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基於深度資訊之 

智慧型人形偵測系統設計 

 

學生: 陳咨瑋                 指導教授: 陳永平 教授 

國立交通大學電控工程研究所 

摘 要 

 近年來，由於人形偵測可應用的領域相當廣泛，因此受到重視且被深入的

研究與討論，例如居家照護、人機溝通、智慧型汽車等皆是。本篇論文提出以

Kinect 所產生的深度圖為基礎的智慧型人形偵測系統，除了提高人形偵測率外，

同時解決人形遮蔽的問題。整個系統分成三個部分：前景偵測、特徵擷取以及人

形識別。雖然人會有許多不同的姿勢，但主要都是以垂直分布的方式呈現並具有

一定的高度，根據此特性本系統先去偵測人形可能存在的區域，並且濾掉背景以

增快速度；之後藉由邊緣擷取和距離轉換來萃取人形特徵，用以增加辨識率；此

外畫面中的人形常因他人或物品之遮擋而只露出部分輪廓，為了解決這種遮蔽問

題，本系統並不直接偵測整個人形，而是先利用凹槽匹配法找出各個身體部位，

像是頭、身體、腳等，再利用類神經網路把各身體部位加以組合，並依此判斷是

否為人形。根據實驗結果，本系統確實可以快速地偵測出人形，同時解決遮蔽問

題，使偵測率提高至 90%以上，甚至高達 95%。 
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Intelligent Human Detection System Design 

Based on Depth Information 

 

Student：Tzu-Wei Chen      Advisor：Prof. Yon-Ping Chen 

Institute of Electrical Control Engineering 

National Chiao-Tung University 

ABSTRACT 

This thesis proposes an intelligent human detection system based on depth 

information generated by Kinect to find out humans from a sequence of images and 

resolve occlusion problems. The system is divided into three parts, including 

region-of-interest (ROI) selection, feature extraction and human recognition. First, the 

histogram projection and connected component labeling are applied to select the ROIs 

according to the property that human would present vertically in general. Then, 

normalize the ROIs based on the distances between objects and camera and extract the 

human shape feature by the edge detection and distance transformation to obtain the 

distance image. Finally, the chamfer matching is used to search possible parts of 

human body under component-based concept, and then shape recognition is 

implemented by neural network according to the combination of parts of human body. 

From the experimental results, the system could detect humans with high accuracy 

rate and resolve occlusion problems.    
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Chapter 1 

Introduction 

1.1 Preliminary 

In recent years, the techniques for human detection in images or videos have 

been widely and intensively studied because they have a variety of applications in 

intelligent vehicles, video surveillance and advanced robotics. Take the program of 

our lab as an example, it aims to develop a robot which could take care of children 

and interact with them. In order to have a better interaction between robot and 

children, the robots have to judge whether there are children in the image or whether 

the object in front of robots is child or not. Therefore, human detection is an important 

and essential tool for the development of robots. Moreover, in order to track or play 

with children, the robots have to move. For this reason, the technique of human 

detection should be realized not only on the static camera, but also on the moving 

camera.  

However, detecting humans is still a difficult task because of the following 

reasons: 

 Variation: The range of human appearance is wide because of various shapes, 

poses, clothes, etc. Therefore, it is hard to handle all the situations using only 

one model.  

 Moving camera: If the camera is static, it is simple to build a background 

model to implement foreground segmentation. However, when the camera is 

installed on a moving platform, it is hard to segment foreground using 

conventional techniques.  
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 Occlusion: When there are more than one human in the image, they might 

occlude each other and the occluded human would only reveal left-side body or 

right-side body in the image. Similarly, the human would often be occluded by 

other objects, like desks, chairs, shelves, etc. Hence, it is required to detect 

human correctly even when the body is partially occluded. 

 Distance: The detection process would be influenced by the distances between 

objects and camera. If the distance is larger, the object would have smaller size 

in the image.  

According to the reasons above, there are a lot of problems having to be conquered. In 

order to deal with the problems, many human detection methods [1-9] have been 

proposed. In general, the overall process could be roughly separated into three main 

steps: foreground segmentation, feature extraction and human recognition. 

Foreground segmentation is implemented to filter out background regions or the 

regions which are impossible to contain a human. Consequently, the search space 

would be reduced and the speed could be highly enhanced. Further, the appropriate 

features, like edges [7-9], skeletons [10], etc., would be extracted in order to detect 

human efficiently and correctly. Finally, the set of features would be delivered into 

human recognition system to obtain the result. The related techniques and methods 

would be introduced in the following chapters. 
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1.2 System Overview 

In this section, our human detection method would be introduced in brief, 

including hardware and software architecture, experimental environment, etc.  

1.2.1 Hardware Architecture 

For the hardware architecture, the system uses Xbox Kinect to acquire image 

frames, including RGB image and depth image. Table 1.1 shows the specification of 

Kinect and Fig-1.1 is an example of depth image. In the depth image, the pixel which 

has lower intensity means that the distance between object and camera is smaller. 

Besides, all the points are offset to 0, the dark areas, if the sensor is not able to 

measure their depth. Further, the frames captured by Kinect would be delivered into 

Personal Computer (PC) and then be processed to implement human detection. The 

specification of the computer is Intel® Core™ i5-2410M CPU @ 2.30GHz, 2GB 

memory, and Windows 7 operation system. The frame rate is about 30 frames per 

second and the frame is processed using C/C++ and MATLAB.  

Table 1.1 Specification of Kinect [11] 

 
Effective Range 

Depth sensor range 1m ~ 4m  

Field of view 
Horizontal field of view: 57 degrees 

Vertical field of view: 43 degrees 

Physical tilt range ±27 degrees 

Data stream 
320×240 16-bit depth @ 30 frames/sec 

640×480 32-bit color @ 30 frames/sec 
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1.2.2 Software Architecture 

For the software architecture, the image shown in Fig-1.2 is the flowchart of the 

proposed system. At first, the system receives the depth images from Kinect and then 

selects the region-of-interest (ROI) based on the depth information. ROI selection 

could be separated into two steps: histogram projection and connected component 

labeling (CCL). After ROI selection, the size of the ROI would be normalized based 

on the distance between object and camera. Then, edge detection and distance 

transformation are implemented to extract human shape features. At the final stage, 

the overall features are delivered into the human recognition system to judge whether 

the ROIs contain human or not. The experimental environment is our laboratory and 

the Kinect camera is at about 100cm height. Moreover, there are two limitations when 

implementing the human detection system: first, the detection distance is between 1m 

to 4m because of the hardware limitation of Kinect. Second, the human detection 

system focuses on detecting standing or walking people only. 

 

 

Fig-1.1 Example of depth image 
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The remainder of this thesis is organized as follows. Chapter 2 describes the 

related works of the system. Chapter 3 introduces the proposed human detection 

system in detail. Chapter 4 shows the experimental results. Chapter 5 is the 

conclusions of the thesis and the future works.  

 

 

 

 

 

 

 

Input Depth Image 

Connected Component Labeling 

Histogram Projection 

Normalization 

Edge Detection Distance Transformation 

Human Recognition System 

Step I 

ROI selection 

Step II 

Feature extraction 

Step III 

Human recognition 

Fig-1.2 Software architecture 
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Chapter 2 

Related Works  

2.1 Human Detection Methods 

In recent years, many human detection approaches have been proposed. In 

general, the overall process of human detection could be roughly separated into three 

main steps: foreground segmentation, feature extraction and human recognition. 

2.1.1 Foreground Segmentation 

In order to reduce computational cost, the foreground segmentation is required 

to filter out background regions and segment the region-of-interest (ROI). There are 

various methods for foreground segmentation. Some are based on 2-D information, 

such as optical flow method, background subtraction, etc. Optical flow [12-14] 

reflects the image changes due to motion during a time interval, and the optical flow 

field is the velocity field that represents the three-dimensional motion of foreground 

points across a two-dimensional image. It is accurate at detecting interesting 

foreground region, but it has complex computation and is hard to realize in real-time. 

Background subtraction [15-18] is the most common method for segmentation of 

foreground regions in sequences of images. This method has to build the initial 

background model in order to subtract background image from current image for 

obtaining foreground regions. Through this method, the detected foreground regions 

are very complete and the computational cost is low. But this method could not be 

used in the presence of camera motion, and the background model must be updated 

continuously because of the illumination change or changeable background. 
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Other methods are based on some types of additional information such as 

infrared images [9] or depth images [5-9, 19]. The use of depth image to implement 

human detection would have some distinct advantages over conventional techniques. 

First, it is robust to illumination change and influence of distance. Second, it could 

deal with occlusion problems efficiently. Third, it is suitable for moving camera 

because no background modeling is required. Based on the depth information, the 

foreground segmentation could be implemented by finding the vertical distribution of 

objects in the 3-D space because a human would present vertically in general. 

However, implementing stereo-vision requires more than one camera and often has 

distance limitation. 

2.1.2 Feature Extraction  

Once the foreground regions are detected, different combinations of features and 

classifiers can be applied to make the distinction between human and non-human. The 

objective of feature extraction is extracting human-related features to increase 

detection rate, and there are many kinds of features which could be used to recognize 

human beings. The first kind of features is based on gradient computation, like edge 

[7-9], histogram of oriented gradient (HOG)[1, 20], Haar-like features [21], etc. The 

gradient computation aims at identifying points with brightness changing sharply or 

discontinuously in a digital image. Therefore, the boundaries of objects and the shape 

information of human could be found and extracted based on gradient computation. 

Fig-2.1 shows the examples of Haar-like features. The second kind of feature is 

motion-based features [8, 21]. Because a human, especially a walking human, would 

have periodic motion, then the human could be distinguished from other objects based 

on the periodicity. Other features, like texture [7], skeleton [10], SIFT [22], etc., are 
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often used in human detection. However, because of the high variation of human 

appearance, it is common to use more than one kind of features to implement human 

detection. 

 

2.1.3 Human Recognition 

After feature extraction, the system has to distinguish the human with other 

objects based on the set of features. Many approaches use the techniques of machine 

learning to recognize humans, including support vector machine (SVM)[1, 16], 

artificial neural network (ANN)[9, 23, 24], AdaBoost[2, 21], etc. The main 

advantages of machine learning are the tolerance of variation and its learning ability. 

However, it needs many training samples to make the system to learn how to judge 

human and non-human. Support vector machine is a powerful tool to solve pattern 

recognition problems. It can determine the best discriminant support vectors for 

human detection. Similarly, artificial neural network has been applied successfully to 

pattern recognition and image analysis. ANN uses a lot of training samples to make 

the network to be capable to judge human and non-human. AdaBoost is used to 

construct a classifier based on a weighted linear combination of selected features, 

which yield the lowest error on the training set consisting of human and non-human. 

Besides machine learning, the technique of template matching [3-6, 25, 26] is 

also widely used in human detection. It is easy to implement and has low 

computational cost, but the variation tolerance is less than machine learning. In [5, 6], 

Fig-2.1 Examples of Haar-like features 
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the system first uses head template to find possible human candidates, because the 

variation of human head is much less than other parts of body. Then, use other 

features to further judge whether the candidates are human or not. In [4], the system 

combines a large amount of human poses into a “template tree,” and the similar poses 

would be grouped together. Therefore, it could have more variation tolerance and still 

has low computational cost because of its tree structure. However, the process of 

collecting human poses and determining the similarities between different poses is 

time-consuming and difficult. 

The methods introduced above are directly detecting the whole human shape. 

However, this kind of methods has to deal with high variation and is hard to handle 

the occlusion problem. Therefore, component-based concept [2, 3, 25-27] is proposed 

to achieve higher detection rate and resolve the occlusion problems. This kind of 

approaches attempt to break down the whole human shape into manageable subparts. 

In other words, the whole human shape is represented as a combination of parts of 

body. Therefore, the system doesn’t have to directly detect the whole human shape, 

and it could use component-based detectors to detect different parts of body. There are 

some advantages of component-based detection methods. First, the variation of 

human appearance could be highly reduced. Second, it could deal with partially 

occlusion. However, it might cause more computational cost and influence the 

detection speed. 

 

 

 



 

10 
 

2.2 Introduction to ANNs 

The human nervous system consists of a large amount of neurons. Each neuron 

is composed of four parts, including somas, axons, dendrites and synapses, and is 

capable of receiving, processing, and passing signals from one to another. To mimic 

the characteristics of the human nervous system, recently investigators have 

developed an intelligent algorithm, called artificial neural networks or ANNs in brief. 

Through proper learning processes, ANNs have been successfully applied to some 

complicated problems, such as image analysis, speech recognition, adaptive control, 

etc. In this thesis, the ANNs will be adopted to implement human detection via 

intelligent learning algorithms. 

Fig-2.2 shows the basic structure of a neuron, whose input-output relationship is 

described as 

1

n

i i
i

y f w x b
=

 = + 
 
∑   (2.1) 

where 𝑤𝑖 is the weight of the input 𝑥𝑖, 𝑏 is the bias and ( )f  is the activation 

function. There are three common activation functions, including linear function, 

log-sigmoid function and tan-sigmoid function, which are described as below: 

(1) Linear function 

( )f x x=  (2.2) 

(2) Log-sigmoid function 

1( )
1 xf x

e−=
+

 (2.3) 

(3) Tan-sigmoid function 

( )
x x

x x

e ef x
e e

−

−

−
=

+
 (2.4) 
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In detail, each input 𝑥𝑖 is multiplied by a corresponding weight 𝑤𝑖, and the sum of 

weighted inputs is delivered to the activation function to determine the activation 

level of the neuron.  

 

 A general multilayer feed-forward network is composed of one input layer, one 

output layer, and one or some hidden layers. For example, Fig-2.3 shows a neural 

network with one input layer, one output layer and two hidden layers. Each layer is 

formed by neurons whose basic structure is depicted in Fig-2.2. The input layer 

receives signals from the outside world, and then delivers their responses layer by 

layer. From the output layer, the overall response of the network can be attained. As 

expected, a neural network with multi-hidden layers is indeed able to deal with more 

complicated problems compared to that with a single hidden layer. Accordingly, the 

training process of multi-hidden layer networks may be more tedious. 

 

w1 

w2 

w3 

wn 

b 

x2 

x3 

xn 

x1 

y Σ 

Fig-2.2 Basic structure of ANNs 
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    In addition to the structure, it is required to determine the way of training for a 

neural network. Generally, the training could be separated into two kinds of learning 

process, supervised and unsupervised. The main difference between them is whether 

the set of target outputs is given or not. Training via supervised learning is mapping a 

given set of inputs to a specified set of target outputs. The weights are then adjusted 

according to a pre-assigned learning algorithm. On the other hand, unsupervised 

learning could self-organize a neural network without any target outputs, and modify 

the weights so that the most similar inputs can be assigned to the same group. In this 

thesis, the neural network is designed for image recognition based on supervised 

learning, and thus both the input and target images are required.  

 

 

Fig-2.3 Multilayer feed-forward network 
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2.3 Back-Propagation Network 

In supervised learning, the back-propagation algorithm, BP algorithm in brief, is 

a common method for training artificial neural networks to perform a given task. The 

BP algorithm was proposed in 1986 by Rumelhart, Hinton and Williams, which is 

based on the gradient steepest descent method for updating the weights to minimize 

the total square error of the output. To explain the BP algorithm clearly, a neural 

network with one hidden layer is given and shown in Fig-2.4. Let the inputs be 𝑥𝑖, 

i=1,2,…, I, and the outputs be 𝑦𝑗, j=1,2,…, J, where I and J are respectively the total 

numbers of input and output neurons. For the hidden layer with K hidden neurons, it 

receives information from input layer and sends out the response to the output layer. 

These three layers are connected by two sets of weights, 𝑣𝑖𝑖 and 𝑤𝑘𝑘, where 𝑣𝑖𝑖 

connects the i-th input node to the k-th hidden node, and 𝑤𝑘𝑗 further connects the 

k-th hidden node to the j-th output node. 

 

 

x2 

x1 

xI 

y1 

y2 

yJ 

hk 

hK 

vik wkj 

h
 

xi yj 

Fig-2.4 Neural network with one hidden layer 
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 Based on the neural network in Fig-2.4, the BP algorithm for supervised 

learning is generally processed step by step as below: 

Step 1: Set the maximum tolerable error 𝐸𝑚𝑚𝑚 and then the learning rate 𝜂 between 

0.1 and 1.0 to reduce the computing time or increase the precision. 

Step 2: Set the initial weight and bias value of the network randomly. 

Step 3: Input the training data, 𝑥 = [ 𝑥1  𝑥2   ⋯   𝑥𝐼 ]𝑇 and the desired output data 

𝑑 = [ 𝑑1  𝑑2   ⋯   𝑑𝐽 ]𝑇. 

Step 4: Calculate each output of the K neurons in hidden layer 

  
1

,       1,2...,
I

k h ik i
i

h f v x k K
=

 = = 
 
∑  (2.5) 

where ( )hf   is the activation function, and then each output of the J neurons 

in output layer 

  
1

,       1,2...,
K

j y kj k
k

y f w h j J
=

 = = 
 
∑  (2.6) 

where ( )yf   is the activation function. 

Step 5: Calculate the following error function 

   
2

2

1 1 1

1 1( ) ( )
2 2

J J K

j j j y kj k
j j k

E w d y d f w h
= = =

  = − = −  
  

∑ ∑ ∑   (2.7) 

Step 6: According to gradient descent method, determine the correction of weights as 

below: 

 j
kj kj k

kj j kj

yE Ew h
w y w

h h hδ
∂∂ ∂

∆ = − = − =
∂ ∂ ∂

  (2.8)
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1

J
j k

ik ikj i
jik j k ik

yE E hv x
v y h v

h h hδ
=

∂∂ ∂ ∂
∆ = − = − =

∂ ∂ ∂ ∂∑

 

(2.9) 

where 

  
1

( )
K

kj j j y kj k
k

d y f w hd
=

  ′= −   
  
∑   

 1 1 1

( )
J K I

ikj j j y kj k kj h ik i
j k i

d y f w h w f v xd
= = =

    ′ ′= −    
    

∑ ∑ ∑
 

Step 7: Propagate the correction backward to update the weights as below:

 
( 1) ( )

 
( 1) ( )

w n w n w
v n v n v

+ = + ∆
 + = + ∆

  (2.10) 

Step 8: Check the next training data. If it exists, then go to Step 3, otherwise, go to 

Step 9. 

Step 9: Check whether the network converges or not. If
 maxE E< , terminate the 

training process, otherwise, begin another learning circle by going to Step 1.  

BP learning algorithm can be used to model various complicated nonlinear 

functions. In recent years, the BP learning algorithm is successfully applied to many 

domain applications, such as pattern recognition, adaptive control, clustering problem, 

etc. In the thesis, the BP algorithm was used to learn the input-output relationship for 

clustering problem. 
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2.4 Morphology Operations 

 There are two common morphology operations in image processing, called 

dilation and erosion [28-30], which are related to the reflection and translation of a set 

A in the 2-D integer space 𝑍2. The reflection of set A about its origin is defined as 

  𝐴̂ = {𝑎� | 𝑎� = −𝑎, for 𝑎 ∈ 𝐴}  (2.11) 

and the translation of set A by z is defined as 

  (𝐴)𝑧 = { 𝑎𝑧 | 𝑎𝑧 = 𝑎 + 𝑧, for 𝑎 ∈ 𝐴} (2.12) 

where all the points in set A are moved by  𝑧 = (𝑧1, 𝑧2). 

 The dilation and erosion operations are often used to repair gaps and eliminate 

noise regions, respectively. The dilation of A by B is defined as 

  𝐴⊕ 𝐵 = �𝑧|(𝐵�)𝑧 ∩ 𝐴 ≠ 𝜙� (2.13) 

where A and B are two sets in 𝑍2. The dilation operation (2.13) results in the set of all 

displacements, z, such that A is overlapped at least one element by 𝐵� . Take Fig-2.5 

for an example, where the elements of A and B are shown shaded and the background 

is white. The shaded area in Fig-2.5(c) is the result of the dilation between Fig-2.5(a) 

and Fig-2.5(b). Through the dilation operation, the objects in the image could grow or 

thicken, so the dilation could repair gaps. Similarly, the shaded area in Fig-2.5(e) is 

the result between Fig-2.5(a) and Fig-2.5(d). Comparing Fig-2.5(c) and Fig-2.5(e), we 

can find that when the mask becomes larger, the dilation area will also extend. 
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 The opposite of dilation is known as the erosion. For sets A and B in 𝑍2, the 

erosion of A by B is defined as 

  𝐴⊖ 𝐵 = {𝑧|(𝐵)𝑧 ⊆ 𝐴} (2.14) 

which results in the set of all points z such that B, after translated by z, is contained in 

A. Unlike dilation, which is a thickening operation, erosion shrinks objects in the 

image. Fig-2.6 shows how erosion works. The shaded area in Fig-2.6(c) is the result 

of the erosion between Fig-2.6(a) and Fig-2.6(b). Similarly, Fig-2.6(e) shows the 

erosion of Fig-2.6(a) by Fig-2.6(d).  

 

A 

d 

d  

d/4 

d/4 

𝐵� = 𝐵 

 

𝐴⊕ 𝐵 
d 

 

d/8 d/8 

 

d/2 

d/4 

𝐶̂ = 𝐶 

 

d 

 

d/4 d/4 

d 

d/8 

d/8 

𝐴⊕ 𝐶 

Fig-2.5 Examples of dilation 

(a) 

(b) 

(c) 

(d) 

(e) 
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Fig-2.6 Examples of erosion 
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Chapter 3 

Intelligent Human Detection  

The intelligent human detection is implemented in three main steps as shown in 

Fig-3.1, including region-of-interest (ROI) selection, feature extraction and human 

recognition. The system uses depth images generated by Kinect as input and then 

selects the ROIs based on the histogram projection and connected component labeling. 

Further, the ROI is normalized and then processed by edge detection and distance 

transformation to extract necessary features. Finally, the overall feature set would be 

delivered into the human recognition system to get the results.  

 

Input Depth Image 

Connected Component Labeling 

Histogram Projection 

Normalization 

Edge Detection Distance Transformation 

Human Recognition System 

Step I 

ROI selection 

Step II 

Feature extraction 

Step III 

Human recognition 

Fig-3.1 Flowchart of the intelligent human detection system 
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Fig-3.2(a) shows an example of the depth image generated by Kinect, which 

contains 320×240 pixels with intensity values normalized into 0-255. The intensity 

value indicates the distance between object and camera, and the lower intensity value 

implies the smaller distance. Besides, all the points are offset to 0, the dark areas, if 

the sensor is not able to measure their depth. Some small dark areas are resulted from 

noises, which are undesirable and could be repaired by dilation operation. Fig-3.2(b) 

shows that the small dark areas could be filled through dilation operation.  

 

Fig-3.2 (a) Example of the depth image generated by Kinect (b) The image 
after dilation operation 
 

3.1 ROI Selection 

In general, a standing or walking human would present vertically. In other 

words, the height of human in the depth image must exceed a certain value, given as a 

threshold. Based on the threshold, the system could implement ROI selection with the 

histogram projection and connected component labeling (CCL) to increase the speed 

and detection rate. Accordingly, the system generates the rough distribution in the 3-D 

space by histogram projection and locates potential human regions by CCL. 

  

(a) (b) 
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3.1.1 Histogram Projection 

 Based on the information of depth image, the system could implement 

histogram projection in three steps, which are introduced as following:  

Step 1:  

The system computes the histogram of every column in depth image with intensity 

levels in the range [0, 255]. Let the histogram of the i-th column be 

 𝒉𝑖 = [ℎ0,𝑖 ℎ1,𝑖 ⋯ ℎ255,𝑖]𝑇 , 𝑖 = 1,2, … ,320 (3.1) 

where ℎ𝑘,𝑖 is the number of pixels related to intensity k in the i-th column. Then, 

define the histogram image as 

 𝑯 = [𝒉1 𝒉2 𝒉3 … 𝒉320] (3.2) 

with size 256×320, which can be expressed in detail as  

 𝑯 =

⎣
⎢
⎢
⎢
⎢
⎡ ℎ0,1 ℎ0,2 ℎ0,3    ℎ0,320

ℎ1,1 ℎ1,2 ℎ1,3 … ℎ1,320

ℎ2,1

ℎ255,1

ℎ2,2
⋮

ℎ255,2

ℎ2,3     ℎ2,320

⋱ ⋮
ℎ255,3 … ℎ255,320⎦

⎥
⎥
⎥
⎥
⎤

 (3.3) 

Note that the value of ℎ𝑘,𝑖 could be seen as the vertical distribution at a specific 

position in the real world. Take Fig-3.2(b) as an example and obtain the result of 

histogram computing shown in Fig-3.3. Unfortunately, there are a large amount of 

pixels of intensity k=0, that is, the first row of H contains large values of ℎ0,𝑖. As a 

result, an undesired “wall” will be formed by ℎ0,𝑖 to block other objects as shown in 

Fig-3.3.  
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Step 2: 

After histogram computing, the result has to be further processed to filter out 

unnecessary information. Since the detection distance is from 1m to 4m, the 

corresponding intensity range is [40, 240] and the components ℎ𝑘,𝑖 in H should be 

rectified as 

 ℎ𝑘,𝑖 = �ℎ𝑘,𝑖 ,     𝑘 = 40,41, … , 240
0 ,                 otherwise  (3.4) 

Clearly, the components of H in the first 40 rows and last 15 rows are all set to 0, 

which implies that the unwanted background is also filtered out because the related 

intensity is presented in the first row of H. The rectified result of Fig-3.3 is shown in 

Fig-3.4, where the histogram value ℎ𝑘,𝑖 can be treated as the vertical distribution of 

the objects at coordinate (i,k) in the real world. Comparing Fig-3.2(b) with Fig-3.4, it 

is obvious that there are four objects, which are wall, human, chair and shelf from left 

to right. Consequently, if the height of object in the image is above a threshold, it 

would have a clear shape in the histogram image. 

Fig-3.3 Result of histogram computing of Fig-3.2(b) 
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Step 3: 

The top-view image of the 3-D distribution in (i,k) coordinate is shown in Fig-3.5. If 

an object has higher vertical distribution, it would have larger intensity in the 

top-view image. Afterwards, dilation operation is implemented to enhance the interior 

connection of an object as shown in Fig-3.6(a). Finally, define the ROI image 𝑹 as 

 𝑹(𝑘 + 1, 𝑖) = �
1,   ℎ𝑘,𝑖 > 𝑀
0,   ℎ𝑘,𝑖 < 𝑀 (3.5) 

with size 256×320 and 𝑀 is a given threshold value. Therefore, the component ℎ𝑘,𝑖 

in 𝑯 would be in the ROI when it exceeds 𝑀 . The final result of histogram 

projection is shown in Fig-3.6(b). 

Fig-3.4 Filtered result of Fig-3.3 
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3.1.2 Connected Component Labeling 

Connected Component Labeling (CCL) [31] is a technique to identify different 

components and is often used in computer vision to detect connected regions 

containing 4- or 8-pixels in binary digital images. This thesis applies the 4-pixel 

connected component to label interesting regions. 

 

Shelf 

 
  

Chair 

Human 

Wall 

Fig-3.5 Example of top-view image 

(a) (b) 

Fig-3.6 (a) Top-view image after dilation operation (b) The ROI image 
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The 4-pixel CCL algorithm can be partitioned into two processes, labeling and 

componentizing. The input is a binary image like Fig-3.8(a). During the labeling, the 

image is scanned pixel by pixel, from left to right and top to bottom as shown in 

Fig-3.7, where p is the pixel being processed, and r and t are respectively the upper 

and left pixels.  

 
Fig-3.7 Scanning the image. 

Defined ( )v   and ( )l   as the binary value and the label of a pixel. N is a 

counter and its initial value is set to 1. If v(p)=0, then move on to next pixel, otherwise, 

i.e., v(p)=1, the label l(p) is determined by following rules: 

 R1. For v(r)=0 and v(t)=0, assign N to l(p) and then N is increased by 1. 

 R2. For v(r)=1 and v(t)=0, assign l(r) to l(p), i.e., l(p)=l(r). 

 R3. For v(r)=0 and v(t)=1, assign l(t) to l(p), i.e., l(p)=l(t). 

 R4. For v(r)=1, v(t)=1 and l(t)=l(r), then assign l(r) to l(p), i.e., l(p)=l(r). 

 R5. For v(r)=1, v(t)=1 and l(t)≠l(r), then assign l(r) to both l(p) and l(t), 

   i.e., l(p)=l(r) and l(t)= l(r). 

For example, after the labeling process, Fig-3.8(a) is changed into Fig-3.8(b). It is 

clear that some connected components contain pixels with different labels. Hence, it is 

required to further execute the process of componentizing, which sorts all the pixels 

r
t p

r
t p

r
t p
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connected in one component and assign them by the same label, the smallest number 

among the labels in that component. Fig-3.8(c) is the result of Fig-3.8(b) after 

componentizing. 

 

(a) Binary image 

 

(b) Labeling 

 

(c) Componentizing 

Fig-3.8 Example of 4-pixel CCL. 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 1 0 0

0 0 0 0 1 1 0 1 0 0

0 0 0 1 1 0 0 0 0 0

0 0 0 1 1 0 0 0 1 0

0 1 1 1 0 0 1 0 1 0

1 1 1 1 0 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 2 0 0

0 0 0 0 1 1 0 2 0 0

0 0 0 1 1 0 0 0 0 0

0 0 0 1 1 0 0 0 3 0

0 4 1 1 0 0 5 0 3 0

4 1 1 1 0 0 5 3 3 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 2 0 0

0 0 0 0 1 1 0 2 0 0

0 0 0 1 1 0 0 0 0 0

0 0 0 1 1 0 0 0 3 0

0 1 1 1 0 0 3 0 3 0

1 1 1 1 0 0 3 3 3 0

0 0 0 0 0 0 0 0 0 0
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In this thesis, the CCL is used to detect whether the ROI in Fig-3.6(b) contains 

human information or not. CCL could not only recognize the connected regions but 

also compute their areas. If the area of a connected region is too small, i.e., less than a 

human-related threshold, then the region would be filtered out because it is treated as 

a non-human object. The result of CCL is shown in Fig-3.9(a) where four potential 

objects are marked by red rectangles and a small dot-like region is filtered out. Then, 

map the marked objects into the depth image, correspondingly shown in Fig-3.9(b). 

Note that both Fig-3.9(a) and Fig-3.9(b) have the same horizontal coordinate. As for 

the vertical coordinate of Fig-3.9(a), it represents the intensity value of Fig-3.9(b). 

Based on their mapping, the relative regions could be found in the depth image, also 

marked by red rectangles in Fig-3.9(b).  

 

 

 

Fig-3.9 (a) Result of CCL. (b) The corresponding regions in the depth image 

(a) (b) 
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Besides, the result of CCL could also be used to judge the cases of occlusion. In 

general, the occlusion could be roughly separated into four cases: non-occlusion, 

frontal-occlusion, left-occlusion and right-occlusion. After CCL, the selected ROI 

would be marked by a red rectangle and the system has to check whether the area 

below the red rectangle contains other objects or not. If an object appears in this area, 

it is required to determine the case of occlusion from the overlapping region which 

blocks the object in ROI. If it is left/right-occlusion, the overlapping region would be 

small and shown on the left/right side of the object in ROI. If it is frontal-occlusion, 

the overlapping region would be larger to block more than half of the object in ROI. 

Fig-3.10 shows different cases of occlusion, which are non-occlusion, frontal- 

occlusion, left-occlusion and right-occlusion from left to right. The filled rectangles 

are the areas should be checked, and the overlapping regions are encircled by green 

circles. The occlusion information is also a kind of feature and would be sent into the 

recognition system as a reference. 

(a) 

      
    

  

  

  

  

(b) (c) (d) 

Fig-3.10  Results of CCL and examples of occlusion judgment. (a) Non-occlusion 
(b) Frontal-occlusion (c) Left-occlusion (d) Right-occlusion 
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3.2 Feature Extraction 

After ROI selection, the system has to extract necessary features to increase the 

detection rate and decrease the computational cost. The overall feature extraction 

could be separated into three parts. First, the size of the selected ROI would be 

normalized based on the distance between object and camera. Second, edge detection 

is executed to extract the shape information which is an important cue for human 

detection. Finally, distance transformation is implemented to convert the binary edge 

image into distance image.  

3.2.1 Normalization 

Obviously, if the object is farther from the camera, the object would have 

smaller size in the image. Therefore, the detection process would be influenced by 

different distances. In order to reduce the influence, the system has to normalize the 

size of object. According to the property of perspective projection, the relation 

between the height of the object in the image and the distance from object to camera 

could be expressed as 

  ' f
d

=


  (3.6) 

where f is the focal length, d is the distance between object and camera, and '  and 

 are the heights in the image and in the real world, respectively. The concept of 

normalization is that no matter where the object is, the object would be transformed to 

the standard distance through normalization. For example, set d0 as the standard 

distance and put the object in d1 as shown in Fig-3.11. According to (3.6), the height 

of the object in the image is 
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 1
1

1

' f
d

=


  (3.7)  

If move the object to the standard distance d0, its height in the image becomes 

  1
1

0

'L f
d

=
  (3.8) 

Then, from (3.8) by (3.7) we have 

  1
1 1

0

' ' dL
d

=   (3.9) 

which could be used for normalization. For explanation, let’s assume an object with 

any size is put in some distance. Once the height 1'  in the image and the distance d1 

between object and camera are measured, its height 1'L  in standard distance could 

be obtained based on (3.9).  

 

 

 

 

 

 

 After ROI selection, the result is shown in Fig-3.12(b) and then the selected 

ROIs are separated in Fig-3.12(c). The height of object in the image could be obtained 

by computing the number of rows of ROI and the distance between object and camera 

could be directly acquired by the intensity of depth image. Therefore, the 

normalization could be implemented based on (3.9) and the results are attained in 

Fig-3.12(d). Note that the standard distance is set to be 2.4m in this thesis. 

     

𝑑0 𝑑1 

ℓ1′  
𝐿1′  

ℓ1 ℓ1 

Fig-3.11 Example of perspective projection 
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Fig-3.12 (a) The original image (b) The result of ROI selection (c) Extracted regions 
from ROI selection (d) The results of normalization 

3.2.2 Edge Detection 

Edge detection is a fundamental tool in image processing and computer vision, 

particularly suitable for feature detection and feature extraction which aim at 

identifying points with brightness changing sharply or discontinuously in a digital 

image. In the ideal case, the result of applying an edge detector to an image may lead 

to a set of connected curves that indicate the boundaries of objects. Based on the 

boundaries that preserve the important structural properties of an image, the amount 

of data to be processed may be reduced since some irrelevant information is 

negligible. 

(a) (b) 

(c) (d) 
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 The edge detection methods are commonly based on gradient, which is a tool to 

find edge strength and direction using first derivative. The gradient at point (x,y) of an 

image f is defined as: 

  ∇𝑓 ≡ grad(𝑓) ≡ �
𝑓𝑥
𝑓𝑦
� = �

𝜕𝜕
𝜕𝜕
𝜕𝜕
𝜕𝜕

� (3.10) 

where 𝑓𝑥  and 𝑓𝑦  are the gradients through the x-direction and y-direction, 

respectively. The magnitude of ∇𝑓 is denoted as  

  𝑀(𝑥,𝑦) = mag(∇𝑓) = �𝑓𝑥2 + 𝑓𝑦2 (3.11) 

which is related to the gradient vector at (x,y). Note that 𝑀(𝑥,𝑦) is an image of the 

same size as the original image, and it is referred as the gradient image in general. 

 In digital image processing, gradients could be approximated by mask 

operations, such as Laplacian [32], Sobel [33] , Prewitt [34], Canny [35], etc. Take 

Sobel operators as an example, the gradient is implemented by two masks shown in 

Fig-3.13(b) and Fig-3.13(c), which are Sobel operators for x-direction and y-direction, 

respectively. Assume Fig-3.13(a) contains the intensities 𝑧𝑖, i=1 to 9, of the i-th image 

pixel in a 3×3 region. By the use of Fig-3.13(b), the gradient 𝑓𝑥 of the 5th pixel along 

the x-direction is obtained as 

  𝑓𝑥 = 𝜕𝜕
𝜕𝜕

= (𝑧7 + 2𝑧8 + 𝑧9) − (𝑧1 + 2𝑧2 + 𝑧3) (3.12) 

Similarly, the gradient 𝑓𝑦 of the 5th pixel along the y-direction can be attained from 

Fig-3.13(c) and expressed as 

  𝑓𝑦 = 𝜕𝜕
𝜕𝜕

= (𝑧3 + 2𝑧6 + 𝑧9) − (𝑧1 + 2𝑧4 + 𝑧7) (3.13) 

After computing the partial derivatives with these masks, the gradient image 𝑀(𝑥,𝑦) 

could be obtained using (3.11). In this thesis, the system implements edge detection 

based on Sobel operators. Take Fig-3.14 as an example, the selected ROIs are 
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separated and normalized as shown in Fig-3.14(b) and Fig-3.14(c), respectively. Then, 

the normalized ROIs are scanned by Fig-3.13(b) and Fig-3.13(c) separately, and the 

magnitude of gradient is computed based on (3.11). If the magnitude of gradient of a 

pixel is larger than a threshold, it is a pixel on the edge. Fig-3.14(d) shows the result 

of edge detection. With the above edge detection process, the edge information could 

be extracted from the depth image. 

 

 

 

 

 

 

 

 

 

Fig-3.13 Example of Sobel operators 

(a) (b) (c) 

-1 0 1 

-2 0 2 

-1 0 1 

 

-1 -2 -1 

0 0 0 

1 2 1 

 

𝑧1 𝑧2 𝑧3 

𝑧4 𝑧5 𝑧6 

𝑧7 𝑧8 𝑧9 

 

(a) (b) (c) (d) 

Fig-3.14 Result of edge detection 
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3.2.3 Distance Transformation 

 Distance transformation (DT)[36, 37] is a technique to transform a binary edge 

image into a distance image. DT is often applied to approximate differential 

estimators, find the skeleton of objects and match templates. There are many DT 

algorithms, differing in the way distances are computed [36-38]. In general, the size 

of distance image is the same as edge image and the edge pixels in distance image are 

all set to be 0. Following, the other pixels in distance image contain the distance to the 

closest edge pixel. In this thesis, the 4-neighbor distance is used to compute the 

distance between a pixel and the closest edge pixel. The value at point (x,y) of a 

distance image is defined as: 

  𝐷(𝑥,𝑦) = |𝑥 − 𝑥0| + |𝑦 − 𝑦0| (3.14) 

where (𝑥0,𝑦0) represents the coordinate of the closest edge pixel in the edge image. 

Fig-3.15 is an example of distance transformation. Fig-3.15(a) is a binary edge image, 

where the 0 value represents the edge pixel. After distance transformation, the edge 

image is transformed to distance image as shown in Fig-3.15(b). 

 

1 1 1 1 1 1 1 1 1 1

1 1 1 0 0 1 1 1 1 1

1 1 0 1 1 0 0 1 1 1

1 1 0 1 1 1 1 0 1 1

1 1 0 1 1 1 1 0 1 1

1 1 0 1 1 0 0 0 1 1

1 1 0 0 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Fig-3.15 (a) Example of edge image (b) Result of distance transformation 

(a) (b) 

4 3 2 1 1 2 2 3 4 5

3 2 1 0 0 1 1 2 3 4

2 1 0 1 1 0 0 1 2 3

2 1 0 1 2 1 1 0 1 2

2 1 0 1 2 1 1 0 1 2

2 1 0 1 1 0 0 0 1 2
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 After edge detection, the system would have binary edge images as shown in 

Fig-3.16(d), which contains important shape information. Because the variation of 

human is high, the system is required to implement DT to enhance the variation 

tolerance. Fig-3.16(e) shows the result of distance transformation which will be used 

to match templates in the following steps. The use of distance image to match 

templates would have much smoother result than the use of edge image. Therefore, 

the system would allow more variation and enhance the detection rate. 

 

 

(a) (b) (c) (d) (e) 

Fig-3.16 Result of distance transformation 
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3.3 Human Recognition 

In this section, the system has to judge whether the ROI contains human or not 

based on the extracted features. In order to achieve higher detection rate and resolve 

occlusion problems, this thesis adopts component-based concept which considers a 

whole human shape is formed by different parts of body. There are two steps in this 

section, including chamfer matching and shape recognition. Chamfer matching is a 

technique to evaluate the similarity between two objects and could be used to detect 

possible locations of different parts of body. Following, the result of chamfer 

matching would be combined into shapes to decide whether the ROI contains human 

or not. 

3.3.1 Chamfer Matching  

Chamfer matching [38] is a matching algorithm to evaluate the similarity 

between test image and template image. First, the shape of the target object, such as 

head, leg, etc., is captured by a binary template. The test image is pre-processed by 

edge detection and distance transformation. After implementing the DT, the distance 

image would be scanned by the template image at all the locations. Note that the size 

of template image must be smaller than the size of test image. Assume T is a binary 

template image with size m×n and I is a distance image of the test image. Define the 

similarity measure as: 

  ', '

', '

( ', ') ( ', ')
( , ) ,1 ' ,1 '

( ', ')
x y

x y

T x y I x x y y
C x y x m y n

T x y

⋅ + +
= ≤ ≤ ≤ ≤

∑
∑

 (3.15) 

where C(x,y) is the matching score at coordinate (x,y) of I. The numerator of (3.15) is 

equivalent to the cross-correlation between template image and test image at 
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coordinate (x,y). Following, the result of cross-correlation is normalized by the 

number of edge pixels in T to get the matching score. The lower score means that the 

matching between test image and template image at this location is better. If the 

matching score lies below a certain threshold, the target object is considered as 

detected at this location. Fig-3.17 is an example of chamfer matching. Fig-3.17(a) and 

Fig-3.17(c) are the test image and template image, respectively, and Fig-3.17(b) is the 

distance image of Fig-3.17(a). The template scans the distance image at all the 

locations and evaluate the similarity based on (3.15). When the matching score is 

lower than a given threshold, it would be marked by yellow dots as shown in 

Fig-3.17(d).  

 

In this thesis, chamfer matching is implemented to detect different parts of body, 

including head, torso and legs. Fig-3.18(a) shows a set of template images, which are 

called full-head (FH), full-torso (FT) and full-legs (FL) from left to right. These three 

template images would scan the ROIs respectively and the coordinates of matched 

regions would be recorded and sent into the next step. However, when a human is 

occluded by objects or other humans, there might be only left-side body or right-side 

body in the image. In order to deal with the occlusion problem, separating the 

template image into left-side one and right-side one might be an option, but it may 

Fig-3.17 Example of chamfer matching 

(a) (b) (c) (d) 
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also cost more computation time. Therefore, another template set is proposed in 

Fig-3.18(b) which contains six template images, the left-side and right-side of 

Fig-3.18(a), named as left-head (LH), right-head (RH), left-torso (LT), right-torso 

(RT), left-leg (LL) and right-leg (RL) from left to right. These two template sets, 

“Set-I” and “Set-II,” would be tested and their detection rate and speed would be 

compared in the next chapter.  

 

3.3.2 Shape Recognition 

 After chamfer matching, the system has to judge whether the ROIs contain 

human or not based on the coordinates of matched regions of different parts of body. 

Because of the ability of variation tolerance, chamfer matching has high true positive 

rate to correctly detect most of real parts of body, but also has unwanted high false 

positive rate to misjudge other objects as parts of body. To cut down the false positive 

rate, the concept of shape recognition is used in the following process. Since the 

relations between different parts of body are fixed, these parts could be combined 

based on their geometric relation. For example, if a head could be combined with a 

torso, it is reasonably to know that the possibility of containing human would increase. 

(a) (b) 

Fig-3.18 Two different template sets. (a) Set-I (b) Set-II 

Set-I Set-II 

FH 
FT FL 

LH RH 
LT RT LL RL 
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On the contrary, if a head couldn’t be combined with other adjacent parts of body, it 

might be other object, not a human head. In the thesis, there are two recognition 

approaches, including voting-based and neural-network-based approaches. These two 

approaches would be introduced below and their performances would be compared in 

Chapter 4. 

Approach 1: Voting-based recognition 

 In this section, Set-II is used as an example to introduce how voting-based 

approach works and the scheme of voting-based recognition is shown in Fig-3.19. In 

order to deal with occlusion problems, a whole human shape is separated into four 

groups, which are left-, right-, upper-, and lower-group. If a part of body could be 

combined with an adjacent part, the ROI would have more possibility to contain a 

human. Take left-head as an example, if left-head could be combined with left-torso, 

the left-group and upper-group could get one vote. Similarly, if left-head could be 

combined with right-head, the upper-group would have one more vote. All the 

relations between two adjacent parts of body, e.g. left-head to right-head, right-torso 

to right-leg, etc., would be checked. If their relation is reasonable, the corresponding 

body group would have one more vote. After finding the votes of four groups, the 

occlusion judgment discovered in Section 3.1.2 would also be added as a kind of 

feature. The occlusion judgment is used to adjust the proportions of four groups. For 

instance, if the occlusion judgment is left-occlusion, the proportion of right-group 

would be increased and the proportion of left-group would be decreased. Similarly, if 

the occlusion judgment is frontal-occlusion, the proportion of upper-group and 

lower-group would be enhanced and the proportion of left-group and right-group 

would be reduced. After adjusting the proportions, the system sums up these four 
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votes to get final vote. If the final vote exceeds a threshold, e.g. half of total votes, the 

ROI would be regarded as human, and vice versa. Note that the process of 

voting-based recognition with Set-I is similar to the process introduced above. The 

concept of voting-based approach is straight and easy to implement. However, the 

relations between adjacent parts of body and the threshold have to be determined 

manually. 

 

 

Approach 2: Neural-network-based recognition 

 The second approach is using a neural network to combine different parts of 

body. The concept of neural-network-based recognition is similar to voting-based 

recognition. If a part of body could be combined with an adjacent part, the possibility 

of containing human would enhance. In supervised learning, the training data of 

Fig-3.19 Scheme of voting-based recognition 

Voting-based recognition result 

Occlusion Judgment 
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humans and non-humans are required. Therefore, the images of humans with different 

poses and images of other objects are collected and processed through the steps in 

Section 3.1 and 3.2. After chamfer matching, the matched coordinates of different 

template images are recorded as training data. In this thesis, there are totally 1500 

training data, including 500 positive data and 1000 negative data. The weights of 

neural network would be adjusted through the process of learning introduced in 

Section 2.3. After learning, the human can be recognized according to the output 

value of neural network. Two neural networks are proposed in the thesis, named as 

Set-I and Set-II neural network, which will be introduced below in detail. 

 The structure of Set-I neural network is shown in Fig-3.20, which contains one 

input layer with 6 neurons, one hidden layer with 12 neurons, and one output layer 

with 1 neuron. After chamfer matching, the coordinates of matched regions of FH, FT 

and FL are recorded as (𝑥FH,𝑦FH) , (𝑥FT,𝑦FT)  and (𝑥FL,𝑦FL) . The differences 

between these three coordinates at x- and y-coordinate are computed and sent into the 

neural network as inputs. The 6 neurons of the input layer are represented by 𝑆𝐼(𝑝), 

p=1,2,…,6, correspondingly. The p-th input neuron is connected to the q-th neuron, 

q=1,2,…,12, of the hidden layer with weighting 𝑊𝑆𝐼
1(𝑝, 𝑞). Therefore, there exists a 

weighting array 𝑊𝑆𝐼
1(𝑝, 𝑞) of dimension 6×12. Besides, the q-th neuron of the hidden 

layer is also with an extra bias 𝑏𝑆𝐼
1 (𝑞). Finally, the q-th neuron of the hidden layer is 

connected to output neuron with weighting 𝑊𝑆𝐼
2(𝑞), q=1,2,…,12, and a bias 𝑏𝑆𝐼

2  is 

added to the output neuron.  
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 Let the activation function of the hidden layer be the hyperbolic log-sigmoid 

transfer function and the output of q-th neuron 1 ( )
ISO q  is expressed as 

  
( )

1
1

1

1( ) ( ( )) ,   1, 2,...,12
1+ ( )ISO q logsig n q q

exp n q
= = =
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Let the activation function of the output layer be the linear transfer function and the 

output is expressed as 

  
12

2 2 1 2
2

1
( ) ( )

I I I IS S S S
q

O n W q O q b
=

= = +∑  (3.18) 

The above operations are shown in Fig-3.21. 

Fig-3.20 Structure of Set-I neural network 

6 neurons 

12 neurons 

1 neuron 
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 For Set-II neural network, there are one input layer with 18 neurons, one hidden 

layer with 30 neurons, and one output layer with 4 neuron as shown in Fig-3.22. 

Similar to Set-I neural network, the inputs of Set-II neural network are the differences 

between coordinates of different parts of body at x- and y-coordinate. The 18 neurons 

of the input layer are represented by 𝑆𝐼𝐼(𝑝), p=1,2,…,18, correspondingly. The p-th 

input neuron is connected to the q-th neuron, q=1,2,…,30, of the hidden layer with 

weighting 𝑊𝑆𝐼𝐼
1 (𝑝, 𝑞). Hence, there exists a weighting array 𝑊𝑆𝐼𝐼

1 (𝑝, 𝑞) of dimension 

18×30. Besides, the q-th neuron of the hidden layer is also with an extra bias 𝑏𝑆𝐼𝐼
1 (𝑞). 

Finally, the q-th neuron of the hidden layer is connected to the r-th neuron, r=1,2,3,4, 

of output layer with weighting 𝑊𝑆𝐼𝐼
2 (𝑞, 𝑟), and a bias 𝑏𝑆𝐼𝐼

2 (𝑟) is added to the output 

neurons. These four output neurons represent the performances in left-, right-, upper- 

and lower-group, respectively. Similar to voting-based recogntion, the occlusion 

judgment is added to adjust the proportions of four groups and then these 

performances are summed up as final performance. If the final performance exceeds a 

threshold, the ROI would be regarded as human, and vice versa.  

 

 

 

   

Fig-3.21 Set-I neural network 

SI(p) ╳

𝑾𝑺𝑰
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╳
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 Let the activation function of the hidden layer be the hyperbolic log-sigmoid 

transfer function and the output of q-th neuron 1 ( )
IISO q  is expressed as 
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1+ ( )IISO q logsig n q q

exp n q
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Let the activation function of the output layer be the linear transfer function and the 

output of r-th neuron 2 ( )
IISO r  is expressed as 
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The above operations are shown in Fig-3.23. 

‧
‧
‧

Recognition 
Result 

Occlusion 
Judgment 

18 neurons 

30 neurons 

4 neurons 

Fig-3.22 Structure of Set-II neural network with occlusion judgment 
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Fig-3.23 Set-II neural network 
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Chapter 4 

Experimental Results  

In the previous chapters, the three main steps of the proposed human detection 

system are introduced. In this chapter, the experiment results of each step will be 

shown in detail and the results of the proposed algorithm will be obtained by 

MATLAB R2010b and OpenCV 2.2. 

4.1 ROI Selection 

In order to examine the reliability of ROI selection, the system is tested in many 

different situations, including different poses, occlusion by other objects, more than 

one human and complex background. The results are shown from Fig-4.1 to Fig-4.4 

and all these four figures have three columns. The left column contains the original 

depth images, the middle one shows the ROI images after CCL, and the right one 

represents the results of ROI selection. Note that the red rectangles in the middle and 

right columns are the selected ROIs. These regions would be extracted and further 

processed in the following steps. The human in Fig-4.1 has different poses, including 

walking, waving hands, etc. As long as the human keeps standing or walking, the 

system would not fail to extract human region. In Fig-4.2, there are one human and 

one chair in the images, and they might occlude each other. But the system also could 

detect the human regions and separate human and chair as two distinct objects.  
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Fig-4.1 Results of ROI selection in the condition of different poses. (a) The original 
depth images (b) The ROI images after CCL (c) The results of ROI selection. 
Note that the rectangles in (b) and (c) are the selected ROIs.  

 

(a) (b) (c) 
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 The situations in Fig-4.3 and Fig-4.4 are more complex. In Fig-4.3, there are 

more than one human standing in front of the camera, and they might stand side by 

side or occlude each other. The system still could extract human regions and separate 

them as distinct objects even when suffering from serious occlusion. In Fig-4.4, the 

ROI selection is tested in complex background and there are a lot of small dot-like 

regions in the ROI images. Through CCL, the system could filter out these regions to 

reduce the number of ROI and still success to extract the human regions.  

Fig-4.2 Results of ROI selection in the condition of one human and one chair 

(a) (b) (c) 
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Fig-4.3 Results of ROI selection in the condition of more than one human 

(a) (b) (c) 
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Fig-4.4 Results of ROI selection in complex background 

(a) (b) (c) 
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4.2 Feature Extraction 

In this section, the experimental results are presented in two parts. The first part 

focuses on the performance of normalization. The second part shows the results of 

edge detection and distance transformation. 

4.2.1 Normalization 

 The objective of normalization is attempting to reduce the influence of distances 

because the same object at different distances would have different sizes in the image. 

In order to examine the function of normalization, a human with 170cm height is 

standing at different distances as shown in Fig-4.5(a), where the distances between the 

human and camera are 1.6m, 2.0m, 2.4m, 2.8m, 3.2m and 3.6m from top to bottom. 

Fig-4.5(b) is the result of ROI selection and then the human regions are extracted as 

shown in Fig-4.5(c), where the same human at different distances would have 

different sizes. Besides, the standard distance is set to be 2.4m. Based on (3.11), all 

the human regions in Fig-4.5(c) are normalized and resized into similar size. The 

result of normalization is shown in Fig-4.5(d). In order to compare the result of 

normalization more clearly, images in Fig-4.5(d) are lined in a row as presented in 

Fig-4.6. Obviously, the influence of distance is highly reduced. Note that all the 

selected ROI would be normalized not only the human regions. This section just uses 

the human as an example. 
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Fig-4.5  The same human standing in 1.6m, 2.0m, 2.4m, 2.8m, 3.2m and 3.6m from 
top to bottom. (a) Original depth images (b) The results of ROI selection (c) 
The extracted human regions. (d) The results of normalization 

 

(a) (b) (d) (c) 
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4.2.2 Edge Detection and Distance Transformation 

 The results of edge detection and distance transformation are shown from 

Fig-4.7 to Fig-4.10. Take Fig-4.7 as an example, Fig-4.7(a) is the outcome of ROI 

selection and then the selected ROIs would be separated as shown in Fig-4.7(b). 

Following, the ROIs would be normalized and resized based on the distance between 

object and camera as presented in Fig-4.7(c). Finally, edge detection and distance 

transformation are implemented and the results are shown in Fig-4.7(d) and Fig-4.7(e), 

respectively. Fig-4.8, Fig-4.9 and Fig-4.10 are presented in the same way. 

 

 

Fig-4.6 Comparison of the result of normalization. The human is originally 
standing at 1.6m, 2.0m, 2.4m, 2.8m, 3.2m and 3.6m from left to right. 

(a) (b) (c) (d) (e) 

Fig-4.7  Result of edge detection and distance transformation in the condition of 
walking pose 
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Fig-4.8 Result of edge detection and distance transformation in the condition of more 
than one human 

 

(a) (b) (c) (d) (e) 

(a) (b) (c) (d) (e) 

Fig-4.9 Result of edge detection and distance transformation in complex background 
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4.3 Human Recognition 

In this section, the human recognition system would be tested in different 

situations to examine the performance and reliability. Before presenting the results, it 

is required to introduce the method for evaluating the results. In general, the major 

objective of a detection system is to detect humans from an image or a sequence of 

images. In human detection, there are four possible events given in Table 4.1, 

including True Positive (TP), True Negative (TN), False Positive (FP), and False 

Negative (FN). These four events are determined based on the actual condition and 

(a) (b) (c) (d) (e) 

Fig-4.10 Result of edge detection and distance transformation in the condition of 
one human and one chair. 
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test result, and they are listed as below: 

  1. True Positive, TP, means a real human is detected as human. 

  2. True Negative, TN, means a non-human is detected as non-human. 

  3. False Positive, FP, means a non-human is detected as human. 

  4. False Negative, FN, means a real human is detected as non-human. 

With these four events, the true positive rate TPR and false positive rate FPR can be 

respectively defined as below: 

 TPTPR= 100%
TP+FN

×  (4.1) 

  FPFPR= 100%
TN+FP

×  (4.2) 

A true positive rate of 100% means all humans are detected correctly, while a false 

positive rate of 0% means any non-human is not detected as human. To compare the 

performance of the system, the accuracy rate AR is defined as below: 

 TP+TNAR= 100%
TP+TN+FP+FN

×  (4.3) 

and a higher AR implies a better detection performance. 

 

 

 

Table 4.1 TP, FP, FN, TN table 

 
Actual Condition 

1 0 

Test 
Result 

1 TP FP 

0 FN TN 
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 In order to examine the robustness of the human recognition system, many test 

images in different situations are collected. The possible situations could be roughly 

separated into three cases: different poses (DP), occlusion by other objects or humans 

(OC) and complex background (CB). In this thesis, the overall test image set, which 

contains 2714 test images, are separated into three groups, including 980 images in 

DP group, 1114 images in OC group and 620 images in CB group, as shown from 

Fig-4.11 to Fig-4.13. Through separating them apart, it is simple to observe and 

compare the reliability of the system in these situations. 

 

 

Fig-4.11 Examples of test images in DP group 

Fig-4.12 Examples of test images in OC group 
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 After ROI selection and feature extraction, the selected ROIs and extracted 

features would be sent into the human recognition system to get results. Note that 

there are totally 9173 selected ROIs in test image set, including 1972 in DP group, 

3842 in OC group and 3359 in CB group. In this thesis, there are two template sets, 

Set-I and Set-II, and two recognition approaches, voting-based approach and 

neural-network-based approach. Hence, there are four different methods, which are 

Set-I-Voting, Set-I-NN, Set-II-Voting and Set-II-NN. The performances of these 

methods in different test groups are shown in Table 4.2, including TPR, FPR and AR. 

Moreover, Table 4.3 shows the TPR, FPR and AR of overall test images and the 

average executing time. Through these two tables, there are some conclusions that we 

could get: 

 It is obvious that the accuracy rate of Set-II is higher than the accuracy rate of 

Set-I, especially in the OC group. Under slight occlusion, Set-I and Set-II both 

have good performance. Unfortunately, when suffering from serious occlusion, 

the accuracy rate of Set-I would drop obviously. However, the computational 

cost of Set-I is lower than Set-II and the average executing time of Set-I is lower 

than 0.1sec. 

Fig-4.13 Examples of test images in CB group 
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 The performance of neural-network-based approach is better than the 

performance of voting-based approach. The concept of voting-based approach is 

straight and it is easy to implement. However, it couldn’t handle all the poses and 

situations because the definitions of the relations between different parts of body 

are brief. As for neural network, it could adjust its weight to difficult situations 

through the process of learning, but the training data has to be prepared and 

selected in advance.  

 

 

 

Table 4.2 Comparison of performances in DP-, OC- and CB-group 

 DP OC CB 

TPR FPR AR TPR FPR AR TPR FPR AR 

Set I-Voting 89.21 0.90 94.22 81.04 4.12 88.55 85.43 8.77 90.12 

Set II-Voting 92.81 0.60 96.15 89.73 3.09 93.36 89.61 7.41 92.02 

Set I-NN 91.06 0.80 95.18 84.73 2.83 91.02 87.60 4.79 93.75 

Set II-NN 94.86 0.40 97.26 92.05 2.06 95.03 92.25 3.32 95.83 

DP=Different Poses.  OC=Occlusion.  CB=Complex Background.            (%) 

Table 4.3 Performances and average executing time 

 TPR FPR AR Executing Time 

Set I-Voting 84.11% 5.78% 90.34% 0.089s 

Set II-Voting 90.56% 4.72% 93.74% 0.122s 

Set I-NN 87.01% 3.41% 92.91% 0.092s 

Set II-NN 92.86% 2.37% 95.80% 0.131s 
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Chapter 5 

Conclusions and Future Works 

This thesis proposes an intelligent human detection system based on depth 

information generated by Kinect to find out humans from a sequence of images and 

resolve occlusion problems. The system is divided into three parts, including ROI 

selection, feature extraction and human recognition. First, the histogram projection 

and connected component labeling (CCL) are applied to select the ROIs according to 

the property that human would present vertically in general. Through histogram 

projection, the system could generate the rough vertical distribution in 3-D space. 

Therefore, if the height of object exceeds a certain threshold, the object would be 

selected as an ROI and marked by CCL. Then, normalize each ROI based on its 

distance to camera and extract the human shape feature by the edge detection and 

distance transformation to obtain the distance image. Finally, the chamfer matching is 

used to search possible parts of human body under component-based concept, and 

then shape recognition is implemented by neural network according to the 

combination of parts of human body. From the experimental results, there are some 

conclusions listed as below: 

 The proposed system could detect human with accuracy rate higher than 90% and 

average executing time about 0.1sec/frame. Besides, with the help of depth image 

and component-based concept, the system could also detect humans correctly even 

suffering from serious occlusion. 

 The use of depth image to implement human detection would have some distinct 

advantages over conventional techniques. First, it is robust to illumination change 
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and influence of distance. Second, it could deal with occlusion problems efficiently. 

Third, it is suitable for moving camera because no background modeling is 

required. 

 The use of chamfer matching to achieve significant human features could highly 

reduce the dimension and size of the neural network. The conventional pattern 

recognition often directly applies a patch of image or the whole pixels of an ROI 

into the neural network. Consequently, the neural network requires hundreds and 

thousands of neurons in its input layer and a whale of training data for training. 

With pre-processing via chamfer matching, the number of neurons in the input 

layer could be reduced to less than 50. 

In order to improve the human-robot interaction, there are three functions often 

required for a robotic system, including human detection, human tracking and pose 

detection. With these three functions, the robot could detect humans in the image, 

track specific humans and interact with them based on their poses. Therefore, the 

interaction between human and robot could be more accurate and natural. In this 

thesis, the proposed system has been demonstrated to be successful in human 

detection. In the future, all the schemes developed in this thesis will be further applied 

to the implementation of the other two functions.  
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