Maximum cyclic 4-cycle packings of the complete multipartite graph

Shung-Liang Wu · Hung-Lin Fu

Published online: 31 March 2007 © Springer Science+Business Media, LLC 2007

Abstract A graph *G* is said to be *m*-sufficient if *m* is not exceeding the order of *G*, each vertex of *G* is of even degree, and the number of edges in *G* is a multiple of *m*. A complete multipartite graph is balanced if each of its partite sets has the same size. In this paper it is proved that the complete multipartite graph *G* can be decomposed into 4-cycles cyclically if and only if *G* is balanced and 4-sufficient. Moreover, the problem of finding a maximum cyclic packing of the complete multipartite graph with 4-cycles are also presented.

Keywords Complete multipartite graph · Cyclic · Cycle system · Cycle packing · 4-cycle

1 Introduction

An *m*-cycle, written $(c_0, c_1, \ldots, c_{m-1})$, consists of *m* distinct vertices c_0, c_1, \ldots , *c_{m−1}*, and *m* edges {*c_i*, *c_{i+1}*}, 0 ≤ *i* ≤ *m* − 2, and {*c*₀*, c_{m−1}}*. An *m*-*cycle system* of a simple graph G is a set C of edge disjoint m -cycles which partition the edge set of *G*. If *G* is a complete graph on *v* vertices, it is known as an *m*-cycle system of order *v*.

The obvious necessary conditions for the existence of an *m*-cycle system of a graph G are that the value of m is not exceeding the order of G , m divides the number of edges in *G*, and the degree of each vertex in *G* is even. A graph *G* is called *m*-*sufficient* if the necessary conditions are met.

S.-L. Wu

National United University, Miaoli, Taiwan

 $H.-L.$ Fu (\boxtimes) Department of Applied Mathematics, National Chaio Tung University, Hsin Chu, Taiwan e-mail: hlfu@math.nctu.edu.tw

Dedicated to Professor Frank K. Hwang on the occasion of his 65th birthday.

A graph *G* is said to be a *complete r*-*partite* graph $(r > 1)$ if its vertex set *V* can be partitioned into *r* disjoint non-empty sets V_1, \ldots, V_r (called *partite sets*) such that there exists exactly one edge between each pair of vertices from different partite sets. If $|V_i| = n_i$ for $1 \le i \le r$, the complete *r*-partite graph is denoted by $K_{n_1,...,n_r}$. In particular, if $n_1 = \cdots = n_r = k$ (>1), it is called *balanced* and the graph will be simply denoted by $K_{r(k)}$.

The graph decomposition problem has attracted many researchers, and it serves as useful models for a range of applications such as: serology (Ree [1967\)](#page-17-0), synchronous optical network ring (Colbourn and Wan [2001](#page-17-0); Wan [1999\)](#page-17-0), and DNA library screening (Mutoh et al. [2003\)](#page-17-0).

The study of *m*-cycle systems of the complete graph has been one of the most interesting problems in graph decomposition. The existence question for *m*-cycle systems of the complete graph has been completely settled by Alspach and Gavlas [\(2001](#page-16-0)) in the case of *m* odd and by Šajna [\(2002](#page-17-0)) in the even case.

The problem of finding the existence of *m*-cycle systems of the complete *r*-partite graph has also been considered by a number of researchers. The case when $r = 2$ and *m* is even was completely solved by Sotteau [\(1981\)](#page-17-0). Cavenagh [\(1998](#page-16-0)) proved that there exists a *k*-cycle system of $K_{3(m)}$ if and only if $k \leq 3m$ and *k* divides $3m^2$. Billington [\(1999](#page-16-0)) gave the necessary and sufficient conditions for the existence of a decomposition of any complete tripartite graph into specific numbers of 3-cycles and 4-cycles. Hoffman et al. ([1989\)](#page-17-0) proved that if both *r* and *m* are odd then there exists an *m*-cycle system of $K_{r(m)}$. The necessary and sufficient conditions to partition the same graph into Hamiltonian cycles are given by Laskar ([1978\)](#page-17-0). The existence for 5-cycle system of the complete tripartite graph has been considered by Mahmoodian and Mirzakhani [\(1995](#page-17-0)), Cavenagh and Billington [\(2002](#page-17-0)), and Cavenagh ([2002\)](#page-17-0). Moreover, necessary and sufficient conditions are also given (Cavenagh and Billington [2000](#page-17-0)) for the existence of *m*-cycle systems of the complete *r*-partite graph with $m = 4, 6,$ and 8.

An *m*-cycle *packing* of a graph *G* is a set *P* of edge disjoint *m*-cycles in *G*. The *leave* of an *m*-cycle packing of *G* is the set of edges in *G* that occur in no *m*-cycle in *P*. An *m*-cycle packing *P* of *G* is *maximum* if $|P| \ge |P'|$ for all other *m*-cycle packings *P* of *G*. Obviously, a maximum packing will have a minimum leave, and an *m*-cycle system of *G* is an *m*-cycle packing of *G* for which the leave is empty.

Not much work has been done on packing complete *r*-partite graphs with cycles. For 3- and 6-cycles, maximum packings in $K_{r(k)}$ are respectively dealt with in (Billington and Lindner [1996;](#page-16-0) Fu and Huang [2004](#page-17-0)). In (Billington et al. [2001](#page-16-0)), the problem of finding a maximum packing of the complete *r*-partite graph with 4-cycles is completely solved. A natural generalization to determine a maximum packing of the *λ*-fold complete *r*-partite graph appears in (Billington et al. [2005](#page-16-0)).

Let $C = (c_0, c_1, \ldots, c_{m-1})$ be an *m*-cycle. An *m*-cycle system (packing) of a graph $G, C(P)$, is said to be *cyclic* if $V(G) = Z_v$ and we have $(c_0+1, c_1+1, \ldots, c_{m-1}+1)$ *(*mod *v*) ∈ $C(P)$ whenever $(c_0, c_1, \ldots, c_{m-1})$ ∈ $C(P)$.

The existence question for cyclic *m*-cycle systems of order *v* has been completely solved for $m = 3$ (Peltesohn [1938](#page-17-0)), 5 and 7 (Rosa [1966b\)](#page-17-0). For *m* even and $v \equiv 1 \pmod{r}$ 2*m*), cyclic *m*-cycle systems of order *v* are proved for $m \equiv 0 \pmod{4}$ (Kotzig [1965](#page-17-0)) and for $m \equiv 2 \pmod{4}$ (Rosa [1966a\)](#page-17-0). Recently, it is shown in (Buratti and Del Fra [2003;](#page-16-0) Bryant et al. [2003;](#page-16-0) Fu and Wu [2004\)](#page-17-0) that for each pair of integers (*m,n)*, there

r	k							
	Ω		\mathcal{D}	3	$\overline{4}$	5	6	7
θ		F		F		$\mathbf F$		F
1								
2		\mathbf{F}		$F \cup H$		$F \cup 2H$		$F\cup C^*$
3		H	۰	3H		H		3H
$\overline{4}$		\mathbf{F}	٠	$F \cup C$		$\mathbf F$		$F \cup C$
5		2H		2H		2H		2H
6		F	٠	$F \cup H$		$F \cup 2H$		$F \cup C$
7		3H		Н		3H		Н

Table 1 Best possible leaves of a maximum cyclic packing of $K_r(k)$ with 4-cycles

^{*} When $r = 2$ and $k \equiv 7 \pmod{8}$, the leave is the union of a 1-factor and 3 Hamiltonian cycles

exists a cyclic *m*-cycle system of order 2*mn*+1, and in particular, for each odd prime *p*, there exists a cyclic *p*-cycle system (Buratti and Del Fra [2003;](#page-16-0) Fu and Wu [2004\)](#page-17-0). For $v \equiv m \pmod{2m}$, cyclic *m*-cycle systems of order *v* are presented for $m \notin M$ (Buratti and Del Fra [2004\)](#page-16-0), where $M = \{p^{\alpha} \mid p \text{ is prime}, \alpha > 1\} \cup \{15\}$, and in (Vietri [2004\)](#page-17-0) for $m \in M$. More recently, the present authors (Wu and Fu [2006](#page-17-0)) prove that for $m = 3, 4, \ldots, 32$, there exists a cyclic *m*-cycle system and for *p* a prime power, there exists a cyclic 2*p*-cycle system.

In this paper, we shall focus on maximum cyclic 4-cycle packings of $K_{r(k)}$ with leave and the main result is listed in Table 1, where the values of *r* and *k* are reduced modulo 8 and the symbols -, *iH*, *C*, and *F* denote respectively the empty set, *i* Hamiltonian cycles, 2 (*rk/*2)-cycles, and a 1-factor.

In Sect. 2, we will give the essential definitions and preliminaries. In Sect. [3](#page-5-0), a cyclic [4](#page-5-0)-cycle system of $K_{r(k)}$ will be presented, and in Sects. 4 and [5,](#page-8-0) maximum cyclic 4-cycle packings of $K_{r(k)}$ with leave and with *rk* odd or even will be respectively given.

2 Definitions and preliminaries

Assume $\{a, b\}$ to be any edge of *G* with $V(G) \in Z_v$. We shall use $\pm |a - b|$ to denote the *difference* of the edge $\{a, b\}$ in *G*. The number of distinct differences in a graph *G* defined on Z_v is called the *weight* of *G*, denoted by $W(G)$.

Let $C = (c_0, c_1, \ldots, c_{m-1})$ be an *m*-cycle of *G* and let $C + i = (c_0 + i, c_1 + i)$ *i*,..., $c_{m-1} + i$) (mod *v*), where *i* ∈ Z_v . A *cycle orbit O* of *C* is a collection of distinct *m*-cycles in $\{C + i \mid i \in Z_v\}$. The *length* of a cycle orbit is its cardinality, i.e., the minimum positive integer *k* such that $C + k = C$. A *base cycle* of a cycle orbit *O* is a cycle $C \in \mathcal{O}$ that is chosen arbitrarily. For the convenience of notation, we write a cycle *k*-orbit for a cycle orbit of length *k*. A cycle *v*-orbit of *C* on *G* is said to be *full* and otherwise *short*.

Given a subset Ω of $Z_v - \{0\}$ with $\Omega = -\Omega$, the *circulant graph* $X(Z_v, \Omega)$ of order *v* is the Cayley graph $Cay[Z_v; \Omega]$, that is, the graph with vertex set Z_v and all possible edges of the form $\{x, x + w\}$ with $w \in \Omega$. The set Ω is called the *connection set* and its size is the degree of $X(Z_v, \Omega)$.

We first introduce a necessary condition for the existence of a cyclic *m*-cycle system of a graph.

Lemma 2.1 *If there is a cyclic m-cycle system of a graph G*, *then G is* 2*r-regular for some positive integer r*.

Proof For $i = 1, \ldots, p$ with $p \ge 1$, let \mathbf{O}_i be a cycle k_i -orbit of C_i in the cyclic *m*cycle system and let C_i be the base cycle of O_i with weight w_i . Note that the graph induced by the edges having the same difference is a spanning 2-regular subgraph of *G*. Thus, the union of the cycles C_i , $C_i + 1, \ldots, C_i + (k_i - 1)$ forms a spanning $2w_i$ regular subgraph of *G*. This means that each cycle k_i -orbit O_i ($1 \le i \le p$) is exactly a spanning $2w_i$ -regular subgraph of *G*. It follows that the graph *G* is $(2\sum_{i=1}^p w_i)$ regular. \Box

Remark that the graph *G* in Lemma 2.1 is precisely a circulant graph. It is clear from Lemma 2.1 that if there exists a cyclic *m*-cycle system of the complete *r*-partite graph $K_{n_1,...,n_r}$, then $K_{n_1,...,n_r}$ is balanced, namely, $n_1 = \cdots = n_r = k$ for some integer $k > 1$.

A necessary condition for the existence of a cyclic *m*-cycle system of $K_{r(k)}$ is that any partite set in $K_{r(k)}$ is the subgroup

$$
rZ_k = \{0, r, \ldots, (k-1)r\}
$$

of Z_{rk} or its coset. For $i = 0, \ldots, r - 1$, let V_i denote the *i*th partite set of $K_{r(k)}$. Throughout this paper we will assume the *i*th partite set of $K_{r(k)}$ to be $V_i = \{i, i +$ $r, \ldots, i + (k-1)r$ for $i = 0, \ldots, r-1$. Note that the set of distinct differences of edges in $K_{r(k)}$ is $Z_{rk} \setminus \pm \{0, r, \ldots, \lfloor k/2 \rfloor r\}.$

For an *m*-cycle C with $V(C) \in Z_v$, the necessary condition for the sum of absolute differences of edges in *C* is given as follows:

Lemma 2.2 *Let* $C = (c_0, c_1, \ldots, c_{m-1})$ *be an m-cycle with* $c_i \in Z_v$ *where* $0 \le i \le n$ *m* − 1 *and v is any positive integer*. *Then the sum of absolute differences of edges in C is even*.

Proof The proof follows immediately from the fact that

$$
\sum_{i=1}^{m} |c_i - c_{i-1}| \equiv \sum_{i=1}^{m} (c_i - c_{i-1}) \equiv 0 \pmod{2}.
$$

The following consequences can be obtained by simple observations.

Lemma 2.3 If C is an *m*-cycle with weight p in a cyclic m-cycle system of $K_{r(k)}$, *then m is a multiple of p*. *Consequently*, *if m* = *pq*, *then the value of q is a common divisor of m and rk*.

Lemma 2.4 *Suppose* $\Omega = \pm \{b\}$ *with* $b \in Z_{\lfloor v/2 \rfloor}$ *and let* $k = v/\text{gcd}(v, b)$ *. Then the circulant graph* $X(Z_v, \Omega)$ *is the union of* v/k *edge-disjoint k-cycles.*

If gcd(*v*, *b*) = 1, *then* $X(Z_v, \Omega)$ *is exactly a Hamiltonian cycle in* K_v *and if* $b =$ v/m , *then* $X(Z_v, \Omega)$ *is the union of b edge-disjoint m-cycles.*

Lemma 2.5 *Let* a_i ($1 \le i \le 4$) *be distinct elements in* $Z^*_{\lfloor v/2 \rfloor} = Z_{\lfloor v/2 \rfloor} \setminus \{0\}$. *If* $\Omega =$ $\pm \{a_1, a_2, a_3, a_4\}$ *with* $a_1 + a_2 = a_3 + a_4$, *then there exists a cyclic* 4-cycle system of $X(Z_v, \Omega)$.

Proof The base cycle is $(0, a_1, a_1 + a_2, a_3)$.

Lemma 2.6 *If* $\Omega = \pm \{a_1, a_2\}$ *with* $a_1 \neq a_2$ *and* $a_1 + a_2 = \frac{rk}{2}$, *then there exists a cyclic* 4*-cycle system of* $X(Z_{rk}, \Omega)$.

Proof Choose $(0, a_1, rk/2, rk/2 + a_1)$ as the base cycle. \Box

Given a positive integer $m = pq$, an *m*-cycle *C* in $K_{r(k)}$ with weight *p* has *index rk*/*q* if for each edge {*s,t*} in *C*, the edges { $s + i \cdot rk/q$, $t + i \cdot rk/q$ } (mod *rk*) with $i \in Z_a$ are also in *C*.

For instance, the 15-cycle *C* = *(*0*,* 1*,* 5*,* 7*,* 12*,* 25*,* 26*,* 30*,* 32*,* 37*,* 50*,* 51*,* 55*,* 57*,* 62*)* in $K_{\frac{5}{15}}$ with weight 5 (differences $\pm 1, \pm 2, \pm 4, \pm 5$, and ± 13) has index 25.

The following consequence will be the crucial tool for constructing a cycle orbit in a cyclic *m*-cycle system of $K_{r(k)}$. The similar results about 1-rotational *m*-cycle system of the complete graph can also be found in (Buratti [2003](#page-16-0), [2004\)](#page-16-0) and so we omit the details.

Proposition 2.7 *Let* $m = pq$. *Then there exists an* m *-cycle* $C = (c_0, c_1, \ldots, c_{m-1})$ *in Kr(k) with weight p and index rk/q if and only if each of the following conditions is satisfied*:

(1) *For* $0 \le i \ne j \le p-1$, $c_i \ne c_j$ (mod rk/q);

(2) *The differences of the edges* $\{c_i, c_{i-1}\}$ $(1 \leq i \leq p)$ *are all distinct*;

(3) $c_p - c_0 = t \cdot rk/q$, where $gcd(t, q) = 1$; *and*

(4) $c_{ip+j} = c_j + i \cdot t \cdot rk/q$ where $0 \le j \le p - 1$ and $0 \le i \le q - 1$.

It should be noticed that in Proposition 2.7, the *m*-cycle *C* can be viewed as a base cycle and the set $\{C + i \mid i \in Z_{rk/q}\}$ forms a cycle (rk/q) -orbit of *C* in $K_{r(k)}$. To simplify, *C* will be denoted by $C = [c_0 = 0, c_1, \ldots, c_{p-1}]$ *t* \cdot *r* k/q , and we denote the set of partial differences $\pm \{(c_i - c_{i-1}) \mid 1 \le i \le p\}$ of *C* by ∂C .

Consider, for instance, the 8-cycle $C = (0, 15, 14, 29, 28, 43, 42, 1) = [0, 15]_{14}$ in $K_{7(8)}$ with weight 2 (i.e., $\partial C = \pm \{1, 15\}$) and index 14, and the set $\{C, C +$ 1, ..., $C + 13$ forms a cycle 14-orbit of *C* in $K_{7(8)}$.

Given a set $D = \{C_1, \ldots, C_t\}$ of *m*-cycles, the list of differences from *D* is defined as the union of the multisets $\partial C_1, \ldots, \partial C_t$, i.e., $\partial D = \bigcup_{i=1}^t \partial C_i$.

The next result is simple but important and will be used later.

Theorem 2.8 *A set D of m-cycles with vertices in Zrk is a set of base cycles of a cyclic m*-*cycle system of* $K_{r(k)}$ *if and only if* $\partial D = Z_{rk} \setminus \pm \{0, r, \ldots, \lfloor k/2 \rfloor r\}.$

3 Cyclic 4-cycle systems

Theorem 3.1 *The complete multipartite graph G can be decomposed into* 4*-cycles cyclically if and only if G is balanced and* 4*-sufficient*.

Proof (Necessity) Since *G* can be decomposed cyclically, it follows from Lemma [2.1](#page-3-0) that *G* must be a regular graph. Hence, *G* is a balanced complete multipartite graph $K_{r(k)}$ for some positive integers *r* and *k*. Now, if *k* is even, then clearly the degree of every vertex of G is even and $4||E(G)|$. On the other hand, if k is odd, then r must be odd in order that each vertex of *G* is of even degree. Moreover, $4||E(G)|$ implies that $r \equiv 1 \pmod{8}$. Therefore, we have that *G* is 4-sufficient.

(Sufficiency) By virtue of Theorem [2.8](#page-4-0), it suffices to prove that there is a set *D* of base cycles in $K_{r(k)}$ so that $\partial D = Z_{rk} \setminus \pm \{0, r, \ldots, \lfloor k/2 \rfloor r\}$. We break the proof into two cases depending on whether *k* is even or odd.

Case 1. *k* is even.

 (1) $k \equiv 0 \pmod{4}$, say $k = 4p$.

For $i \in Z_p$ and $j \in Z_r^*$, let $C_{i,j} = [0, j + ir]_{2pr}$. Clearly, $\partial C_{i,j} = \pm \{j + ir\}$ $(2p - i)r - j$. Therefore, ${C_{i,j}}$ is a set of base cycles we need.

(2) $k \equiv 2 \pmod{4}$ and $r \equiv 0 \pmod{2}$, say $k = 4p + 2$.

Again, for $i \in Z_p$ and $j \in Z_r^*$, let $C_{i,j} = [0, j + ir]_{(2p+1)r}$. Moreover, let $C =$ *(*0*,*(2*p* + 1)*r*/2*,*(2*p* + 1)*r*, 3(2*p* + 1)*r*/2*)*, and *C_t* = [0*, t* + *pr*]_{(2*p*+1)*r*} for *t* ∈ $Z_{r/2}^*$. Then $\partial C \cup \{ \partial C_t \} = \pm \{1 + pr, 2 + pr, ..., r - 1 + pr \}$. Hence, $\{C_{i,j}\} \cup \{C\} \cup \{C_t\}$ consists of a set of base cycles.

(3) $k \equiv 2 \pmod{4}$ and $r \equiv 1 \pmod{2}$, say $k = 4p + 2$.

For i ∈ *Z_p* and *j* ∈ *Z*^{*}_{*r*}, let *C_{i,j}* = [0, *j* + *ir*]*(*2*p*+1*)r* and *C_t* = [0, *t* + *pr*]*(*2*p*+1*)r* for *t* ∈ $Z_{(r+1)/2}^*$. Since $(\cup \partial C_{i,j}) \cup (\cup \partial C_t) = Z_{rk} \setminus \pm \{0, r, \ldots, (2p+1)r\}, \{C_{i,j}\} \cup \{C_t\}$ forms a set of base cycles.

Case 2. *k* is odd and $r \equiv 1 \pmod{8}$, say $k = 2h + 1$ and $r = 8q + 1$.

For *i* ∈ *Z_h* and *j* ∈ *Z*_{2*q*}, let *C_{i,j}* = $(0, 4j + 1 + ir, 8j + 5 + 2ir, 4j + 2 + ir)$, and let $C_t = (0, 4t + 1 + hr, 8t + 5 + 2hr, 4t + 2 + hr)$ for $t \in Z_q$. Since $\partial C_{i,j} =$ \pm {4*j* + 1 + *ir*, 4*j* + 2 + *ir*, 4*j* + 3 + *ir*, 4*j* + 4 + *ir*} and $\partial C_t = \pm$ {4*t* + 1 + *hr*, 4*t* + $2 + hr$, $4t + 3 + hr$, $4t + 4 + hr$, we have a set $\{C_{i,j}\} \cup \{C_t\}$ of base cycles for the cycle system. \Box

Now, we are ready for the packings with cyclic 4-cycles. We shall classify the maximum cyclic *m*-cycle packings of $K_{r(k)}$ with leave into two cases: Odd and Even according as the value of order of $K_{r(k)}$ is odd or even.

4 Maximum cyclic 4-cycle packings of *Kr(k)* **of odd order**

Since there exists a cyclic 4-cycle system of $K_{r(k)}$ whenever *k* is odd and $r \equiv 1 \pmod{r}$ 8), here we consider the remaining cases. That is, when *k* is odd and $r \equiv 3, 5$, or 7 (mod 8), no cyclic 4-cycle system of $K_{r(k)}$ exists.

The following consequence indicates the possible leave of a maximum cyclic 4 cycle packing of $K_{r(k)}$ and will be utilized repeatedly in this section. Given a maximum cyclic 4-cycle packing of $K_{r(k)}$, *P*, let $D(P)$ be the set of distinct differences in *P*.

Lemma 4.1 *Suppose that* $rk \equiv 1 \pmod{2}$ *and* $W(K_{r(k)}) \equiv i \pmod{4}$ *with* $i \in Z_4^*$ *and let P be a maximum cyclic* 4-cycle packing of $K_{r(k)}$. Then the leave of a maximum *cyclic* 4*-cycle packing of* $K_{r(k)}$ *is the circulant graph* $X(Z_{rk}, \Omega)$ *with* $\Omega = Z_{rk}$ \pm {0, *r*, ..., $\lfloor k/2 \rfloor r \} \backslash D(P)$.

Proof Since the value of *rk* is odd, each cycle orbit in the maximum cyclic 4 cycle packing of $K_{r(k)}$, *P*, must be full, and since $W(K_{r(k)}) \equiv i \pmod{4}$ with $i \in Z_4^*$, it implies that there are exactly *i* distinct differences not occurring in *P*. It follows that the leave is precisely the circulant graph $X(Z_{rk}, \Omega)$ with $\Omega = Z_{rk}\setminus$ $\pm \{0, r, \ldots, \lfloor k/2 \rfloor r\} \setminus D(\mathbf{P}).$

Throughout this paper whenever we say that a circulant graph $X(Z_{rk}, \pm \{a\})$ is a Hamiltonian cycle of $K_{r(k)}$, it implies that $gcd(rk, a) = 1$. Given a connection set $\Omega = \pm \{a_1, \ldots, a_t\}, \text{ let } \Omega \oplus i = \pm \{a_1 + i, \ldots, a_t + i\}.$

We are now in a position to prove our main result with odd order, which is divided into the following five propositions.

Proposition 4.2 *If* $r \equiv 3 \pmod{8}$ *and* $k \equiv 3 \pmod{4}$, *then there exists a maximum cyclic* 4*-cycle packing of Kr(k) with leave* 3 *Hamiltonian cycles*.

Proof Since $W(K_r(k)) \equiv 3 \pmod{4}$, by Lemma 4.1, the leave is a circulant graph *X*(Z_{rk} , Ω) with $|\Omega| = 3$. Let $\Omega_1^* = \pm \{1\}$, $\Omega_2^* = \pm \{2\}$, and $\Omega_3^* = \pm \{(rk - 1)/2\}$. Then the circulant graph *X*(Z_{rk} , Ω) is the union of *X*(Z_{rk} , Ω_i^*) for *i* = 1, 2, 3. Note that by Lemma [2.4](#page-4-0), the circulant graphs $X(Z_{rk}, \Omega_i^*)$ ($1 \le i \le 3$) are all Hamiltonian cycles in $K_{r(k)}$. The remaining proof are split into two cases according to whether $r = 3$ or $r > 3$. Let $r = 8t + 3$ and $k = 4s + 3$.

Case 1. $r = 3$.

Let $\Omega_i = \pm \{4, 5, 7, 8\} \oplus 6i$ for $i = 0, \ldots, s - 1$. Note that by Lemma [2.5](#page-4-0), there exists a cyclic 4-cycle system of $X(Z_{rk}, \Omega_i)$ for each *i*. It is easy to check that the union of the circulant graphs $X(Z_{rk}, \Omega_i)$ ($0 \le i \le s - 1$) consists of a maximum cyclic 4-cycle packing of $K_{r(k)}$.

Case 2. *r >* 3.

The connection sets are given as the following:

$$
\Omega_i = \pm \{r+1, r+2, 2r+1, 2r+2\} \oplus 2ir, \quad i = 0, ..., s-1;
$$

\n
$$
\Omega_{i,j} = \pm \{3, 4, 5, 6\} \oplus 4i \oplus rj, \quad i = 0, ..., 2t-1 \text{ and } j = 0, ..., 2s;
$$

\n
$$
\Omega'_i = \pm \{2sr + r+1, 2sr + r+2, 2sr + r+3, 2sr + r+4\} \oplus 4i,
$$

\n
$$
i = 0, ..., t-1.
$$

Again, a routine verification shows that the union of the circulant graphs $X(Z_{rk}, \Omega_i)$, $X(Z_v, \Omega_{i,j})$, and $X(Z_v, \Omega'_i)$ forms a maximum cyclic 4-cycle packing of $K_{r(k)}$.

Proposition 4.3 *If* $r \equiv 3 \pmod{8}$ *and* $k \equiv 1 \pmod{4}$, *then there exists a maximum cyclic* 4*-cycle packing of Kr(k) with leave a Hamiltonian cycle*.

Proof Analogously, the leave is a Hamiltonian cycle, i.e., the circulant graph $X(Z_{rk},\pm\{(rk-1)/2\})$. Also, we divide the proof into two cases according to whether $r = 3$ or $r > 3$. Let $r = 8t + 3$ and $k = 4s + 1$.

Case 1. $r = 3$.

Let $\Omega_i = \pm \{1, 2, 4, 5\} \oplus 6i$ for $i = 0, \ldots, s - 1$ and the union of the circulant graphs $X(Z_{rk}, \Omega_i)$ ($0 \le i \le s - 1$) is a maximum cyclic 4-cycle packing of $K_{r(k)}$.

Case 2. *r >* 3.

The connection sets are defined by

$$
\Omega_i = \pm \{1, 2, r + 1, r + 2\} \oplus 2ir, \quad i = 0, ..., s - 1;
$$

\n
$$
\Omega_{i,j} = \pm \{3, 4, 5, 6\} \oplus 4i \oplus rj, \quad i = 0, ..., 2t - 1 \text{ and } j = 0, ..., 2s - 1;
$$

\n
$$
\Omega'_i = \pm \{2sr + 1, 2sr + 2, 2sr + 3, 2sr + 4\} \oplus 4i, \quad i = 0, ..., t - 1.
$$

An easy computation shows that the union of the circulant graphs $X(Z_{rk}, \Omega_i)$, $X(Z_v, \Omega_{i,j})$, and $X(Z_v, \Omega'_i)$ forms a maximum cyclic 4-cycle packing of $K_{r(k)}$. \Box

Proposition 4.4 *If* $r \equiv 5 \pmod{8}$ *and* $k \equiv 1 \pmod{2}$, *then there exists a maximum cyclic* 4*-cycle packing of* $K_{r(k)}$ *with leave* 2 *Hamiltonian cycles.*

Proof The Hamiltonian cycles are the circulant graphs $X(Z_{rk}, \Omega_i^* = \pm \{i\})$ for $i =$ 1, 2. Let $r = 8t + 5$. Then, by a similar argument, it suffices to provide the connection sets which are the following:

$$
\Omega = \pm \{3, 4, \lfloor k/2 \rfloor r + 1, \lfloor k/2 \rfloor r + 2\};
$$
\n
$$
\Omega_i = \pm \{5, 6, 7, 8\} \oplus 4i, \quad i = 0, \dots, 2t - 1;
$$
\n
$$
\Omega_{i,j} = \pm \{r + 1, r + 2, r + 3, r + 4\} \oplus 4i \oplus rj,
$$
\n
$$
i = 0, \dots, 2t \text{ and } j = 0, \dots, (k - 5)/2;
$$
\n
$$
\Omega'_i = \pm \{\lfloor k/2 \rfloor r + 3, \lfloor k/2 \rfloor r + 4, \lfloor k/2 \rfloor r + 5, \lfloor k/2 \rfloor r + 6\} \oplus 4i,
$$
\n
$$
i = 0, \dots, t - 1.
$$

Proposition 4.5 *If* $r \equiv 7 \pmod{8}$ *and* $k \equiv 1 \pmod{4}$, *then there exists a maximum cyclic* 4*-cycle packing of* $K_{r(k)}$ *with leave* 3 *Hamiltonian cycles.*

Proof For $i = 1, 2, 3$, the circulant graphs $X(Z_{rk}, \Omega_i^*)$ with $\Omega_1^* = \pm \{1\}, \Omega_2^* = \pm \{2\}$, and $\Omega_3^* = \pm \{ [rk/2] \}$ are the Hamiltonian cycles. Let $r = 8t + 7$ and $k = 4s + 1$.

Then, with the connection sets defined below, we have the proof.

$$
\Omega_i = \pm \{r+1, r+2, 2r+1, 2r+2\} \oplus 2ir, \quad i = 0, ..., s-1; \n\Omega_{i,j} = \pm \{3, 4, 5, 6\} \oplus 4i \oplus rj, \quad i = 0, ..., 2t \text{ and } j = 0, ..., 2s-1; \n\Omega'_i = \pm \{2sr+3, 2sr+4, 2sr+5, 2sr+6\} \oplus 4i, \quad i = 0, ..., t-1.
$$

Proposition 4.6 *If* $r \equiv 7 \pmod{8}$ *and* $k \equiv 3 \pmod{4}$, *then there exists a maximum cyclic* 4*-cycle packing of Kr(k) with leave a Hamiltonian cycle*.

 \mathcal{D} Springer

Proof The Hamiltonian cycle is the circulant graph $X(Z_{rk}, \pm \{ \lfloor rk/2 \rfloor \})$. Let $r =$ $8t + 7$ and $k = 4s + 3$.

The connection sets are given by

$$
\Omega_i = \pm \{1, 2, r + 1, r + 2\} \oplus 2ir, \quad i = 0, ..., s;
$$

\n
$$
\Omega_{i,j} = \pm \{3, 4, 5, 6\} \oplus 4i \oplus rj, \quad i = 0, ..., 2t \text{ and } j = 0, ..., 2s;
$$

\n
$$
\Omega'_i = \pm \{(2s + 1)r + 3, (2s + 1)r + 4, (2s + 1)r + 5, (2s + 1)r + 6\} \oplus 4i,
$$

\n
$$
i = 0, ..., t - 1.
$$

5 Maximum cyclic 4-cycle packings of *Kr(k)* **of even order**

By Theorem [3.1,](#page-5-0) it suffices to consider the cases when *r* is even and *k* is odd. This implies that the leave of a maximum cyclic 4-cycle packing of $K_{r(k)}$ must include a 1-factor of $K_{r(k)}$ since the degree of each vertex in $K_{r(k)}$ is odd. It is clear that the 1-factor must be the circulant graph $X(Z_{rk},\pm\{rk/2\})$.

Lemma 5.1

- (1) *If* $r \equiv 4 \pmod{8}$ *and* $k \equiv 3 \pmod{4}$ *or* $r \equiv 2 \pmod{4}$ $(r > 2)$ *and* $k \equiv 7 \pmod{8}$, *then the leave of a maximum cyclic* 4*-cycle packing of* $K_{r(k)}$ *is the union of a* 1-factor and the circulant graph $X(Z_{rk}, \pm \{a\})$ with a even.
- (2) If $r \equiv 2 \pmod{4}$ and $k \equiv 3 \pmod{8}$, then the leave of a maximum cyclic 4-cycle *packing of* $K_{r(k)}$ *is the union of a* 1*-factor and the circulant graph* $X(Z_{rk}, \pm \{a\})$ *with a odd*.
- (3) *If* $r \equiv 2 \pmod{4}$ *and* $k \equiv 5 \pmod{8}$, *then the leave of a maximum cyclic* 4*-cycle packing of Kr(k) is the union of a* 1*-factor and the circulant graph* $X(Z_{rk}, \pm\{a,b\})$ *with a*, *b odd*.

Proof We consider only the case when $r \equiv 4 \pmod{8}$ and $k \equiv 3 \pmod{4}$ and leave the remainder to the reader. An easy computation shows that the numbers of odd and even differences in $K_r(k) \ X(Z_r(k) \pm \{rk/2\})$ are both odd, say *α* and *β*, and $\alpha - \beta \equiv 2$ (mod 4). Set $\alpha - \beta = 4p + 2$, $p \ge 0$. By virtue of Lemma [2.3,](#page-3-0) the weight of any 4cycle *C* is a divisor of 4, i.e., $W(C) = 1, 2$, or 4. Note that if $W(C) = 2$, then two distinct differences in *C* must have the same parity since its index *rk/*2 is even.

In order to obtain a maximum cyclic 4-cycle packing of $K_{r(k)}$, it is necessary to use $\beta - 1$ odd differences and $\beta - 1$ even differences to construct 4-cycles having weight 4, and then construct *p* 4-cycles each having weight 4 and all odd differences.

Next, consider the remaining graph, that is, the circulant graph $X(Z_{rk}, \Omega)$ ±{*a,b,c,d*}*)*, where exactly one of elements in *Ω*, say *a*, is even and the rest is all odd. The proof then follows from Lemmas [2.4](#page-4-0) and [2.6](#page-4-0) by constructing the circulant graphs $X(Z_{rk}, \pm \{b\})$ with $b = rk/4$ and $X(Z_{rk}, \pm \{c, d\})$ with $c + d = rk/2$. \Box

Remark that by Lemma [2.4](#page-4-0), the circulant graph $X(Z_{rk},\pm{a})$ with *rk* and *a* both even is not a Hamiltonian cycle. It is not difficult to see that if $r = 2$ and $k \equiv 7$ (mod 8), then the leave of a maximum cyclic 4-cycle packing of $K_{2(k)}$ is the union of a 1-factor and the circular graph $X(Z_{rk}, \pm a, b, c)$ with *a*, *b*, *c* odd. Moreover, the leave of a maximum cyclic 4-cycle packing of $K_r(k)$ is a 1-factor whenever $r \equiv 0$ (mod 8) and $k \equiv 1 \pmod{2}$, $r \equiv 2 \pmod{4}$ and $k \equiv 1 \pmod{8}$, or $r \equiv 4 \pmod{8}$ and $k \equiv 1 \pmod{4}$. Since the technique of proofs is analogous, in what follows, we shall list the connection sets without the details of verification. Furthermore, since the consequences in Lemma [5.1](#page-8-0) will be repeatedly used later, for simplicity, we will not mention these again.

Proposition 5.2 *If* $r \equiv 0 \pmod{8}$ *and* $k \equiv 1 \pmod{2}$, *then there exists a maximum cyclic* 4*-cycle packing of* $K_{r(k)}$ *with leave a* 1*-factor.*

Proof Let $r = 8t$. The proof is divided into 4 cases according to whether $k \equiv 3, 5, 7$, or 1 (mod 8).

Case 1. $k \equiv 3 \pmod{8}$, say $k = 8s + 3$.

$$
\Omega_{a,i} = \pm \{1 + i, rk/2 - 1 - i\}, \quad i = 0, 1, 2;
$$

\n
$$
\Omega_{b,i} = \pm \{4, 5, 6, 7\} \oplus 4i, \quad i = 0, ..., 2t - 2;
$$

\n
$$
\Omega_{c,i} = \pm \{(4s + 1)r + 1, (4s + 1)r + 2, (4s + 1)r + 3, (4s + 1)r + 4\} \oplus 4i,
$$

\n
$$
i = 0, ..., t - 2;
$$

\n
$$
\Omega_{d,i} = \pm \{r + 1, 2r + 1, 3r + 1, 4r + 1\} \oplus 4ir, \quad i = 0, ..., s - 1;
$$

\n
$$
\Omega_{i,j} = \pm \{r + 2, r + 3, 2r + 2, 2r + 3\} \oplus 2i \oplus 2jr,
$$

\n
$$
i = 0, ..., 4t - 2 \text{ and } j = 0, ..., 2s - 1.
$$

Case 2. $k \equiv 5 \pmod{8}$, say $k = 8s + 5$.

$$
\Omega_a = \pm \{rk/4\};
$$
\n
$$
\Omega_b = \pm \{rk/4 - 1, rk/4 + 1\};
$$
\n
$$
\Omega_{c,i} = \pm \{(2s + 1)r + 1, (2s + 1)r + 2, rk/4 + 2, rk/4 + 3\} \oplus 2i,
$$
\n
$$
i = 0, \ldots, t - 2;
$$
\n
$$
\Omega_{d,i} = \pm \{rk/4 + 2t, rk/4 + 2t + 1, rk/4 + 2t + 2, rk/4 + 2t + 3\} \oplus 4i,
$$
\n
$$
i = 0, \ldots, t - 1;
$$
\n
$$
\Omega_e = \pm \{1, rk/2 - 1\};
$$
\n
$$
\Omega_f = \pm \{2, 3, (4s + 2)r + 1, (4s + 2)r + 2\};
$$
\n
$$
\Omega_{g,i} = \pm \{4, 5, 6, 7\} \oplus 4i, \quad i = 0, \ldots, 2t - 2;
$$
\n
$$
\Omega_h = \pm \{(4s + 2)r + 3, (4s + 2)r + 4, (4s + 2)r + 5, (4s + 2)r + 6\} \oplus 4i,
$$
\n
$$
i = 0, \ldots, t - 2;
$$
\n
$$
\Omega_i' = \pm \{r + 1, 2r + 1, (2s + 2)r + 1, (2s + 3)r + 1\} \oplus 2ir, \quad i = 0, \ldots, s - 1;
$$
\n
$$
\Omega_{i,j} = \pm \{r + 2, r + 3, (2s + 2)r + 2, (2s + 2)r + 3\} \oplus 2i \oplus rj,
$$
\n
$$
i = 0, \ldots, (r - 4)/2 \text{ and } j = 0, \ldots, 2s - 1.
$$

Case 3. $k \equiv 7 \pmod{8}$, say $k = 8s + 7$.

$$
\Omega_i = \pm \{1, r+1, 2r+1, 3r+1\} \oplus 4ir, \quad i = 0, ..., s;
$$

\n
$$
\Omega'_i = \pm \{2, 3, r+2, r+3\} \oplus 2ir, \quad i = 0, ..., 2s+1;
$$

\n
$$
\Omega_{i,j} = \pm \{4, 5, 6, 7\} \oplus 4i \oplus rj, \quad i = 0, ..., 2t-2 \text{ and } j = 0, ..., 4s+2;
$$

\n
$$
\Omega''_i = \pm \{(4s+3)r+4, (4s+3)r+5, (4s+3)r+6, (4s+3)r+7\} \oplus 4i,
$$

\n
$$
i = 0, ..., t-2.
$$

Case 4. $k \equiv 1 \pmod{8}$, say $k = 8s + 9$.

$$
\Omega_a = \pm \{rk/4\};
$$
\n
$$
\Omega_b = \pm \{rk/4 - 1, rk/4 + 1\};
$$
\n
$$
\Omega_{c,i} = \pm \{(2s + 2)r + 1, (2s + 2)r + 2, rk/4 + 2, rk/4 + 3\} \oplus 2i,
$$
\n
$$
i = 0, \ldots, t - 2;
$$
\n
$$
\Omega_{d,i} = \pm \{rk/4 + 2t, rk/4 + 2t + 1, rk/4 + 2t + 2, rk/4 + 2t + 3\} \oplus 4i,
$$
\n
$$
i = 0, \ldots, t - 1;
$$
\n
$$
\Omega_{e,i} = \pm \{1, r + 1, (2s + 3)r + 1, (2s + 4)r + 1\} \oplus 2ir, \quad i = 0, \ldots, s;
$$
\n
$$
\Omega_f = \pm \{(2s + 1)r + 2, (2s + 1)r + 3, 4(s + 1)r + 2, 4(s + 1)r + 3\};
$$
\n
$$
\Omega_{g,i} = \pm \{(2s + 1)r + 4, (2s + 1)r + 5, (2s + 1)r + 6, (2s + 1)r + 7\} \oplus 4i,
$$
\n
$$
i = 0, \ldots, 2t - 2;
$$
\n
$$
\Omega_h = \pm \{4(s + 1)r + 4, 4(s + 1)r + 5, 4(s + 1)r + 6, 4(s + 1)r + 7\} \oplus 4i,
$$
\n
$$
i = 0, \ldots, t - 2;
$$
\n
$$
\Omega_{i,j} = \pm \{2, 3, (2s + 3)r + 2, (2s + 3)r + 3\} \oplus 2i \oplus rj,
$$
\n
$$
i = 0, \ldots, 4t - 2
$$
 and $j = 0, \ldots, 2s$.

When $r \equiv 2 \pmod{8}$ and $k \equiv 1, 3, 5,$ or 7 (mod 8), the proof will be split into two cases according to whether $r = 2$ or $r > 2$.

Proposition 5.3 *If* $r \equiv 2 \pmod{8}$ *and* $k \equiv 1 \pmod{8}$, *then there exists a maximum cyclic* 4*-cycle packing of* $K_{r(k)}$ *with leave a 1-factor.*

Proof Let $k = 8s + 9$. *Case* 1. $r = 2$. $Q_i = \pm \{1, 3, 5, 7\} \oplus 8i, \quad i = 0, \ldots, s.$ *Case* 2. $r > 2$, say $r = 8t + 10$.

 $\Omega_i = \pm \{1, r+1, 2r+1, 3r+1\} \oplus 4ir, \quad i = 0, \ldots, s;$ $\Omega_{i,j} = \pm \{2, 3, 4, 5\} \oplus 4i \oplus rj, \quad i = 0, \ldots, 2t + 1 \text{ and } j = 0, \ldots, 4s + 3;$

Springer

$$
\Omega'_{i} = \pm \{4(s+1)r+1, 4(s+1)r+2, 4(s+1)r+3, 4(s+1)r+4\} \oplus 4i,
$$

\n $i = 0, ..., t.$

Proposition 5.4 *If* $r \equiv 2 \pmod{8}$ *and* $k \equiv 3 \pmod{8}$, *then there exists a maximum cyclic* 4*-cycle packing of Kr(k) with leave the union of a* 1*-factor and a Hamiltonian cycle*.

Proof The Hamiltonian cycle is the circulant graph $X(Z_{rk}, \pm\{1\})$. Let $k = 8s + 3$. *Case* 1. $r = 2$.

$$
\Omega_i = \pm \{3, 5, 7, 9\} \oplus 8i, \quad i = 0, \dots, s - 1.
$$

Case 2. $r > 2$, say $r = 8t + 10$.

$$
\Omega_{a,i} = \pm \{2, 3, 4, 5\} \oplus 4i, \quad i = 0, ..., 2t + 1; \n\Omega_{b,i} = \pm \{r + 1, 2r + 1, 3r + 1, 4r + 1\} \oplus 4ir, \quad i = 0, ..., s - 1; \n\Omega_{i,j} = \pm \{r + 2, r + 3, r + 4, r + 5\} \oplus 4i \oplus rj, \n i = 0, ..., 2t + 1 \text{ and } j = 0, ..., 4s - 1; \n\Omega_{c,i} = \pm \{(4s + 1)r + 1, (4s + 1)r + 2, (4s + 1)r + 3, (4s + 1)r + 4\} \oplus 4i, \n i = 0, ..., t.
$$

Proposition 5.5 *If* $r \equiv 2 \pmod{8}$ *and* $k \equiv 5 \pmod{8}$, *then there exists a maximum cyclic* 4*-cycle packing of Kr(k) with leave the union of a* 1*-factor and* 2 *Hamiltonian cycles*.

Proof The 2 Hamiltonian cycles are respectively the circulant graphs $X(Z_{rk}, \pm\{1\})$ and $X(Z_{rk}, \pm \{rk/2 - 2\})$. Let $k = 8s + 5$.

Case 1. $r = 2$.

$$
\Omega_i = \pm \{3, 5, 7, 9\} \oplus 8i, \quad i = 0, \dots, s - 1.
$$

Case 2.
$$
r > 2
$$
, say $r = 8t + 10$.
\n
$$
\Omega_{a,i} = \pm \{2, 3, 4, 5\} \oplus 4i, \quad i = 0, ..., 2t + 1;
$$
\n
$$
\Omega_{b,i} = \pm \{r + 1, 2r + 1, 3r + 1, 4r + 1\} \oplus 4ir, \quad i = 0, ..., s - 1;
$$
\n
$$
\Omega_{i,j} = \pm \{r + 2, r + 3, r + 4, r + 5\} \oplus 4i \oplus rj,
$$
\n
$$
i = 0, ..., 2t + 1 \text{ and } j = 0, ..., 4s - 1;
$$
\n
$$
\Omega_{c,i} = \pm \{(4s + 1)r + 1, (4s + 1)r + 2, (4s + 1)r + 3, (4s + 1)r + 4\} \oplus 4i,
$$
\n
$$
i = 0, ..., 2t + 1;
$$
\n
$$
\Omega = \pm \{(4s + 2)r - 1, (4s + 2)r + 1, rk/2 - 3, rk/2 - 1\};
$$
\n
$$
\Omega_{d,j} = \pm \{(4s + 2)r + 2, (4s + 2)r + 3, (4s + 2)r + 4, (4s + 2)r + 5\} \oplus 4i,
$$
\n
$$
i = 0, ..., t - 1.
$$

 \mathcal{Q} Springer

Proposition 5.6

- (1) *If* $r = 2$ *and* $k \equiv 7 \pmod{8}$, *then there exists a maximum cyclic* 4*-cycle packing of Kr(k) with leave the union of a* 1*-factor and* 3 *Hamiltonian cycles*.
- (2) *If* $r \equiv 2 \pmod{8}$ ($r > 2$) and $k \equiv 7 \pmod{8}$, then there exists a maximum cyclic 4*-cycle packing of Kr(k) with leave the union of a* 1*-factor and* 2 *(rk/*2*)-cycles*.

Proof Let $k = 8s + 7$.

(1) The 3 Hamiltonian cycles are respectively the circulant graphs $X(Z_{rk}, \pm\{1\})$, $X(Z_{rk}, \pm \{4s + 3\})$, and $X(Z_{rk}, \pm \{8s + 5\})$.

$$
\Omega_i = \pm \{3, 5, 4s + 5, 4s + 7\} \oplus 4i, \quad i = 0, \ldots, s - 1.
$$

(2) By virtue of Lemma [2.4](#page-4-0), the circulant graph $X(Z_{rk},\pm\{2\})$ is the union of 2 $(rk/2)$ -cycles. Set $r = 8t + 10$.

$$
\Omega_a = \pm \{3, rk/2 - 3\};
$$
\n
$$
\Omega_b = \pm \{4, 5, rk/2 - 2, rk/2 - 1\};
$$
\n
$$
\Omega_{c,i} = \pm \{6, 7, 8, 9\} \oplus 4i, \quad i = 0, ..., 2t;
$$
\n
$$
\Omega_{d,i} = \pm \{(4s + 3)r + 2, (4s + 3)r + 3, (4s + 3)r + 4, (4s + 3)r + 5\} \oplus 4i,
$$
\n
$$
i = 0, ..., t - 1;
$$
\n
$$
\Omega_{e,i} = \pm \{1, r + 1, 2r + 1, 3r + 1\} \oplus 4ir, \quad i = 0, ..., s;
$$
\n
$$
\Omega_{i,j} = \pm \{r + 2, r + 3, r + 4, r + 5\} \oplus 4i \oplus rj,
$$
\n
$$
i = 0, ..., 2t + 1 \text{ and } j = 0, ..., 4s + 1.
$$

Proposition 5.7 *If* $r \equiv 4 \pmod{8}$ *and* $k \equiv 1$ *or* 5 (mod 8), *then there exists a maximum cyclic* 4*-cycle packing of Kr(k) with leave a* 1*-factor*.

Proof We break the proof into two cases according to whether $k \equiv 1$ or 5 (mod 8). Let $r = 8t + 4$.

Case 1. $k \equiv 1 \pmod{8}$, say $k = 8s + 9$.

$$
\Omega = \pm \{rk/4\};
$$
\n
$$
\Omega_{a,i} = \pm \{1, r+1, (2s+3)r+1, (2s+4)r+1\} \oplus 2ir, \quad i = 0, ..., s;
$$
\n
$$
\Omega_{b,i} = \pm \{2, 3, (2s+2)r+1, (2s+2)r+2\} \oplus 2i, \quad i = 0, ..., t-1;
$$
\n
$$
\Omega_{c,i} = \pm \{2t+2, 2t+3, (2s+2)r+2t+2, (2s+2)r+2t+3\} \oplus 2i,
$$
\n
$$
i = 0, ..., 3t;
$$
\n
$$
\Omega_{i,j} = \pm \{r+2, r+3, (2s+3)r+2, (2s+3)r+3\} \oplus 2i \oplus rj,
$$
\n
$$
i = 0, ..., 4t \text{ and } j = 0, ..., 2s;
$$
\n
$$
\Omega_{d,i} = \pm \{(4s+4)r+2, (4s+4)r+3, (4s+4)r+4, (4s+4)r+5\} \oplus 4i,
$$
\n
$$
i = 0, ..., t-1.
$$

 \mathcal{D} Springer

Case 2. $k \equiv 5 \pmod{8}$, say $k = 8s + 5$. $Q_a = \pm \{1, r k/2 - 1\}$; $Ω_b = ±{rk/4}$; $\Omega_{c,i} = \pm \{2, 3, (2s + 1)r + 1, (2s + 1)r + 2\} \oplus 2i, \quad i = 0, \ldots, t - 1;$ $Q_{d,i} = \pm \{2t + 2, 2t + 3, (2s + 1)r + 2t + 2, (2s + 1)r + 2t + 3\} \oplus 2i$ $i = 0, \ldots, 3t$; $\Omega_{e,i} = \pm \{r+1, 2r+1, (2s+2)r+1, (2s+3)r+1\} \oplus 2ir, \quad i = 0, \ldots, s-1;$ $\Omega_{i,j} = \pm \{r+2, r+3, (2s+2)r+2, (2s+2)r+3\} \oplus 2i \oplus rj,$ $i = 0, \ldots, 4t$ and $j = 0, \ldots, 2s - 1$; $Q_{fi} = \pm \{(4s + 2)r + 1, (4s + 2)r + 2, (4s + 2)r + 3, (4s + 2)r + 4\} \oplus 4i,$ $i = 0, \ldots, t - 1.$

Proposition 5.8 *If* $r \equiv 4 \pmod{8}$ *and* $k \equiv 3$ *or* 7 (mod 8), *then there exists a maximum cyclic* 4*-cycle packing of* $K_{r(k)}$ *with leave the union of a 1-factor and* 2 $(rk/2)$ *cycles*.

Proof The circulant graph $X(Z_{rk}, \pm \{2\})$ is the union of 2 ($rk/2$)-cycles. The proof is split into two cases depending on whether $k \equiv 3$ or 7 (mod 8). Let $r = 8t + 4$.

Case 1. $k \equiv 3 \pmod{8}$. *Subcase* 1.1. $k = 3$.

$$
\Omega = \pm \{1, 3r/2 - 1\};
$$

\n
$$
\Omega' = \pm \{3r/4\};
$$

\n
$$
\Omega_{a,i} = \pm \{3, 4, 3r/4 + 1, 3r/4 + 2\} \oplus 2i, \quad i = 0, ..., t - 1;
$$

\n
$$
\Omega_{b,i} = \pm \{2t + 3, 2t + 4, 2t + 5, 2t + 6\} \oplus 4i, \quad i = 0, ..., t - 1;
$$

\n
$$
\Omega_{c,i} = \pm \{r + 1, r + 2, r + 3, r + 4\} \oplus 4i, \quad i = 0, ..., t - 1.
$$

Subcase 1.2. $k > 3$, say $k = 8s + 3$.

$$
\Omega = \pm \{1, rk/2 - 1\};
$$

\n
$$
\Omega' = \pm \{rk/4\};
$$

\n
$$
\Omega_{a,i} = \pm \{r - 1, 2r - 1, (2s + 2)r - 1, (2s + 3)r - 1\} \oplus 2ir, \quad i = 0, ..., s - 1;
$$

\n
$$
\Omega_{b,i} = \pm \{3, 4, 5, 6\} \oplus 4i, \quad i = 0, ..., 2t - 1;
$$

\n
$$
\Omega_{c,i} = \pm \{(4s + 1)r + 1, (4s + 1)r + 2, (4s + 1)r + 3, (4s + 1)r + 4\} \oplus 4i,
$$

\n
$$
i = 0, ..., t - 1;
$$

\n
$$
\Omega_{i,j} = \pm \{r + 1, r + 2, (2s + 1)r + 1, (2s + 1)r + 2\} \oplus 2i \oplus rj,
$$

\n
$$
i = 0, ..., 4t \text{ and } j = 0, ..., 2s - 2;
$$

$$
\Omega_{d,i} = \pm \{2sr + 1, 2sr + 2, 4sr + 1, 4sr + 2\} \oplus 2i, \quad i = 0, ..., 3t; \n\Omega_{e,i} = \pm \{2sr + 6t + 4, 2sr + 6t + 5, 4sr + 6t + 3, 4sr + 6t + 4\} \oplus 2i, \ni = 0, ..., t - 1.
$$
\n
$$
\text{Case 2. } k \equiv 7 \text{ (mod 8), say } k = 8s + 7.
$$
\n
$$
\Omega_a = \pm \{1, 3, (4s + 3)r - 1, (4s + 3)r + 1\};
$$
\n
$$
\Omega_b = \pm \{rk/4\};
$$
\n
$$
\Omega_{c,i} = \pm \{4, 5, 6, 7\} \oplus 4i, \quad i = 0, ..., 2t - 1;
$$
\n
$$
\Omega_{d,i} = \pm \{(4s + 3)r + 2, (4s + 3)r + 3, (4s + 3)r + 4, (4s + 3)r + 5\} \oplus 4i, \ni = 0, ..., t - 1;
$$
\n
$$
\Omega_{e,i} = \pm \{r + 1, 2r + 1, (2s + 2)r + 1, (2s + 3)r + 1\} \oplus 2ir, \quad i = 0, ..., s - 1;
$$
\n
$$
\Omega_{i,j} = \pm \{r + 2, r + 3, (2s + 2)r + 2, (2s + 2)r + 3\} \oplus 2i \oplus rj, \ni = 0, ..., 4t \text{ and } j = 0, ..., 2s - 1;
$$
\n
$$
\Omega_{f,i} = \pm \{(2s + 1)r + 1, (2s + 1)r + 2, (4s + 2)r + 1, (4s + 2)r + 2\} \oplus 2i, \ni = 0, ..., 3t;
$$
\n
$$
\Omega_{g,i} = \pm \{rk/4 + 1, rk/4 + 2, (4s + 2)r + 6t + 3, (4s + 2)r + 6t + 4\} \oplus 2i, \ni = 0, ..., t - 1.
$$

Proposition 5.9 *If* $r \equiv 6 \pmod{8}$ *and* $k \equiv 1 \pmod{8}$, *then there exists a maximum cyclic* 4*-cycle packing of* $K_{r(k)}$ *with leave a* 1*-factor.*

Proof Let $r = 8t + 6$ and $k = 8s + 9$.

$$
\Omega = \pm \{(rk-2)/4, (rk+2)/4\};
$$
\n
$$
\Omega_{a,i} = \pm \{r-1, 2r-1, 3r-1, 4r-1\} \oplus 4ir, \quad i = 0, ..., s;
$$
\n
$$
\Omega_{i,j} = \pm \{1, 2, 3, 4\} \oplus 4i \oplus rj, \quad i = 0, ..., 2t \text{ and } j = 0, ..., 2s + 1;
$$
\n
$$
\Omega'_{i,j} = \pm \{(2s+3)r+1, (2s+3)r+2, (2s+3)r+3, (2s+3)r+4\} \oplus 4i \oplus rj,
$$
\n
$$
i = 0, ..., 2t \text{ and } j = 0, ..., 2s;
$$
\n
$$
\Omega_{b,i} = \pm \{(2s+2)r+1, (2s+2)r+2, (rk+2)/4+1, (rk+2)/4+2\} \oplus 2i,
$$
\n
$$
i = 0, ..., t-1;
$$
\n
$$
\Omega_{c,i} = \pm \{(rk+2)/4+2t+1, (rk+2)/4+2t+2, (4s+4)r+1, (4s+4)r+2\} \oplus 2i, \quad i = 0, ..., 2t.
$$

Proposition 5.10 *If* $r \equiv 6 \pmod{8}$ *and* $k \equiv 3 \pmod{8}$, *then there exists a maximum cyclic* 4*-cycle packing of Kr(k) with leave the union of a* 1*-factor and a Hamiltonian cycle*.

2 Springer

Proof The Hamiltonian cycle is the circulant graph $X(Z_{rk}, \pm\{1\})$. Let $r = 8t + 6$ and $k = 8s + 3$.

$$
\Omega = \pm \{(rk-2)/4, (rk+2)/4\};
$$
\n
$$
\Omega_{a,i} = \pm \{r+1, 2r+1, (2s+1)r+1, (2s+2)r+1\} \oplus 2ir, \quad i = 0, ..., s-1;
$$
\n
$$
\Omega_{i,j} = \pm \{2, 3, (2s+1)r+2, (2s+1)r+3\} \oplus 2i \oplus rj, \quad i = 0, ..., 4t+1 \text{ and }
$$
\n
$$
j = 0, ..., 2s - 1;
$$
\n
$$
\Omega_{b,i} = \pm \{2sr+2, 2sr+3, (rk+2)/4+1, (rk+2)/4+2\} \oplus 2i,
$$
\n
$$
i = 0, ..., t-1;
$$
\n
$$
\Omega_{c,i} = \pm \{2sr+2t+2, 2sr+2t+3, (4s+1)r+1, (4s+1)r+2\} \oplus 2i,
$$
\n
$$
i = 0, ..., 2t.
$$

Proposition 5.11 *If* $r \equiv 6 \pmod{8}$ *and* $k \equiv 5 \pmod{8}$, *then there exists a maximum cyclic* 4*-cycle packing of Kr(k) with leave the union of a* 1*-factor and* 2 *Hamiltonian cycles*.

Proof The Hamiltonian cycles are the circulant graphs $X(Z_{rk}, \pm \{rk/2 - 2\})$ and *X*(Z_{rk} , $\pm \{(rk-2)/4\}$). Let $r = 8t + 6$ and $k = 8s + 5$.

$$
\Omega = \pm \{1, rk/2 - 1\};
$$
\n
$$
\Omega_{a,i} = \pm \{r + 1, 2r + 1, (2s + 2)r + 1, (2s + 3)r + 1\} \oplus 2ir, \quad i = 0, ..., s - 1;
$$
\n
$$
\Omega_{i,j} = \pm \{2, 3, 4, 5\} \oplus 4i \oplus rj, \quad i = 0, ..., 2t \text{ and } j = 0, ..., 2s;
$$
\n
$$
\Omega'_{i,j} = \pm \{(2s + 2)r + 2, (2s + 2)r + 3, (2s + 2)r + 4, (2s + 2)r + 5\} \oplus 4i \oplus rj,
$$
\n
$$
i = 0, ..., 2t \text{ and } j = 0, ..., 2s - 1;
$$
\n
$$
\Omega_{b,i} = \pm \{(2s + 1)r + 1, (2s + 1)r + 2, (rk - 2)/4 + 1, (rk - 2)/4 + 2\} \oplus 2i,
$$
\n
$$
i = 0, ..., t - 1;
$$
\n
$$
\Omega_{c,i} = \pm \{(rk - 2)/4 + 2t + 1, (rk - 2)/4 + 2t + 2, (4s + 2)r + 1,
$$
\n
$$
(4s + 2)r + 2\} \oplus 2i, \quad i = 0, ..., 2t - 1;
$$
\n
$$
\Omega_d = \pm \{(rk - 2)/4 + 6t + 1, (rk - 2)/4 + 6t + 2, (rk - 2)/4 + 6t + 3,
$$
\n
$$
(rk - 2)/4 + 6t + 4\}.
$$

Proposition 5.12 *If* $r \equiv 6 \pmod{8}$ *and* $k \equiv 7 \pmod{8}$, *then there exists a maximum cyclic* 4*-cycle packing of* $K_{r(k)}$ *with leave the union of a 1-factor and* 2 $(rk/2)$ *-cycles.*

Proof The circulant graph $X(Z_{rk}, \pm \{rk/2 - 1\})$ is the union of 2 ($rk/2$)-cycles. Let $r = 8t + 6$ and $k = 8s + 7$.

$$
\Omega_{a,i} = \pm \{1, r+1, 2r+1, 3r+1\} \oplus 4ir, \quad i = 0, ..., s;
$$

$$
\Omega_{i,j} = \pm \{2, 3, 4, 5\} \oplus 4i \oplus rj, \quad i = 0, ..., 2t \text{ and } j = 0, ..., 4s+2;
$$

A Springer

$$
\Omega_{b,i} = \pm \{ (4s+3)r+2, (4s+3)r+3, (4s+3)r+4, (4s+3)r+5 \} \oplus 4i,
$$

\n $i = 0, ..., t - 1.$

6 Conclusion

Combining Lemma [2.1](#page-3-0), Theorem [3.1,](#page-5-0) and Propositions [4.2](#page-6-0) to [4.6](#page-7-0) and [5.2](#page-9-0) to 5.12, we have the following main result.

Theorem 6.1 *There exists a maximum cyclic* 4*-cycle packing of the balanced complete multipartite graph* $K_{r(k)}$ *with leave L where L is obtained as follows:*

- (1) *L* is the empty set if *k* is even or *k* is odd and $r \equiv 1 \pmod{8}$;
- (2) *L* is 3 *Hamiltonian cycles if* $r \equiv 3 \pmod{8}$ *and* $k \equiv 3 \pmod{4}$ *or* $r \equiv 7 \pmod{8}$ *and* $k \equiv 1 \pmod{4}$;
- (3) *L* is 2 *Hamiltonian cycles if* $r \equiv 5 \pmod{8}$ *and* $k \equiv 1 \pmod{2}$;
- (4) *L is a Hamiltonian cycle if* $r \equiv 3 \pmod{8}$ *and* $k \equiv 1 \pmod{4}$ *or* $r \equiv 7 \pmod{8}$ *and* $k \equiv 3 \pmod{4}$;
- (5) *L* is a 1*-factor* if $r \equiv 0 \pmod{8}$ and $k \equiv 1 \pmod{2}$, $r \equiv 2 \pmod{4}$ and $k \equiv 1$ $(mod 8)$, *or* $r \equiv 4 \pmod{8}$ *and* $k \equiv 1 \pmod{4}$;
- (6) *L* is the union of a 1-factor and 3 Hamiltonian cycles if $r = 2$ and $k \equiv 7 \pmod{8}$;
- (7) *L* is the union of a 1-factor and 2 *Hamiltonian cycles if* $r \equiv 2 \pmod{4}$ *and* $k \equiv 5$ (mod 8);
- (8) *L* is the union of a 1-factor and a Hamiltonian cycle if $r \equiv 2 \pmod{4}$ and $k \equiv 3$ (mod 8); *and*
- (9) *L* is the union of a 1-factor and 2 ($rk/2$)-cycles if $r \equiv 2 \pmod{4}$ (>2) and $k \equiv 7$ $(mod 8)$ *or* $r \equiv 4 \pmod{8}$ *and* $k \equiv 3 \pmod{4}$.

References

- Alspach B, Gavlas H (2001) Cycle decompositions of *Kn* and *Kn* I. J Comb Theory Ser B 81:77–99
- Billington EJ (1999) Decomposing complete tripartite graphs into cycles of length 3 and 4. Discret Math 197/198:123–135
- Billington EJ, Lindner CC (1996) Maximum packing of uniform group divisible triple systems. J Comb Des 4:397–404
- Billington EJ, Fu H-L, Rodger CA (2001) Packing complete multipartite graphs with 4-cycles. J Comb Des 9:107–127
- Billington EJ, Fu H-L, Rodger CA (2005) Packing *λ*-fold complete multipartite graphs with 4-cycles. Graphs Comb 21:169–185
- Bryant D, Gavlas H, Ling A (2003) Skolem-type difference sets for cycle systems. Electron J Comb 10:1– 12

Buratti M (2003) Rotational *k*-cycle systems of order *v <* 3*h*; another proof of the existence of odd cycle systems. J Comb Des 11:433–441

- Buratti M (2004) Existence of 1-rotational *k*-cycle systems of the complete graph. Graphs Comb 20:41–46
- Buratti M, Del Fra A (2003) Existence of cyclic *k*-cycle systems of the complete graph. Discret Math 261:113–125
- Buratti M, Del Fra A (2004) Cyclic Hamiltonian cycle systems of the complete graph. Discret Math 279:107–119
- Cavenagh NJ (1998) Decompositions of complete tripartite graphs into *k*-cycles. Australas J Comb 18:193–200
- Cavenagh NJ (2002) Further decompositions of complete tripartite graphs into 5-cycles. Discret Math 256:55–81
- Cavenagh NJ, Billington EJ (2000) Decompositions of complete multipartite graphs into cycles of even length. Graphs Comb 16:49–65
- Cavenagh NJ, Billington EJ (2002) On decomposing complete tripartite graphs into 5-cycles. Australas J Comb 22:41–62
- Colbourn CJ, Wan P-J (2001) Minimizing drop cost for SONET/WDM networks with 1*/*8 wavelength requirements. Networks 37:107–116
- Fu H-L, Huang W-C (2004) Packing balanced complete multipartite graphs with hexagons. Ars Comb 71:49–64
- Fu H-L, Wu S-L (2004) Cyclically decomposing the complete graph into cycles. Discret Math 282:267– 273
- Hoffman DG, Linder CC, Rodger CA (1989) On the construction of odd cycle systems. J Graph Theory 13:417–426
- Kotzig A (1965) Decompositions of a complete graph into 4*k*-gons. Mat Fyz Casopis Sloven Akad Vied 15:229–233 (in Russian)
- Laskar R (1978) Decomposition of some composite graphs into Hamiltonian cycles. In: Hajnal A, Sos VT (eds) Proceedings of the fifth Hungarian coll., Keszthely, 1976. North-Holland, Amsterdam, pp 705– 716
- Mahmoodian ES, Mirzakhani M (1995) Decomposition of complete tripartite graph into 5-cycles. In: Combinatorics advances. Kluwer Academic, Netherlands, pp 235–241
- Mutoh Y, Morihara T, Jimbo M, Fu H-L (2003) The existence of 2×4 grid-block designs and their applications. SIAM J Discret Math 16:173–178

Peltesohn R (1938) Eine Lösung der beiden Heffterschen Differenzenprobleme. Compos Math 6:251–257 Ree DH (1967) Some designs of use in serology. Biometrics 23:779–791

- Rosa A (1966a) On cyclic decompositions of the complete graph into *(*4*m* + 2*)*-gons. Mat Fyz Casopis Sloven Akad Vied 16:349–352
- Rosa A (1966b) On cyclic decompositions of the complete graph into polygons with odd number of edges. Časopis Pěst Mat 91:53–63 (in Slovak)
- Šajna M (2002) Cycle decompositions, III: complete graphs and fixed length cycles. J Comb Des 10:27–78
- Sotteau D (1981) Decomposition of $K_{m,n}(K_{m,n}^*)$ into cycles (circuits) of length 2*k*. J Comb Theory Ser B 30:75–81
- Vietri A (2004) Cyclic *k*-cycle system of order $2km + k$; a solution of the last open cases. J Comb Des 12:299–310
- Wan P-J (1999) Multichannel optical networks: network theory and application, Kluwer Academic, Dordrecht
- Wu S-L, Fu H-L (2006) Cyclic *m*-cycle systems with $m \le 32$ or $m = 2q$ with q a prime power. J Comb Des 14:66–81