), (C.33)

where

fc(∆) = ln(1 + e−|∆|) (C.34)

is a correction term and ∆
∆
= δ2 − δ1.

Generally, the expression ln(eδ1 + eδ2 + · · · + eδn) is computed recursively (and exactly) as

ln(eδ1 + eδ2 + · · · + eδn) = max(δ, δn) + ln(1 + e−|∆|)

= max(δ, δn) + fc(∆)

∆
=

∗
max(δ, δn), (C.35)

where δ = ln(eδ1 + eδ2 + · · ·+ eδn−1). The max∗(·) is the so-called max∗ operator which stands

for exact computation of ln(eδ1+eδ2) instead of approximation with ln(eδ1+eδ2) ≈ max(δ1, δ2).

Equations (C.33) and (C.35) are very useful for LLR calculations.

In spite of the correction term in (C.34), the BCJR algorithm in logarithmic domain success-

fully transforms the complex multiplication operations in original BCJR algorithm into simpler

addition operations. In this dissertation, both the SISO equalizer and the SISO decoder are im-

plemented in this form. In order to implement the BCJR in a lower complexity, the correction

term is further approximated by many ways, such as a constant, a linear function, or a simpli-

fied operation [107]. However, performance loss may occur. One extreme case is to omit the

correction term and the algorithm is called Max-log-MAP. This algorithm is summarized below

for comparison.
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§ C.3 The BCJR algorithm (Max-log-MAP)

To obtain a lowest complexity, the correction term in (C.34) is omitted. Thus, the forward/backward

state probabilities in (C.27), (C.28) and logarithmic APPs (C.31) are simplified as

lnαk+1 (q) = max
(sk,sk+1=q)

{ln γk (p, q) + lnαk (p)} , (C.36)

where (sk, sk+1 = q) stands for all possible state transitions from any state sk at time k to state

sk+1 = q at time k + 1.

ln βk (p) = max
(sk=p,sk+1)

{ln γk (p, q) + ln βk+1 (q), } (C.37)

where (sk = q, sk+1) stands for all possible state transitions from any state sk+1 at time k+1 to

state sk = q at time k.

ln Pr (xk = χ|y)
∆
= max

(p,q)∈Bχ

{lnαk(p) + ln γk(p, q) + ln βk+1(q)} . (C.38)

This algorithm simply consists of addition and comparison operations only. Since max(·)
instead of the summation operation is applied, the performance degradation usually occurs.
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Appendix D

Derivations of Soft-input and Soft-output

for BPSK and 4-PAM

Assume that bits ck,j’s within a codeword are independent. The a priori symbol probability is

then given by

Pr (xk = χi) =

ρ
∏

j=1

1

2
(1 + ui,j tanh (L(ci,j)/2)), (D.1)

where ui,j = (−1)ck,j , ρ is the codeword length in bits.

§ D.1 2-PAM (BPSK)

For a 2-PAM, the signal constellation equals χ = {χ0 = +1, χ1 = −1}. Since L (xk)
∆
=

ln Pr(xk=+1)
Pr(xk=−1)

, the soft-input is given by

x̄k =
1∑

i=0

χi Pr (xk = χi)

= Pr (xk = +1) − Pr (xk = −1)

=
eL(xk)

1 + eL(xk)
− 1

1 + eL(xk)

= tanh (L(xk)/2) . (D.2)
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The associated reliability information is given by

vk
∆
= E

{
x2

k

}
− |x̄k|2

=
M−1∑

i=0

|χi|2 Pr (xk = χi) − |x̄k|2

= 1 − |x̄k|2 . (D.3)

Note that the last equality in (D.3) is also valid for M-PSK with a unit-power normalization but

may not valid for M-PAM and M-QAM when M ≥ 2.

Given an optimal filter fk, we have

ρk,i
∆
=

∣
∣x̂k − χi · fT

k s
∣
∣
2

fT
k s(1 − fT

k s)
. (D.4)

The extrinsic information for 2-PAM is given by

Le(ck,1) = ln
e(

−ρ0
2 )

e(
−ρ1

2 )

=
−ρ0 + ρ1

2

= −
∣
∣x̂k − fT

k s
∣
∣
2

2fT
k s(1 − fT

k s)
+

∣
∣x̂k + fT

k s
∣
∣
2

2fT
k s(1 − fT

k s)

=
2x̂k

(1 − fT
k s)

. (D.5)

§ D.2 4-PAM

For 4-PAM (ρ = 2), define L1
∆
= tanh (L(ci,1)/2), L2

∆
= tanh (L(ci,2)/2). The related parame-

ters for calculating the soft-input are listed in Table D.1.

Thus, the soft-input for 4-PAM is given by

x̄k =
M−1∑

i=0

χi Pr (xk = χi)

=
2L1 + L2√

5
. (D.6)
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Table D.1: Parameters for calculating the soft-input (4-PAM)

Constellation

(xk = χi)

Informationbits

[ci,1, ci,2]

Sign

[ui,1, ui,2]

Probabilities

Pr (xk = χi)

+3
/√

5 00 ++ 1
2
(1 + L1)

1
2
(1 + L2)

+1
/√

5 01 +− 1
2
(1 + L1)

1
2
(1 − L2)

−1
/√

5 10 −+ 1
2
(1 − L1)

1
2
(1 + L2)

−3
/√

5 11 −− 1
2
(1 − L1)

1
2
(1 − L2)

For given LLRs, we can calculate the average power of xk as

E
{
x2

k

}
=

M−1∑

i=0

|χi|2 Pr (xk = χi)

=
5 + 4L1L2

5
. (D.7)

From (D.7) and (D.6), the associated reliability information equals

vk
∆
= E

{
x2

k

}
− |x̄k|2

=

(
5 + 4L1L2

5

)

−
(

2L1 + L2

K

)2

= 1 − 4L2
1 + L2

2

5
. (D.8)

Given an optimal filter fk, we have

ρk,i
∆
=

|x̂k − µk,i|2
fT
k s(1 − fT

k s)

=

∣
∣x̂k − χi · fT

k s
∣
∣
2

fT
k s(1 − fT

k s)

=
|x̂k − χiκ|2

κ′
, (D.9)

where κ ∆
= fT

k s and κ′ ∆
= κ(1 − κ) are constants. The related parameters for calculating the

extrinsic information for 4-PAM are listed in Table D.2. Define lj = L(ck,j), the extrinsic
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Table D.2: Parameters for calculating the extrinsic information (4-PAM)

Constellation

(xk = χi)

Informationbits

[ci,1, ci,2]

Sign

[ui,1, ui,2]
µi

∆
= µk,i ρi

∆
= ρk,i

+3
/√

5 00 ++ µ0
∆
= 3κ

/√
5 ρ0

∆
= |x̂k−µ0|2

κ′

+1
/√

5 01 +− µ1
∆
= +κ

/√
5 ρ1

∆
= |x̂k−µ1|2

κ′

−1
/√

5 10 −+ µ2
∆
= −κ

/√
5 ρ2

∆
= |x̂k−µ2|2

κ′

−3
/√

5 11 −− µ3
∆
= −3κ

/√
5 ρ3

∆
= |x̂k−µ3|2

κ′

information for 4-PAM, is given by

Le(ck,1) = ln
e(

−ρ0+l2
2 ) + e(

−ρ1−l2
2 )

e(
−ρ2+l2

2 ) + e(
−ρ3−l2

2 )
. (D.10)



Appendix E

Complexity Analysis

In this appendix, we analyze the complexity for all kind of equalizers in detail. Since a complete

turbo equalizer includes a decoder, we also analyze the complexity of the BCJR decoder. The

BCJR algorithm considered here is implemented with a logarithmic form.

Assume that the channel is time-invariant. Denote the system parameters as: the channel

memory µ = L-1 (channel length L), the filter length N , (total tap weights length of feedford-

ward and feedback filter), the interpolation complexity ratio R, the block length K >> N , the

total number of iteration P . The complexity is in terms of the number of multiplication (×),

addition (+), division (÷) operations. The nonlinear function tanh(·) used in the soft-input

converter is implemented by 512 entries of lookup table [55, pp. 124]. The table lookup is

implemented by a binary search; and the complexity of a comparison operation used in binary

search is assumed equivalently to one addition operation. Thus, the complexity of table lookup

is included in addition operations.

The detail complexity of the proposed FDISL equalizer is tabulated in Table E.1. Note that

the complexity for calculating vk and yn − ȳn is ignored. The optimal filter is implemented as

f̃i = wf1 + (1 − w)f2 = w(f1 − f2) + f2, (E.1)

in which the complexity equals one multiplication and two additions per tap. Since the block

size is greater than the filter length, i.e., N/K � 1, the complexity for computing the optimal
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filter tap weights reduces to only one table lookup and one division operations (which is used

to find the weighting factor w). This is the major reason why the proposed algorithms can

reduce the complexity dramatically. There is no need to update the channel response h since the

Table E.1: Complexity of FDISL equalizer

Equalizer type FDISL

Function × + ÷
fn
i −update N

K
2N
K

+ 4 1

h−update - - -

fn
i −filtering N

R
(N−1)

R
-

h−filtering N
R

(N−1)
R

-

Subtotal 2N
R

(2N−2)
R

-

x̄k−soft input 2M+1 2M + 10M − 1 -

Le(ck,j)−soft output 2M+1 (M2 −M + 1)2M -

Total 2N
R

+ 2M+2 (2N−2)
R

+ (M 2 −M + 2)2M + (9M + 3) 1

channel is time-invariant. From our simulations, a table with 16 reference optimal filters is good

enough. Thus, the complexity for (E.1) is four additions for the table lookup. The complexity

for computing tanh(·) via the table lookup equals 9M additions included in the complexity of

the soft input conversion. At initialization, reference optimal filters are calculated and store in

the table. Since this only perform once, the complexity is ignorable.

For the LSL equalizer, the detailed complexity is tabulated in Table E.2. Note that the

optimal filter is obtained with the FFT approximation method in [55, pp. 111].

For the BCJR equalizer, the detail complexity is tabulated in Table E.3. The system pa-

rameters are the same as filter-based turbo equalizer, thus, the total number of state equals

Mµ = M (L−1) and total numbers of state transition (branch) equal ML. Because max∗(x, y) =
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Table E.2: Complexity of LSL equalizer

Equalizer type LSL

Function × + ÷
fn
i −update 6L log2 L+3L+2

K
4L log2 L+9L+1

K
L+ 2

h−update - - -

fn
i −filtering N N − 1 -

h−filtering N N − 1 -

Subtotal 6L log2 L+3L+2
K

+ 2N 4L log2 L+9L+1
K

+ (2N − 2) L+ 2

x̄k-soft input 2M+1 2M + 10M − 1 -

Le(ck,j)-soft output 2M+1 (M2 −M + 1)2M -

Total 6L log2 L+3L+2
K

+ 2N + 2M+2

4L log2 L+9L+1
K

+ (2N − 2)

+(M 2 −M + 2)2M + 9M
L+ 2

max(x, y) + ln(1 + e|x−y|) = ln(ex + ey) which consists of two operations max(x,y) and a

correction factor ln(1+ e|x−y|), is intensively used in the BCJR, the complexity considered here

is in terms of max∗ operations. Later, the complexity of max* is equivalent to a two eight-bit

additions [107]. Note that the normalization cost is already included in forward and backward

path metric calculation.

For the BCJR decoder, the detail complexity is tabulated in Table E.4. The decoder consid-

ered here is a binary half-rate convolutional code with a memory size η. Thus, the total number

of states equals 2η and the total number of state transition equal 2η+1. Note that the decision is

made on the last iteration. Its complexity is divided by the total number of iterations accord-

ingly. Assume that a division costs 40 FLOPS [55, pp. 108]. The complexity summary for

different turbo equalizers in terms of is tabulated in Table E.5. A FLOP [73, pp. 19] is defined

as a real number floating point operation (i.e., a floating point addition or a multiplication, , with

some indexing). Note that the complexity of the decoder is evaluated in terms of (/bit/iteration).
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Table E.3: Complexity of BCJR equalizer

Equalizer type BCJR equalizer

Function × + max*

Branch metric 2 · 2ML 2ML -

Forward path metric - (2M + 1) · 2M(L−1) (2M − 1) · 2M(L−1)

Backward path metric - (2M + 1) · 2M(L−1) (2M − 1) · 2M(L−1)

Le(ck,j) : extrinsic output - 2 · 2ML (2M − 1) · 2M(L−1)

Total 2 · 2ML 5 · 2ML + 2 · 2M(L−1) 3(2M − 1) · 2M(L−1)

Equivalent total 2 · 2ML 11 · 2ML − 4 · 2M(L−1) -

Meanwhile, the complexity of equalizer is in terms of (/symbol/iteration). For a system with

1/r-rate convolutional code and M-ary modulation scheme, log2M coded bits are mapped to a

symbol, i.e.,

1 information bit =
r

log2M
symbol. (E.2)

Thus, the total complexity per information bit per iteration equals

Ctotal = CD +
r

log2M
CE, (E.3)

where CD is the complexity of the decoder, CE is the complexity of the equalizer per informa-

tion bit per iteration. The total complexity per information bit equals P · Ctotal. From (E.3),

we can see that a higher-order modulation scheme is preferred for complexity consideration es-

pecially when the complexity is dominated by the equalizer. The complexity of the interleaver

and deinterleaver, which is one order less than the decoder or equalizer [55, pp. 127], is ignored

here for simplicity.

The complexities for different equalizers without SISO conversion are also tabulated in

Table E.6. Note that the complexity ratio R ≤ 1 of IR interpolation is summarized as follows
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Table E.4: Complexity of BCJR decoder

Decoder BCJR decoder

Function × + max*

Branch metric - 2 · 2η -

Forward path metric - 3 · 2η 2η

Backward path metric - 3 · 2η 2η

Le(bm,l) : extrinsic output - 8 · 2η + 2 4 · 2η

L(am) : APP - 4·2η+1
P

2·2η

P

âm : decision - 1 -

Total - (16+ 4
P
) · 2η +(3+ 1

P
) (6 + 2

P
) · 2η

Equivalent total - (28+ 8
P
) · 2η +(3+ 1

P
) -

Table E.5: Complexity summary of the turbo equalizers

SISO function FLOPS/symbol/iteration

BCJR decoder (28 + 8
P
) · 2η + (3 + 1

P
)

BCJR equalizer (13 · 2M − 4)2M(L−1)

OSL equalizer 10L log2 L+ 42L+ 4N + 81 + 2M+2 + (M 2 −M + 2)2M + 9M

LSL equalizer 10L log2 L+12L+3
K

+ 40L+ 4N − 78 + 2M+2 + (M 2 −M + 2)2M + 9M

FDISL equalizer R(4N − 2) + 44 + 2M+2 + (M 2 −M + 2)2M + 9M

[15]:

R =

(

⌊
N − t

U

⌋

︸ ︷︷ ︸

IFIR

+ t
︸︷︷︸

FIR

+ (s− 1)U
︸ ︷︷ ︸

overlapped

+ (2sU − 1)
︸ ︷︷ ︸

interpolationfilter

)

N

=
(
⌊

N−t
U

⌋
+ t+ (3s− 1)U − 1)

N
, (E.4)
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where t is the cutting point, U is the interpolation factor, and s is the span of interpolation filter.

Table E.6: Complexity of SISO equalizers without SISO conversion

Equalizer type FLOPS/symbol/iteration

OSL 10L log2 L+ 52L+ 4N + 81

LSL 10L log2 L+12L+3
K

+ 40L+ 4N + 78

FDISL R(4N − 2) + 44
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