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Abstract A graph G is said to be m-sufficient if m is not exceeding the order of G,
each vertex of G is of even degree, and the number of edges in G is a multiple of m.
A complete multipartite graph is balanced if each of its partite sets has the same size.
In this paper it is proved that the complete multipartite graph G can be decomposed
into 4-cycles cyclically if and only if G is balanced and 4-sufficient. Moreover, the
problem of finding a maximum cyclic packing of the complete multipartite graph
with 4-cycles are also presented.

Keywords Complete multipartite graph · Cyclic · Cycle system · Cycle packing ·
4-cycle

1 Introduction

An m-cycle, written (c0, c1, . . . , cm−1), consists of m distinct vertices c0, c1, . . . ,

cm−1, and m edges {ci, ci+1}, 0 ≤ i ≤ m − 2, and {c0, cm−1}. An m-cycle system
of a simple graph G is a set C of edge disjoint m-cycles which partition the edge set
of G. If G is a complete graph on v vertices, it is known as an m-cycle system of
order v.

The obvious necessary conditions for the existence of an m-cycle system of a
graph G are that the value of m is not exceeding the order of G,m divides the number
of edges in G, and the degree of each vertex in G is even. A graph G is called
m-sufficient if the necessary conditions are met.
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A graph G is said to be a complete r-partite graph (r > 1) if its vertex set V

can be partitioned into r disjoint non-empty sets V1, . . . , Vr (called partite sets) such
that there exists exactly one edge between each pair of vertices from different partite
sets. If |Vi | = ni for 1 ≤ i ≤ r , the complete r-partite graph is denoted by Kn1,...,nr .
In particular, if n1 = · · · = nr = k (>1), it is called balanced and the graph will be
simply denoted by Kr(k).

The graph decomposition problem has attracted many researchers, and it serves
as useful models for a range of applications such as: serology (Ree 1967), synchro-
nous optical network ring (Colbourn and Wan 2001; Wan 1999), and DNA library
screening (Mutoh et al. 2003).

The study of m-cycle systems of the complete graph has been one of the most
interesting problems in graph decomposition. The existence question for m-cycle
systems of the complete graph has been completely settled by Alspach and Gavlas
(2001) in the case of m odd and by Šajna (2002) in the even case.

The problem of finding the existence of m-cycle systems of the complete r-partite
graph has also been considered by a number of researchers. The case when r = 2
and m is even was completely solved by Sotteau (1981). Cavenagh (1998) proved
that there exists a k-cycle system of K3(m) if and only if k ≤ 3m and k divides 3m2.
Billington (1999) gave the necessary and sufficient conditions for the existence of a
decomposition of any complete tripartite graph into specific numbers of 3-cycles and
4-cycles. Hoffman et al. (1989) proved that if both r and m are odd then there exists
an m-cycle system of Kr(m). The necessary and sufficient conditions to partition the
same graph into Hamiltonian cycles are given by Laskar (1978). The existence for
5-cycle system of the complete tripartite graph has been considered by Mahmood-
ian and Mirzakhani (1995), Cavenagh and Billington (2002), and Cavenagh (2002).
Moreover, necessary and sufficient conditions are also given (Cavenagh and Billing-
ton 2000) for the existence of m-cycle systems of the complete r-partite graph with
m = 4,6, and 8.

An m-cycle packing of a graph G is a set P of edge disjoint m-cycles in G. The
leave of an m-cycle packing of G is the set of edges in G that occur in no m-cycle
in P . An m-cycle packing P of G is maximum if |P | ≥ |P ′| for all other m-cycle
packings P ′ of G. Obviously, a maximum packing will have a minimum leave, and
an m-cycle system of G is an m-cycle packing of G for which the leave is empty.

Not much work has been done on packing complete r-partite graphs with cy-
cles. For 3- and 6-cycles, maximum packings in Kr(k) are respectively dealt with in
(Billington and Lindner 1996; Fu and Huang 2004). In (Billington et al. 2001), the
problem of finding a maximum packing of the complete r-partite graph with 4-cycles
is completely solved. A natural generalization to determine a maximum packing of
the λ-fold complete r-partite graph appears in (Billington et al. 2005).

Let C = (c0, c1, . . . , cm−1) be an m-cycle. An m-cycle system (packing) of a graph
G,C(P ), is said to be cyclic if V (G) = Zv and we have (c0 +1, c1 +1, . . . , cm−1 +1)

(mod v) ∈ C(P ) whenever (c0, c1, . . . , cm−1) ∈ C(P ).
The existence question for cyclic m-cycle systems of order v has been completely

solved for m = 3 (Peltesohn 1938), 5 and 7 (Rosa 1966b). For m even and v ≡ 1 (mod
2m), cyclic m-cycle systems of order v are proved for m ≡ 0 (mod 4) (Kotzig 1965)
and for m ≡ 2 (mod 4) (Rosa 1966a). Recently, it is shown in (Buratti and Del Fra
2003; Bryant et al. 2003; Fu and Wu 2004) that for each pair of integers (m,n), there
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Table 1 Best possible leaves of a maximum cyclic packing of Kr(k) with 4-cycles

r k

0 1 2 3 4 5 6 7

0 - F - F - F - F

1 - - - - - - - -

2 - F - F ∪ H - F ∪ 2H - F ∪ C∗
3 - H - 3H - H - 3H

4 - F - F ∪ C - F - F ∪ C

5 - 2H - 2H - 2H - 2H

6 - F - F ∪ H - F ∪ 2H - F ∪ C

7 - 3H - H - 3H - H

∗ When r = 2 and k ≡ 7 (mod 8), the leave is the union of a 1-factor and 3 Hamiltonian cycles

exists a cyclic m-cycle system of order 2mn+1, and in particular, for each odd prime
p, there exists a cyclic p-cycle system (Buratti and Del Fra 2003; Fu and Wu 2004).
For v ≡ m (mod 2m), cyclic m-cycle systems of order v are presented for m 	∈ M
(Buratti and Del Fra 2004), where M = {pα | p is prime, α > 1}∪ {15}, and in (Vietri
2004) for m ∈ M. More recently, the present authors (Wu and Fu 2006) prove that for
m = 3,4, . . . ,32, there exists a cyclic m-cycle system and for p a prime power, there
exists a cyclic 2p-cycle system.

In this paper, we shall focus on maximum cyclic 4-cycle packings of Kr(k) with
leave and the main result is listed in Table 1, where the values of r and k are re-
duced modulo 8 and the symbols -, iH, C, and F denote respectively the empty set, i

Hamiltonian cycles, 2 (rk/2)-cycles, and a 1-factor.
In Sect. 2, we will give the essential definitions and preliminaries. In Sect. 3,

a cyclic 4-cycle system of Kr(k) will be presented, and in Sects. 4 and 5, maximum
cyclic 4-cycle packings of Kr(k) with leave and with rk odd or even will be respec-
tively given.

2 Definitions and preliminaries

Assume {a, b} to be any edge of G with V (G) ∈ Zv . We shall use ±|a − b| to denote
the difference of the edge {a, b} in G. The number of distinct differences in a graph
G defined on Zv is called the weight of G, denoted by W(G).

Let C = (c0, c1, . . . , cm−1) be an m-cycle of G and let C + i = (c0 + i, c1 +
i, . . . , cm−1 + i) (mod v), where i ∈ Zv . A cycle orbit O of C is a collection of
distinct m-cycles in {C + i | i ∈ Zv}. The length of a cycle orbit is its cardinality, i.e.,
the minimum positive integer k such that C + k = C. A base cycle of a cycle orbit O

is a cycle C ∈ O that is chosen arbitrarily. For the convenience of notation, we write
a cycle k-orbit for a cycle orbit of length k. A cycle v-orbit of C on G is said to be
full and otherwise short.

Given a subset Ω of Zv − {0} with Ω = −Ω , the circulant graph X(Zv,Ω) of
order v is the Cayley graph Cay[Zv;Ω], that is, the graph with vertex set Zv and all
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possible edges of the form {x, x +w} with w ∈ Ω . The set Ω is called the connection
set and its size is the degree of X(Zv,Ω).

We first introduce a necessary condition for the existence of a cyclic m-cycle sys-
tem of a graph.

Lemma 2.1 If there is a cyclic m-cycle system of a graph G, then G is 2r-regular
for some positive integer r .

Proof For i = 1, . . . , p with p ≥ 1, let Oi be a cycle ki -orbit of Ci in the cyclic m-
cycle system and let Ci be the base cycle of Oi with weight wi . Note that the graph
induced by the edges having the same difference is a spanning 2-regular subgraph of
G. Thus, the union of the cycles Ci,Ci + 1, . . . ,Ci + (ki − 1) forms a spanning 2wi -
regular subgraph of G. This means that each cycle ki -orbit Oi (1 ≤ i ≤ p) is exactly
a spanning 2wi -regular subgraph of G. It follows that the graph G is (2

∑p

i=1 wi)-
regular. �

Remark that the graph G in Lemma 2.1 is precisely a circulant graph. It is clear
from Lemma 2.1 that if there exists a cyclic m-cycle system of the complete r-partite
graph Kn1,...,nr , then Kn1,...,nr is balanced, namely, n1 = · · · = nr = k for some inte-
ger k (>1).

A necessary condition for the existence of a cyclic m-cycle system of Kr(k) is that
any partite set in Kr(k) is the subgroup

rZk = {0, r, . . . , (k − 1)r}
of Zrk or its coset. For i = 0, . . . , r − 1, let Vi denote the ith partite set of Kr(k).
Throughout this paper we will assume the ith partite set of Kr(k) to be Vi = {i, i +
r, . . . , i + (k − 1)r} for i = 0, . . . , r − 1. Note that the set of distinct differences of
edges in Kr(k) is Zrk\ ± {0, r, . . . , 
k/2�r}.

For an m-cycle C with V (C) ∈ Zv , the necessary condition for the sum of absolute
differences of edges in C is given as follows:

Lemma 2.2 Let C = (c0, c1, . . . , cm−1) be an m-cycle with ci ∈ Zv where 0 ≤ i ≤
m − 1 and v is any positive integer. Then the sum of absolute differences of edges in
C is even.

Proof The proof follows immediately from the fact that

m∑

i=1

|ci − ci−1| ≡
m∑

i=1

(ci − ci−1) ≡ 0 (mod 2).
�

The following consequences can be obtained by simple observations.

Lemma 2.3 If C is an m-cycle with weight p in a cyclic m-cycle system of Kr(k),
then m is a multiple of p. Consequently, if m = pq , then the value of q is a common
divisor of m and rk.
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Lemma 2.4 Suppose Ω = ±{b} with b ∈ Z
v/2� and let k = v/gcd(v, b). Then the
circulant graph X(Zv,Ω) is the union of v/k edge-disjoint k-cycles.

If gcd(v, b) = 1, then X(Zv,Ω) is exactly a Hamiltonian cycle in Kv and if b =
v/m, then X(Zv,Ω) is the union of b edge-disjoint m-cycles.

Lemma 2.5 Let ai (1 ≤ i ≤ 4) be distinct elements in Z∗
v/2� = Z
v/2�\{0}. If Ω =
±{a1, a2, a3, a4} with a1 + a2 = a3 + a4, then there exists a cyclic 4-cycle system of
X(Zv,Ω).

Proof The base cycle is (0, a1, a1 + a2, a3). �

Lemma 2.6 If Ω = ±{a1, a2} with a1 	= a2 and a1 + a2 = rk/2, then there exists a
cyclic 4-cycle system of X(Zrk,Ω).

Proof Choose (0, a1, rk/2, rk/2 + a1) as the base cycle. �

Given a positive integer m = pq , an m-cycle C in Kr(k) with weight p has index
rk/q if for each edge {s, t} in C, the edges {s + i · rk/q, t + i · rk/q} (mod rk) with
i ∈ Zq are also in C.

For instance, the 15-cycle C = (0,1,5,7,12,25,26,30,32,37,50,51,55,57,62)

in K5(15) with weight 5 (differences ±1,±2,±4,±5, and ±13) has index 25.
The following consequence will be the crucial tool for constructing a cycle orbit

in a cyclic m-cycle system of Kr(k). The similar results about 1-rotational m-cycle
system of the complete graph can also be found in (Buratti 2003, 2004) and so we
omit the details.

Proposition 2.7 Let m = pq . Then there exists an m-cycle C = (c0, c1, . . . , cm−1) in
Kr(k) with weight p and index rk/q if and only if each of the following conditions is
satisfied:

(1) For 0 ≤ i 	= j ≤ p − 1, ci 	≡ cj (mod rk/q);
(2) The differences of the edges {ci, ci−1} (1 ≤ i ≤ p) are all distinct;
(3) cp − c0 = t · rk/q , where gcd(t, q) = 1; and
(4) cip+j = cj + i · t · rk/q where 0 ≤ j ≤ p − 1 and 0 ≤ i ≤ q − 1.

It should be noticed that in Proposition 2.7, the m-cycle C can be viewed as a base
cycle and the set {C + i | i ∈ Zrk/q} forms a cycle (rk/q)-orbit of C in Kr(k). To
simplify, C will be denoted by C = [c0 = 0, c1, . . . , cp−1]t ·rk/q , and we denote the
set of partial differences ±{(ci − ci−1) | 1 ≤ i ≤ p} of C by ∂C.

Consider, for instance, the 8-cycle C = (0,15,14,29,28,43,42,1) = [0,15]14
in K7(8) with weight 2 (i.e., ∂C = ±{1,15}) and index 14, and the set {C,C +
1, . . . ,C + 13} forms a cycle 14-orbit of C in K7(8).

Given a set D = {C1, . . . ,Ct } of m-cycles, the list of differences from D is defined
as the union of the multisets ∂C1, . . . , ∂Ct , i.e., ∂D = ⋃t

i=1 ∂Ci .
The next result is simple but important and will be used later.

Theorem 2.8 A set D of m-cycles with vertices in Zrk is a set of base cycles of a
cyclic m-cycle system of Kr(k) if and only if ∂D = Zrk\ ± {0, r, . . . , 
k/2�r}.
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3 Cyclic 4-cycle systems

Theorem 3.1 The complete multipartite graph G can be decomposed into 4-cycles
cyclically if and only if G is balanced and 4-sufficient.

Proof (Necessity) Since G can be decomposed cyclically, it follows from Lemma 2.1
that G must be a regular graph. Hence, G is a balanced complete multipartite graph
Kr(k) for some positive integers r and k. Now, if k is even, then clearly the degree of
every vertex of G is even and 4||E(G)|. On the other hand, if k is odd, then r must
be odd in order that each vertex of G is of even degree. Moreover, 4||E(G)| implies
that r ≡ 1 (mod 8). Therefore, we have that G is 4-sufficient.

(Sufficiency) By virtue of Theorem 2.8, it suffices to prove that there is a set D of
base cycles in Kr(k) so that ∂D = Zrk\ ± {0, r, . . . , 
k/2�r}. We break the proof into
two cases depending on whether k is even or odd.

Case 1. k is even.
(1) k ≡ 0 (mod 4), say k = 4p.
For i ∈ Zp and j ∈ Z∗

r , let Ci,j = [0, j + ir]2pr . Clearly, ∂Ci,j = ±{j + ir,

(2p − i)r − j}. Therefore, {Ci,j } is a set of base cycles we need.
(2) k ≡ 2 (mod 4) and r ≡ 0 (mod 2), say k = 4p + 2.
Again, for i ∈ Zp and j ∈ Z∗

r , let Ci,j = [0, j + ir](2p+1)r . Moreover, let C =
(0, (2p + 1)r/2, (2p + 1)r,3(2p + 1)r/2), and Ct = [0, t + pr](2p+1)r for t ∈ Z∗

r/2.
Then ∂C ∪ {∂Ct } = ±{1 + pr,2 + pr, . . . , r − 1 + pr}. Hence, {Ci,j } ∪ {C} ∪ {Ct }
consists of a set of base cycles.

(3) k ≡ 2 (mod 4) and r ≡ 1 (mod 2), say k = 4p + 2.
For i ∈ Zp and j ∈ Z∗

r , let Ci,j = [0, j + ir](2p+1)r and Ct = [0, t +pr](2p+1)r for
t ∈ Z∗

(r+1)/2. Since (∪∂Ci,j ) ∪ (∪∂Ct ) = Zrk\ ± {0, r, . . . , (2p + 1)r}, {Ci,j } ∪ {Ct }
forms a set of base cycles.

Case 2. k is odd and r ≡ 1 (mod 8), say k = 2h + 1 and r = 8q + 1.
For i ∈ Zh and j ∈ Z2q , let Ci,j = (0,4j + 1 + ir,8j + 5 + 2ir,4j + 2 + ir),

and let Ct = (0,4t + 1 + hr,8t + 5 + 2hr,4t + 2 + hr) for t ∈ Zq . Since ∂Ci,j =
±{4j + 1 + ir,4j + 2 + ir,4j + 3 + ir,4j + 4 + ir} and ∂Ct = ±{4t + 1 + hr,4t +
2 + hr,4t + 3 + hr,4t + 4 + hr}, we have a set {Ci,j } ∪ {Ct } of base cycles for the
cycle system. �

Now, we are ready for the packings with cyclic 4-cycles. We shall classify the
maximum cyclic m-cycle packings of Kr(k) with leave into two cases: Odd and Even
according as the value of order of Kr(k) is odd or even.

4 Maximum cyclic 4-cycle packings of Kr(k) of odd order

Since there exists a cyclic 4-cycle system of Kr(k) whenever k is odd and r ≡ 1 (mod
8), here we consider the remaining cases. That is, when k is odd and r ≡ 3, 5, or 7
(mod 8), no cyclic 4-cycle system of Kr(k) exists.

The following consequence indicates the possible leave of a maximum cyclic 4-
cycle packing of Kr(k) and will be utilized repeatedly in this section. Given a maxi-
mum cyclic 4-cycle packing of Kr(k),P , let D(P ) be the set of distinct differences
in P .
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Lemma 4.1 Suppose that rk ≡ 1 (mod 2) and W(Kr(k)) ≡ i (mod 4) with i ∈ Z∗
4 and

let P be a maximum cyclic 4-cycle packing ofKr(k). Then the leave of a maximum
cyclic 4-cycle packing of Kr(k) is the circulant graph X(Zrk,Ω) with Ω = Zrk\
± {0, r, . . . , 
k/2�r}\D(P ).

Proof Since the value of rk is odd, each cycle orbit in the maximum cyclic 4-
cycle packing of Kr(k),P , must be full, and since W(Kr(k)) ≡ i (mod 4) with
i ∈ Z∗

4 , it implies that there are exactly i distinct differences not occurring in P .
It follows that the leave is precisely the circulant graph X(Zrk,Ω) with Ω = Zrk\
± {0, r, . . . , 
k/2�r}\D(P ). �

Throughout this paper whenever we say that a circulant graph X(Zrk,±{a}) is
a Hamiltonian cycle of Kr(k), it implies that gcd(rk, a) = 1. Given a connection set
Ω = ±{a1, . . . , at }, let Ω ⊕ i = ±{a1 + i, . . . , at + i}.

We are now in a position to prove our main result with odd order, which is divided
into the following five propositions.

Proposition 4.2 If r ≡ 3 (mod 8) and k ≡ 3 (mod 4), then there exists a maximum
cyclic 4-cycle packing of Kr(k) with leave 3 Hamiltonian cycles.

Proof Since W(Kr(k)) ≡ 3 (mod 4), by Lemma 4.1, the leave is a circulant graph
X(Zrk,Ω) with |Ω| = 3. Let Ω∗

1 = ±{1},Ω∗
2 = ±{2}, and Ω∗

3 = ±{(rk − 1)/2}.
Then the circulant graph X(Zrk,Ω) is the union of X(Zrk,Ω

∗
i ) for i = 1,2,3. Note

that by Lemma 2.4, the circulant graphs X(Zrk,Ω
∗
i ) (1 ≤ i ≤ 3) are all Hamiltonian

cycles in Kr(k). The remaining proof are split into two cases according to whether
r = 3 or r > 3. Let r = 8t + 3 and k = 4s + 3.

Case 1. r = 3.
Let Ωi = ±{4,5,7,8} ⊕ 6i for i = 0, . . . , s − 1. Note that by Lemma 2.5, there

exists a cyclic 4-cycle system of X(Zrk,Ωi) for each i. It is easy to check that the
union of the circulant graphs X(Zrk,Ωi) (0 ≤ i ≤ s − 1) consists of a maximum
cyclic 4-cycle packing of Kr(k).

Case 2. r > 3.
The connection sets are given as the following:

Ωi = ±{r + 1, r + 2,2r + 1,2r + 2} ⊕ 2ir, i = 0, . . . , s − 1;
Ωi,j = ±{3,4,5,6} ⊕ 4i ⊕ rj, i = 0, . . . ,2t − 1 and j = 0, . . . ,2s;
Ω ′

i = ±{2sr + r + 1,2sr + r + 2,2sr + r + 3,2sr + r + 4} ⊕ 4i,

i = 0, . . . , t − 1.

Again, a routine verification shows that the union of the circulant graphs
X(Zrk,Ωi),X(Zv,Ωi,j ), and X(Zv,Ω

′
i ) forms a maximum cyclic 4-cycle packing

of Kr(k). �

Proposition 4.3 If r ≡ 3 (mod 8) and k ≡ 1 (mod 4), then there exists a maximum
cyclic 4-cycle packing of Kr(k) with leave a Hamiltonian cycle.
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Proof Analogously, the leave is a Hamiltonian cycle, i.e., the circulant graph
X(Zrk,±{(rk−1)/2}). Also, we divide the proof into two cases according to whether
r = 3 or r > 3. Let r = 8t + 3 and k = 4s + 1.

Case 1. r = 3.
Let Ωi = ±{1,2,4,5} ⊕ 6i for i = 0, . . . , s − 1 and the union of the circulant

graphs X(Zrk,Ωi) (0 ≤ i ≤ s − 1) is a maximum cyclic 4-cycle packing of Kr(k).
Case 2. r > 3.
The connection sets are defined by

Ωi = ±{1,2, r + 1, r + 2} ⊕ 2ir, i = 0, . . . , s − 1;
Ωi,j = ±{3,4,5,6} ⊕ 4i ⊕ rj, i = 0, . . . ,2t − 1 and j = 0, . . . ,2s − 1;
Ω ′

i = ±{2sr + 1,2sr + 2,2sr + 3,2sr + 4} ⊕ 4i, i = 0, . . . , t − 1.

An easy computation shows that the union of the circulant graphs X(Zrk,Ωi),

X(Zv,Ωi,j ), and X(Zv,Ω
′
i ) forms a maximum cyclic 4-cycle packing of Kr(k). �

Proposition 4.4 If r ≡ 5 (mod 8) and k ≡ 1 (mod 2), then there exists a maximum
cyclic 4-cycle packing of Kr(k) with leave 2 Hamiltonian cycles.

Proof The Hamiltonian cycles are the circulant graphs X(Zrk,Ω
∗
i = ±{i}) for i =

1,2. Let r = 8t +5. Then, by a similar argument, it suffices to provide the connection
sets which are the following:

Ω = ±{3,4, 
k/2�r + 1, 
k/2�r + 2};
Ωi = ±{5,6,7,8} ⊕ 4i, i = 0, . . . ,2t − 1;
Ωi,j = ±{r + 1, r + 2, r + 3, r + 4} ⊕ 4i ⊕ rj,

i = 0, . . . ,2t and j = 0, . . . , (k − 5)/2;
Ω ′

i = ±{
k/2�r + 3, 
k/2�r + 4, 
k/2�r + 5, 
k/2�r + 6} ⊕ 4i,

i = 0, . . . , t − 1. �

Proposition 4.5 If r ≡ 7 (mod 8) and k ≡ 1 (mod 4), then there exists a maximum
cyclic 4-cycle packing of Kr(k) with leave 3 Hamiltonian cycles.

Proof For i = 1,2,3, the circulant graphs X(Zrk,Ω
∗
i ) with Ω∗

1 = ±{1},Ω∗
2 = ±{2},

and Ω∗
3 = ±{
rk/2�} are the Hamiltonian cycles. Let r = 8t + 7 and k = 4s + 1.

Then, with the connection sets defined below, we have the proof.

Ωi = ±{r + 1, r + 2,2r + 1,2r + 2} ⊕ 2ir, i = 0, . . . , s − 1;
Ωi,j = ±{3,4,5,6} ⊕ 4i ⊕ rj, i = 0, . . . ,2t and j = 0, . . . ,2s − 1;
Ω ′

i = ±{2sr + 3,2sr + 4,2sr + 5,2sr + 6} ⊕ 4i, i = 0, . . . , t − 1. �

Proposition 4.6 If r ≡ 7 (mod 8) and k ≡ 3 (mod 4), then there exists a maximum
cyclic 4-cycle packing of Kr(k) with leave a Hamiltonian cycle.
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Proof The Hamiltonian cycle is the circulant graph X(Zrk,±{
rk/2�}). Let r =
8t + 7 and k = 4s + 3.

The connection sets are given by

Ωi = ±{1,2, r + 1, r + 2} ⊕ 2ir, i = 0, . . . , s;
Ωi,j = ±{3,4,5,6} ⊕ 4i ⊕ rj, i = 0, . . . ,2t and j = 0, . . . ,2s;
Ω ′

i = ±{(2s + 1)r + 3, (2s + 1)r + 4, (2s + 1)r + 5, (2s + 1)r + 6} ⊕ 4i,

i = 0, . . . , t − 1. �

5 Maximum cyclic 4-cycle packings of Kr(k) of even order

By Theorem 3.1, it suffices to consider the cases when r is even and k is odd. This
implies that the leave of a maximum cyclic 4-cycle packing of Kr(k) must include a
1-factor of Kr(k) since the degree of each vertex in Kr(k) is odd. It is clear that the
1-factor must be the circulant graph X(Zrk,±{rk/2}).

Lemma 5.1

(1) If r ≡ 4 (mod 8) and k ≡ 3 (mod 4) or r ≡ 2 (mod 4) (r > 2) and k ≡ 7 (mod 8),
then the leave of a maximum cyclic 4-cycle packing of Kr(k) is the union of a
1-factor and the circulant graph X(Zrk,±{a}) with a even.

(2) If r ≡ 2 (mod 4) and k ≡ 3 (mod 8), then the leave of a maximum cyclic 4-cycle
packing of Kr(k) is the union of a 1-factor and the circulant graph X(Zrk,±{a})
with a odd.

(3) If r ≡ 2 (mod 4) and k ≡ 5 (mod 8), then the leave of a maximum cyclic
4-cycle packing of Kr(k) is the union of a 1-factor and the circulant graph
X(Zrk,±{a, b}) with a, b odd.

Proof We consider only the case when r ≡ 4 (mod 8) and k ≡ 3 (mod 4) and leave
the remainder to the reader. An easy computation shows that the numbers of odd and
even differences in Kr(k)\X(Zrk,±{rk/2}) are both odd, say α and β , and α −β ≡ 2
(mod 4). Set α − β = 4p + 2,p ≥ 0. By virtue of Lemma 2.3, the weight of any 4-
cycle C is a divisor of 4, i.e., W(C) = 1,2, or 4. Note that if W(C) = 2, then two
distinct differences in C must have the same parity since its index rk/2 is even.

In order to obtain a maximum cyclic 4-cycle packing of Kr(k), it is necessary to
use β − 1 odd differences and β − 1 even differences to construct 4-cycles having
weight 4, and then construct p 4-cycles each having weight 4 and all odd differences.

Next, consider the remaining graph, that is, the circulant graph X(Zrk,Ω =
±{a, b, c, d}), where exactly one of elements in Ω , say a, is even and the rest is all
odd. The proof then follows from Lemmas 2.4 and 2.6 by constructing the circulant
graphs X(Zrk,±{b}) with b = rk/4 and X(Zrk,±{c, d}) with c + d = rk/2. �

Remark that by Lemma 2.4, the circulant graph X(Zrk,±{a}) with rk and a both
even is not a Hamiltonian cycle. It is not difficult to see that if r = 2 and k ≡ 7
(mod 8), then the leave of a maximum cyclic 4-cycle packing of K2(k) is the union



374 J Comb Optim (2007) 14: 365–382

of a 1-factor and the circular graph X(Zrk,±{a, b, c}) with a, b, c odd. Moreover,
the leave of a maximum cyclic 4-cycle packing of Kr(k) is a 1-factor whenever r ≡ 0
(mod 8) and k ≡ 1 (mod 2), r ≡ 2 (mod 4) and k ≡ 1 (mod 8), or r ≡ 4 (mod 8)
and k ≡ 1 (mod 4). Since the technique of proofs is analogous, in what follows, we
shall list the connection sets without the details of verification. Furthermore, since
the consequences in Lemma 5.1 will be repeatedly used later, for simplicity, we will
not mention these again.

Proposition 5.2 If r ≡ 0 (mod 8) and k ≡ 1 (mod 2), then there exists a maximum
cyclic 4-cycle packing of Kr(k) with leave a 1-factor.

Proof Let r = 8t . The proof is divided into 4 cases according to whether k ≡ 3,5,7,
or 1 (mod 8).

Case 1. k ≡ 3 (mod 8), say k = 8s + 3.

Ωa,i = ±{1 + i, rk/2 − 1 − i}, i = 0,1,2;
Ωb,i = ±{4,5,6,7} ⊕ 4i, i = 0, . . . ,2t − 2;
Ωc,i = ±{(4s + 1)r + 1, (4s + 1)r + 2, (4s + 1)r + 3, (4s + 1)r + 4} ⊕ 4i,

i = 0, . . . , t − 2;
Ωd,i = ±{r + 1,2r + 1,3r + 1,4r + 1} ⊕ 4ir, i = 0, . . . , s − 1;
Ωi,j = ±{r + 2, r + 3,2r + 2,2r + 3} ⊕ 2i ⊕ 2jr,

i = 0, . . . ,4t − 2 and j = 0, . . . ,2s − 1.

Case 2. k ≡ 5 (mod 8), say k = 8s + 5.

Ωa = ±{rk/4};
Ωb = ±{rk/4 − 1, rk/4 + 1};
Ωc,i = ±{(2s + 1)r + 1, (2s + 1)r + 2, rk/4 + 2, rk/4 + 3} ⊕ 2i,

i = 0, . . . , t − 2;
Ωd,i = ±{rk/4 + 2t, rk/4 + 2t + 1, rk/4 + 2t + 2, rk/4 + 2t + 3} ⊕ 4i,

i = 0, . . . , t − 1;
Ωe = ±{1, rk/2 − 1};
Ωf = ±{2,3, (4s + 2)r + 1, (4s + 2)r + 2};
Ωg,i = ±{4,5,6,7} ⊕ 4i, i = 0, . . . ,2t − 2;
Ωh = ±{(4s + 2)r + 3, (4s + 2)r + 4, (4s + 2)r + 5, (4s + 2)r + 6} ⊕ 4i,

i = 0, . . . , t − 2;
Ω ′

i = ±{r + 1,2r + 1, (2s + 2)r + 1, (2s + 3)r + 1} ⊕ 2ir, i = 0, . . . , s − 1;
Ωi,j = ±{r + 2, r + 3, (2s + 2)r + 2, (2s + 2)r + 3} ⊕ 2i ⊕ rj,

i = 0, . . . , (r − 4)/2 and j = 0, . . . ,2s − 1.
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Case 3. k ≡ 7 (mod 8), say k = 8s + 7.

Ωi = ±{1, r + 1,2r + 1,3r + 1} ⊕ 4ir, i = 0, . . . , s;
Ω ′

i = ±{2,3, r + 2, r + 3} ⊕ 2ir, i = 0, . . . ,2s + 1;
Ωi,j = ±{4,5,6,7} ⊕ 4i ⊕ rj, i = 0, . . . ,2t − 2 and j = 0, . . . ,4s + 2;
Ω ′′

i = ±{(4s + 3)r + 4, (4s + 3)r + 5, (4s + 3)r + 6, (4s + 3)r + 7} ⊕ 4i,

i = 0, . . . , t − 2.

Case 4. k ≡ 1 (mod 8), say k = 8s + 9.

Ωa = ±{rk/4};
Ωb = ±{rk/4 − 1, rk/4 + 1};
Ωc,i = ±{(2s + 2)r + 1, (2s + 2)r + 2, rk/4 + 2, rk/4 + 3} ⊕ 2i,

i = 0, . . . , t − 2;
Ωd,i = ±{rk/4 + 2t, rk/4 + 2t + 1, rk/4 + 2t + 2, rk/4 + 2t + 3} ⊕ 4i,

i = 0, . . . , t − 1;
Ωe,i = ±{1, r + 1, (2s + 3)r + 1, (2s + 4)r + 1} ⊕ 2ir, i = 0, . . . , s;
Ωf = ±{(2s + 1)r + 2, (2s + 1)r + 3,4(s + 1)r + 2,4(s + 1)r + 3};
Ωg,i = ±{(2s + 1)r + 4, (2s + 1)r + 5, (2s + 1)r + 6, (2s + 1)r + 7} ⊕ 4i,

i = 0, . . . ,2t − 2;
Ωh = ±{4(s + 1)r + 4,4(s + 1)r + 5,4(s + 1)r + 6,4(s + 1)r + 7} ⊕ 4i,

i = 0, . . . , t − 2;
Ωi,j = ±{2,3, (2s + 3)r + 2, (2s + 3)r + 3} ⊕ 2i ⊕ rj,

i = 0, . . . ,4t − 2 and j = 0, . . . ,2s. �

When r ≡ 2 (mod 8) and k ≡ 1, 3, 5, or 7 (mod 8), the proof will be split into two
cases according to whether r = 2 or r > 2.

Proposition 5.3 If r ≡ 2 (mod 8) and k ≡ 1 (mod 8), then there exists a maximum
cyclic 4-cycle packing of Kr(k) with leave a 1-factor.

Proof Let k = 8s + 9.
Case 1. r = 2.

Ωi = ±{1,3,5,7} ⊕ 8i, i = 0, . . . , s.

Case 2. r > 2, say r = 8t + 10.

Ωi = ±{1, r + 1,2r + 1,3r + 1} ⊕ 4ir, i = 0, . . . , s;
Ωi,j = ±{2,3,4,5} ⊕ 4i ⊕ rj, i = 0, . . . ,2t + 1 and j = 0, . . . ,4s + 3;
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Ω ′
i = ±{4(s + 1)r + 1,4(s + 1)r + 2,4(s + 1)r + 3,4(s + 1)r + 4} ⊕ 4i,

i = 0, . . . , t. �

Proposition 5.4 If r ≡ 2 (mod 8) and k ≡ 3 (mod 8), then there exists a maximum
cyclic 4-cycle packing of Kr(k) with leave the union of a 1-factor and a Hamiltonian
cycle.

Proof The Hamiltonian cycle is the circulant graph X(Zrk,±{1}). Let k = 8s + 3.
Case 1. r = 2.

Ωi = ±{3,5,7,9} ⊕ 8i, i = 0, . . . , s − 1.

Case 2. r > 2, say r = 8t + 10.

Ωa,i = ±{2,3,4,5} ⊕ 4i, i = 0, . . . ,2t + 1;
Ωb,i = ±{r + 1,2r + 1,3r + 1,4r + 1} ⊕ 4ir, i = 0, . . . , s − 1;
Ωi,j = ±{r + 2, r + 3, r + 4, r + 5} ⊕ 4i ⊕ rj,

i = 0, . . . ,2t + 1 and j = 0, . . . ,4s − 1;
Ωc,i = ±{(4s + 1)r + 1, (4s + 1)r + 2, (4s + 1)r + 3, (4s + 1)r + 4} ⊕ 4i,

i = 0, . . . , t. �

Proposition 5.5 If r ≡ 2 (mod 8) and k ≡ 5 (mod 8), then there exists a maximum
cyclic 4-cycle packing of Kr(k) with leave the union of a 1-factor and 2 Hamiltonian
cycles.

Proof The 2 Hamiltonian cycles are respectively the circulant graphs X(Zrk,±{1})
and X(Zrk,±{rk/2 − 2}). Let k = 8s + 5.

Case 1. r = 2.

Ωi = ±{3,5,7,9} ⊕ 8i, i = 0, . . . , s − 1.

Case 2. r > 2, say r = 8t + 10.

Ωa,i = ±{2,3,4,5} ⊕ 4i, i = 0, . . . ,2t + 1;
Ωb,i = ±{r + 1,2r + 1,3r + 1,4r + 1} ⊕ 4ir, i = 0, . . . , s − 1;
Ωi,j = ±{r + 2, r + 3, r + 4, r + 5} ⊕ 4i ⊕ rj,

i = 0, . . . ,2t + 1 and j = 0, . . . ,4s − 1;
Ωc,i = ±{(4s + 1)r + 1, (4s + 1)r + 2, (4s + 1)r + 3, (4s + 1)r + 4} ⊕ 4i,

i = 0, . . . ,2t + 1;
Ω = ±{(4s + 2)r − 1, (4s + 2)r + 1, rk/2 − 3, rk/2 − 1};
Ωd,j = ±{(4s + 2)r + 2, (4s + 2)r + 3, (4s + 2)r + 4, (4s + 2)r + 5} ⊕ 4i,

i = 0, . . . , t − 1. �
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Proposition 5.6

(1) If r = 2 and k ≡ 7 (mod 8), then there exists a maximum cyclic 4-cycle packing
of Kr(k) with leave the union of a 1-factor and 3 Hamiltonian cycles.

(2) If r ≡ 2 (mod 8) (r > 2) and k ≡ 7 (mod 8), then there exists a maximum cyclic
4-cycle packing of Kr(k) with leave the union of a 1-factor and 2 (rk/2)-cycles.

Proof Let k = 8s + 7.
(1) The 3 Hamiltonian cycles are respectively the circulant graphs X(Zrk,±{1}),

X(Zrk,±{4s + 3}), and X(Zrk,±{8s + 5}).
Ωi = ±{3,5,4s + 5,4s + 7} ⊕ 4i, i = 0, . . . , s − 1.

(2) By virtue of Lemma 2.4, the circulant graph X(Zrk,±{2}) is the union of 2
(rk/2)-cycles. Set r = 8t + 10.

Ωa = ±{3, rk/2 − 3};
Ωb = ±{4,5, rk/2 − 2, rk/2 − 1};
Ωc,i = ±{6,7,8,9} ⊕ 4i, i = 0, . . . ,2t;
Ωd,i = ±{(4s + 3)r + 2, (4s + 3)r + 3, (4s + 3)r + 4, (4s + 3)r + 5} ⊕ 4i,

i = 0, . . . , t − 1;
Ωe,i = ±{1, r + 1,2r + 1,3r + 1} ⊕ 4ir, i = 0, . . . , s;
Ωi,j = ±{r + 2, r + 3, r + 4, r + 5} ⊕ 4i ⊕ rj,

i = 0, . . . ,2t + 1 and j = 0, . . . ,4s + 1. �

Proposition 5.7 If r ≡ 4 (mod 8) and k ≡ 1 or 5 (mod 8), then there exists a maxi-
mum cyclic 4-cycle packing of Kr(k) with leave a 1-factor.

Proof We break the proof into two cases according to whether k ≡ 1 or 5 (mod 8).
Let r = 8t + 4.

Case 1. k ≡ 1 (mod 8), say k = 8s + 9.

Ω = ±{rk/4};
Ωa,i = ±{1, r + 1, (2s + 3)r + 1, (2s + 4)r + 1} ⊕ 2ir, i = 0, . . . , s;
Ωb,i = ±{2,3, (2s + 2)r + 1, (2s + 2)r + 2} ⊕ 2i, i = 0, . . . , t − 1;
Ωc,i = ±{2t + 2,2t + 3, (2s + 2)r + 2t + 2, (2s + 2)r + 2t + 3} ⊕ 2i,

i = 0, . . . ,3t;
Ωi,j = ±{r + 2, r + 3, (2s + 3)r + 2, (2s + 3)r + 3} ⊕ 2i ⊕ rj,

i = 0, . . . ,4t and j = 0, . . . ,2s;
Ωd,i = ±{(4s + 4)r + 2, (4s + 4)r + 3, (4s + 4)r + 4, (4s + 4)r + 5} ⊕ 4i,

i = 0, . . . , t − 1.
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Case 2. k ≡ 5 (mod 8), say k = 8s + 5.

Ωa = ±{1, rk/2 − 1};
Ωb = ±{rk/4};
Ωc,i = ±{2,3, (2s + 1)r + 1, (2s + 1)r + 2} ⊕ 2i, i = 0, . . . , t − 1;
Ωd,i = ±{2t + 2,2t + 3, (2s + 1)r + 2t + 2, (2s + 1)r + 2t + 3} ⊕ 2i,

i = 0, . . . ,3t;
Ωe,i = ±{r + 1,2r + 1, (2s + 2)r + 1, (2s + 3)r + 1} ⊕ 2ir, i = 0, . . . , s − 1;
Ωi,j = ±{r + 2, r + 3, (2s + 2)r + 2, (2s + 2)r + 3} ⊕ 2i ⊕ rj,

i = 0, . . . ,4t and j = 0, . . . ,2s − 1;
Ωf,i = ±{(4s + 2)r + 1, (4s + 2)r + 2, (4s + 2)r + 3, (4s + 2)r + 4} ⊕ 4i,

i = 0, . . . , t − 1. �

Proposition 5.8 If r ≡ 4 (mod 8) and k ≡ 3 or 7 (mod 8), then there exists a maxi-
mum cyclic 4-cycle packing of Kr(k) with leave the union of a 1-factor and 2 (rk/2)-
cycles.

Proof The circulant graph X(Zrk,±{2}) is the union of 2 (rk/2)-cycles. The proof is
split into two cases depending on whether k ≡ 3 or 7 (mod 8). Let r = 8t + 4.

Case 1. k ≡ 3 (mod 8).
Subcase 1.1. k = 3.

Ω = ±{1,3r/2 − 1};
Ω ′ = ±{3r/4};
Ωa,i = ±{3,4,3r/4 + 1,3r/4 + 2} ⊕ 2i, i = 0, . . . , t − 1;
Ωb,i = ±{2t + 3,2t + 4,2t + 5,2t + 6} ⊕ 4i, i = 0, . . . , t − 1;
Ωc,i = ±{r + 1, r + 2, r + 3, r + 4} ⊕ 4i, i = 0, . . . , t − 1.

Subcase 1.2. k > 3, say k = 8s + 3.

Ω = ±{1, rk/2 − 1};
Ω ′ = ±{rk/4};
Ωa,i = ±{r − 1,2r − 1, (2s + 2)r − 1, (2s + 3)r − 1} ⊕ 2ir, i = 0, . . . , s − 1;
Ωb,i = ±{3,4,5,6} ⊕ 4i, i = 0, . . . ,2t − 1;
Ωc,i = ±{(4s + 1)r + 1, (4s + 1)r + 2, (4s + 1)r + 3, (4s + 1)r + 4} ⊕ 4i,

i = 0, . . . , t − 1;
Ωi,j = ±{r + 1, r + 2, (2s + 1)r + 1, (2s + 1)r + 2} ⊕ 2i ⊕ rj,

i = 0, . . . ,4t and j = 0, . . . ,2s − 2;
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Ωd,i = ±{2sr + 1,2sr + 2,4sr + 1,4sr + 2} ⊕ 2i, i = 0, . . . ,3t;
Ωe,i = ±{2sr + 6t + 4,2sr + 6t + 5,4sr + 6t + 3,4sr + 6t + 4} ⊕ 2i,

i = 0, . . . , t − 1.

Case 2. k ≡ 7 (mod 8), say k = 8s + 7.

Ωa = ±{1,3, (4s + 3)r − 1, (4s + 3)r + 1};
Ωb = ±{rk/4};
Ωc,i = ±{4,5,6,7} ⊕ 4i, i = 0, . . . ,2t − 1;
Ωd,i = ±{(4s + 3)r + 2, (4s + 3)r + 3, (4s + 3)r + 4, (4s + 3)r + 5} ⊕ 4i,

i = 0, . . . , t − 1;
Ωe,i = ±{r + 1,2r + 1, (2s + 2)r + 1, (2s + 3)r + 1} ⊕ 2ir, i = 0, . . . , s − 1;
Ωi,j = ±{r + 2, r + 3, (2s + 2)r + 2, (2s + 2)r + 3} ⊕ 2i ⊕ rj,

i = 0, . . . ,4t and j = 0, . . . ,2s − 1;
Ωf,i = ±{(2s + 1)r + 1, (2s + 1)r + 2, (4s + 2)r + 1, (4s + 2)r + 2} ⊕ 2i,

i = 0, . . . ,3t;
Ωg,i = ±{rk/4 + 1, rk/4 + 2, (4s + 2)r + 6t + 3, (4s + 2)r + 6t + 4} ⊕ 2i,

i = 0, . . . , t − 1. �

Proposition 5.9 If r ≡ 6 (mod 8) and k ≡ 1 (mod 8), then there exists a maximum
cyclic 4-cycle packing of Kr(k) with leave a 1-factor.

Proof Let r = 8t + 6 and k = 8s + 9.

Ω = ±{(rk − 2)/4, (rk + 2)/4};
Ωa,i = ±{r − 1,2r − 1,3r − 1,4r − 1} ⊕ 4ir, i = 0, . . . , s;
Ωi,j = ±{1,2,3,4} ⊕ 4i ⊕ rj, i = 0, . . . ,2t and j = 0, . . . ,2s + 1;
Ω ′

i,j = ±{(2s + 3)r + 1, (2s + 3)r + 2, (2s + 3)r + 3, (2s + 3)r + 4} ⊕ 4i ⊕ rj,

i = 0, . . . ,2t and j = 0, . . . ,2s;
Ωb,i = ±{(2s + 2)r + 1, (2s + 2)r + 2, (rk + 2)/4 + 1, (rk + 2)/4 + 2} ⊕ 2i,

i = 0, . . . , t − 1;
Ωc,i = ±{(rk + 2)/4 + 2t + 1, (rk + 2)/4 + 2t + 2, (4s + 4)r + 1,

(4s + 4)r + 2} ⊕ 2i, i = 0, . . . ,2t. �

Proposition 5.10 If r ≡ 6 (mod 8) and k ≡ 3 (mod 8), then there exists a maximum
cyclic 4-cycle packing of Kr(k) with leave the union of a 1-factor and a Hamiltonian
cycle.
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Proof The Hamiltonian cycle is the circulant graph X(Zrk,±{1}). Let r = 8t +6 and
k = 8s + 3.

Ω = ±{(rk − 2)/4, (rk + 2)/4};
Ωa,i = ±{r + 1,2r + 1, (2s + 1)r + 1, (2s + 2)r + 1} ⊕ 2ir, i = 0, . . . , s − 1;
Ωi,j = ±{2,3, (2s + 1)r + 2, (2s + 1)r + 3} ⊕ 2i ⊕ rj, i = 0, . . . ,4t + 1 and

j = 0, . . . ,2s − 1;
Ωb,i = ±{2sr + 2,2sr + 3, (rk + 2)/4 + 1, (rk + 2)/4 + 2} ⊕ 2i,

i = 0, . . . , t − 1;
Ωc,i = ±{2sr + 2t + 2,2sr + 2t + 3, (4s + 1)r + 1, (4s + 1)r + 2} ⊕ 2i,

i = 0, . . . ,2t. �

Proposition 5.11 If r ≡ 6 (mod 8) and k ≡ 5 (mod 8), then there exists a maximum
cyclic 4-cycle packing of Kr(k) with leave the union of a 1-factor and 2 Hamiltonian
cycles.

Proof The Hamiltonian cycles are the circulant graphs X(Zrk,±{rk/2 − 2}) and
X(Zrk,±{(rk − 2)/4}). Let r = 8t + 6 and k = 8s + 5.

Ω = ±{1, rk/2 − 1};
Ωa,i = ±{r + 1,2r + 1, (2s + 2)r + 1, (2s + 3)r + 1} ⊕ 2ir, i = 0, . . . , s − 1;
Ωi,j = ±{2,3,4,5} ⊕ 4i ⊕ rj, i = 0, . . . ,2t and j = 0, . . . ,2s;
Ω ′

i,j = ±{(2s + 2)r + 2, (2s + 2)r + 3, (2s + 2)r + 4, (2s + 2)r + 5} ⊕ 4i ⊕ rj,

i = 0, . . . ,2t and j = 0, . . . ,2s − 1;
Ωb,i = ±{(2s + 1)r + 1, (2s + 1)r + 2, (rk − 2)/4 + 1, (rk − 2)/4 + 2} ⊕ 2i,

i = 0, . . . , t − 1;
Ωc,i = ±{(rk − 2)/4 + 2t + 1, (rk − 2)/4 + 2t + 2, (4s + 2)r + 1,

(4s + 2)r + 2} ⊕ 2i, i = 0, . . . ,2t − 1;
Ωd = ±{(rk − 2)/4 + 6t + 1, (rk − 2)/4 + 6t + 2, (rk − 2)/4 + 6t + 3,

(rk − 2)/4 + 6t + 4}. �

Proposition 5.12 If r ≡ 6 (mod 8) and k ≡ 7 (mod 8), then there exists a maximum
cyclic 4-cycle packing of Kr(k) with leave the union of a 1-factor and 2 (rk/2)-cycles.

Proof The circulant graph X(Zrk,±{rk/2 − 1}) is the union of 2 (rk/2)-cycles. Let
r = 8t + 6 and k = 8s + 7.

Ωa,i = ±{1, r + 1,2r + 1,3r + 1} ⊕ 4ir, i = 0, . . . , s;
Ωi,j = ±{2,3,4,5} ⊕ 4i ⊕ rj, i = 0, . . . ,2t and j = 0, . . . ,4s + 2;
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Ωb,i = ±{(4s + 3)r + 2, (4s + 3)r + 3, (4s + 3)r + 4, (4s + 3)r + 5} ⊕ 4i,

i = 0, . . . , t − 1. �

6 Conclusion

Combining Lemma 2.1, Theorem 3.1, and Propositions 4.2 to 4.6 and 5.2 to 5.12, we
have the following main result.

Theorem 6.1 There exists a maximum cyclic 4-cycle packing of the balanced com-
plete multipartite graph Kr(k) with leave L where L is obtained as follows:

(1) L is the empty set if k is even or k is odd and r ≡ 1 (mod 8);
(2) L is 3 Hamiltonian cycles if r ≡ 3 (mod 8) and k ≡ 3 (mod 4) or r ≡ 7 (mod 8)

and k ≡ 1 (mod 4);
(3) L is 2 Hamiltonian cycles if r ≡ 5 (mod 8) and k ≡ 1 (mod 2);
(4) L is a Hamiltonian cycle if r ≡ 3 (mod 8) and k ≡ 1 (mod 4) or r ≡ 7 (mod 8)

and k ≡ 3 (mod 4);
(5) L is a 1-factor if r ≡ 0 (mod 8) and k ≡ 1 (mod 2), r ≡ 2 (mod 4) and k ≡ 1

(mod 8), or r ≡ 4 (mod 8) and k ≡ 1 (mod 4);
(6) L is the union of a 1-factor and 3 Hamiltonian cycles if r = 2 and k ≡ 7 (mod 8);
(7) L is the union of a 1-factor and 2 Hamiltonian cycles if r ≡ 2 (mod 4) and k ≡ 5

(mod 8);
(8) L is the union of a 1-factor and a Hamiltonian cycle if r ≡ 2 (mod 4) and k ≡ 3

(mod 8); and
(9) L is the union of a 1-factor and 2 (rk/2)-cycles if r ≡ 2 (mod 4) (>2) and k ≡ 7

(mod 8) or r ≡ 4 (mod 8) and k ≡ 3 (mod 4).
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